广东省中考数学试题及答案 可编辑
- 格式:docx
- 大小:139.29 KB
- 文档页数:11
2024年广州市中考数学真题试卷试卷共8页,25小题,满分120分.考试用时120分钟.第一部分选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.四个数10-,1-,0,10中,最小的数是()A.10- B.1- C.0 D.102.下列图案中,点O 为正方形的中心,阴影部分的两个三角形全等,则阴影部分的两个三角形关于点O 对称的是()A. B. C. D.3.若0a ≠,则下列运算正确的是()A.235a a a += B.325a a a ⋅=C.235a a a ⋅= D.321a a ÷=4.若ab <,则()A.33a b +>+ B.22a b ->- C.a b -<- D.22a b<5.为了解公园用地面积x (单位:公顷)的基本情况,某地随机调查了本地50个公园的用地面积,按照04x <≤,48x <≤,812x <≤,1216x <≤,1620x <≤的分组绘制了如图所示的频数分布直方图,下列说法正确的是()A.a 的值为20B.用地面积在812x <≤这一组的公园个数最多C.用地面积在48x <≤这一组的公园个数最少D.这50个公园中有一半以上的公园用地面积超过12公顷6.某新能源车企今年5月交付新车35060辆,且今年5月交付新车的数量比去年5月交付的新车数量的1.2倍还多1100辆.设该车企去年5月交付新车x 辆,根据题意,可列方程为()A.1.2110035060x += B.1.2110035060x -=C.1.2(1100)35060x += D.110035060 1.2x -=⨯7.如图,在ABC 中,90A ∠=︒,6AB AC ==,D 为边BC 的中点,点E ,F 分别在边AB ,AC上,AE CF =,则四边形AEDF 的面积为()A.18B.C.9D.8.函数21y ax bx c =++与2k y x=的图象如图所示,当()时,1y ,2y 均随着x 的增大而减小.A.1x <-B.10x -<<C.02x <<D.1x >9.如图,O 中,弦AB 的长为,点C 在O 上,OC AB ⊥,30ABC ∠=︒.O 所在的平面内有一点P ,若5OP =,则点P 与O 的位置关系是()A.点P 在O 上B.点P 在O 内C.点P 在O 外D.无法确定10.如图,圆锥的侧面展开图是一个圆心角为72︒的扇形,若扇形的半径l 是5,则该圆锥的体积是()A.311π8B.11π8C.26πD.26π3第二部分非选择题(共90分)二、填空题(本大题共6小题,每小题3分,满分18分.)11.如图,直线l 分别与直线a ,b 相交,a b ,若171∠=︒,则2∠的度数为______.12.如图,把1R ,2R ,3R 三个电阻串联起来,线路AB 上的电流为I ,电压为U ,则123U IR IR IR =++.当120.3R =,231.9R =,347.8R =, 2.2I =时,U 的值为______.13.如图,ABCD Y 中,2BC =,点E 在DA 的延长线上,3BE =,若BA 平分EBC ∠,则DE =______.14.若2250a a --=,则2241a a -+=______.15.定义新运算:()()200a b a a b a b a ⎧-≤⎪⊗=⎨-+>⎪⎩例如:224(2)40-⊗=--=,23231⊗=-+=.若314x ⊗=-,则x 的值为______.16.如图,平面直角坐标系xOy 中,矩形OABC 的顶点B 在函数(0)k y x x=>的图象上,(1,0)A ,(0,2)C .将线段AB 沿x 轴正方向平移得线段A B ''(点A 平移后的对应点为A '),A B ''交函数(0)k y x x =>的图象于点D ,过点D 作DE y ⊥轴于点E ,则下列结论①2k =②OBD 的面积等于四边形ABDA '的面积③A E '④B BD BB O ''∠=∠.其中正确的结论有______.(填写所有正确结论的序号)三、解答题(本大题共9小题,满分72分.解答应写出文字说明、证明过程或演算步骤.)17.解方程:1325x x=-.18.如图,点E ,F 分别在正方形ABCD 的边BC ,CD 上,3BE =,6EC =,2CF =.求证:ABE ECF △△∽.19.如图,Rt ABC △中,90B Ð=°.(1)尺规作图:作AC 边上的中线BO (保留作图痕迹,不写作法)(2)在(1)所作的图中,将中线BO 绕点O 逆时针旋转180︒得到DO ,连接AD ,CD .求证:四边形ABCD 是矩形.20.关于x 的方程2240x x m -+-=有两个不等的实数根.(1)求m 的取值范围(2)化简:2113|3|21m m m m m ---÷⋅-+.21.善于提问是应用人工智能解决问题的重要因素之一.为了解同学们的提问水平,对A ,B 两组同学进行问卷调查,并根据结果对每名同学的提问水平进行评分,得分情况如下(单位:分)A 组75788282848687889395B 组75778083858688889296(1)求A 组同学得分的中位数和众数(2)现从,A ,B 两组得分超过90分的4名同学中随机抽取2名同学参与访谈,求这2名同学恰好来自同一组的概率.22.2024年6月2日,嫦娥六号着陆器和上升器组合体(简称为“着上组合体”)成功着陆在月球背面.某校综合实践小组制作了一个“着上组合体”的模拟装置,在一次试验中,如图,该模拟装置在缓速下降阶段从A 点垂直下降到B 点,再垂直下降到着陆点C ,从B 点测得地面D 点的俯角为36.87︒,17AD =米,10BD =米.(1)求CD 的长(2)若模拟装置从A 点以每秒2米的速度匀速下降到B 点,求模拟装置从A 点下降到B 点的时间.(参考数据:sin 36.870.60︒≈,cos36.870.80︒≈,tan 36.870.75︒≈)23.一个人的脚印信息往往对应着这个人某些方面的基本特征.某数学兴趣小组收集了大量不同人群的身高和脚长数据,通过对数据的整理和分析,发现身高y 和脚长x 之间近似存在一个函数关系,部分数据如下表脚长(cm)x …232425262728…身高(cm)y …156163170177184191…(1)在图1中描出表中数据对应的点(,)x y (2)根据表中数据,从(0)y ax b a =+≠和(0)k y k x=≠中选择一个函数模型,使它能近似地反映身高和脚长的函数关系,并求出这个函数的解析式(不要求写出x 的取值范围)(3)如图2,某场所发现了一个人的脚印,脚长约为25.8cm ,请根据(2)中求出的函数解析式,估计这个人的身高.24.如图,在菱形ABCD 中,120C ∠=︒.点E 在射线BC 上运动(不与点B ,点C 重合),AEB △关于AE 的轴对称图形为AEF △.(1)当30BAF ∠=︒时,试判断线段AF 和线段AD 的数量和位置关系,并说明理由(2)若63AB =+O 为AEF △的外接圆,设O 的半径为r .①求r 的取值范围②连接FD ,直线FD 能否与O 相切?如果能,求BE 的长度:如果不能,请说明理由.25.已知抛物线232:621(0)G y ax ax a a a =--++>过点()1,2A x 和点()2,2B x ,直线2:l y m x n =+过点(3,1)C ,交线段AB 于点D ,记CDA 的周长为1C ,CDB △的周长为2C ,且122C C =+.(1)求抛物线G 的对称轴(2)求m 的值(3)直线l 绕点C 以每秒3︒的速度顺时针旋转t 秒后(045)t ≤<得到直线l ',当l AB '∥时,直线l '交抛物线G 于E ,F 两点.①求t 的值②设AEF △的面积为S ,若对于任意的0a >,均有S k ≥成立,求k 的最大值及此时抛物线G 的解析式.2024年广州市中考数学真题试卷答案解析一、选择题.1.【答案】A2.【答案】C3.【答案】B4.【答案】D5.【答案】B6.【答案】A7.【答案】C8.【答案】D9.【答案】C【解析】解:如图,令OC 与AB 的交点为DOC 为半径,AB 为弦,且OC AB⊥12AD AB ∴==30ABC =︒∠ 260AOC ABC ∴∠=∠=︒在ADO △中,90ADO ∠=︒,60AOD ∠=︒,AD =sin AD AOD OA ∠= 4sin 6032AD OA ∴===︒,即O 的半径为454OP => ∴点P 在O 外故选:C .10.【答案】D【解析】解:设圆锥的半径为r ,则圆锥的底面周长为2r π 圆锥的侧面展开图是一个圆心角为72︒的扇形,且扇形的半径l 是5∴扇形的弧长为7252180ππ⨯= 圆锥的底面周长与侧面展开图扇形的弧长相等22r ππ∴=1r ∴=∴圆锥的高为225126-=∴圆锥的体积为2126163π⨯⨯=故选:D .二、填空题.11.【答案】109︒12.【答案】22013.【答案】514.【答案】1115.【答案】12-或74【解析】解:∵()()200a b a a b a b a ⎧-≤⎪⊗=⎨-+>⎪⎩而314x ⊗=-∴①当0x ≤时,则有2314x -=-解得,12x =-②当0x >时,314x -+=-解得,74x =综上所述,x 的值是12-或74故答案为:12-或74.16.【答案】①②④【解析】解:∵(1,0)A ,(0,2)C ,四边形OABC 是矩形∴()1,2B ∴122k =⨯=,故①符合题意如图,连接OB ,OD ,BD ,OD 与AB 的交点为K∵1212AOB A OD S S '==⨯= ∴BOK AKDA S S '= 四边形∴BOK BKD BKDAKDA S S S S '+=+ 四边形∴OBD 的面积等于四边形ABDA '的面积:故②符合题意如图,连接A E'∵DE y ⊥轴,90DA O EOA ''∠=∠=︒∴四边形A DEO '为矩形∴A E OD'=∴当OD 最小,则A E '最小设()2,0D x x x ⎛⎫> ⎪⎝⎭∴2224224OD x x x x=+≥⋅⋅=∴2OD ≥,∴A E '的最小值为2,故③不符合题意如图,设平移距离为n∴()1,2B n '+∵反比例函数为2y x=,四边形A B CO ''为矩形∴90BB D OA B '''∠=∠=︒,21,1D n n ⎛⎫+ ⎪+⎝⎭∴BB n '=,1OA n '=+,22211n B D n n '=-=++,2A B ''=∴2112n BB n B D n OA n A B ''+==='''+∴B BD A OB '''∽∴B BD B OA '''∠=∠∵B C A O''∥∴CB O A OB '''∠=∠∴B BD BB O ''∠=∠,故④符合题意故答案为:①②④三、解答题.17.【答案】3x =18.【答案】见解析解:3BE = ,6EC =9BC ∴= 四边形ABCD 是正方形9AB CB ∴==,90B C ∠=∠=︒9362AB EC == ,32BE CF =AB BE EC CF∴=又90B C ∠=∠=︒ABE ECF ∴∽ .19.【答案】(1)作图见解析(2)证明见解析【小问1详解】解:如图,线段BO 即为所求【小问2详解】证明:如图∵由作图可得:AO CO =,由旋转可得:BO DO=∴四边形ABCD 为平行四边形∵90ABC ∠=︒∴四边形ABCD 为矩形.20.【答案】(1)3m >(2)2-【小问1详解】解:∵关于x 的方程2240x x m -+-=有两个不等的实数根.∴()()224140m ∆=--⨯⨯->解得:3m >解:∵3m >∴2113|3|21m m m m m ---÷⋅-+()()1123311m m m m m m -+--=⋅⋅--+2=-21.【答案】(1)A 组同学得分的中位数为85分,众数为82分:(2)13【小问1详解】解:由题意可知,每组学生人数为10人∴中位数为第5,6名同学得分的平均数∴A 组同学得分的中位数为8486852+=分82 分出现了两次,次数最多∴众数为82分【小问2详解】解:由题意可知,A ,B 两组得分超过90分的同学各有2名令A 组的2名同学为1A ,2A ,B 组的2名同学为1B ,2B 画树状图如下由树状图可知,共有12种等可能的情况,其中这2名同学恰好来自同一组的情况有4种∴这2名同学恰好来自同一组的概率41123=.22.【答案】(1)CD 的长约为8米:(2)模拟装置从A 点下降到B 点的时间为4.5秒.【解析】解:如图,过点B 作BE CD ∥交AD 于点E由题意可知,36.87DBE ∠=︒36.87BDC ∴∠=︒在BCD △中,90C ∠=︒,10BD =米cos CDBDC BD∠= cos36.87100.808CD BD ∴=⋅︒≈⨯≈米即CD 的长约为8米【小问2详解】解:17AD =Q 米,8CD =米15AC ∴==米在BCD △中,90C ∠=︒,10BD =米sin BCBDC BD∠= sin 36.87100.606BC BD ∴=⋅︒≈⨯≈米1569AB AC BC ∴=-=-=米模拟装置从A 点以每秒2米的速度匀速下降到B 点∴模拟装置从A 点下降到B 点的时间为92 4.5÷=秒即模拟装置从A 点下降到B 点的时间为4.5秒.23.【答案】(1)见解析(2)75y x =-(3)175.6cm【小问1详解】解:如图所示【小问2详解】解:由图可知:y 随着x 的增大而增大因此选择函数(0)y ax b a =+≠近似地反映身高和脚长的函数关系将点()()23,156,24,163代入得1562316324a b a b=+⎧⎨=+⎩解得:75a b =⎧⎨=-⎩∴75y x =-【小问3详解】解:将25.8cm 代入75y x =-得725.85175.6cmy =⨯-=∴估计这个人身高175.6cm24.【答案】(1)AF AD =,AF AD⊥(2)①333r ≥+:②12【小问1详解】解:AF AD =,AF AD ⊥:理由如下∵在菱形ABCD 中,120C ∠=︒∴120BAD C ∠=∠=︒,AB AD=∵30BAF ∠=︒∴1203090FAD ∠=︒-︒=︒∴AF AD⊥由对折可得:AB AF=∴AF AD=【小问2详解】解:①如图,设AEF △的外接圆为O ,连接AC 交BD 于H .连接OA ,OE ,OF ,OC ∵四边形ABCD 为菱形,120BCD ∠=︒∴AC BD ⊥,60BCA ∠=︒,BA BC=∵ABC 为等边三角形∴60ABC AFE ACB∠=∠=︒=∠∴,,,A E F C 共圆,2120AOE AFE ∠=∠=︒,O 在BD 上∵AO OE=∴30AEO EAO ∠=∠=︒过O 作OJ AE ⊥于J∴AJ EJ =,233AO AJ =∴33AO AE =当AE BC ⊥时,AE 最小,则AO 最小∵63AB =+60ABC ∠=︒∴(3sin 606633392AE AB =⋅︒=+⨯=+∴()33393333AO =+=+∴r 的取值范围为333r ≥+②DF 能为O 的切线,理由如下如图,以A 为圆心,AC 为半径画圆∵AB AC AF AD===∴,,,B C F D 在A 上延长CA 与A 交于L ,连接DL同理可得ACD 为等边三角形∴60CAD ∠=︒∴30CLD ∠=︒∴18030150CFD ∠=︒-︒=︒∵DF 为O 的切线∴90OFD ∠=︒∴60OFC ∠=︒∵OC OF=∴OCF △为等边三角形∴60COF ∠=︒∴1302CAF COF ∠=∠=︒∴603030DAF ︒-︒=︒∠=∴1203090BAF ∠=︒-︒=︒由对折可得:45BAE FAE ∠=∠=︒,BE EF =过E 作EM AF ⊥于M∴设AM EM x==∵60EFM ∠=︒∴33FM EM x ==∴63x x +=+解得:x =∴63FM =⨯=∴212BE EF FM ===.25.【答案】(1)对称轴为直线:3x =:(2)1m =±(3)①15t =,②k的最大值为,抛物线G 为262y x x =-+【解析】【分析】(1)直接利用对称轴公式可得答案(2)如图,由122C C =+,可得A 在B 的左边,2AD AC CD CD BC BD ++=+++,证明CA CB =,可得2AD BD =+,设(),2D p ,建立1212232x x p x x p +=⨯⎧⎨-=-+⎩,可得:4p =,()4,2D ,再利用待定系数法求解即可(3)①如图,当l AB '∥时,与抛物线交于,E F ,由直线y x n =+,可得45DCF ∠=︒,可得345t =,从而可得答案:②计算()1122AEF A E S EF y y EF =⋅-= ,当1y =时,可得22620x x a a --+=,则126x x +=,2122x x a a =-+,可得12EF x x =-==,可得当1a =时,EF 的最小值为再进一步求解可得答案.【小问1详解】解:∵抛物线232:621(0)G y ax ax a a a =--++>∴抛物线对称轴为直线:632a x a-=-=【小问2详解】解:∵直线2:l y m x n =+过点(3,1)C ∴231m n +=如图∵直线2:l y m x n =+过点(3,1)C ,交线段AB 于点D ,记CDA 的周长为1C ,CDB △的周长为2C ,且122C C =+∴A 在B 的左边,2AD AC CD CD BC BD ++=+++∵C 在抛物线的对称轴上∴CA CB=∴2AD BD =+设(),2D p ∴1212232x x p x x p +=⨯⎧⎨-=-+⎩解得:4p =∴()4,2D ∴223142m n m n ⎧+=⎨+=⎩∴21m =解得:1m =±【小问3详解】解:①如图,当l AB '∥时,与抛物线交于,E F ∵直线y x n =+∴45DCF ∠=︒∴345t =解得:15t =②∵()1122AEF A E S EF y y EF =⋅-= 当1y =时,2326211ax ax a a --++=∴22620x x a a --+=∴126x x +=,2122x x a a=-+∴()21212124EF x x x x x x =-=+-()23642a a=--+24836a a =-+()24132a =-+∵40>∴当1a =时,EF 的最小值为42∴此时142222AEF S =⨯= ∵对于任意的0a >,均有S k ≥成立∴k 的最大值为22∴抛物线G 为262y x x =-+。
2024年广东省广州市中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.四个数10-,1-,0,10中,最小的数是( )A .10-B .1-C .0D .10【答案】A【分析】本题考查了有理数的大小比较,解题关键是掌握有理数大小比较法则:正数大于零,负数小于零,正数大于一切负数;两个正数比较大小,绝对值大的数大;两个负数比较大小,绝对值大的数反而小.【详解】解:101010-<-<< ,∴最小的数是10-,故选:A .2.下列图案中,点O 为正方形的中心,阴影部分的两个三角形全等,则阴影部分的两个三角形关于点O 对称的是( )A .B .C .D .【答案】C【分析】本题考查了图形关于某点对称,掌握中心对称图形的性质是解题关键.根据对应点连线是否过点O 判断即可.【详解】解:由图形可知,阴影部分的两个三角形关于点O 对称的是C ,故选:C .3.若0a ≠,则下列运算正确的是( )A .235a a a +=B .325a a a ⋅=C .235a a a⋅=D .321a a ÷=4.若a b <,则( )A .33a b +>+B .22a b ->-C .a b -<-D .22a b<【答案】D【分析】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题关键.根据不等式的基本性质逐项判断即可得.【详解】解:A .∵a b <,∴33a b +<+,则此项错误,不符题意;B .∵a b <,∴22a b -<-,则此项错误,不符题意;C .∵a b <,∴a b ->-,则此项错误,不符合题意;D .∵a b <,∴22a b <,则此项正确,符合题意;故选:D .5.为了解公园用地面积x (单位:公顷)的基本情况,某地随机调查了本地50个公园的用地面积,按照04x <≤,48x <≤,812x <≤,1216x <≤,1620x <≤的分组绘制了如图所示的频数分布直方图,下列说法正确的是( )A .a 的值为20B .用地面积在812x <≤这一组的公园个数最多C .用地面积在48x <≤这一组的公园个数最少D .这50个公园中有一半以上的公园用地面积超过12公顷【答案】B【分析】本题考查的是从频数分布直方图获取信息,根基图形信息直接可得答案.【详解】解:由题意可得:5041612810a =----=,故A 不符合题意;用地面积在812x <≤这一组的公园个数有16个,数量最多,故B 符合题意;用地面积在04x <≤这一组的公园个数最少,故C 不符合题意;这50个公园中有20个公园用地面积超过12公顷,不到一半,故D 不符合题意;故选B6.某新能源车企今年5月交付新车35060辆,且今年5月交付新车的数量比去年5月交付的新车数量的1.2倍还多1100辆.设该车企去年5月交付新车x 辆,根据题意,可列方程为( )A .1.2110035060x +=B .1.2110035060x -=C .1.2(1100)35060x +=D .110035060 1.2x -=⨯【答案】A【分析】本题考查了一元一次方程的应用,找出题目中的数量关系是解题关键.设该车企去年5月交付新车x 辆,根据“今年5月交付新车的数量比去年5月交付的新车数量的1.2倍还多1100辆”列出方程即可.【详解】解:设该车企去年5月交付新车x 辆,根据题意得:1.2110035060x +=,故选:A .7.如图,在ABC 中,90A ∠=︒,6AB AC ==,D 为边BC 的中点,点E ,F 分别在边AB ,AC 上,AE CF =,则四边形AEDF 的面积为( )A .18B .C .9D .∵90BAC ∠=︒,AB AC =∴45BAD B C ∠=∠=∠=︒∴ADE CDF V V ≌,S S S =+8.函数21y ax bx c =++与2k y x=的图象如图所示,当( )时,1y ,2y 均随着x 的增大而减小.A .1x <-B .10x -<<C .02x <<D .1x >【答案】D 【分析】本题考查了二次函数以及反比例函数的图象和性质,利用数形结合的思想解决问题是关键.由函数图象可知,当1x >时,1y 随着x 的增大而减小;2y 位于在一、三象限内,且2y 均随着x 的增大而减小,据此即可得到答案.【详解】解:由函数图象可知,当1x >时,1y 随着x 的增大而减小;2y 位于一、三象限内,且在每一象限内2y 均随着x 的增大而减小,∴当1x >时,1y ,2y 均随着x 的增大而减小,故选:D .9.如图,O 中,弦AB 的长为C 在O 上,OC AB ⊥,30ABC ∠=︒.O 所在的平面内有一点P ,若5OP =,则点P 与O 的位置关系是( )A .点P 在O 上B .点P 在O 内C .点P 在O 外D .无法确定10.如图,圆锥的侧面展开图是一个圆心角为72︒的扇形,若扇形的半径l是5,则该圆锥的体积是()A B C.D【答案】D【分析】本题考查了弧长公式,圆锥的体积公式,勾股定理,理解圆锥的底面周长与侧面展开图扇形的弧长相等是解题关键,设圆锥的半径为r,则圆锥的底面周长为2rπ,根据弧长公式得出侧面展开图的弧长,进而得出1r=,再利用勾股定理,求出圆锥的高,再代入体积公式求解即可.【详解】解:设圆锥的半径为r,则圆锥的底面周长为2rπ,二、填空题11.如图,直线l 分别与直线a ,b 相交,a b ,若171∠=︒,则2∠的度数为 .【答案】109︒【分析】本题考查的是平行线的性质,邻补角的含义,先证明1371∠=∠=︒,再利用邻补角的含义可得答案.【详解】解:如图,∵a b ,171∠=︒,∴1371∠=∠=︒,∴21803109∠=︒-∠=︒;故答案为:109︒12.如图,把1R ,2R ,3R 三个电阻串联起来,线路AB 上的电流为I ,电压为U ,则123U IR IR IR =++.当120.3R =,231.9R =,347.8R =, 2.2I =时,U 的值为 .【答案】220【分析】本题考查了代数式求值,乘法运算律,掌握相关运算法则,正确计算是解题关键.根据123U IR IR IR =++,将数值代入计算即可.【详解】解:123U IR IR IR =++ ,当120.3R =,231.9R =,347.8R =, 2.2I =时,()20.3 2.231.9 2.247.8 2.220.331.947.8 2.2220U =⨯+⨯+⨯=++⨯=,故答案为:220.13.如图,ABCD Y 中,2BC =,点E 在DA 的延长线上,3BE =,若BA 平分EBC ∠,则DE = .【答案】5【分析】本题考查了平行四边形的性质,等腰三角形的判定和性质,掌握平行四边形的性质是解题关键.由平行四边形的性质可知,2AD BC ==,BC AD ∥,进而得出BAE EBA ∠=∠,再由等角对等边的性质,得到3BE AE ==,即可求出DE 的长.【详解】解:在ABCD Y 中,2BC =,2AD BC ∴==,BC AD ∥,CBA BAE ∴∠=∠,BA 平分EBC ∠,CBA EBA ∴∠=∠,BAE EBA∴∠=∠,3BE AE∴==,235DE AD AE∴=+=+=,故答案为:5.14.若2250a a--=,则2241a a-+=.【答案】11【分析】本题考查了已知字母的值求代数式的值,得出条件的等价形式是解题关键.由2250a a--=,得225a a-=,根据对求值式子进行变形,再代入可得答案.【详解】解:2250a a--=,225a a∴-=,()2224122125111a a a a∴-+=-+=⨯+=,故答案为:11.15.定义新运算:()()20a b aa ba b a⎧-≤⎪⊗=⎨-+>⎪⎩例如:224(2)40-⊗=--=,23231⊗=-+=.若314x⊗=-,则x的值为.16.如图,平面直角坐标系xOy 中,矩形OABC 的顶点B 在函数(0)k y x x =>的图象上,(1,0)A ,(0,2)C .将线段AB 沿x 轴正方向平移得线段A B ''(点A 平移后的对应点为A '),A B ''交函数(0)k y x x =>的图象于点D ,过点D 作DE y ⊥轴于点E ,则下列结论:①2k =;②OBD 的面积等于四边形ABDA '的面积;③A E ';④B BD BB O ''∠=∠.其中正确的结论有 .(填写所有正确结论的序号)∵1212AOB A OD S S '==⨯= ,∴BOK AKDA S S '= 四边形,∴BOK BKD AKDA S S S S '+=+ 四边形∴OBD 的面积等于四边形ABDA 如图,连接A E ',∵DE y ⊥轴,DA O EOA '∠=∠∴四边形A DEO '为矩形,∴A E OD '=,∴当OD 最小,则A E '最小,设()2,0D x x x ⎛⎫> ⎪⎝⎭,∴B BD A OB ''' ∽,∴B BD B OA '''∠=∠,∵B C A O ''∥,∴CB O A OB '''∠=∠,∴B BD BB O ''∠=∠,故④符合题意;三、解答题17.解方程:1325x x =-.解得:3x =,经检验,3x =是原方程的解,∴该分式方程的解为3x =.18.如图,点E ,F 分别在正方形ABCD 的边BC ,CD 上,3BE =,6EC =,2CF =.求证:ABE ECF △△∽.19.如图,Rt ABC △中,90B Ð=°.(1)尺规作图:作AC 边上的中线BO (保留作图痕迹,不写作法);(2)在(1)所作的图中,将中线BO 绕点O 逆时针旋转180︒得到DO ,连接AD ,CD .求证:四边形ABCD 是矩形.【答案】(1)作图见解析(2)证明见解析【分析】本题考查的是作线段的垂直平分线,矩形的判定,平行四边形的判定与性质,旋转的性质;(1)作出线段AC 的垂直平分线EF ,交AC 于点O ,连接BO ,则线段BO 即为所求;(2)先证明四边形ABCD 为平行四边形,再结合矩形的判定可得结论.【详解】(1)解:如图,线段BO 即为所求;(2)证明:如图,∵由作图可得:AO CO =,由旋转可得:BO DO =,∴四边形ABCD 为平行四边形,∵90ABC ∠=︒,∴四边形ABCD 为矩形.20.关于x 的方程2240x x m -+-=有两个不等的实数根.(1)求m 的取值范围;(2)化简:2113|3|21m m m m m ---÷⋅-+.【答案】(1)3m >(2)2-【分析】本题考查的是一元二次方程根的判别式,分式的混合运算,掌握相应的基础知识是解本题的关键;(1)根据一元二次方程根的判别式建立不等式解题即可;(2)根据(1)的结论化简绝对值,再计算分式的乘除混合运算即可.21.善于提问是应用人工智能解决问题的重要因素之一.为了解同学们的提问水平,对A,B两组同学进行问卷调查,并根据结果对每名同学的提问水平进行评分,得分情况如下(单位:分):A组75788282848687889395B组75778083858688889296(1)求A组同学得分的中位数和众数;(2)现从A、B两组得分超过90分的4名同学中随机抽取2名同学参与访谈,求这2名同学恰好来自同一组的概率.由树状图可知,共有12种等可能的情况,其中这2名同学恰好来自同一组的情况有∴这2名同学恰好来自同一组的概率41123=.22.2024年6月2日,嫦娥六号着陆器和上升器组合体(简称为“着上组合体”)成功着陆在月球背面.某校综合实践小组制作了一个“着上组合体”的模拟装置,在一次试验中,如图,该模拟装置在缓速下降阶段从A 点垂直下降到B 点,再垂直下降到着陆点C ,从B 点测得地面D 点的俯角为36.87︒,17AD =米,10BD =米.(1)求CD 的长;(2)若模拟装置从A 点以每秒2米的速度匀速下降到B 点,求模拟装置从A 点下降到B 点的时间.(参考数据:sin 36.870.60︒≈,cos36.870.80︒≈,tan 36.870.75︒≈)【答案】(1)CD 的长约为8米;(2)模拟装置从A 点下降到B 点的时间为4.5秒.【分析】本题考查了解直角三角形的应用——仰俯角问题,灵活运用锐角三角函数求边长是解题关键.(2)解:17AD =Q 22AC AD CD ∴=-=在BCD △中,C ∠=sin BC BDC BD∠= ,sin 36.87BC BD ∴=⋅︒15AB AC BC ∴=-=-23.一个人的脚印信息往往对应着这个人某些方面的基本特征.某数学兴趣小组收集了大量不同人群的身高和脚长数据,通过对数据的整理和分析,发现身高y 和脚长x 之间近似存在一个函数关系,部分数据如下表:脚长(cm)x ...232425262728...身高(cm)y (156163)170177184191…(1)在图1中描出表中数据对应的点(,)x y ;(2)根据表中数据,从(0)y ax b a =+≠和(0)k y k x=≠中选择一个函数模型,使它能近似地反映身高和脚长的函数关系,并求出这个函数的解析式(不要求写出x 的取值范围);(3)如图2,某场所发现了一个人的脚印,脚长约为25.8cm ,请根据(2)中求出的函数解析式,估计这个人的身高.【答案】(1)见解析(2)75y x =-(3)175.6cm【分析】本题考查了函数的实际应用,正确理解题意,选择合适的函数模型是解题关键.(1)根据表格数据即可描点;(2)选择函数(0)y ax b a =+≠近似地反映身高和脚长的函数关系,将点()()23,156,24,163代入即可求解;(3)将25.8cm 代入75y x =-代入即可求解;【详解】(1)解:如图所示:(2)解:由图可知:y 随着x 的增大而增大,因此选择函数(0)y ax b a =+≠近似地反映身高和脚长的函数关系,将点()()23,156,24,163代入得:1562316324a b a b=+⎧⎨=+⎩,解得:75a b =⎧⎨=-⎩∴75y x =-(3)解:将25.8cm 代入75y x =-得:725.85175.6cmy =⨯-=∴估计这个人身高175.6cm24.如图,在菱形ABCD 中,120C ∠=︒.点E 在射线BC 上运动(不与点B ,点C 重合),AEB △关于AE 的轴对称图形为AEF △.(1)当30BAF ∠=︒时,试判断线段AF 和线段AD 的数量和位置关系,并说明理由;(2)若6AB =+O 为AEF △的外接圆,设O 的半径为r .①求r 的取值范围;②连接FD ,直线FD 能否与O 相切?如果能,求BE 的长度;如果不能,请说明理由.【分析】(1)由菱形的性质可得120BAD C ∠=∠=︒,AB AD =,再结合轴对称的性质可得结论;(2)①如图,设AEF △的外接圆为O ,连接AC 交BD 于H .连接OA ,OE ,OF ,OC ,证明ABC 为等边三角形,,,,A E F C 共圆,2120AOE AFE ∠=∠=︒,O 在BD 上,30AEO EAO ∠=∠=︒,过O 作OJ AE ⊥于J ,当AE BC ⊥时,AE 最小,则AO 最小,再进一步可得答案;②如图,以A 为圆心,AC 为半径画圆,可得,,,B C F D 在A 上,延长CA 与A 交于L ,连接DL ,证明18030150CFD ∠=︒-︒=︒,可得60OFC ∠=︒,OCF △为等边三角形,证明1203090BAF ∠=︒-︒=︒,可得:45BAE FAE ∠=∠=︒,BE EF =,过E 作EM AF ⊥于M ,再进一步可得答案.【详解】(1)解:AF AD =,AF AD ⊥;理由如下:∵在菱形ABCD 中,120C ∠=︒,∴120BAD C ∠=∠=︒,AB AD =,∵30BAF ∠=︒,∴1203090FAD ∠=︒-︒=︒,∴AF AD ⊥,由对折可得:AB AF =,∴AF AD =;(2)解:①如图,设AEF △的外接圆为O ,连接AC 交BD 于H .连接OA ,OE ,OF ,OC ,∵四边形ABCD 为菱形,120BCD ∠=︒,∴AC BD ⊥, 60BCA ∠=︒,BA BC =,∴ABC 为等边三角形,∴60ABC AFE ACB ∠=∠=︒=∠,∴,,,A E F C 共圆,2120AOE AFE ∠=∠=︒,O 在BD 上,同理可得ACD 为等边三角形,∴60CAD ∠=︒,∴30CLD ∠=︒,∴18030150CFD ∠=︒-︒=︒,∵DF 为O 的切线,∴90OFD ∠=︒,∴60OFC ∠=︒,∵OC OF =,∴OCF △为等边三角形,∴60COF ∠=︒,∴1302CAF COF ∠=∠=︒,25.已知抛物线232:621(0)G y ax ax a a a =--++>过点()1,2A x 和点()2,2B x ,直线2:l y m x n =+过点(3,1)C ,交线段AB 于点D ,记CDA 的周长为1C ,CDB △的周长为2C ,且122C C =+.(1)求抛物线G 的对称轴;(2)求m 的值;(3)直线l 绕点C 以每秒3︒的速度顺时针旋转t 秒后(045)t ≤<得到直线l ',当l AB '∥时,直线l '交抛物线G 于E ,F 两点.①求t 的值;②设AEF △的面积为S ,若对于任意的0a >,均有S k ≥成立,求k 的最大值及此时抛物线G 的解析式.∵直线2:l y m x n =+过点(3,1)C ,2C ,且122C C =+,∴A 在B 的左边,AD AC CD ++=∵C 在抛物线的对称轴上,∴CA CB =,∴345t =,解得:15t =,②∵()1122AEF A E S EF y y EF =⋅-= 当1y =时,232621ax ax a a --++∴22620x x a a --+=,。
中考广东数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是完全平方数?A. 23B. 24C. 25D. 26答案:C2. 已知等腰三角形的两边长分别为5和8,那么它的周长是多少?A. 18B. 21C. 26D. 30答案:B3. 若x+y=5,且xy=6,求x²+y²的值。
A. 13B. 19C. 23D. 25答案:D4. 函数y=2x+3的图象不经过哪个象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:C5. 一个圆的半径为3,求该圆的面积。
A. 9πB. 18πC. 27πD. 36π答案:C6. 一个数的相反数是-5,这个数是多少?A. 5B. -5C. 0D. 10答案:A7. 已知一个角的补角是120°,那么这个角的度数是多少?A. 30°B. 60°C. 90°D. 120°答案:A8. 一个数的绝对值是4,这个数可能是?A. 4B. -4C. 4或-4D. 0答案:C9. 一个等差数列的首项是2,公差是3,那么它的第5项是多少?A. 17B. 14C. 11D. 8答案:A10. 一个直角三角形的两条直角边长分别是6和8,斜边长是多少?A. 10B. 14C. 16D. 20答案:A二、填空题(每题3分,共15分)11. 已知一个数的立方根是2,那么这个数是______。
答案:812. 一个数的平方是36,那么这个数是______。
答案:±613. 一个三角形的内角和是______度。
答案:18014. 一个数的倒数是1/4,那么这个数是______。
答案:415. 一个圆的直径是8,那么它的半径是______。
答案:4三、解答题(每题10分,共40分)16. 已知一个直角三角形的两条直角边长分别是3和4,求斜边长。
解:根据勾股定理,斜边长c = √(3² + 4²) = √(9 + 16) = √25 = 5。
绝密★启用前2024年广东省广州市中考数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
第I卷(选择题)一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.四个数−10,−1,0,10中,最小的数是( )A. −10B. −1C. 0D. 102.下列图案中,点O为正方形的中心,阴影部分的两个三角形全等,则阴影部分的两个三角形关于点O对称的是( )A. B. C. D.3.若a≠0,则下列运算正确的是( )A. a2+a3=a5B. a3⋅a2=a5C. 2a⋅3a=5aD. a3÷a2=14.若a<b,则( )A. a+3>b+3B. a−2>b−2C. −a<−bD. 2a<2b5.为了解公园用地面积x(单位:公顷)的基本情况,某地随机调查了本地50个公园的用地面积,按照0<x≤4,4<x≤8,8<x≤12,12<x≤16,16<x≤20的分组绘制了如图所示的频数分布直方图,下列说法正确的是( )A. a的值为20B. 用地面积在8<x≤12这一组的公园个数最多C. 用地面积在4<x≤8这一组的公园个数最少D. 这50个公园中有一半以上的公园用地面积超过12公顷6.某新能源车企今年5月交付新车35060辆,且今年5月交付新车的数量比去年5月交付的新车数量的1.2倍还多1100辆.设该车企去年5月交付新车x辆,根据题意,可列方程为( )A. 1.2x+1100=35060B. 1.2x−1100=35060C. 1.2(x+1100)=35060D. x−1100=35060×1.27.如图,在△ABC中,∠A=90°,AB=AC=6,D为边BC的中点,点E,F分别在边AB,AC上,AE=CF,则四边形AEDF的面积为( )A. 18B. 9√ 2C. 9D. 6√ 28.函数y1=ax2+bx+c与y2=k的图象如图所示,当()时,y1,y2均随着xx的增大而减小.A. x<−1B. −1<x<0C. 0<x<2D. x>19.如图,⊙O中,弦AB的长为4√ 3,点C在⊙O上,OC⊥AB,∠ABC=30°.⊙O所在的平面内有一点P,若OP=5,则点P与⊙O的位置关系是( )A. 点P在⊙O上B. 点P在⊙O内C. 点P在⊙O外D. 无法确定10.如图,圆锥的侧面展开图是一个圆心角为72°的扇形,若扇形的半径l是5,则该圆锥的体积是( )A. 3√ 11π8πB. √ 118C. 2√ 6ππD. 2√ 63第II卷(非选择题)二、填空题:本题共6小题,每小题3分,共18分。
2024年广东省广州市中考数学试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.四个数,,0,10中,最小的数是()A. B. C.0 D.102.下列图案中,点O为正方形的中心,阴影部分的两个三角形全等,则阴影部分的两个三角形关于点O对称的是()A. B. C. D.3.若,则下列运算正确的是()A. B. C. D.4.若,则()A. B. C. D.5.为了解公园用地面积单位:公顷的基本情况,某地随机调查了本地50个公园的用地面积,按照,,,,的分组绘制了如图所示的频数分布直方图,下列说法正确的是()A.a的值为20B.用地面积在这一组的公园个数最多C.用地面积在这一组的公园个数最少D.这50个公园中有一半以上的公园用地面积超过12公顷6.某新能源车企今年5月交付新车35060辆,且今年5月交付新车的数量比去年5月交付的新车数量的倍还多1100辆.设该车企去年5月交付新车x辆,根据题意,可列方程为()A. B.C. D.7.如图,在中,,,D为边BC的中点,点E,F分别在边AB,AC上,,则四边形AEDF的面积为()A.18B.C.9D.8.函数与的图象如图所示,当时,,均随着x的增大而减小.A.B.C.D.9.如图,中,弦AB的长为,点C在上,,所在的平面内有一点P,若,则点P与的位置关系是()A.点P在上B.点P在内C.点P在外D.无法确定10.如图,圆锥的侧面展开图是一个圆心角为的扇形,若扇形的半径l是5,则该圆锥的体积是()A.B.D.二、填空题:本题共6小题,每小题3分,共18分。
11.如图,直线l分别与直线a,b相交,,若,则的度数为______.12.如图,把,,三个电阻串联起来,线路AB上的电流为I,电压为U,则,当,,,时,U的值为______.13.如图,▱ABCD中,,点E在DA的延长线上,,若BA平分,则______.14.若,则______.15.定义新运算:例如:,若,则x的值为______.16.如图,平面直角坐标系xOy中,矩形OABC的顶点B在函数的图象上,,将线段AB沿x轴正方向平移得线段点A平移后的对应点为,交函数的图象于点D,过点D作轴于点E,则下列结论:①;②的面积等于四边形的面积;③AE的最小值是;其中正确的结论有______填写所有正确结论的序号三、解答题:本题共9小题,共72分。
广东初三数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是二次函数的一般形式?A. y = ax^2 + bx + c (a ≠ 0)B. y = ax^2 + bx + c (a = 0)C. y = ax + b + c (a ≠ 0)D. y = ax^2 + bx + c (a = 1)答案:A2. 已知一个等腰三角形的底边长为6,腰长为5,那么这个三角形的周长是多少?A. 16B. 21C. 26D. 31答案:B3. 计算下列表达式的值:(3x^2 - 2x + 1) - (2x^2 + 3x - 4)。
A. x^2 - 5x + 5B. x^2 - x + 5C. x^2 + x - 3D. x^2 - x - 3答案:B4. 如果一个数的平方根是2,那么这个数是多少?A. 4B. -4C. 2D. -2答案:A5. 一个圆的半径是3cm,那么这个圆的面积是多少?A. 9π cm^2B. 18π cm^2C. 36π cm^2D. 72π cm^2答案:C6. 一个直角三角形的两个直角边长分别是3和4,那么这个三角形的斜边长是多少?A. 5B. 6C. 7D. 8答案:A7. 计算下列表达式的值:(2x - 3)(x + 1)。
A. 2x^2 + x - 3B. 2x^2 + x + 3C. 2x^2 - x - 3D. 2x^2 - x + 3答案:C8. 一个等差数列的首项是2,公差是3,那么这个数列的第5项是多少?A. 17B. 14C. 11D. 8答案:A9. 一个正多边形的内角和是900度,那么这个多边形有多少条边?A. 6B. 7C. 8D. 9答案:B10. 计算下列表达式的值:(5x^2 - 2x + 1) / (x - 1)。
A. 5x + 2 + 1/(x - 1)B. 5x - 2 + 1/(x - 1)C. 5x + 2 - 1/(x - 1)D. 5x - 2 - 1/(x - 1)答案:A二、填空题(每题3分,共15分)11. 一个数的立方根是-2,那么这个数是__-8__。
初三数学试题及答案广东一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 0.33333...(循环)B. 根号2C. 0.5D. 32. 一个三角形的两边长分别为3和4,第三边的长x满足的条件是?A. 1 < x < 7B. 0 < x < 7C. 1 < x < 5D. 3 < x < 73. 以下哪个函数是二次函数?A. y = 2x + 3B. y = x^2 + 2x + 1C. y = 3x^3 - 2xD. y = 54. 一个圆的半径为5,它的面积是多少?A. 25πB. 50πC. 100πD. 200π5. 如果一个数的相反数是-3,那么这个数是?A. 3C. 0D. 66. 以下哪个选项是不等式2x - 3 > 5的解?A. x > 4B. x < 4C. x > 2D. x < 27. 一个等腰三角形的底角是45度,顶角是多少度?A. 90度B. 45度C. 60度D. 30度8. 以下哪个是正比例函数?A. y = 2x + 3B. y = 3xC. y = x^2D. y = 5/x9. 一个数的绝对值是5,这个数可能是?A. 5B. -5C. 5和-5D. 010. 一个长方体的长、宽、高分别是2、3、4,它的体积是多少?A. 24B. 26D. 32二、填空题(每题3分,共15分)11. 一个直角三角形的两个直角边长分别是6和8,斜边长是_________。
12. 一个数的平方是25,这个数是_________。
13. 一个圆的周长是31.4,它的半径是_________。
14. 一个等差数列的首项是2,公差是3,第5项是_________。
15. 一个二次函数的顶点是(1, -2),且经过点(0, 3),它的解析式是y = _________。
三、解答题(共55分)16. (10分)解方程:x^2 - 5x + 6 = 0。
选择题:
下列哪个数是无理数?
A. √4
B. 3.14
C. √2(正确答案)
D. 1/3
下列哪个选项是方程x2 - 4x + 4 = 0 的根?
A. x = 1
B. x = 2(正确答案)
C. x = -2
D. x = 4
下列哪个图形是中心对称图形但不是轴对称图形?
A. 正方形
B. 等腰三角形
C. 平行四边形(正确答案)
D. 圆
下列哪个式子表示的是二次函数?
A. y = 2x + 1
B. y = x2 - 4x + 4(正确答案)
C. y = 1/x
D. y = √x
在直角三角形中,如果一个锐角是30°,那么另一个锐角的大小是?
A. 30°
B. 45°
C. 60°(正确答案)
D. 90°
下列哪个数集是实数集的子集但不是有理数集的子集?
A. 自然数集
B. 整数集
C. 无理数集(正确答案)
D. 有理数集
下列哪个选项是不等式2x - 5 > 3 的解?
A. x = 1
B. x = 2
C. x = 3
D. x = 4(正确答案)
下列哪个图形可以通过平移得到另一个与其全等的图形?
A. 等边三角形
B. 正方形(正确答案)
C. 等腰直角三角形
D. 等腰梯形(非特殊情况下不能通过平移得到全等图形)
下列哪个式子表示的是一元一次不等式?
A. x2 + 3x > 5
B. x/2 - 1 < 3(正确答案)
C. x + y > 7
D. 2x + 3y < 8。
中考数学试卷一、单项选择题(共12分)1.如图,一个等边三角形的边长与它的一边相外切的圆的周长相等,当这个圆按箭头方向从某一位置沿等边三角形的三边做无滑动旋转,直至回到原出发位置时,则这个圆共转了()A.4圈B.3圈C.5圈D.3.5圈2.如图,四边形ABCD是矩形,E是边BC延长线上的一点,AE与CD相交于点F,则图中的相似三角形共有()A.4对 B.3对C.2对D.1对3.对于反比例函数y=kx(k≠0),下列所给的四个结论中,正确的是()A.过图象上任一点P作x轴、y轴的垂线,垂足分别A,B,则矩形O APB的面积为kB.若点(2,4)在其图象上,则(−2,4)也在其图象上C.反比例函数的图象关于直线y=x和y=−x成轴对称D.当k>0时,y随x的增大而减小4.在同一平面直角坐标系中,函数y=x﹣1与函数y=1x的图象可能是()A.B. C.D.5.已知m3=n4,那么下列式子中一定成立的是()A.4m=3n B.3m=4n C.m=4n D.mn=126.如图,在三角形ABC中D,E分别是AB和AC上的点,且DE平行BC,AE 比EC=5/2,D E=10,则BC的长为()。
A.16B.14C.12D.11二、填空题(共24分)7.如图,在平面直角坐标系xOy中,反比例函数y=一的图象与↵0交于A,B 两点,且点A,B都在第一象限.若A(1,2),则点B的坐标为___.8.学校为了解学生的安全防范意识,随机抽取了12名学生进行相关知识测试,将测试成绩整理得到如图所示的条形统计图,则这12名学生测试成绩的中位数是___.(单位:分)9.把一张半径为2cm,圆心角为120°的扇形纸片卷成一个圆锥的侧面,那么这个圆锥的底面积是。
三、解答题10.如图,在矩形ABCD中,AB=4,BC=6,M是BC的中点,DE⊥AM于点E。
(1)求证:△ADE∽△MAB;(2)求DE的长。
11.如图,方格纸中的每个小方格都是边长为1的正方形,我们把以格点间连线为边的三角形称为“格点三角形”,图中的△ABC是格点三角形.在建立平面直角坐标系后,点B的坐标为(﹣1,﹣1)。
2022年广东省初中学业水平考试数学试卷一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.|2|-=( )A .﹣2B .2C .12-D .122.计算22( )A .1B .2C .2D .43.下列图形中有稳定性的是( )A .三角形B .平行四边形C .长方形D .正方形4.如题4图,直线a//b ,∠1=40°,则∠2=( )A .30°B .40°C .50°D .60°5.如题5图,在△ABC 中,BC =4,点D ,E 分别为AB ,AC 的中点,则DE =( )A .14B .12C .1D .26.在平面直角坐标系中,将点(1,1)向右平移2个单位后,得到的点的坐标是( )A .(3,1)B .(﹣1,1)C .(1,3)D .(1,﹣1)7.书架上有2本数学书、1本物理书.从中任取1本书是物理书的概率为( )A .14B .13C .12D .238.如题8图,在▱ABCD 中,一定正确的是( )A .AD=CDB .AC=BDC .AB=CD D .CD=BC9.点(1,1y ),(2,2y ),(3,3y ),(4,4y )在反比例函数4y x=图象上,则1y ,2y ,3y ,4y 中最小的是( )A .1yB .2yC .3yD .4y10.水中涟漪(圆形水波)不断扩大,记它的半径为r ,则圆周长C 与r 的关系式为C =2πr .下列判断正确的是( ) A .2是变量B .π是变量C .r 是变量D .C 是常量二、填空题(本大题共有5小题,每小题3分,共15分) 11.sin30°=12.单项式3xy 的系数为13.菱形的边长为5,则它的周长为14.若x =1是方程022=+-a x x 的根,则a =15.扇形的半径为2,圆心角为90°,则该扇形的面积(结果保留π)为三、解答题(一)(本大题共有3小题,每小题8分,共24分)16.解不等式:⎩⎨⎧<+>-31123x x17.先化简,再求值:112--+a a a ,其中5=a18.如题18图,已知∠AOC=∠BOC ,点P 在OC 上,PD 上OA ,PE ⊥OB ,垂足分别为D ,E .求证:△OPD ≌△OPE.19.《九章算术》是我国古代的数学专著,几名学生要凑钱购买1本,若每人出8元,则多了3元;若每人出7元,则少了4元.问学生人数和该书单价各是多少?20.物理实验证实:在弹性限度内,某弹簧长度y(cm)与所挂物体质量x(kg)满足函数关系y=kx+15.下表是测量物体质量时,该弹簧长度与所挂物体质量的数量关系.x0 2 3y15 19 25(1)求y与x的函数关系式;(2)当弹簧长度为20cm时,求所挂物体的质量.21.为振兴乡村经济,在农产品网络销售中实行目标管理,根据目标完成的情况对销售员给予适当的奖励,某村委会统计了15名销售员在某月的销售额(单位:万元),数据如下:10 4 7 5 4 10 5 4 4 18 8 3 5 10 8(1)补全月销售额数据的条形统计图.(2)月销售额在哪个值的人数最多(众数)?中间的月销售额(中位数)是多少?平均月销售额(平均数)是多少?(3)根据(2)中的结果,确定一个较高的销售目标给予奖励,你认为月销售额定为多少合适?22.如题22图,四边形ABCD 内接于⊙O ,AC 为OO 的直径,∠ADB=∠CDB . (1)试判断△ABC 的形状,并给出证明;(2)若AB=2,AD=1,求CD 的长度.23.如题23图,抛物线c bx x y ++=2(b ,c 是常数)的顶点为C ,与x 轴交于A ,B 两点, A(1,0),AB=4,点P 为线段AB 上的动点,过P 作PQ ∥/BC 交AC 于点Q . (1)求该抛物线的解析式;(2)求△CPQ 面积的最大值,并求此时P 点坐标.2022年广东省初中学业水平考试数学参考答案一、选择题:本大题共10小题,每小题3分,共30分.题号1 2 3 4 5 6 7 8 9 10 答案B D A B D A BCDC二、填空题:本大题共5小题,每小题3分,共15分. 参考答案:题号11 12 13 14 15 答案1/2 3 20 1 π三、解答题(二):本大题共3小题,每小题8分,共24分 16.参考答案:32113x x ->⎧⎨+<⎩①② 由①得:1x > 由②得:2x < ∴不等式组的解集:12x <<17.参考答案:原式=(1)(1)1211a a a a a a a -++=++=+- 将a =5代入得,2111a +=18.参考答案:证明:∵PD ⊥OA ,PE ⊥OB ∴∠PDO =∠PEO=90° ∵在△OPD 和△OPE 中PDO PEO AOC BOC OP OP ∠⎪∠⎧∠=⎩∠⎪⎨==, ∴△OPD ≌△OPE (AAS )四、解答题(二):本大题共3小题,每小题9分,共27分. 19.参考答案: 设学生人数为x 人8374x x -=+7x = 则该书单价是8353x -=(元)答:学生人数是7人,该书单价是53元.20.参考答案:(1)将2x =和19y =代入y =kx +15得19=2k +15, 解得:2k =∴y 与x 的函数关系式:y =2x +15(2)将20y =代入y =2x +15得20=2x +15, 解得: 2.5x =∴当弹簧长度为20cm 时,求所挂物体的质量是2.5kg . 21.参考答案:(1)月销售额数据的条形统计图如图所示:(2)3445378210318715x +⨯+⨯++⨯+⨯+==(万元)∴月销售额的众数是4万元;中间的月销售额是5万元;平均月销售额是7万元. (3)月销售额定为7万元合适.五、解答题(三):本大题共2小题,每小题12分,共24分. 22.参考答案:(1)△ABC 是等腰直角三角形,理由如下:∵∠ADB =∠CDB ∴AB BC = ∴AB BC = ∵AC 是直径 ∴∠ABC 是90° ∴△ABC 是等腰直角三角形(2)在Rt △ABC 中 222AC AB BC =+,可得:2AC =∵AC 是直径 ∴∠ADC 是90° ∴在Rt △ADC 中222AC AD DC =+可得:3DC = ∴CD 的长度是323.参考答案:(1)∵A (1,0),AB =4 ∴结合图象点B 坐标是(﹣3,0)将(1,0),(﹣3,0)代入2y x bx c =++得01093b c b c =++⎧⎨=-+⎩ 解得:23b c =⎧⎨=-⎩∴该抛物线的解析式:223y x x =+-(2)设点P 为(,0)m∵点C 是顶点坐标∴将1x =-代入223y x x =+-得4y =- ∴点C的坐标是(1,4)--将点(1,4)--,(1,0)代入y kx b =+得04k b k b =+⎧⎨-=-+⎩ 解得:22k b =⎧⎨=-⎩, ∴AC 解析式:22y x =- 将点(1,4)--,(﹣3,0)代入y kx b =+得034k b k b =-+⎧⎨-=-+⎩ 解得:26k b =-⎧⎨=-⎩, ∴BC 解析式:26y x =-- ∵PQ //BC ∴PQ 解析式:22y x m =-+2222y x m y x =-+⎧⎨=-⎩ 解得:121mx y m +⎧=⎪⎨⎪=-⎩ ∴点Q 坐标:1(,1)2mm +-(注意:点Q 纵坐标是负的) CPQ ABC APQ CPB S S S S =--△△△△11144(3)4(1)(1)222CPQ S m m m =⨯⨯-⨯+⨯-⨯-⨯-△21322CPQ S m m =--+△ 21(1)22CPQ S m =-++△当1m =-时,CPQ S △取得最大值2,此时点P 坐标是(﹣1,0) ∴△CPQ 面积最大值2,此时点P 坐标是(﹣1,0)。
2017年广东省中考数学试题一、选择题(本大题10小题,每小题3分,共30分) 1. 5的相反数是( ) A.15 152. “一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃,据商务部门发布的数据显示,2016年广东省对沿线国家的实际投资超过4 000 000 000美元,将4 000 000 000用科学记数法表示为( )3. ×109 已知∠A=70°,则∠A 余角为( ) ° ° ° °4. 如果2是方程x 2-3x+k=0的一个根,则常数k 的值为( )5. 在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组数据的众数是( ) B. 906. 下列各组图形中,既是轴对称图形又是中心对称图形的是( )A.等边三角形B.平行四边形C.正五边形D.圆7. 如题7图,在同一平面直角坐标系中,直线y=k 1x (k ≠0)与双曲线y 相交于A 、B 两点,已知点A 的坐标为(1,2),则点B 的坐标为( ) A.(-1,-2) B.(-2,-1) C.(-1,-1) D.(-2,-2) 8. 下列运算正确的是( )+2a=2a 2 ·a 2=a 5 C.(a 4)2=a 6 ÷a 2=a 49. 如题9图,四边形ABCD 内接于⊙O ,DA=DC ,∠CBE=50°则∠DAC 的大小为( )题13图ba-2-1210°° ° °10.如题10图,已知正方形ABCD ,点E 是BC 边的中点,DE 与AC 相交于点F ,连接BF ,下列结论:①S △ABF = S △ADF ,②S △CDF = 4S △CEF ,③S △ADF = 2S △CEF , ④S △ABF =2S △CDF . 其中正确的是( ) A.①③ B.②③ C.①④ D.②④ 二、填空题(本大题6小题,每小题4分,共24分) 11.分解因式a 2+a=_______________.12.一个n 边形的内角和是720°,那么n=_______________.13.已知实数a 、b 在数轴上的对应点的位置如题13图所示,则a+b________0(填“>”、“<”或“=”)14.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标上1,2,3,4,5.随机摸出一个小球,摸出的小球标号为5的概率是_______________. 15.已知4a+3b=1,则整式8a+6b-3的值为_______________.16.如题16图(1),矩形纸片ABCD 中,AB=5,BC=3,先按题16图(2)操作,将矩形纸片ABCD 沿过点A 的直线折叠,使点D 落在边AB 上的点E 处,折痕为AF ;再按题16图(3)操作,沿过点F 的直线折叠,使点C 落在EF 上的点H 处,折痕为FG ,则A 、H 两点间的距离为_______________.三、解答题(一)(本大题3小题,每小题6分,共18分) 17.|-7|-(1-π)0+(13)-118.先化简,再求值:(1x-2 + 1x+2)·(x 2-4)其中x= 5.19.学校团委组织志愿者到图书馆整理一批新进的图书,若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理整理50本,女生每人整理40本,共能整理1240本,求男生、女生志愿者各有多少人? 四、解答题(二)(本大题3小题,每小题7分,共21分) 20.如题20图,在△ABC 中,∠A >∠B.(1)作边AB 的垂直平分线,与AB 、BC 分别相交于点D 、E (用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接AE ,若∠B=50°,求∠AEC 的度数.21.如题21图所示,已知四边形ABCD 、ADEF 都是菱形,∠BAD=∠FAD ,∠BAD 为锐角. (1)求证AD ⊥BF ;(2)若BF=BC,求∠ADC的度数.22.某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制了如下不完整的统计图表,如题22图所示,请根据图表信息回答下列问题:体重频数分布表体重扇形统计图(1)填空:①m=__________________;②在扇形统计图中,C组所在扇形的圆心角的度数等于__________度.(2)如果该校九年级有1000名学生,请估算九年级体重低于60千克的学生大约有多少人?五、解答题(三)(本大题3小题,每小题9分,共27分)23.如题23图,在平面直角坐标系中,抛物线y=-x2+ax+b交于x轴于A(1,0),B(3,0)两点,点P是抛物线上在第一象限内的一点,直线BP与y轴相交于点C.(1)求抛物线y=-x2+ax+b的解析式;(2)当点P是线段BC的中点时,求点P的坐标;(3)在(2)条件下,求sin∠OCB的值.24.如题24图,AB是⊙O的直径,AB=43,点E为线段OB上一点(不与O、B重合),作CE⊥OB,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,AF⊥PC于点F,连接CB.(1)求证:CB是∠ECP的平分线;(2)求证:CF=CE;(3)当CFCP=34时,求劣弧⌒BC的长度(结果保留π).25.如题25图,在平面直角坐标系中,O为原点,四边形ABCD是矩形,点A、C的坐标分别是A(0,2)和C(23,0),点D是对角线AC上一动点(不与A、C重合),连接BD,作DE⊥DB,交x轴于点E,以线段DE、DB为邻边作矩形BDEF.(1)填空:点B的坐标为____________.(2)是否存在这样的点D ,使得△DEC 是等腰三角形?若存在,请求出AD 长度;若不存在,请说明理由; (3)①求证:DE DB =33;②设AD=x ,矩形BDEF 的面积为y ,求y 关于x 的函数关系式(可利用①的结果论),并求出y 的最小值.2017年广东省中考数学参考答案1~ 6~ (a+1) 13.> 14.25 16. 1017. 解:原式=7-1+3=918. 解:原式=1x-2·(x+2)(x-2)+1x+2 ·(x+2)(x-2)=x+2+x-2=2x当x=5时,原式=2×5=2 519.解:设男生志愿者有x 人,女生志愿者有y 人,由题意可得⎩⎨⎧30x+20y=68050x+40y=1240 解得⎩⎨⎧x=12y=16答:设男生志愿者有12人,女生志愿者有16人.20.(1)如图所示,直线DE 为所求作的垂直平分线.(2)解:∵DE 是AB 的垂直平分线,∴AE=BE ,∴∠B=∠EAB=50°, ∴∠AEC=∠B+∠EAB=100°. 21.(1)证明:∵四边形ABCD 、ADEF 是菱形,∴AB=BC=AD ,AD=AF ,∴AB=AF ,∵∠BAD=∠FAD ,∴AD ⊥BF(等腰三角形“三线合一”).(3)解:∵四边形ABCD 、ADEF 是菱形,∴AB=BC=AD ,AD=AF , AD ∥BC ∴AB=AF=BC , ∵BF=BC ∴AB=BF=AD , ∴△ABC 是等边三角形, ∴∠BAF=60°,∵∠BAD=∠FAD ,∴∠BAD =12∠BAF=30°, ∵AD ∥BC ,∴∠BAD+∠ADC=180°, ∴∠ADC=150°.21.(1) ①52;②144.(2)1000×12+52+8040÷20%=720(人)22.解:(1)将A(1,0)、B(3,0)代入二次函数表达式y=-x 2+ax+b 得:⎩⎨⎧-1+a+b=0-9+3a+b=0 解得⎩⎨⎧a=4b=-3∴抛物线的解析式为y=-x 2+4x-3. (2)设点C(0,t),因为P 是线段AB 的中点,所以P(32,t2)∵点P 在抛物线上, ∴t 2=-(32)2+4×32-3,解得t=32, ∴点P 的坐标为(32,34),点C 的坐标为(0,32)另法:过P 作PH ⊥x 轴于点H. ∵点P 是BC 的中点,∴BP=PC=12BC∵∠PHB =∠COB=90°, ∠CBO=∠PBH, ∴△PHB ∽△COB,∴BP BC =BH OB =PH OC =12,∴点H 是OB 的中点,∴OH=12OB=32,即点P 的横坐标为32,将x=32代入二次函数表达式得y=-(32)2+4×32-3=34∴点P 的坐标为(32,34),PH=34,∴OC=2PH=32,∴点C 的坐标为(0,32).(3)在Rt △ABC 中,OB=3,OC=32,BC=32+(32)2=352∴sin ∠OCB=OB BC =3352=25524.(1)证明:∵OB=OC,∴∠2=∠OCB, ∵CP 为切线,∴∠OCP=90°, ∴∠3+∠OCB=90° ∵CE ⊥AB, ∴∠1+∠2=90° ∴∠1=∠3∴CB 是∠ECP 的平分线.另法:连接AC ,∵AB 为直径,∴∠ACB=90°, ∴∠2+∠4=90°,∵CE ⊥AB, ∴∠1+∠2=90°,∴∠1=∠4,∵CP为切线,∴∠OCP=90°,∴∠3+∠DCB=90°∵DC为直径,∴∠DBC=90°,∴∠DCB+∠D=90°∴∠3=∠D,∵∠4=∠D,∠1=∠4,∴∠1=∠3∴CB是∠ECP的平分线.AP(2)∵AF⊥PC,∴∠F=90°∴∠5+∠6=90°,∵AB为直径,∴∠ACB=90°,∴∠3+∠5=90°,∠2+∠4=90°∴∠3=∠6,∵∠1+∠2=90°∴∠1=∠4,∵∠1=∠3,∴∠4=∠6,∵AF⊥PC, CE⊥AB,∴CE=CF.(3)由CF:CP=3:4,设CF=3x,则CP=4x,CE=CP=3x 由(1)(2)知∠1=∠3,∠CEB=∠CBP=90°,∴△CEB∽△CBP,∴CECB=CBCP,∴CB2=CE·CP=3x·4x=12x2∴CB=23x,∴BE=(23x)2-(3x)2=3x∴BE=12CB,∴∠1=30°,∴∠2=60°∵OC=OB,∴△COB是等边三角形,∴∠COB=60°∵AB=43,∴OB=23,∴⌒BC长度为60180π×23=233π.另法:延长CE交BD于点Q,由CF:CP=3:4,设CF=3x,则CP=4x,由(2)得CF=CE=3x,∵CB是∠QCB的平分线,CB⊥PQ,AF⊥PC,∴CP=CQ=4x,∴EQ=4x-3x=x,∵CE⊥EB,∠CBQ=90°,∠1+∠CQB=90°,∠1+∠2=90°, ∴∠2=∠CQB , ∴△CEB ∽△BEQ , ∴CE EB =EB EQ, ∴EB 2=CE ·EQ=3x ·x ,∴EB=3x ,在△CEB 中,tan ∠CBE=CE EB =3x3x =3,∴∠CBE=60°,∴∠COB=180°-60°-60°=60°, ∵AB=43,∴OB=23, ∴⌒BC 长度为60180π×23=233π.25.(1)(23,0)(2)存在.①如图1,若DE=EC ,由题意可知∠ECD=∠EDC=30°, ∵DE ⊥DB , ∴∠BDC=60°, ∵∠BCD=90°-∠ECD=60°, ∴△BDC 是等边三角形,CD=BD=BC=2, ∴AC=OA 2+OC 2=4, ∴AD=AC-CD=4-2=2, ②如图2,若DC=CE ,依题意得∠ACO=30°, ∠CDE=∠CED=15°,∵DE ⊥DB , ∴∠BDE=90°, ∴∠ADB=180°-∠BDE-∠CDE=75°, ∵∠BAC=30°,∴∠ABD=180°-∠ADB-∠BAC =75°∴∠ADB=∠ABD ,∴AD=AB=2 3③若CD=CE ,则∠DEC=∠DCE=30°,∴∠EDC=120°>90°,不合题意,舍去.综上所述,AD 的值为2或23时, △CDE 是等腰三角形.(3)如图(3),过点D 作DG ⊥OC 于点G ,DH ⊥BC 于点H.∵∠GDE+∠EDH=∠HDB+∠EDH=90°,∴∠GDE=∠HDB ,在△DGE 和△DHB 中,∵∠GDE=∠HDB ,∠DGE=∠DHB=90°,∴△DGE ∽△DHB ,∴DG DH =DE DB ,∵DH=GC , DG GC =tan ∠ACO=33∴DE DB =33 GHK如图(4)作DK ⊥AB 于点I. ∵AD=x ,∴DI=x2,AK=32x ,BD 2=DK 2+BK 2=x 24+(23-32x )2y=BD ·DE=33 BD 2 =33[ x 24+(23-32x )2] = 33[(x-3)2+3] = 33(x-3)2+ 3 ∴y 在x=3时取得最小值,最小值为y= 3.。