【与名师对话】2015新课标A版数学文一轮复习课时作业:11-选4-4]
- 格式:doc
- 大小:71.00 KB
- 文档页数:9
课时作业(四)一、选择题1.下列函数中,与函数y =13x定义域相同的函数为( ) A .y =1sin x B .y =ln xx C .y =x e xD .y =sin xx解析:函数y =13x的定义域为{x |x ≠0},选项A 中由sin x ≠0⇒x ≠kπ,k ∈Z ,故A 不对;选项B 中x >0,故B 不对;选项C 中x ∈R ,故C 不对;选项D 中由正弦函数及分式型函数的定义域确定方法可知定义域为{x |x ≠0}.答案:D2.若f (x )对于任意实数x 恒有2f (x )-f (-x )=3x +1,则f (x )=( )A .x -1B .x +1C .2x +1D .3x +3 解析:由题意知2f (x )-f (-x )=3x +1.①将①中x 换为-x ,则有2f (-x )-f (x )=-3x +1.② ①×2+②得3f (x )=3x +3, 即f (x )=x +1. 答案:B3.已知函数f ⎝ ⎛⎭⎪⎫x -1x =x 2+1x 2,则f (3)=( ) A .8 B .9 C .11 D .10解析:∵f ⎝ ⎛⎭⎪⎫x -1x =⎝ ⎛⎭⎪⎫x -1x 2+2,∴f (3)=9+2=11. 答案:C4.已知函数f (x )=⎩⎪⎨⎪⎧3-x 2,x ∈[-1,2],x -3,x ∈(2,5],则方程f (x )=1的解是( )A.2或2B.2或3C.2或4 D .±2或4 解析:(1)当x ∈[-1,2]时,由3-x 2=1⇒x =2; (2)当x ∈(2,5]时,由x -3=1⇒x =4. 综上所述,f (x )=1的解为2或4. 答案:C5.(2013·重庆卷)函数y =1log 2(x -2)的定义域是( )A .(-∞,2)B .(2,+∞)C .(2,3)∪(3,+∞)D .(2,4)∪(4,+∞)解析:由题可知⎩⎪⎨⎪⎧x -2>0x -2≠1,所以x >2且x ≠3,故选C.答案:C6.(2013·山东潍坊模拟)某学校要召开学生代表大会,规定根据班级人数每10人给一个代表名额,当班级人数除以10的余数大于6时,再增加一名代表名额.那么各班代表人数y 与该班人数x 之间的函数关系用取整函数y =[x ]([x ]表示不大于x 的最大整数)可表示为( )A .y =⎣⎢⎡⎦⎥⎤x 10B .y =⎣⎢⎡⎦⎥⎤x +310 C .y =⎣⎢⎡⎦⎥⎤x +410 D .y =⎣⎢⎡⎦⎥⎤x +510解析:由题意可得余数从7开始就应增加一名代表名额,故选B.答案:B 二、填空题7.(2013·湛江市普通高考测试题(二))已知函数f (x )=⎩⎪⎨⎪⎧2x,x ≤0log 3x ,x >0,那么f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫13=________.解析:f ⎝ ⎛⎭⎪⎫13=log 313=-1,f (-1)=2-1=12,∴f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫13=12. 答案:128.已知函数f (x )=⎩⎪⎨⎪⎧x 2+2ax ,x ≥2,2x +1,x <2,若f []f (1)>3a 2,则a 的取值范围是________.解析:由题知,f (1)=2+1=3, f []f (1)=f (3)=32+6a ,若f []f (1)>3a 2,则9+6a >3a 2,即a 2-2a -3<0,解得-1<a <3.答案:(-1,3)9.已知a ,b 为两个不相等的实数,集合M ={a 2-4a ,-1},N ={b 2-4b +1,-2},f :x →x 表示把M 中的元素x 映射到集合N 中仍为x ,则a +b 等于________.解析:由已知可得M =N ,由⎩⎪⎨⎪⎧ a 2-4a =-2,b 2-4b +1=-1,即⎩⎪⎨⎪⎧a 2-4a +2=0,b 2-4b +2=0,所以a ,b 是方程x 2-4x +2=0的两根,故a +b =4. 答案:4三、解答题10.若函数f (x )=xax +b (a ≠0),f (2)=1,又方程f (x )=x 有惟一解,求f (x )的解析式.解:由f (2)=1得22a +b=1,即2a +b =2;由f (x )=x 得xax +b =x ,变形得x ⎝ ⎛⎭⎪⎫1ax +b -1=0,解此方程得x =0或x =1-ba , 又因方程有惟一解,故1-ba =0, 解得b =1,代入2a +b =2得a =12, 所以f (x )=2xx +2.11.已知函数f (x )=2x -1,g (x )=⎩⎪⎨⎪⎧x 2,x ≥0,-1,x <0,求f [g (x )]和g [f (x )]的解析式.解:当x ≥0时,g (x )=x 2, f [g (x )]=2x 2-1, 当x <0时,g (x )=-1, f [g (x )]=-2-1=-3,∴f [g (x )]=⎩⎪⎨⎪⎧2x 2-1,x ≥0,-3,x <0.∵当2x -1≥0,即x ≥12时,g [f (x )]=(2x -1)2, 当2x -1<0,即x <12时,g [f (x )]=-1,∴g [f (x )]=⎩⎪⎨⎪⎧(2x -1)2,x ≥12,-1,x <12.12.如图1是某公共汽车线路收支差额y 元与乘客量x 的图象.(1)试说明图1上点A 、点B 以及射线AB 上的点的实际意义; (2)由于目前本条线路亏损,公司有关人员提出了两种扭亏为赢的建议,如图2、3所示.你能根据图象,说明这两种建议的意义吗?(3)此问题中直线斜率的实际意义是什么? (4)图1、图2、图3中的票价分别是多少元?解:(1)点A 表示无人乘车时收支差额为-20元,点B 表示有10人乘车时收支差额为0元,线段AB 上的点表示亏损,AB 延长线上的点表示赢利.(2)图2的建议是降低成本,票价不变,图3的建议是提高票价. (3)斜率表示票价.(4)图1、2中的票价是2元.图3中的票价是4元. [热点预测]13.(1)具有性质:f ⎝ ⎛⎭⎪⎫1x =-f (x )的函数,我们称为满足“倒负”交换的函数,下列函数:①f (x )=x -1x ;②f (x )=x +1x ;③f (x )=⎩⎨⎧x ,0<x <10,x =1-1x ,x >1中满足“倒负”变换的函数是( )A .①②B .①③C .②③D .只有①(2)(2013·安阳模拟)函数y =x +1+(x -1)0lg (2-x )的定义域是________.解析:(1)①f ⎝ ⎛⎭⎪⎫1x =1x -x =-f (x )满足.②f ⎝ ⎛⎭⎪⎫1x =1x +x =f (x )不满足. ③0<x <1时,f ⎝ ⎛⎭⎪⎫1x =-x =-f (x ),x =1时,f ⎝ ⎛⎭⎪⎫1x =0=-f (x ),x >1时,f ⎝ ⎛⎭⎪⎫1x =1x =-f (x )满足.故选B.(2)由⎩⎪⎨⎪⎧x +1≥0,x -1≠0,2-x >0,2-x ≠1得⎩⎪⎨⎪⎧x ≥-1,x ≠1,x <2,则⎩⎪⎨⎪⎧-1≤x <2,x ≠1所以定义域是 {x |-1≤x <1或1<x <2}.答案:(1)B (2){x |-1≤x <1或1<x <2}。
课时作业(六)一、选择题1.(2013·茂名市第一次高考模拟)已知f (x )是奇函数,当x >0时,f (x )=log 2x ,则f ⎝ ⎛⎭⎪⎫-12=( ) A .2 B .1 C .-1 D .-2解析:当x <0时,-x >0,∴f (-x )=log 2(-x ),∵f (x )为奇函数,∴f (-x )=-f (x )∴f (-x )=-f (x )=log 2(-x ),∴当x <0时,f (x )=-log 2(-x ),∴f ⎝ ⎛⎭⎪⎫-12=-log 2⎝ ⎛⎭⎪⎫12=1. 答案:B2.(2013·北京西城区期末)已知函数f (x )=x +b cos x ,其中b 为常数.那么“b =0”是“f (x )为奇函数”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件解析:若b =0,则f (x )=x 为奇函数,反之,若f (x )为奇函数,∴f (-x )=-x +b cos(-x )=-x +b cos x =-f (x )=-x -b cos x ,∴b =0,故“b =0”是“f (x )为奇函数”的充要条件.答案:C3.已知函数f (x )=x |x |-2x ,则下列结论正确的是( )A .f (x )是偶函数,递增区间是(0,+∞)B .f (x )是偶函数,递减区间是(-∞,1)C .f (x )是奇函数,递减区间是(-1,1)D .f (x )是奇函数,递增区间是(-∞,0)解析:将函数f (x )=x |x |-2x 去掉绝对值得f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,-x 2-2x ,x <0,画出函数f (x )的图象,如图,观察图象可知,函数f (x )的图象关于原点对称,故函数f (x )为奇函数,且在(-1,1)上单调递减.答案:C4.(2012·福建卷)设函数D (x )=⎩⎪⎨⎪⎧1,x 为有理数,0,x 为无理数,则下列结论错误的是( )A .D (x )的值域为{0,1}B .D (x )是偶函数C .D (x )不是周期函数D .D (x )不是单调函数 解析:A 显然正确.D (x )=⎩⎪⎨⎪⎧1, x 为有理数,0, x 为无理数,当x ∈Q 时,-x ∈Q ,而D (x )=D (-x )=1;当x 为无理数时,-x 也为无理数,此时D (x )=D (-x )=0,∴对任意的x ∈R ,D (x )=D (-x ),∴B 正确.不妨设a ∈Q 且a ≠0,当x 为有理数时,D (x +a )=D (x )=1,当x 为无理数时,D (x +a )=D (x )=0,∴D (x )为周期函数,∴C 不正确.∵x 1=1,D (1)=1,x 2=2,D (2)=1,∴D (x 1)=D (x 2),∴D (x )在定义域上不单调.故D 正确.答案:C5.(2013·河南开封高三第一次模拟)已知f (x )是奇函数,且f (2-x )=f (x ),当x ∈(2,3)时, f (x )=log 2(x -1),则当x ∈(1,2)时, f (x )=( )A .-log 2(4-x )B .log 2(4-x )C .-log 2(3-x )D .log 2(3-x )解析:依题意得f (x +2)=f (-x )=-f (x ), f (x +4)=-f (x +2)=f (x ).当x ∈(1,2)时,x -4∈(-3,-2),-(x -4)∈(2,3),故f (x )=f (x -4)=-f (4-x )=-log 2(4-x -1)=-log 2(3-x ),选C.答案:C6.(2013·云南昆明高三调研)已知函数f (x )=⎩⎪⎨⎪⎧-x 2-4x ,x ≥0x 2-4x ,x <0,若f (a -2)+f (a )>0,则实数a 的取值范围是( )A .a <-1-3或a >-1+ 3B .a >1C .a <3-3或a >3+ 3D .a <1解析:法一:当x >0时,-x <0, f (-x )=(-x )2-4(-x )=x 2+4x =-(-x 2-4x )=-f (x );当x <0时,-x >0, f (-x )=-(-x )2-4(-x )=-(x 2-4x )=-f (x );又f (0)=0,因此对任意x ∈R ,都有f (-x )=-f (x ),即函数f (x )是奇函数.又当x≥0时,函数f(x)是减函数,于是有f(x)在R上是减函数,不等式f(a-2)+f(a)>0,即f(a-2)>-f(a)=f(-a),a-2<-a,a<1,即实数a的取值范围是a<1.法二:由图象可知,f(x)为奇函数,且为减函数,即f(a-2)>f(-a),∴a -2<-a,∴a<1,∴选D.答案:D二、填空题7.(2013·广西卷)设f(x)是以2为周期的函数,且当x∈[1,3)时,f(x)=x-2,则f(-1)=________.解析:因为f(x)是以2为周期的函数,所以f(-1)=f(-1+2)=f(1)=1-2=-1.答案:-18.若函数f(x)=x2-|x+a|为偶函数,则实数a=________.解析:f(x)为偶函数,∴对∀x∈R, f(-x)=f(x),∴a=0.答案:09.(2013·淄博市高三阶段性检测)已知函数f (x )在实数集R 上具有下列性质:①直线x =1是函数f (x )的一条对称轴;②f (x +2)=-f (x );③当1≤x 1<x 2≤3时,(f (x 2)-f (x 1))·(x 2-x 1)<0,则f (2 011)、f (2 012)、f (2 013)从大到小的顺序为________.解析:f (x +2)=-f (x )得:T =4,又x =1为对称轴,且1≤x ≤3时f (x )为减函数知,f (x )在(-1,1)上为增函数,f (2 011)=f (-1),f (2 012)=f (0),f (2 013)=f (1),由f (-1)<f (0)<f (1)得,f (2 013)>f (2 012)>f (2 011).答案:f (2 013) f (2 012) f (2 011)三、解答题10.已知函数f (x )=⎩⎪⎨⎪⎧ -x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数.(1)求实数m 的值; (2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围.解:(1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x .又f (x )为奇函数,所以f (-x )=-f (x ),于是x <0时,f (x )=x 2+2x =x 2+mx ,所以m =2.(2)要使f (x )在[-1,a -2]上单调递增,结合f (x )的图象知⎩⎪⎨⎪⎧a -2>-1,a -2≤1, 所以1<a ≤3,故实数a 的取值范围是(1,3].11.已知函数f (x )是定义在R 上的奇函数,且它的图象关于直线x =1对称.(1)求证:f (x )是周期为4的周期函数;(2)若f (x )=x (0<x ≤1),求x ∈[-5,-4]时,函数f (x )的解析式. 解:(1)证明:由函数f (x )的图象关于直线x =1对称,有f (x +1)=f (1-x ),即有f (-x )=f (x +2).又函数f (x )是定义在R 上的奇函数,故有f (-x )=-f (x ),故f (x +2)=-f (x ).从而f (x +4)=-f (x +2)=f (x ),即f (x )是周期为4的周期函数.(2)由函数f (x )是定义在R 上的奇函数,有f (0)=0.x ∈[-1,0)时,-x ∈(0,1],f (x )=-f (-x )=--x .故x ∈[-1,0]时,f (x )=--x .x ∈[-5,-4]时,x +4∈[-1,0],f (x )=f (x +4)=--x -4.从而,x ∈[-5,-4]时,函数f (x )=--x -4.12.函数f (x )的定义域为D ={x |x ≠0},且满足对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2).(1)求f (1)的值;(2)判断f (x )的奇偶性并证明你的结论;(3)如果f (4)=1,f (x -1)<2,且f (x )在(0,+∞)上是增函数,求x 的取值范围.解:(1)∵对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2),∴令x 1=x 2=1,得f (1)=2f (1),∴f (1)=0.(2)令x 1=x 2=-1,有f (1)=f (-1)+f (-1),∴f (-1)=12f (1)=0.令x 1=-1,x 2=x 有f (-x )=f (-1)+f (x ),∴f (-x )=f (x ),∴f (x )为偶函数.(3)依题设有f (4×4)=f (4)+f (4)=2,由(2)知,f (x )是偶函数,∴f (x -1)<2⇔f (|x -1|)<f (16).又f (x )在(0,+∞)上是增函数.∴0<|x -1|<16,解之得-15<x <17且x ≠1.∴x 的取值范围是{x |-15<x <17且x ≠1}.[热点预测]13.(1)(2013·安徽省江南十校高三开学第一考)已知f (x )为偶函数,且f (x +4)=f (-x ),当-3≤x ≤-2时,f (x )=⎝ ⎛⎭⎪⎫12x ,则f (2 013)=( ) A.18 B.12 C .2 D .8(2)(2013·济宁市高三4月考试试题)已知定义在R 上的函数f (x ),对任意x ∈R ,都有f (x +6)=f (x )+f (3)成立,若函数y =f (x +1)的图象关于直线x =-1对称,则f (2 013)=( )A .0B .2 013C .3D .-2 013解析:(1)因为f (x )为偶函数,所以f (x +4)=f (-x )=f (x ),因此函数的周期为4,故f (2 013)=f (4×503+1)=f (1)=f (-3)=⎝ ⎛⎭⎪⎫12-3=8,选D.(2)由y =f (x +1)关于x =-1对称知y =f (x )关于x =0对称,在f (x +6)=f (x )+f (3)中令x =-3,得f (3)=f (-3)+f (3),即f (-3)=0,f (3)=0,f (x +6)=f (x ),∴T =6.f (2 013)=f (6×335+3)=f (3)=0.选A.答案:(1)D (2)A。
质量检测(四)测试内容:立体几何 时间:90分钟 分值:120分一、选择题(本大题共10小题,每小题5分,共50分) 1.(2013·烟台诊断)一个三棱锥的三视图如图所示,则该三棱锥的体积为( )A.13B.12C.23D.16解析:V =13Sh =13×12×2×1×1=13. 答案:A2.已知水平放置的△ABC 的直观图△A ′B ′C ′(斜二测画法)是边长为2a 的正三角形,则原△ABC 的面积为( )A.2a 2B.32a 2 C.62a 2D.6a 2解析:斜二测画法中原图面积与直观图面积之比为1∶24,则易知24S =34(2a )2,∴S =6a 2.故选D.答案:D3.正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是AA 1,AB 的中点,则EF 与对角面BDD 1B 1所成角的度数是( )A .30°B .45°C .60°D .150°解析:如图,∵EF ∥A 1B ,∴EF ,A 1B 与对角面BDD 1B 1所成的角相等,设正方体的棱长为1,则A 1B = 2.连接A 1C 1,交D 1B 1于点M ,连接BM ,则有A 1M ⊥面BDD 1B 1,∠A 1BM 为A 1B 与面BDD 1B 1所成的角.Rt △A 1BM 中,A 1B =2,A 1M =22,故∠A 1BM =30°.∴EF 与对角面BDD 1B 1所成角的度数是30°.答案:A4.(2013·山东卷)一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如右图所示,则该四棱锥侧面积和体积分别是( )A .45,8B .45,83 C .4(5+1),83D .8,8解析:由题意可知该四棱锥为正四棱锥,底面边长为2,高为2,侧面上的斜高为22+12=5,所以S 侧=4×⎝ ⎛⎭⎪⎫12×2×5=45,V =13×22×2=83.答案:B5.(2013·宁波市高三“十校”联考)若有直线m 、n 和平面α、β,下列四个命题中,正确的是( )A .若m ∥α,n ∥α,则m ∥nB .若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥βC .若α⊥β,m ⊂α,则m ⊥βD .若α⊥β,m ⊥β,m ⊄α,则m ∥α解析:α⊥β,m ⊥β,则m ∥α或m ⊂α,又∵m ⊄α,∴m ∥α,选D.答案:D6.(2013·保定第一次模拟)三棱锥V -ABC 的底面ABC 为正三角形,侧面VAC 垂直于底面,VA =VC ,已知其正视图(VAC )的面积为23,则其左视图的面积为( )A.32B.36C.34D.33解析:利用三棱锥及三视图的特征,可设底面边长为a ,高为h ,则12ah =23,∴ah =43,故其左视图的面积为S =12·32a ·h =32,故选D.答案:D7.(2013·南平质检)如图是某几何体的三视图,其中正视图是正方形,侧视图是矩形,俯视图是半径为2的半圆,则该几何体的表面积等于( )A .16+2πB .24πC .16+4πD .12π解析:由三视图知,几何体是半个圆柱,而圆柱下底面圆的半径为2,其轴截面为边长为4的正方形,故表面积为4×4+2π·4+2·2π=16+12π.答案:A8.(2013·荆州质检(Ⅱ))在半径为R 的球内有一内接圆柱,设该圆柱底面半径为r ,当圆柱的侧面积最大时,rR 为( )A.14B.12C.22D.32解析:圆柱的底面半径为r ,则有h =2R 2-r 2,侧面积S =2πr ·h =4πr R 2-r 2=4πr 2(R 2-r 2)≤4π⎝ ⎛⎭⎪⎫r 2+R 2-r 222=2πR 2,当且仅当r 2=R 2-r 2即r R =22时,圆柱的侧面积取得最大值,所以选C.答案:C9.(2013·山东潍坊模拟)已知m ,n 是两条不同直线,α,β是两个不同平面,给出四个命题:①若α∩β=m ,n ⊂α,n ⊥m ,则α⊥β;②若m ⊥α,m ⊥β,则α∥β;③若m ⊥α,n ⊥β,m ⊥n ,则α⊥β;④若m ∥α,n ∥β,m ∥n ,则α∥β.其中正确的命题是( ) A .①② B .②③ C .①④D .②④解析:由面面平行、垂直的定义可知②③正确,故选B. 答案:B10.(2013·东北三校第二次联考)三棱柱ABC -A 1B 1C 1的底面是边长为3的正三角形,侧棱AA 1⊥底面ABC .若球O 与三棱柱ABC -A 1B 1C 1各侧面、底面均相切,则侧棱AA 1的长为( )A.12B.32 C .1D. 3解析:此三棱柱为正三棱柱,球O 与三个侧面均相切,其俯视图如图所示.其半径为R ,R =BD ·13=12.球O 的半径为12,若球O 与上、下底面均相切,则AA 1=2R =1,故选C.答案:C二、填空题(本大题共4小题,每小题5分,共20分)11.(2013·乌鲁木齐第一次诊断)如图,单位正方体ABCD -A 1B 1C 1D 1中,点P 在平面A 1BC 1上,则三棱锥P -ACD 1的体积为________.解析:由图易知,平面A 1BC 1∥平面ACD 1,∴P 到平面ACD 1的距离等于平面A 1BC 1与平面ACD 1间的距离,等于13B 1D =33,而S △ACD 1=12AD 1·CD 1sin 60°=32,∴三棱锥P -ACD 1的体积为13×32×33=16. 答案:1612.(2013·汕头质量测评(二))如图,某简单几何体的正(主)视图与侧(左)视图都是边长为1的正方形,且其体积为π4,则该几何体的俯视图可以是________.解析:该几何体是高为1的柱体,由体积为π4,知底面积为π4,所以填D.答案:D13.(2013·新课标全国卷Ⅱ)已知正四棱锥O -ABCD 的体积为322,底面边长为3,则以O 为球心,OA 为半径的球的表面积为________.解析:过O 作底面ABCD 的垂线段OE ,则E 为正方形ABCD 的中心.由题意可知13×(3)2×OE =322,所以OE =322,故球的半径R =OA =OE 2+EA 2=6,则球的表面积S =4πR 2=24π.答案:24π14.(2013·北京卷)如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E 为BC 的中点,点P 在线段D 1E 上.点P 到直线CC 1的距离的最小值为________.解析:点P 到直线CC 1的距离等于点P 在平面ABCD 上的射影到点C 的距离,设点P 在平面ABCD 上的射影为P ′,显然点P 到直线CC 1的距离的最小值为P ′C 的长度的最小值.当P ′C ⊥DE 时,P ′C 的长度最小,此时P ′C =2×122+1=255.答案:255三、解答题(本大题共4小题,共50分.解答应写出文字说明,证明过程或演算步骤.)15.(满分12分)(2013·重庆卷)如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,P A =23,BC =CD =2,∠ACB =∠ACD =π3.(1)求证:BD ⊥平面P AC ;(2)若侧棱PC 上的点F 满足PF =7FC ,求三棱锥P -BDF 的体积.解:(1)证明:因为BC =CD ,所以△BCD 为等腰三角形, 又∠ACB =∠ACD ,故BD ⊥AC .因为P A ⊥底面ABCD ,所以P A ⊥BD .从而BD 与平面P AC 内两条相交直线P A ,AC 都垂直,所以BD ⊥平面P AC .(2)三棱锥P -BCD 的底面BCD 的面积S △BCD =12BC ·CD ·sin ∠BCD =12×2×2×sin 2π3= 3.由P A ⊥底面ABCD ,得V P -BCD =13·S △BCD ·P A =13×3×23=2.由PF =7FC ,得三棱锥F -BCD 的高为18P A ,故 V F -BCD =13·S △BCD ·18P A =13×3×18×23=14, 所以V P -BDF =V P -BCD -V F -BCD =2-14=74.16.(满分12分)(2013·辽宁卷)如图,AB 是圆O 的直径,P A 垂直圆O 所在的平面,C 是圆O 上的点.(1)求证:BC ⊥平面P AC ;(2)设Q 为P A 的中点,G 为△AOC 的重心,求证:QG ∥平面PBC . 证明:(1)由AB 是圆O 的直径,得AC ⊥BC , 由P A ⊥平面ABC ,BC ⊂平面ABC ,得P A ⊥BC . 又P A ∩AC =A ,P A ⊂平面P AC ,AC ⊂平面P AC , 所以BC ⊥平面P AC .(2)连接OG并延长交AC于M,连接QM,QO,由G为△AOC的重心,得M为AC的中点.由Q为P A的中点,得QM∥PC,又O为AB的中点,得OM∥BC.因为QM∩MO=M,QM⊂平面QMO,MO⊂平面QMO,BC∩PC=C,BC⊂平面PBC,PC⊂平面PBC,所以平面QMO∥平面PBC.因为QG⊂平面QMO,所以QG∥平面PBC.17.(满分13分)(2013·新课标全国卷Ⅰ)如图,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(1)证明:AB⊥A1C;(2)若AB=CB=2,A1C=6,求三棱柱ABC-A1B1C1的体积.解:(1)证明:取AB的中点O,连接OC,OA1,A1B.因为CA=CB,所以OC⊥AB.由于AB=AA1,∠BAA1=60°,故△AA1B为等边三角形,所以OA1⊥AB.因为OC∩OA1=O,所以AB⊥平面OA1C.又A1C⊂平面OA1C,故AB⊥A1C.(2)由题设知△ABC与△AA1B都是边长为2的等边三角形,所以OC=OA1=3,又A1C=6,则A1C2=OC2+OA21,故OA1⊥OC.因为OC∩AB=O,所以OA1⊥平面ABC,OA1为三棱柱ABC-A1B1C1的高.又△ABC的面积S△ABC=3,故三棱柱ABC-A1B1C1的体积V=S△ABC×OA1=3.18.(满分13分)(2013·四川卷)如图,在三棱柱ABC -A 1B 1C 1中,侧棱AA 1⊥底面ABC ,AB =AC =2AA 1=2,∠BAC =120°,D ,D 1分别是线段BC ,B 1C 1的中点,P 是线段AD 上异于端点的点.(1)在平面ABC 内,试作出过点P 与平面A 1BC 平行的直线l ,说明理由,并证明直线l ⊥平面ADD 1A 1;(2)设(1)中的直线l 交AC 于点Q ,求三棱锥A 1-QC 1D 的体积.(锥体体积公式:V =13Sh ,其中S 为底面面积,h 为高)解:(1)证明:如图,在平面ABC 内,过点P 作直线l ∥BC ,因为l 在平面A 1BC 外,BC 在平面A 1BC 内,由直线与平面平行的判定定理可知,l ∥平面A 1BC .由已知,AB =AC ,D 是BC 的中点,所以,BC ⊥AD ,则直线l ⊥AD .因为AA 1⊥平面ABC ,所以AA 1⊥直线l .又因为AD ,AA 1在平面ADD 1A 1内,且AD 与AA 1相交, 所以直线l ⊥平面ADD 1A 1.(2)过D 作DE ⊥AC 于E .因为AA 1⊥平面ABC ,所以DE ⊥AA 1.又因为AC ,AA 1在平面AA 1C 1C 内,且AC 与AA 1相交, 所以DE ⊥平面AA 1C 1C .由AB =AC =2,∠BAC =120°,有AD =1,∠DAC =60°,所以在△ACD 中,DE =32AD =32,又S △A 1QC 1=12A 1C 1·AA 1=1,所以V A 1-QC 1D =V D -A 1QC 1=13DE ·S △A 1QC 1=13×32×1=36.因此三棱锥A 1-QC 1D 的体积是36.。
【走向高考】2015届高考数学一轮总复习 11-4数学归纳法课后强化作业 新人教A 版基础巩固强化一、选择题1.用数学归纳法证明1+12+13+…+12n -1<n (n ∈N *,n >1)时,第一步应验证不等式( )A .1+12<2B .1+12+13<2C .1+12+13<3D .1+12+13+14<3[答案] B[解析] ∵n ∈N *,n >1,∴n 取的第一个数为2,左端分母最大的项为122-1=13,故选B.2.某个命题与自然数n 有关,若n =k (k ∈N *)时命题成立,则可推得当n =k +1时该命题也成立,现已知n =5时,该命题不成立,那么可以推得( )A .n =6时该命题不成立B .n =6时该命题成立C .n =4时该命题不成立D .n =4时该命题成立 [答案] C[解析] ∵“若n =k (k ∈N *)时命题成立,则当n =k +1时,该命题也成立”,故若n =4时命题成立,则n =5时命题也应成立,现已知n =5时,命题不成立,故n =4时,命题也不成立.[点评] 可用逆否法判断.3.用数学归纳法证明:12+22+…+n 2+…+22+12=n (2n 2+1)3,第二步证明由“k 到k+1”时,左边应加( )A .k 2B .(k +1)2C .k 2+(k +1)2+k 2D .(k +1)2+k 2 [答案] D[解析] 当n =k 时,左边=12+22+…+k 2+…+22+12,当n =k +1时,左边=12+22+…+k 2+(k +1)2+k 2+…+22+12,∴选D.4.(2013·安徽黄山联考)已知n 为正偶数,用数学归纳法证明1-12+13-14+…+1n +1=2(1n +2+1n +4+…+12n )时,若已假设n =k (k ≥2为偶数)时命题为真,则还需要用归纳假设再证n =( )时等式成立.( )A .k +1B .k +2C .2k +2D .2(k +2) [答案] B[解析] ∵n =k 为偶数,∴下一个偶数应为n =k +2,故选B.5.数列{a n }中,已知a 1=1,当n ≥2时,a n -a n -1=2n -1,依次计算a 2、a 3、a 4后,猜想a n 的表达式是( )A .a n =3n -2B .a n =n 2C .a n =3n -1D .a n =4n -3[答案] B[解析] a 1=1,a 2=4,a 3=9,a 4=16,猜想a n =n 2. 二、填空题6.如果不等式2n >n 2+1对于n ≥n 0的正整数n 都成立,则n 0的最小值为________. [答案] 5[解析] 当n =1时,2>2不成立, 当n =2时,4>5不成立. 当n =3时,8>10不成立 当n =4时,16>17不成立 当n =5时,32>26成立当n =6时,64>37成立,由此猜测n 0应取5.7.用数学归纳法证明:(n +1)+(n +2)+…+(n +n )=n (3n +1)2(n ∈N *)的第二步中,当n=k +1时等式左边与n =k 时等式左边的差等于________.[答案] 3k +2[解析] [(k +1)+1]+[(k +1)+2]+…+[(k +1)+(k +1)]-[(k +1)+(k +2)+…+(k +k )] =[(k +1)+k ]+[(k +1)+(k +1)]-(k +1) =3k +2.8.(2012·温州一模)已知n ∈N *,设平面上的n 个椭圆最多能把平面分成a n 部分,则a 1=2,a 2=6,a 3=14,a 4=26,…,则a n =________.[答案] 2n 2-2n +2[解析] 观察规律可知a n -a n -1=(n -1)×4,利用累加法可得a n =2n 2-2n +2.9.(2012·长春模拟)如图,第n 个图形是由正n +2边形“扩展”而来的(n =1,2,3,…),则第n -2(n ≥3,n ∈N *)个图形共有________个顶点.[答案] n (n +1)[解析] 当n =1时,顶点共有3×4=12(个),当n =2时,顶点共有4×5=20(个), 当n =3时,顶点共有5×6=30(个), 当n =4时,顶点共有6×7=42(个),故第n -2图形共有顶点(n -2+2)(n -2+3)=n (n +1)个. 三、解答题10.已知函数f (x )=13x 3-x ,数列{a n }满足条件:a 1≥1,a n +1≥f ′(a n +1).试比较11+a 1+11+a 2+11+a 3+…+11+a n与1的大小,并说明理由. [解析] ∵f ′(x )=x 2-1,a n +1≥f ′(a n +1), ∴a n +1≥(a n +1)2-1.∵函数g (x )=(x +1)2-1=x 2+2x 在区间[-1,+∞)上单调递增,于是由a 1≥1,及a 2≥(a 1+1)2-1得,a 2≥22-1,进而得a 3≥(a 2+1)2-1≥24-1>23-1,由此猜想:a n ≥2n -1.下面用数学归纳法证明这个猜想: ①当n =1时,a 1≥21-1=1,结论成立;②假设当n =k (k ≥1且k ∈N *)时结论成立,即a k ≥2k -1,则当n =k +1时,由g (x )=(x +1)2-1在区间[-1,+∞)上单调递增知,a k +1≥(a k +1)2-1≥22k -1≥2k +1-1,即n =k +1时,结论也成立.由①②知,对任意n ∈N *,都有a n ≥2n -1. 即1+a n ≥2n .∴11+a n ≤12n .∴11+a 1+11+a 2+…+11+a 3+…+11+a n ≤12+122+123+…+12n =1-(12)n <1.能力拓展提升11.已知点P n (a n ,b n )满足a n +1=a n ·b n +1,b n +1=b n 1-4a 2n (n ∈N *)且点P 1的坐标为(1,-1). (1)求过点P 1,P 2的直线l 的方程;(2)试用数学归纳法证明:对于n ∈N *,点P n 都在(1)中的直线l 上. [解析] (1)由P 1的坐标为(1,-1)知a 1=1,b 1=-1. ∴b 2=b 11-4a 21=13,a 2=a 1·b 2=13. ∴点P 2的坐标为(13,13).∴直线l 的方程为2x +y =1.(2)证明:①当n =1时,2a 1+b 1=2×1+(-1)=1成立. ②假设n =k (k ∈N *,k ≥1)时,2a k +b k =1成立,则当n =k +1时,2a k +1+b k +1=2a k ·b k +1+b k +1 =b k 1-4a 2k ·(2a k +1)=b k1-2a k =1-2a k 1-2a k=1, ∴当n =k +1时,命题也成立.由①②知,对n ∈N *,都有2a n +b n =1,即点P n 在直线l 上. 12.已知f (n )=1+123+133+143+…+1n 3,g (n )=32-12n 2,n ∈N *.(1)当n =1,2,3时,试比较f (n )与g (n )的大小; (2)猜想f (n )与g (n )的大小关系,并给出证明. [解析] (1)当n =1时,f (1)=1,g (1)=1, 所以f (1)=g (1);当n =2时,f (2)=98,g (2)=118,所以f (2)<g (2);当n =3时,f (3)=251216,g (3)=312216,所以f (3)<g (3).(2)由(1)猜想f (n )≤g (n ),下面用数学归纳法给出证明. ①当n =1,2,3时,不等式显然成立. ②假设当n =k (k ≥3,k ∈N *)时不等式成立, 即1+123+133+143+…+1k 3<32-12k 2,那么,当n =k +1时,f (k +1)=f (k )+1(k +1)3<32-12k 2+1(k +1)3, 因为12(k +1)2-[12k 2-1(k +1)3]=k +32(k +1)3-12k 2=-3k -12(k +1)3k 2<0, 所以f (k +1)<32-12(k +1)2=g (k +1).由①②可知,对一切n ∈N *, 都有f (n )≤g (n )成立.13.(2013·南京一模)已知数列{a n }满足a 1=0,a 2=1,当n ∈N *时,a n +2=a n +1+a n .求证:数列{a n }的第4m +1项(m ∈N *)能被3整除.[证明] (1)当m =1时,a 4m +1=a 5=a 4+a 3=(a 3+a 2)+(a 2+a 1)=(a 2+a 1)+2a 2+a 1=3a 2+2a 1=3+0=3.即当m =1时,第4m +1项能被3整除.故命题成立. (2)假设当m =k 时,a 4k +1能被3整除,则当m =k +1时,a 4(k +1)+1=a 4k +5=a 4k +4+a 4k +3=2a 4k +3+a 4k +2=2(a 4k +2+a 4k +1)+a 4k +2 =3a 4k +2+2a 4k +1.显然,3a 4k +2能被3整除, 又由假设知a 4k +1能被3整除. ∴3a 4k +2+2a 4k +1能被3整除.即当m =k +1时,a 4(k +1)+1也能被3整除.命题也成立.由(1)和(2)知,对于n ∈N *,数列{a n }中的第4m +1项能被3整除. 14.用数学归纳法证明下面的等式12-22+32-42+…+(-1)n -1·n 2=(-1)n-1n (n +1)2. [证明] (1)当n =1时,左边=12=1, 右边=(-1)0·1×(1+1)2=1,∴原等式成立.(2)假设n =k (k ∈N +,k ≥1)时,等式成立, 即有12-22+32-42+…+(-1)k -1·k 2=(-1)k-1k (k +1)2. 那么,当n =k +1时,则有12-22+32-42+…+(-1)k -1·k 2+(-1)k ·(k +1)2=(-1)k-1k (k +1)2+(-1)k ·(k +1)2 =(-1)k ·k +12[-k +2(k +1)]=(-1)k (k +1)(k +2)2,∴n =k +1时,等式也成立, 由(1)(2)得对任意n ∈N +有 12-22+32-42+…+(-1)n -1·n 2=(-1)n -1n (n +1)2.考纲要求1.了解数学归纳法的原理.2.能用数学归纳法证明一些简单的数学命题. 补充说明归纳法有不完全归纳法和完全归纳法,如果我们考察了某类对象中的一部分,由这一部分对象具有某种特征而得出该类对象中的全体都具有这种特征的结论,为不完全归纳.由不完全归纳法得出的结论不一定都是正确的,其正确性还需进一步证明;如果我们考察了某类对象中的每一个对象,而得出该类对象的某种特征的结论为完全归纳,由完全归纳法得出的结论一定是正确的,数学归纳法是一种完全归纳法.2.归纳、猜想与证明从观察一些特殊的简单的问题入手,根据它们所体现的共同性质,运用不完全归纳法作出一般命题的猜想,然后从理论上证明(或否定)这种猜想,即“归纳—猜想—证明”.这是我们归纳探究一些有规律性问题的一般步骤.3.在用数学归纳法证明不等式时,常根据题目的需要进行恰当的放缩,要注意既不能放缩的不到位,也不能放缩过了头.备选习题1.对于不等式n2+n≤n+1(n∈N*),某人的证明过程如下:1°当n=1时,12+1≤1+1,不等式成立.2°假设n=k(k∈N*)时不等式成立,即k2+k<k+1,则n=k+1时,(k+1)2+(k+1)=k2+3k+2<(k2+3k+2)+k+2=(k+2)2=(k+1)+1.∴当n=k+1时,不等式成立.上述证法()A.过程全都正确B.n=1验得不正确C.归纳假设不正确D.从n=k到n=k+1的推理不正确[答案] D[解析]上述证明过程中,在由n=k变化到n=k+1时,不等式的证明使用的是放缩法而没有使用归纳假设.故选D.2.在一次珠宝展览会上,某商家展出一套珠宝首饰,第一件首饰是1颗珠宝,第二件首饰由6颗珠宝(图中圆圈表示珠宝)构成如图1所示的正六边形,第三件首饰由15颗珠宝构成如图2所示的正六边形,第四件首饰是由28颗珠宝构成如图3所示的正六边形,第五件首饰是由45颗珠宝构成如图4所示的正六边形,以后每件首饰都在前一件上,按照这种规律增加一定数量的珠宝,使它构成更大的正六边形,依此推断前10件首饰所用珠宝总颗数为()A.190 B.715C.725 D.385[解析] 由条件可知前5件首饰的珠宝数依次为:1,1+5,1+5+9,1+5+9+13,1+5+9+13+17,即每件首饰的珠宝数为一个以1为首项,4为公差的等差数列的前n 项和,通项a n =4n -3.由此可归纳出第n 件首饰的珠宝数为n [1+(4n -3)]2=2n 2-n .则前n 件首饰所用的珠宝总数为2(12+22+…+n 2)-(1+2+…+n )=4n 3+3n 2-n6.当n =10时,总数为715.3.(2013·九江模拟)设数列{a n }的前n 项和为S n ,并且满足2S n =a 2n +n ,a n >0(n ∈N *).(1)猜想{a n }的通项公式,并用数学归纳法加以证明.(2)设x >0,y >0,且x +y =1,证明:a n x +1+a n y +1≤2(n +2). [解析] (1)分别令n =1,2,3, 得⎩⎪⎨⎪⎧2a 1=a 21+1,2(a 1+a 2)=a 22+2,2(a 1+a 2+a 3)=a 23+3.∵a n >0,∴a 1=1,a 2=2,a 3=3. 猜想:a n =n . 由2S n =a 2n +n .①可知,当n ≥2时,2S n -1=a 2n -1+(n -1).②①-②,得2a n =a 2n -a 2n -1+1, 即a 2n =2a n +a 2n -1-1.(ⅰ)当n =2时,a 22=2a 2+12-1,∵a 2>0,∴a 2=2.(ⅱ)假设当n =k (k ≥2)时,a k =k ,那么当n =k +1时,a 2k +1=2a k +1+a 2k -1=2a k +1+k 2-1⇒[a k +1-(k +1)][a k +1+(k -1)]=0, ∵a k +1>0,k ≥2,∴a k +1+(k -1)>0, ∴a k +1=k +1.即当n =k +1时也成立. ∴a n =n (n ≥2).显然n =1时,也成立,故对于一切n ∈N *,均有a n =n . (2)要证nx +1+ny +1≤2(n +2),只要证nx +1+2(nx +1)(ny +1)+ny +1≤2(n +2). 即n (x +y )+2+2n 2xy +n (x +y )+1≤2(n +2),将x +y =1代入,得2n 2xy +n +1≤n +2, 即只要证4(n 2xy +n +1)≤(n +2)2, 即4xy ≤1.∵x >0,y >0,且x +y =1,∴xy ≤x +y 2=12,即xy ≤14,故4xy ≤1成立,所以原不等式成立.[失误与防范] 证明不等式时,不能利用x +y =1作代换,找不到思路是解答本题中常出现的失误.证题时要注意把题设条件(特别是隐含条件)都找出来,当证题思路打不通时,看看有没有没用上的条件.4.(2013·北京房山摸底)已知曲线C :y 2=2x (y ≥0),A 1(x 1,y 1),A 2(x 2,y 2),…,A n (x n ,y n ),…是曲线C 上的点,且满足0<x 1<x 2<…<x n <…,一列点B i (a i,0)(i =1,2,…)在x 轴上,且△B i -1A i B i (B 0是坐标原点)是以A i 为直角顶点的等腰直角三角形.(1)求A 1,B 1的坐标; (2)求数列{y n }的通项公式;(3)令b i =1a i ,c i =(2)-y i 2,是否存在正整数N ,当n ≥N 时,都有∑i =1nb i <∑i +1n c i ,若存在,求出N 的最小值并证明;若不存在,说明理由.[解析] (1)∵△B 0A 1B 1是以A 1为直角顶点的等腰直角三角形, ∴直线B 0A 1的方程为y =x . 由⎩⎪⎨⎪⎧y =x ,y 2=2x ,y >0,得x 1=y 1=2,即点A 1的坐标为(2,2),进而得B 1(4,0).(2)根据△B n -1A n B n 和△B n A n +1B n +1分别是以A n 和A n +1为直角顶点的等腰直角三角形可得⎩⎪⎨⎪⎧a n =x n +y n ,a n =x n +1-y n +1, 即x n +y n =x n +1-y n +1.(*)∵A n 和A n +1均在曲线C :y 2=2x (y ≥0)上,∴y 2n =2x n ,y 2n +1=2x n +1.∴x n =y 2n 2,x n +1=y 2n +12,代入(*)式得y 2n +1-y 2n =2(y n +1+y n ). ∴y n +1-y n =2(n ∈N *).∴数列{y n }是以y 1=2为首项,2为公差的等差数列. ∴其通项公式为y n =2n (n ∈N *).(3)由(2)可知,x n =y 2n2=2n 2,∴a n =x n +y n =2n (n +1).∴b i =12i (i +1),c i =(2)-y i 2=12i +1,∴∑i =1nb i =12(1×2)+12(2×3)+…+12n (n +1)=12(1-12+12-13+…+1n -1n +1) =12(1-1n +1), ∑i =1n c i =122+123+…+12n +1=14(1-12n )1-12 =12(1-12n ). ∑i =1n b i -∑i =1nc i =12(1-1n +1)-12(1-12n )=12(12n -1n +1)=n +1-2n 2n +1(n +1). 当n =1时,b 1=c 1不符合题意,当n =2时b 2<c 2符合题意,当n =3时,b 3<c 3,符合题意,猜想对于一切大于或等于2的自然数都有∑i =1nb i <∑i =1nc i ,(*)观察知,欲证(*)式成立,只需证明n ≥2时,n +1≤2n . 以下用数学归纳法证明,①当n =2时,左边=3,右边=4,左边<右边; ②假设n =k (k ≥2)时,k +1<2k ,当n =k +1时, 左边=(k +1)+1<2k +1<2k +2k =2k +1=右边.∴对于一切大于或等于2的正整数,都有n +1<2n , 即∑i =1nb i <∑i =1nc i 成立.综上,满足题意的n 的最小值为2.5.已知正项数列{a n }中,对于一切的n ∈N *均有a 2n ≤a n -a n +1成立. (1)证明:数列{a n }中的任意一项都小于1; (2)探究a n 与1n的大小,并证明你的结论.[解析] (1)由a 2n ≤a n -a n +1得a n +1≤a n -a 2n .∵在数列{a n }中a n >0,∴a n +1>0, ∴a n -a 2n >0,∴0<a n <1,故数列{a n }中的任何一项都小于1. (2)解法1:由(1)知0<a n <1=11,那么a 2≤a 1-a 21=-⎝⎛⎭⎫a 1-122+14≤14<12, 由此猜想:a n <1n.下面用数学归纳法证明:当n ≥2,n ∈N 时猜想正确. ①当n =2时,显然成立;②假设当n =k (k ≥2,k ∈N )时,有a k <1k ≤12成立.那么a k +1≤a k -a 2k =-⎝⎛⎭⎫a k -122+14<-⎝⎛⎭⎫1k -122+14=1k -1k 2=k -1k 2<k -1k 2-1=1k +1, ∴当n =k +1时,猜想也正确. 综上所述,对于一切n ∈N *,都有a n <1n .解法2:由a 2n ≤a n -a n +1, 得0<a k +1≤a k -a 2k =a k (1-a k ),∵0<a k <1,∴1a k +1≥1a k (1-a k )=1a k +11-a k ,∴1a k +1-1a k ≥11-a k >1. 令k =1,2,3,…,n -1得:1a 2-1a 1>1,1a 3-1a 2>1,…,1a n -1a n -1>1, ∴1a n >1a 1+n -1>n ,∴a n <1n. 6.设数列{a n }的前n 项和为S n ,对一切n ∈N *,点⎝⎛⎭⎫n ,S n n 都在函数f (x )=x +an 2x 的图象上. (1)求a 1、a 2、a 3的值,猜想a n 的表达式,并用数学归纳法证明;(2)将数列{a n }依次按1项、2项、3项、4项循环地分为(a 1),(a 2,a 3),(a 4,a 5,a 6),(a 7,a 8,a 9,a 10);(a 11),(a 12,a 13),(a 14,a 15,a 16),(a 17,a 18,a 19,a 20);(a 21),…,分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为{b n },求b 5+b 100的值.[分析] (1)将点⎝⎛⎭⎫n ,S n n 代入函数f (x )=x +an 2x 中,通过整理得到S n 与a n 的关系,则a 1,a 2,a 3可求;(2)通过观察发现b 100是第25组中第4个括号内各数之和,各组第4个括号中各数之和构成首项为68、公差为80的等差数列,利用等差数列求和公式可求b 100.[解析] (1)∵点⎝⎛⎭⎫n ,S n n 在函数f (x )=x +a n 2x的图象上, ∴S n n =n +a n 2n ,∴S n =n 2+12a n . 令n =1得,a 1=1+12a 1,∴a 1=2; 令n =2得,a 1+a 2=4+12a 2,∴a 2=4; 令n =3得,a 1+a 2+a 3=9+12a 3,∴a 3=6. 由此猜想:a n =2n .用数学归纳法证明如下:①当n =1时,由上面的求解知,猜想成立.②假设n =k (k ≥1)时猜想成立,即a k =2k 成立,则当n =k +1时,注意到S n =n 2+12a n (n ∈N *), 故S k +1=(k +1)2+12a k +1,S k =k 2+12a k . 两式相减得,a k +1=2k +1+12a k +1-12a k ,所以a k +1=4k +2-a k . 由归纳假设得,a k =2k ,故a k +1=4k +2-a k =4k +2-2k =2(k +1).这说明n =k +1时,猜想也成立.由①②知,对一切n ∈N *,a n =2n 成立.(2)因为a n =2n (n ∈N *),所以数列{a n }依次按1项、2项、3项、4项循环地分为(2),(4,6),(8,10,12),(14,16,18,20);(22),(24,26),(28,30,32),(34,36,38,40);(42),….每一次循环记为一组.由于每一个循环含有4个括号,故b 100是第25组中第4个括号内各数之和.由分组规律知,各组第4个括号中所有第1个数组成的数列是等差数列,且公差为20.同理,由各组第4个括号中所有第2个数、所有第3个数、所有第4个数分别组成的数列也都是等差数列,且公差均为20.故各组第4个括号中各数之和构成等差数列,且公差为80.注意到第一组中第4个括号内各数之和是68,所以b 100=68+24×80=1988,又b 5=22,所以b 5+b 100=2010.[点评] 由已知求出数列的前几项,做出猜想,然后利用数学归纳法证明,是不完全归纳法与数学归纳法相结合的一种重要的解决数列通项公式问题的方法.证明的关键是根据已知条件和假设寻找a k与a k+1或S k与S k+1间的关系,使命题得证.。
课时作业(二十四)一、选择题1.设P 是△ABC 所在平面内的一点,BC →+BA →=2BP →,则( ) A.P A →+PB →=0 B.PC →+P A →=0 C.PB→+PC →=0 D.P A →+PB→+PC →=0解析:如图,根据向量加法的几何意义BC →+BA →=2BP →⇔P 是AC 的中点,故P A →+PC→=0. 答案:B2.(2013·山西考前适应性训练)若平面向量a ,b 满足|a +b |=1,且a =2b ,则|b |=( )A.13B.23 C .1 D .2解析:∵a =2b ,|a +b |=1,∴|3b |=1,|b |=13. 答案:A3.(2013·北京昌平期末)如图,在△ABC 中,BD =2DC .若AB →=a ,AC→=b ,则AD →=( )A.23a +13bB.23a -13bC.13a +23bD.13a -23b解析:由题可得AD→=AC →+CD →,AD →=AB →+BD →,又BD →=2DC →,所以3AD →=2AC →+AB →,即AD →=13a +23b ,选C.答案:C4.若A 、B 、C 、D 是平面内任意四点,给出下列式子: ①AB →+CD →=BC →+DA →;②AC →+BD →=BC →+AD →;③AC →-BD →=DC →+AB→.其中正确的有( ) A .0个 B .1个 C .2个 D .3个解析:①式的等价式是AB→-BC →=DA →-CD →,左边=AB →+CB →,右边=DA→+DC →,不一定相等;②式的等价式是AC →-BC →=AD →-BD →,AC →+CB →=AD →+DB →=AB →成立;③式的等价式是AC →-DC →=AB →+BD →,AD →=AD→成立.答案:C6.已知a 、b 是两个不共线的向量,AB →=λa +b ,AC →=a +μb (λ,μ∈R ),那么A 、B 、C 三点共线的充要条件是( )A .λ+μ=2B .λ-μ=1C .λμ=-1D .λμ=1解析:由AB →=λa +b ,AC →=a +μb (λ,μ∈R )及A 、B 、C 三点共线得AB→=tAC →(t ∈R ), 所以λa +b =t (a +μb )=t a +tμb ,所以⎩⎪⎨⎪⎧λ=t1=tμ,即λμ=1.答案:D5.已知向量a ,b 不共线,c =k a +b (k ∈R ),d =a -b .如果c ∥d ,那么( )A .k =1且c 与d 同向B .k =1且c 与d 反向C .k =-1且c 与d 同向D .k =-1且c 与d 反向 解析:∵c ∥d ,∴c =λd ,即k a +b =λ(a -b ),∴⎩⎪⎨⎪⎧k =λλ=-1.答案:D6.(2013·石家庄第二次模拟)如右图,在△ABC 中,AN →=12NC →,P 是BN 上的一点,若AP →=mAB →+29AC →,则实数m 的值为( )A.19B.13 C .1 D .3解析:∵AN →=12NC →,∴AC →=3AN →,由AP →=mAB →+29AC →得AP →=mAB →+23AN →,由B 、P 、N 三点共线得m +23=1,∴m =13.答案:B7.(2013·资阳市第一次模拟)已知向量a ,b 不共线,设向量AB →=a -k b ,CB →=2a +b ,CD →=3a -b ,若A ,B ,D 三点共线,则实数k 的值为( )A .10B .2C .-2D .-10解析:CB→-CD →=DB →=(2a +b )-(3a -b )=-a +2b 若A 、B 、D 三点共线,则∃实数λ使AB→=λDB →,即a -k b =λ(-a +2b )即⎩⎪⎨⎪⎧-λ=1-k =2λ,∴k =2,故选B.答案:B8.已知向量p =a |a |+b|b |,其中a ,b 均为非零向量,则|p |的取值范围是( )A .[0, 2 ]B .[0,1]C .(0,2]D .[0,2]解析:由已知向量p 是两个单位向量的和,当这两个单位向量同向时,|p |max =2,当这两个单位向量反向时,|p |min =0.答案:D 二、填空题9.设点M 是线段BC 的中点,点A 在直线BC 外,BC →2=16,|AB →+AC→|=|AB →-AC →|,则|AM →|=________.解析:|AB→+AC →|=|AB →-AC →|可知,AB →⊥AC →,则AM 为Rt △ABC 斜边BC 上的中线,因此,|AM →|=12|BC →|=2. 答案:210.(2013·大庆模拟)已知O 为四边形ABCD 所在平面内一点,且向量OA→,OB →,OC →,OD →满足等式OA →+OC →=OB →+OD →,则四边形ABCD 的形状为________.解析:∵OA→+OC →=OB →+OD →,∴OA →-OB →=OD →-OC →, ∴BA→=CD →.∴四边形ABCD 为平行四边形. 答案:平行四边形 三、解答题11.若a ,b 是两个不共线的非零向量,t ∈R .若a ,b 起点相同,t 为何值时,a ,t b ,13(a +b )三向量的终点在同一直线上?解:设a -t b =m ⎣⎢⎡⎦⎥⎤a -13(a +b ),m ∈R , 化简得⎝ ⎛⎭⎪⎫23m -1a =⎝ ⎛⎭⎪⎫m 3-t b , ∵a 与b 不共线,∴⎩⎪⎨⎪⎧ 23m -1=0m3-t =0⇒⎩⎪⎨⎪⎧m =32,t =12.∴t =12时,a ,t b ,13(a +b )的终点在一直线上.12.已知O ,A ,B 三点不共线,且OP →=mOA →+nOB →,(m ,n ∈R ).(1)若m +n =1,求证:A ,P ,B 三点共线;(2)若A ,P ,B 三点共线,求证:m +n =1. 证明:(1)∵m ,n ∈R ,且m +n =1, ∴OP→=mOA →+nOB →=mOA →+(1-m )OB →, ∴OP→-OB →=m (OA →-OB →). ∴BP→=mBA →,而BA →≠0,且m ∈R . ∴BP→与BA →共线, 又BP→,BA →有公共点B .∴A ,P ,B 三点共线. (2)∵A ,P ,B 三点共线,∴BP →与BA →共线, ∴存在实数λ,使BP →=λBA →, ∴OP→-OB →=λ(OA →-OB →). ∴OP→=λOA →+(1-λ)OB →. 又∵OP→=mOA →+nOB →, ∴mOA→+nOB →=λOA →+(1-λ)OB →. 又∵O ,A ,B 不共线,∴OA→,OB →不共线. 由平面向量基本定理得⎩⎪⎨⎪⎧m =λ,n =1-λ.∴m +n =1. [热点预测]13.(1)(2013·福州质检)已知点P 是△ABC 所在平面内的一点,边AB 的中点为D ,若2PD →=(1-λ)P A →+CB →,其中λ∈R ,则P 点一定在( )A .AB 边所在的直线上 B .BC 边所在的直线上 C .AC 边所在的直线上D .△ABC 的内部(2)(2013·南平市普通高中毕业班质量检查)已知△ABC 的面积为12,P 是△ABC 所在平面上的一点,满足P A →+PB →+2PC →=3AB →,则△ABP 的面积为( )A .3B .4C .6D .9(3)(2013·石家庄市高三模拟考试)在△ABC 中,∠B =60°,O 为△ABC 的外心,P 为劣弧AC 上一动点,且OP →=xOA →+yOC →(x ,y ∈R ),则x +y 的取值范围为________.解析:(1)2PD →=P A →+PB →=(1-λ)P A →+CB →⇒PB →-CB →=-λP A →⇒PC →=λAP→,易得P 、A 、C 三点共线,故选C. (2)如图.取AC 的中点为D .AB →=AP →+PB →代入P A →+PB →+2PC →=3AB →得P A →+PC →=AB →=2PD →,∴PD 綊12AB .∴P 到AB 的距离为AB 边上 高的一半∴S △ABP =12S △ABC =6. (3)如图,∠B =60°,∴∠AOC =120°,∵|OA →|=|OP →|=|OC →|.∴当P 为劣弧AC 中点时x =y =1,x +y =2,当P 向A (或C )靠近时x +y 减小,当P 与A (或C )重合时x =1(y =0)此时x +y =1,所以x +y 的取值范围为[1,2].答案:(1)C (2)C (3)[1,2]。
课时作业(十九)一、选择题1.(2013·安徽亳州高三摸底联考)函数y =sin x (x ∈R )的图象上所有的点向左平移π6个单位长度,再把所得图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到的图象所表示的函数为( )A .y =sin ⎝ ⎛⎭⎪⎫2x -π3,x ∈RB .y =sin ⎝ ⎛⎭⎪⎫2x +π3,x ∈R C .y =sin ⎝ ⎛⎭⎪⎫12x +π6,x ∈R D .y =sin ⎝ ⎛⎭⎪⎫12x -π6,x ∈R 解析:函数y =sin x (x ∈R )的图象上所有的点向左平移π6个单位长度,得到y =sin ⎝⎛⎭⎪⎫x +π6,x ∈R 的图象,再把所得图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y =sin ⎝⎛⎭⎪⎫12x +π6,x ∈R 的图象,故选C.答案:C2.(2013·东北三校第一次联考)已知函数y =A sin(ωx +φ)+k 的最大值为4,最小值为0,最小正周期为π2,直线x =π3是其图象的一条对称轴,则下面各式中符合条件的解析式为( )A .y =4sin ⎝ ⎛⎭⎪⎫4x +π6B .y =2sin ⎝ ⎛⎭⎪⎫2x +π3+2 C .y =2sin ⎝ ⎛⎭⎪⎫4x +π3+2 D .y =2sin ⎝ ⎛⎭⎪⎫4x +π6+2 解析:函数的最大值为4,最小值为0,∴A =2,k =2,由最小正周期为π2得ω=4,又因x =π3是其一条对称轴,∴43π+φ=π2+kπ,φ=kπ-56π,k∈Z,所以选D.答案:D3.(2013·汕头市质量测评)把函数y=cos 2x+1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的图象是()解析:把函数y=cos 2x+1的图象上所有点的横坐标伸长到原来的2倍得到函数y=cos x+1,然后向左平移1个单位得到y=cos(x +1)+1再向下平移1个单位得到函数y=cos(x+1)其对应的图象为A.答案:A4.(2013·江西南昌高三第一次模拟)已知函数f(x)=A cos(ωx+θ)的图象如图所示f ⎝ ⎛⎭⎪⎫π2=-23,则f ⎝ ⎛⎭⎪⎫π6=( ) A .-23 B .-12 C.23 D.12解析:由图象知T =23π,ω=3,f ⎝ ⎛⎭⎪⎫π2=A cos ⎝ ⎛⎭⎪⎫32π+θ=A sin θ=23.f ⎝ ⎛⎭⎪⎫π6=A cos ⎝ ⎛⎭⎪⎫π2+θ=-A sin θ=-23,选A. 答案:A5.(2014·河北沧州高三质量监测)已知函数f (x )=A sin ωx (A >0,ω>0)的最小正周期为2,且f ⎝ ⎛⎭⎪⎫16=1,则函数y =f (x )的图象向左平移13个单位所得图象的函数解析式为( )A .y =12sin ⎝ ⎛⎭⎪⎫πx -π3 B .y =2sin ⎝ ⎛⎭⎪⎫πx +π3 C .y =2sin ⎝⎛⎭⎪⎫πx +13 D .y =12sin ⎝⎛⎭⎪⎫πx -13 解析:函数f (x )周期T =2πω=2,得ω=π,又∵f ⎝ ⎛⎭⎪⎫16=A sin π6=1,∴A =2.∴f (x )=2sin πx ,将f (x )图象向左平移13个单位所得图象解析式为y =2sin ⎝ ⎛⎭⎪⎫πx +π3. 答案:B6.(2014·河北唐山一中第二次月考)要得到函数y =cos ⎝ ⎛⎭⎪⎫π3-2x 的图象,只需将函数y =sin 2x 的图象( )A .向左平移π12个单位B .向右平移π12个单位C .向左平移π6个单位 D .向右平移π6个单位解析:因为要得到函数y =cos ⎝ ⎛⎭⎪⎫π3-2x =cos ⎝ ⎛⎭⎪⎫2x -π3的图象,只需将函数y =sin 2x =cos ⎝ ⎛⎭⎪⎫π2-2x 的图象向左平移π12个单位得到 y =sin 2x =cos ⎣⎢⎡⎦⎥⎤π2-2⎝ ⎛⎭⎪⎫x +π12=cos ⎝ ⎛⎭⎪⎫π3-2x ,故选A. 答案:A7.(2013·海宁市高三测试)已知函数f (x )=sin(x -π),g (x )=cos(x +π),则下列结论中正确的是( )A .函数y =f (x )·g (x )的最小正周期为2πB .函数y =f (x )·g (x )的最大值为1C .将函数y =f (x )的图象向右平移π2个单位后得g (x )的图象 D .将函数y =f (x )的图象向左平移π2个单位后得g (x )的图象 解析:f (x )=sin(x -π)=-sin x ,g (x )=cos(x +π)=-cos x ,f (x )·g (x )=12sin 2x ,T =π最大值为12,A 、B 均不正确.f ⎝ ⎛⎭⎪⎫x -π2=-sin ⎝ ⎛⎭⎪⎫x -π2=cos x ≠g (x ),故C 错.f ⎝ ⎛⎭⎪⎫x +π2=-sin ⎝ ⎛⎭⎪⎫x +π2=-cos x ,故D 正确,选D.答案:D8.(2013·安徽省江南十校高三模拟)函数f (x )=A sin(ωx +φ)(A ,ω,φ是常数,A >0,ω>0) 的部分图象如图所示,下列结论:①最小正周期为π;②将f (x )的图象向左平移π6个单位,所得到的函数是偶函数;③f (0)=1;④f ⎝ ⎛⎭⎪⎫12π11<f ⎝ ⎛⎭⎪⎫14π13;⑤f (x )=-f ⎝ ⎛⎭⎪⎫5π3-x .其中正确的是( )A .①②③B .②③④C .①④⑤D .②③⑤ 解析:由图可知:A =2,T 4=712π-π3=π4⇒T =π, ∴ω=2,2×712π+φ=2kπ+3π2,φ=2kπ+π3,k ∈Z . f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3⇒f (0)=3, f ⎝ ⎛⎭⎪⎫x +π6=2sin ⎝ ⎛⎭⎪⎫2x +π3+π3=2sin ⎝ ⎛⎭⎪⎫2x +2π3, f ⎝ ⎛⎭⎪⎫π4=2sin ⎝ ⎛⎭⎪⎫π2+π3=2cos π3=1,对称轴为直线x =kπ2+π12,k ∈Z ,一个对称中心为⎝ ⎛⎭⎪⎫5π6,0,所以②、③不正确;因为f (x )的图象关于直线x =13π12对称,且f (x )的最大值为f ⎝ ⎛⎭⎪⎫13π12,12π11-13π12=π11×12>13π12-14π13=π13×12,所以f ⎝ ⎛⎭⎪⎫12π11<f ⎝ ⎛⎭⎪⎫14π13,即④正确;设[x ,f (x )]为函数f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3图象上任意一点,其关于对称中心⎝ ⎛⎭⎪⎫5π6,0的对称点⎝ ⎛⎭⎪⎫5π3-x ,-f (x )还在函数f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3图象上,即f ⎝ ⎛⎭⎪⎫5π3-x =-f (x )⇒f (x )=-f ⎝ ⎛⎭⎪⎫5π3-x ,故⑤正确,综上所述,①④⑤正确,选C.解法二:判断出①正确,②不正确之后,选C. 答案:C二、填空题 9.已知函数f (x )=A tan(ωx +φ)⎝⎛⎭⎪⎫ω>0,|φ|<π2,y =f (x )的部分图象如右图,则f ⎝ ⎛⎭⎪⎫π24=________.解析:从图可看出周期T =π2,∴πω=π2,ω=2又f (x )=A tan(2x +φ) x =38π时,A tan ⎝ ⎛⎭⎪⎫34π+φ=0tan ⎝ ⎛⎭⎪⎫34π+φ=0,|φ|<π2,∴φ=π4. ∴f (x )=A tan ⎝ ⎛⎭⎪⎫2x +π4.取x =0,A tan π4=1,∴A =1,∴f (x )=tan ⎝ ⎛⎭⎪⎫2x +π4.f ⎝ ⎛⎭⎪⎫π24=tan ⎝ ⎛⎭⎪⎫π12+π4=tan π3= 3. 答案: 310.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫π3x +π3(x >0)的图象与x 轴的交点从左到右依次为(x 1,0),(x 2,0),(x 3,0),…,则数列{x n }的前4项和为________.解析:令f (x )=sin ⎝ ⎛⎭⎪⎫π3x +π3=0,则π3x +π3=k π, ∴x =3k -1(k ∈N *),∴x 1+x 2+x 3+x 4=3(1+2+3+4)-4=26. 答案:2611.(2013·乌鲁木齐第一次诊断)点A (x ,y )在单位圆上从A 0⎝ ⎛⎭⎪⎫12,32出发,沿逆时针方向做匀速圆周运动,每12秒运动一周,则经过时间t 后,y 关于t 的函数解析式为________.解析:由题意知∠xOA 0=π3,点A 每秒旋转2π12=π6,所以t 秒旋转π6t ,∠A 0OA =π6t ,∠xOA =π6t +π3,则y =sin ∠xOA =sin ⎝ ⎛⎭⎪⎫π6t +π3. 答案:y =sin ⎝⎛⎭⎪⎫π6t +π3三、解答题 12.设函数f (x )=cos(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,-π2<φ<0的最小正周期为π.且f ⎝ ⎛⎭⎪⎫π4=32.(1)求ω和φ的值;(2)在给定坐标系中作出函数f (x )在[0,π]上的图象; (3)若f (x )>22,求x 的取值范围. 解:(1)周期T =2πω,∴ω=2,∵f ⎝ ⎛⎭⎪⎫π4=cos ⎝ ⎛⎭⎪⎫2×π4+φ=cos ⎝ ⎛⎭⎪⎫π2+φ=-sin φ=32, ∵-π2<φ<0,∴φ=-π3.(2)∵f (x )=cos ⎝ ⎛⎭⎪⎫2x -π3,列表如下:(3)cos ⎝ ⎛⎭⎪⎫2x -π3>22,∴2kπ-π4<2x -π3<2kπ+π42kπ+π12<2x <2kπ+712π, kπ+π24<x <kπ+724π,k ∈Z ,∴x 的取值范围是⎩⎨⎧x ⎪⎪⎪⎭⎬⎫kπ+π24<x <kπ+724π,k ∈Z .13.(2013·上海卷)已知函数f (x )=2sin(ωx ),其中常数ω>0;(1)若y =f (x )在⎣⎢⎡⎦⎥⎤-π4,2π3上单调递增,求ω的取值范围;(2)令ω=2,将函数y =f (x )的图象向左平移π6个单位,再向上平移1个单位,得到函数y =g (x )的图象,区间[a ,b ](a ,b ∈R 且a <b )满足:y =g (x )在[a ,b ]上至少含有30个零点,在所有满足上述条件的[a ,b ]中,求b -a 的最小值.解:(1)因为ω>0,根据题意有 ⎩⎪⎨⎪⎧-π4ω≥-π22π3ω≤π2⇒0<ω≤34.(2)f (x )=2sin(2x ),g (x )=2sin ⎝ ⎛⎭⎪⎫2⎝ ⎛⎭⎪⎫x +π6+1=2sin ⎝ ⎛⎭⎪⎫2x +π3+1g (x )=0⇒sin ⎝ ⎛⎭⎪⎫2x +π3=-12⇒x =kπ-π3或x =kπ-712π,k ∈Z ,即g (x )的零点相离间隔依次为π3和2π3,故若y =g (x )在[a ,b ]上至少含有30个零点,则b -a 的最小值为14×2π3+15×π3=43π3.[热点预测]14.(1)(2013·泉州市质检)定义区间[a ,b ]的长度为b -a .若⎣⎢⎡⎦⎥⎤π4,π2是函数f (x )=sin(ωx +φ)(ω>0,|φ|<π)的一个长度最大的单调递减区间,则( )A .ω=8,φ=π2 B .ω=8,φ=-π2 C .ω=4,φ=π2D .ω=4,φ=-π2(2)(2013·山东泰安第二次模拟)已知函数f (x )=A cos(ωx +φ)(A >0,ω>0,0<φ<π)为奇函数,该函数的部分图象如图所示,△EFG 是边长为2的等边三角形,则f (1)的值为( )A .-32B .-62 C. 3D .- 3解析:(1)若⎣⎢⎡⎦⎥⎤π4,π2是函数f (x )=sin(ωx +φ)的一个长度最大的单调减区间,则函数f (x )的周期为2⎝ ⎛⎭⎪⎫π2-π4=π2,∴ω=4,且函数f (x )在x=π4时取得最大值.所以f ⎝ ⎛⎭⎪⎫π4=sin ()π+φ=1,∴φ=-π2,故选D. (2)f (x )=A cos(ωx +φ)为奇函数得φ=π2,△EFG 为边长为2的等边三角形,所以T =4,∴ω=π2,A =3,∴f (x )=-3sin ⎝ ⎛⎭⎪⎫π2x , ∴f (1)=- 3.答案:(1)D (2)D。
课时作业(五十九)一、填空题1.(2013·重庆模拟)如图,已知圆O 的半径为3,AB 与圆D 相切于A ,BO 与圆O 相交于C ,BC =2,则△ABC 的面积为________.解析:连接OA ,易知∠OAB =90°,OA =3,BO =5,AB =4,△ABC 中BC 边上的高为125,故S △ABC =12×2×125=125.答案:1252.(2013·茂名市第一次模拟)如图,⊙O 的直径AB =6 cm ,P 是AB 延长线上的一点,过P 点作⊙O 的切线,切点为C ,连接AC ,若∠CP A =30°,PC =________.解析:∵AB =6,∴OA =OB =OC =3Rt △OCP 中,∠CPO =30°,∴OP =6,∴BP =3根据切割线定理PC 2=PB ·P A =3×9=27,∴PC =3 3.答案:3 33.(2013·增城调研测试)已知圆O 割线P AB 交圆O 于A ,B (P A <PB )两点,割线PCD 经过圆心O (PC <PD ),已知P A =6,AB =713,PO =10,则圆O 的半径是________.解析:如图,设半径为r ,PO =PC +r =10,∴PC =10-r ,PD =10+r 根据割线定理P A ·PB =PC ·PD∴6×403=(10-r )(10+r ),∴r 2=20,∴r =2 5.答案:2 54.(2013·陕西宝鸡质检(一))如图,△ABC 是⊙O 的内接三角形,P A 是⊙O 的切线,PB 交AC 于点E ,交⊙O 于点D ,若P A =PE ,∠ABC =60°,PD =1,PB =9,则EC =________.解析:根据切割线定理P A 2=PD ·PB =9∴P A =3,∵∠ABC =∠CAP =60°,P A =PE =3,∴△P AE 为等边三角形,∴AE =3DE =2,BE =PB -PE =6根据相交弦定理,AE ·EC =DE ·BE∴EC =4答案:45.(2013·黄冈模拟)如图,△ABC 内接于圆O ,AB =AC ,直线MN 切圆O 于点C ,BE ∥MN 交于点E .若AB =6,BC =4,则AE 的长为________.解析:由BE ∥MN ⇒∠EBC =∠MCB ;而∠MCB =∠CAB ,故可得∠CBE =∠CAB ,故△BEC ∽△ABC 可得EC BC =BC AC ⇒EC =83,故AE=6-83=103.答案:1036.(2013·北京西城区高三二模)如图,AB 是半圆O 的直径,P 在AB 的延长线上,PD 与半圆O 相切于点C ,AD ⊥PD .若PC =4,PB =2,则CD =________.解析:连接AC ,OC ,由圆的切割线定理可得△BPC ∽△OP A ⇒CP P A=BP CP ⇒AP =8,得圆的半径r =3,又因为PC 切圆于点C ,则PC PD =PO P A⇒PD =325,故CD =PD -PC =125.答案:1257.(2013·武汉模拟)如图所示,圆O 的半径为1,A 、B 、C 是圆周上的三点,满足∠ABC =30°,过点A 作圆O 的切线与OC 的延长线交于点P ,则P A =________.解析:延长PC 与圆交于点D ,连接AC ,AO ,由平面圆的性质,易得∠ADP =30°,∠AOP =60°,故∠APD =30°,得PC =1,PD =3,由切割线定理可求得P A = 3. 答案: 38.(2013·天津十二区县重点学校联考(一))如图,CB是⊙O的直径,AP是⊙O的切线,AP与CB的延长线交于点P,A为切点.若P A=10,PB=5,则AB的长为________.解析:由切割线定理得P A2=PB·PC,又P A=10,PB=5得PC =20,则BC=15,∠P AB=∠PCA,∠P=∠P,故△PBA∽△P AC,得ABAC=PBP A=12,AC=2AB,△ABC中,AC2+AB2=BC2即5AB2=BC2=225,AB2=45,即AB=3 5.答案:3 5二、解答题9.(2013·东北三校第二次联考)如图,AB为⊙O的直径,过点B 作⊙O的切线BC,OC交⊙O于点E,AE的延长线交BC于点D.(1)求证:CE2=CD·CB;(2)若AB=BC=2,求CE和CD的长.解:(1)证明:连接BE.∵BC为⊙O的切线,∴∠ABC=90°,∠CBE=∠A.∵OA=OE,∴∠A=∠AEO.∵∠AEO=∠CED,∴∠CED=∠CBE,∵∠C =∠C ,∴△CED ∽△CBE ,∴CE CB =CD CE ,∴CE 2=CD ·CB .(2)∵OB =1,BC =2,∴OC =5,∴CE =OC -OE =5-1.由(1)CE 2=CD ·CB ,得(5-1)2=2CD ,∴CD =3- 5.10.(2013·辽宁卷)如图,AB 为⊙O 的直径,直线CD 与⊙O 相切于E ,AD 垂直CD 于D ,BC 垂直CD 于C ,EF 垂直AB 于F ,连接AE ,BE .证明:(1)∠FEB =∠CEB ;(2)EF 2=AD ·BC .证明:(1)由直线CD 与⊙O 相切,得∠CEB =∠EAB .由AB 为⊙O 的直径,得AE ⊥EB ,从而∠EAB +∠EBF =π2;又EF ⊥AB ,得∠FEB +∠EBF =π2,从而∠FEB =∠EAB .故∠FEB =∠CEB .(2)由BC ⊥CE ,EF ⊥AB ,∠FEB =∠CEB ,BE 是公共边, 得Rt △BCE ≌Rt △BFE ,所以BC =BF .类似可证,Rt △ADE ≌Rt △AFE ,得AD =AF .又在Rt△AEB中,EF⊥AB,故EF2=AF·BF,所以EF2=AD·BC.11.(2013·石家庄市高三模拟)如图,过圆O外一点P作该圆的两条割线P AB和PCD,分别交圆O于点A、B、C、D,弦AD和BC 交于Q点,割线PEF经过Q点交圆O于点E、F,点M在EF上,且∠BAD=∠BMF.求证:(1)P A·PB=PM·PQ;(2)∠BMD=∠BOD.证明:(1)∵∠BAD=∠BMF,所以A,Q,M,B四点共圆,所以P A·PB=PM·PQ.(2)∵P A·PB=PC·PD,∴PC·PD=PM·PQ,又∠CPQ=∠MPD,所以△CPQ∽△MPD,∴∠PCQ=∠PMD,则∠DCB=∠FMD,∵∠BAD=∠BCD,∴∠BMD=∠BMF+∠DMF=2∠BAD,∠BOD=2∠BAD,所以∠BMD=∠BOD.12.(2013·辽宁六校高三联考)如图,D,E分别为△ABC的边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点,若CF∥AB,证明:(1)CD=BC;(2)△BCD∽△GBD.证明:(1)连接AF,∵D,E分别为AB,AC的中点,∴DE∥BC,即DF∥BC,又CF∥AB,∴CF綊BD,CF綊AD,∴四边形ADCF为平行四边形,∴CD=AF.∵CF∥AB,∴∠ACF=∠CAB,∴AF=BC,∴CD=BC.(2)∵BC∥GF,∴BG=CF,又CF=BD,∴BG=BD,∴∠BGD=∠BDG,∵CD=CB,∴∠CBD=∠CDB,又∠GDB=∠DBC,∴∠BGD=∠BDG=∠DBC=∠BDC,∴△BCD∽△GBD.13.(2013·河南开封第二次模拟)如图,在△ABC中,∠C为钝角,点E、H是边AB上的点,点K、M分别是边AC和BC上的点,且AH=AC,EB=BC,AE=AK,BH=BM.(1)求证:E、H、M、K四点共圆;(2)若KE=EH,CE=3,求线段KM的长.解:(1)证明:连接CH,∵AC=AH,AK=AE,∴四边形CHEK为等腰梯形,注意到等腰梯形的对角互补,故C,H,E,K四点共圆,同理C,E,H,M四点共圆,即E,H,M,K 均在点C,E,H所确定的圆上.∴E、H、M、K四点共圆.(2)连接EM,由(1)得E,H,M,C,K五点共圆,∵四边形CEHM 为等腰梯形,∴EM=HC,故∠MKE=∠CEH,由KE=EH可得∠KME=∠ECH,故△MKE≌△CEH,即KM=EC=3为所求.14.(2013·吉林期中检测)如图,△ABC 是直角三角形,∠ABC =90°.以AB 为直径的圆O 交AC 于点E ,点D 是BC 边的中点.连接OD 交圆O 于点M .(1)求证:O 、B 、D 、E 四点共圆;(2)求证:2DE 2=DM ·AC +DM ·AB证明:(1)如图,连接OE 、BE ,则BE ⊥EC又∵D 是BC 的中点,∴DE =BD .又∵OE =OB ,OD =OD ,∴△ODE ≌△ODB ,∴∠OBD =∠OED =90°.∴O 、B 、D 、E 四点共圆.(2)延长DO 交圆O 于点H .由(1)知DE 为圆O 的切线,∴DE 2=DM ·DH =DM ·(DO +OH )=DM ·DO +DM ·OH ,∴DE 2=DM ·⎝ ⎛⎭⎪⎫12AC +DM ·⎝ ⎛⎭⎪⎫12AB , ∴2DE 2=DM ·AC +DM ·AB .[热点预测]15.(2013·吉林长春第一次调研)如图,已知⊙O 和⊙M 相交于A 、B 两点,AD 为⊙M 的直径,直线BD 交⊙O 于点C ,点G 为中点,连接AG 分别交⊙O 、BD 于点E 、F ,连接CE .(1)求证:AG ·EF =CE ·GD ;(2)求证:GF AG =EF 2CE 2.证明:(1)已知AD 为⊙M 的直径,连接AB ,则∠BCE =∠BAE ,∠CEF =∠ABC =90°,由点G 为的中点可知∠GAD =∠BAE =∠FCE ,故△CEF ∽△AGD ,所以有CE AG =EF GD ,即AG ·EF =CE ·GD .(2)由(1)知∠DFG =∠CFE =∠ADG ,故△AGD ∽△DGF ,所以GF DG =DG AG =EF CE ,即GF AG =EF 2CE 2.。
一、选择题1.将点M 的直角坐标(-3,-1)化成极坐标为( ) A.⎝⎛⎭⎫3,π6 B.⎝⎛⎭⎫2,7π6 C.⎝⎛⎭⎫-2,7π6 D.⎝⎛⎭⎫2,π6 解析:ρ=(-3)2+(-1)2=3+1=2,tan θ=-1-3=33,点M 在第三象限,θ=7π6.所以点M 的极坐标为⎝⎛⎭⎫2,7π6 答案:B2.在极坐标系中,圆ρ=-2sin θ的圆心的极坐标是( ) A.⎝⎛⎭⎫1,π2 B.⎝⎛⎭⎫1,-π2 C .(1,0)D .(1,π)解析:该圆的直角坐标方程为x 2+y 2=-2y ,即x 2+(y +1)2=1,故圆心的直角坐标为(0,-1),化为极坐标为⎝⎛⎭⎫1,-π2,故选B. 答案:B3.极坐标方程(ρ-1)(θ-π)=0(ρ≥0)表示的图形是( ) A .两个圆B .两条直线C .一个圆和一条射线D .一条直线和一条射线解析:∵(ρ-1)(θ-π)=0,∴ρ=1或θ=π.ρ=1表示以极点为圆心、半径为1的圆,θ=π表示由极点出发的一条射线,∴C 选项正确.答案:C4.在极坐标系中,点⎝⎛⎭⎫2,π3与圆ρ=2cos θ的圆心之间的距离为( ) A .2 B. 4+π29C.1+π29D. 3解析:由⎩⎨⎧x =ρcos θ=2cos π3=1,y =ρsin θ=2sin π3=3可知,点⎝⎛⎭⎫2,π3的直角坐标为(1,3).圆ρ=2cos θ的直角坐标方程为x 2+y 2=2x ,即(x -1)2+y 2=1,则圆心(1,0)与点(1,3)之间的距离为 3.答案:D5.点M ,N 分别是曲线ρsin θ=2和ρ=2cos θ上的动点,则|MN |的最小值是( ) A .1 B .2 C .3D .4解析:ρsin θ=2化为普通方程为y =2,ρ=2cos θ化为普通方程为x 2+y 2-2x =0即(x -1)2+y 2=1,圆(x -1)2+y 2=1上的点到直线上点的距离的最小值为圆心(1,0)到直线y =2的距离减去半径,即为2-1=1,故选A.答案:A6.在极坐标方程中,曲线C 的方程是ρ=4sin θ,过点⎝⎛⎭⎫4,π6作曲线C 的切线,则切线长为( )A .4 B.7 C .2 2D .2 3 解析:ρ=4sin θ化成普通方程为x 2+(y -2)2=4,点⎝⎛⎭⎫4,π6化为直角坐标为(23,2),切线长、圆心到定点的距离及半径构成直角三角形,由勾股定理得切线长为(23)2+(2-2)2-22=22,故选C. 答案: C 二、填空题7.(2013年高考江西卷)设曲线C 的参数方程为⎩⎪⎨⎪⎧x =ty =t 2(t 为参数),若以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为________.解析:消去曲线C 中的参数t 得y =x 2,将x =ρcos θ代入y =x 2中,得ρ2cos 2 θ=ρsin θ,即ρsin 2 θ-sin θ=0.答案:ρsin 2 θ-sin θ=08.(2014年华南师大模拟)在极坐标系中,点M ⎝⎛⎭⎫4,π3到曲线ρcos ⎝⎛⎭⎫θ-π3=2上的点的距离的最小值为________.解析:依题意知,点M 的直角坐标是(2,23),曲线的直角坐标方程是x +3y -4=0,因此所求的距离的最小值等于点M 到该直线的距离,即为|2+23×3-4|12+(3)2=2. 答案:29.如图,在极坐标系中,过点M (2,0)的直线l 与极轴的夹角α=π6.若将l 的极坐标方程写成ρ=f (θ)的形式,则f (θ)=________.解析:利用正弦定理求解. 如图,设P (ρ,θ)为直线上任一点,在△OPM 中,|OM |sin ⎝⎛⎭⎫π6-θ=ρsin 56π,∴2sin ⎝⎛⎭⎫π6-θ=ρ12. ∴ρ=1sin ⎝⎛⎭⎫π6-θ,即f (θ)=1sin ⎝⎛⎭⎫π6-θ.答案:1sin ⎝⎛⎭⎫π6-θ 三、解答题10.已知圆的极坐标方程为: ρ2-42ρcos ⎝⎛⎭⎫θ-π4+6=0. (1)将极坐标方程化为普通方程;(2)若点P (x ,y )在该圆上,求x +y 的最大值和最小值. 解析:(1)原方程变形为: ρ2-4ρcos θ-4ρsin θ+6=0. x 2+y 2-4x -4y +6=0.(2)圆的参数方程为⎩⎨⎧x =2+2cos α,y =2+2sin α(α为参数),所以x +y =4+2sin ⎝⎛⎭⎫α+π4. 所以x +y 的最大值为6,最小值为2.11.(2014年玉溪一中模拟)在直角坐标系xOy 中,直线l 的方程为x -y +4=0,曲线C的参数方程为⎩⎨⎧x =3cos α,y =sin α(α为参数)(1)已知在极坐标(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,点P 的极坐标为⎝⎛⎭⎫4,π2,判断点P 与直线l 的位置关系. (2)设点Q 是曲线C 上的一个动点,求它到直线l 的距离的最小值. 解析:(1)把极坐标系下的点P ⎝⎛⎭⎫4,π2化为直角坐标,得P (0,4). 因为点P 的直角坐标(0,4)满足直线l 的方程x -y +4=0, 所以点P 在直线l 上.(2)因为点Q 在曲线C 上,故可设点Q 的坐标为 (3cos α,sin α), 从而点Q 到直线l 的距离为d =|3cos α-sin α+4|2=2cos ⎝⎛⎭⎫α+π6+42=2cos ⎝⎛⎭⎫α+π6+22, 由此得,当cos ⎝⎛⎭⎫α+π6=-1时,d 取得最小值,且最小值为 2. 12.(能力提升)(2013年高考辽宁卷)在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.圆C 1,直线C 2的极坐标方程分别为ρ=4sin θ,ρcos ⎝⎛⎭⎫θ-π4=2 2. (1)求C 1与C 2交点的极坐标;(2)设P 为C 1的圆心,Q 为C 1与C 2交点连线的中点.已知直线PQ 的参数方程为⎩⎪⎨⎪⎧x =t 3+a ,y =b 2t 3+1(t ∈R 为参数),求a ,b 的值. 解析:(1)圆C 1的直角坐标方程为x 2+(y -2)2=4, 直线C 2的直角坐标方程为x +y -4=0,解⎩⎪⎨⎪⎧ x 2+(y -2)2=4,x +y -4=0,得⎩⎪⎨⎪⎧x 1=0,y 1=4,⎩⎪⎨⎪⎧x 2=2,y 2=2. 所以C 1与C 2交点的极坐标为⎝⎛⎭⎫4,π2,⎝⎛⎭⎫22,π4. (2)由(1)可得,P 点与Q 点的直角坐标分别为(0,2)(1,3),故直线PQ 的直角坐标方程为x -y +2=0,由参数方程可得y =b 2x -ab2+1.所以⎩⎨⎧b2=1,-ab2+1=2,解得⎩⎪⎨⎪⎧a =-1,b =2,所以a =-1,b =2.。
质量检测(六)测试内容:统计、概率算法初步时间:90分钟分值:120分一、选择题(本大题共10小题,每小题5分,共50分)1.一个容量为100的样本,其频数分布表如下A.0.13 B.0.39C.0.52 D.0.64解析:由题意可知样本在(10,40]上的频数是:13+24+15=52,由频率=频数÷总数,可得样本数据落在(10,40]上的频率是0.52.答案:C2.(2013·江门佛山两市高三质检)为了解一片速生林的生长情况,随机测量了其中100株树木的底部周长(单位:cm).根据所得数据画出样本的频率分布直方图(如下图),那么在这100株树木中,底部周长小于110 cm的株数是()A .30B .60C .70D .80解析:100×(0.1+0.2+0.4)=70. 答案:C3.(2013·山东泰安第二次模拟)设某高中的女生体重y (单位:kg)与身高x (单位:cm)具有线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,…,n ),用最小二乘法建立的回归方程为y ^=0.85x -85.71,则下列结论不正确的是( )A .y 与x 具有正的线性相关关系B .回归直线过样本点的中心(x -,y -)C .若该高中某女生身高增加1 cm ,则其体重约增加0.85 kgD .若该高中某女生身高为170 cm ,则可断定其体重必为58.79 kg 解析:若该高中某女生身高为170 cm ,则其体重大约为58.79 kg ,故选项D 是不正确的.答案:D4.(2013·安徽江南十校开学第一考)下图是甲、乙两名运动员某赛季6个场次得分的茎叶图,用x 甲,x 乙分别表示甲,乙得分的平均数,则下列说法正确的是( )A .x 甲>x 乙且甲得分比乙稳定B .x 甲=x 乙且乙得分比甲稳定C .x 甲=x 乙且甲得分比乙稳定D .x 甲<x 乙且乙得分比甲稳定解析:由茎叶图所给数据,经计算x -甲=x -乙=25,而方差S 甲<S乙.答案:C5.(2013·山西第三次四校联考)下列说法错误的是( ) A .在统计学中,独立性检验是检验两个分类变量是否有关系的一种统计方法B .线性回归方程对应的直线y ^=b ^x +a ^至少经过其样本数据点(x 1,y 1),(x 2,y 2),(x 3,y 3),…,(x n ,y n )中的一个点C .在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高D .在回归分析中,相关指数R 2为0.98的模型比相关指数R 2为0.80的模型拟合的效果好解析:线性回归方程对应的直线y ^=b ^x +a ^可以不经过其样本数据点(x 1,y 1),(x 2,y 2),(x 3,y 3),…(x n ,y n )中的任一点.答案:B6.(2013·福建卷)阅读如图所示的程序框图,运行相应的程序.如果输入某个正整数n 后,输出的S ∈(10,20),那么n 的值为( )A .3B .4C .5D .6解析:当n =1时,S =1;当n =2时,S =1+2×1=3;当n =3时,S =1+2×3=7;当n =4时,S =1+2×7=15∈(10,20),故选B.答案:B7.(2013·天津卷)阅读如图所示的程序框图,运行相应的程序,则输出n 的值为( )A .7B .6C .5D .4解析:第1次,S =-1,不满足判断框内的条件;第2次,n =2,S =1,不满足判断框内的条件;第3次,n =3,S =-2,不满足判断框内的条件;第4次,n =4,S =2,满足判断框内的条件,结束循环,所以输出的n =4.答案:D8.(2014·河北沧州名师名校俱乐部二调)如图是甲、乙两同学连续4次月考成绩的茎叶图,其中数据x (x ∈Z )无法确认,则甲的平均成绩超过乙的平均成绩的概率为( )A.25B.12C.35D.45解析:由14×(92+97+88+89)>14×(90+x +99+83+89),得x <5,故x 取值为0,1,2,3,4,所以所求概率为P =510=12.答案:B9.(2013·淄博高三检测)设p 在[0,5]上随机地取值,则关于x 的方程x 2+px +1=0有实数根的概率为( )A.15B.25C.35D.45解析:由⎩⎪⎨⎪⎧p 2-4≥0,0≤p ≤5得2≤p ≤5,故所求概率为5-25-0=35.答案:C10.(2013·山西太原高三模拟(一))已知函数f (x )=log 2x ,若在[1,4]上随机取一个实数x 0,则使得f (x 0)≥1成立的概率为( )A.13 B.12 C.23D.34解析:f (x 0)=log 2x 0≥1,则x 0≥2 当x 0∈[1,4]时,所求概率为4-24-1=23.答案:C二、填空题(本大题共4小题,每小题5分,共20分)11.(2013·成都第二次诊断)在某大型企业的招聘会上,前来应聘的本科生、硕士研究生和博士研究生共2 000人,各类毕业生人数统计如图所示,则博士研究生的人数为________.解析:由图可知,博士生人数所占比例为1-62%-26%=12%,故博士生人数为2 000×12%=240.答案:24012.(2013·泰安高三质检)某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽取一个容量为280的样本,则此样本中男生人数为________.解析:男生人数为280560+420×560=160.答案:16013.(2013·宁夏银川月考)已知圆C:x2+y2=12,直线l:4x+3y =25.(1)圆C的圆心到直线l的距离为________;(2)圆C上任意一点A到直线l的距离小于2的概率为________.解析:(1)圆心坐标为(0,0),圆心到直线4x+3y=25的距离d=|4×0+3×0-25|42+32=5.(2)如图l ′∥l ,且O 到l ′的距离为3,sin ∠ODE =323=32,所以∠ODE =60°,从而∠BOD =60°,点A 应在劣弧BD 上,所以满足条件的概率为16.答案:5 1614.(2013·温州市高三第二次适应性测试)经过随机抽样获得100辆汽车经过某一雷达测速地区的时速(单位:km/h),并绘制成如图所示的频率分布直方图,其中这100辆汽车时速范围是[35,85],数据分组为[35,45),[45,55),[55,65),[65,75),[75,85).由此估计通过这一地区的车辆平均速度为________.解析:40×0.05+50×0.2+60×0.4+70×0.25+80×0.1=61.5.答案:61.5三、解答题(本大题共4小题,共50分.解答应写出文字说明,证明过程或演算步骤.)15.(满分12分)(2013·安徽卷)为调查甲、乙两校高三年级学生某次联考数学成绩情况,用简单随机抽样,从这两校中各抽取30名高三年级学生,以他们的数学成绩(百分制)作为样本,样本数据的茎叶图如图所示:(1)若甲校高三年级每位学生被抽取的概率为0.05,求甲校高三年级学生总人数,并估计甲校高三年级这次联考数学成绩的及格率(60分及60分以上为及格);(2)设甲、乙两校高三年级学生这次联考数学平均成绩分别为x 1,x 2,估计x 1-x 2的值.解:(1)设甲校高三年级学生总人数为n .由题意知,30n =0.05,即n =600.样本中甲校高三年级学生数学成绩不及格人数为5,据此估计甲校高三年级此次联考数学成绩及格率为1-530=56.(2)设甲、乙两校样本平均数分别为x 1′,x 2′.根据样本茎叶图可知,30(x 1′-x 2′)=30x 1′-30x 2′=(7-5)+(55+8-14)+(24-12-65)+(26-24-79)+(22-20)+92=2+49-53-77+2+92 =15.因此x 1′-x 2′=0.5.故x 1-x 2的估计值为0.5分. 16.(满分12分)(2013·河南开封高三第一次模拟)为了解春季昼夜温差大小与某种子发芽多少之间的关系,现在从4月份的30天中随机挑选了5天进行研究,且分别记录了每天昼夜温差与每天100颗种子浸泡后的发芽数,得到如下资料:“m ,n 均不小于25”的概率;(2)从这5天中任选2天,若选取的是4月1日与4月30日的两组数据,请根据这5天中的另3天的数据,求出y 关于x 的线性回归方程y ^=bx +a ;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?(参考公式:b =ni =1xiyi -n x -y -n i =1x 2i -n x 2,a =y --b x -)(参考数据:3i =1xiyi=977,3i =1x 2i =434)解:(1)m ,n 的所有的基本事件为(23,25),(23,30),(23,26),(23,16),(25,30),(25,26),(25,16),(30,26),(30,16),(26,16),共10个.设“m ,n 均不小于25”为事件A ,则事件A 包含的基本事件为(25,30),(25,26),(30,26).所以P (A )=310,故事件A 的概率为310.(2)由数据得从5天中未选取的3天的平均数x -=12,y -=27,3x -y -=972,3x 2=432,又3i =1x i y i =977,3i =1x 2i =434,所以b =977-972434-432=52,a =27-52×12=-3,所以y 关于x 的线性回归方程为y ^=52x -3.(3)依题意得,当x =10时,y ^=22,|22-23|<2;当x =8时,y ^=17,|17-16|<2,所以得到的线性回归方程是可靠的.17.(满分12分)(2013·福建卷)某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分为5组:[50,60),[60,70),[70,80),[80,90),[90,100]分别加以统计,得到如图所示的频率分布直方图.(1)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的概率;(2)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成2×2列联表,并判断是否有90%的把握认为“生产能手与工人所在的年龄组有关”?附:χ2=11221221n1+n2+n+1n+2(注:此公式也可以写成K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)) 解:(1)由已知得,样本中有25周岁以上组工人60名,25周岁以下组工人40名.所以,样本中日平均生产件数不足60件的工人中,25周岁以上组工人有60×0.05=3(人),记为A1,A2,A3;25周岁以下组工人有40×0.05=2(人),记为B1,B2.从中随机抽取2名工人,所有的可能结果共有10种,它们是:(A1,A2),(A1,A3),(A2,A3),(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(B1,B2).其中,至少1名“25周岁以下组”工人的可能结果共有7种,它们是(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(B1,B2).故所求的概率P=710.(2)由频率分布直方图可知,在抽取的100名工人中,“25周岁以上组”中的生产能手有60×0.25=15(人),“25周岁以下组”中的生产能手有40×0.375=15(人),据此可得2×2列联表如下:所以得K2=(a+b)(c+d)(a+c)(b+d)=100×(15×25-15×45)260×40×30×70=2514≈1.79.因为1.79<2.706,所以没有90%的把握认为“生产能手与工人所在的年龄组有关”.18.(满分14分)(2013·天津卷)某产品的三个质量指标分别为x,y,z,用综合指标S=x+y+z评价该产品的等级.若S≤4,则该产品为一等品.现从一批该产品中,随机抽取10件产品作为样本,其质量指标列表如下:(2)在该样本的一等品中,随机抽取2件产品,(ⅰ)用产品编号列出所有可能的结果;(ⅱ)设事件B为“在取出的2件产品中,每件产品的综合指标S 都等于4”,求事件B发生的概率.解:(1)计算10件产品的综合指标S,如下表:124579一等品率为610=0.6,从而可估计该批产品的一等品率为0.6.(2)(ⅰ)在该样本的一等品中,随机抽取2件产品的所有可能结果为{A1,A2},{A1,A4},{A1,A5},{A1,A7},{A1,A9},{A2,A4},{A2,A5},{A2,A7},{A2,A9},{A4,A5},{A4,A7},{A4,A9},{A5,A7},{A5,A9},{A7,A9},共15种.(ⅱ)在该样本的一等品中,综合指标S等于4的产品编号分别为A1,A2,A5,A7,则事件B发生的所有可能结果为{A1,A2},{A1,A5},{A1,A7},{A2,A5},{A2,A7},{A5,A7},共6种.所以P(B)=615=2 5.。
课时作业(六十)一、填空题1.(2013·北京朝阳期末考试)在极坐标系中,过圆ρ=4cos θ的圆心,且垂直于极轴的直线的极坐标方程为________.解析:圆ρ=4cos θ即x 2+y 2=4x ,故圆心为(2,0),所求直线为x =2,其极坐标方程为ρ cos θ=2.答案:ρcos θ=22.(2013·江西红色六校第二次联考)化极坐标方程ρ2cos θ-ρ=0为直角坐标方程为________.解析:由ρcos θ=x ,ρsin θ=y 得ρ2cos θ-ρ=0即为ρ(ρcos θ-1)=0,∴(x 2+y 2)·(x -1)=0,∴x 2+y 2=0或x -1=0.答案:x 2+y 2=0或x =13.(2013·广州调研测试)已知圆C 的参数方程为⎩⎪⎨⎪⎧x =cos θy =sin θ+2(θ为参数),以原点为极点,x 轴的正半轴为极轴建立极坐标系,直线的极坐标方程为ρsin θ+ρcos θ=1,则直线截圆C 所得的弦长是________.解析:圆C 的参数方程化为平面直角坐标方程为x 2+(y -2)2=1,直线的极坐标方程化为平面直角坐标方程为x +y =1,如图所示,圆心到直线的距离d =|0+2-1|2=22,故圆C 截直线所得的弦长为212-d 2= 2. 答案: 24.(2013·3月襄阳调研统一测试)在直角坐标系中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线⎩⎪⎨⎪⎧x =cos αy =1+sin α(α为参数)与曲线ρ2-2ρcos θ=0的交点个数为________.解析:由⎩⎪⎨⎪⎧x =cos αy =1+sin α得x 2+(y -1)2=1,由ρ2-2ρcos θ=0得x 2+y 2-2x =0,即(x -1)2+y 2=1,而方程x 2+(y -1)2=1与(x -1)2+y 2=1都是圆的方程,半径都是1,圆心距离为12+12=2<2,故两个圆相交,有两个交点.答案:25.(2013·黄冈质检)曲线C 1的极坐标方程ρcos 2θ=sin θ,曲线C 2的参数方程为⎩⎪⎨⎪⎧x =3-ty =1-t ,以极点为原点,极轴为x 轴正半轴建立直角坐标系,则曲线C 1上的点与曲线C 2上的点最近的距离为________.解析:由ρcos 2θ=sin θ,则y =x 2,由⎩⎪⎨⎪⎧x =3-ty =1-t ,则x -y =2,设平行于直线x -y =2且与曲线y =x 2相切的直线方程为x -y =a ,根据⎩⎪⎨⎪⎧y =x 2x -y =a ,整理为x 2-x +a =0, 由Δ=1-4a =0,得a =14,又直线x -y -2=0与x -y -14=0的距离d =⎪⎪⎪⎪⎪⎪-2+142=728,故曲线C 1上的点与曲线C 2上的点最近的距离为两平行直线间的距离,即为728.答案:7286.(2013·湖南重点高中十校联考)在平面直角坐标系中,已知直线l :ρcos θ+ρsin θ=2(θ为参数)和曲线C :⎩⎪⎨⎪⎧x =t +2y =t2(t 为参数),若l 与C 相交于A 、B 两点,则|AB |=________.解析:直线方程为x +y -2=0,曲线C :y =(x -2)2,把直线方程代入曲线方程得,x 2-5x +4=0,x 1+x 2=5,x 1x 2=4,由弦长公式得|AB |=1+(-1)252-4×4=3 2. 答案:3 27.(2013·湖北八市三月调考)设直线l 1的参数方程为⎩⎪⎨⎪⎧x =1+ty =a +3t (t为参数),以坐标原点为极点,x 轴非负半轴为极轴建立极坐标系,另一直线l 2的方程为ρsin θ-3ρcos θ+4=0,若直线l 1与l 2间的距离为10,则实数a 的值为________.解析:由⎩⎪⎨⎪⎧x =1+ty =a +3t消去t 得3x -y -3+a =0,由ρsin θ-3ρcosθ+4=0化为普通方程得3x -y -4=0,∵直线l 1与l 2间的距离为10, ∴10=|-4+3-a |32+(-1)2,解得a =9或-11.答案:9或-118.(2013·安徽省“江南十校”高三联考)在极坐标系中,直线ρcos θ-ρsin θ+1=0与圆ρ=2sin θ的位置关系是________.解析:直线方程为x -y +1=0,圆的方程为x 2+y 2-2y =0,即x 2+(y -1)2=1,直线过点(0,1),而(0,1)为圆心,所以直线与圆相交.答案:相交9.(2013·上海卷)在极坐标系中,曲线ρ=cos θ+1与ρcos θ=1的公共点到极点的距离为________.解析:联立方程组得ρ(ρ-1)=1⇒ρ=1±52,又ρ≥0,故所求为1+52.答案:1+52 二、解答题10.(2013·江苏卷)在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧ x =t +1y =2t (t 为参数),曲线C 的参数方程为⎩⎪⎨⎪⎧x =2tan 2θy =2tan θ(θ为参数).试求直线l 和曲线C 的普通方程,并求出它们的公共点的坐标.解:因为直线l 的参数方程为⎩⎪⎨⎪⎧x =t +1y =2t (t 为参数),由x =t +1得t =x -1,代入y =2t ,得到直线l 的普通方程为2x -y -2=0.同理得到曲线C 的普通方程为y 2=2x .解方程组⎩⎪⎨⎪⎧y =2(x -1),y 2=2x ,得公共点的坐标为(2,2),⎝ ⎛⎭⎪⎫12,-1.11.(2013·福建卷)在平面直角坐标系中,以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系.已知点A 的极坐标为⎝ ⎛⎭⎪⎫2,π4,直线l 的极坐标方程为ρcos ⎝ ⎛⎭⎪⎫θ-π4=a ,且点A 在直线l 上.(1)求a 的值及直线l 的直角坐标方程;(2)圆C 的参数方程为⎩⎪⎨⎪⎧x =1+cos αy =sin α(α为参数),试判断直线l 与圆C 的位置关系.解:(1)由点A ⎝ ⎛⎭⎪⎫2,π4在直线ρcos ⎝ ⎛⎭⎪⎫θ-π4=a 上,可得a = 2. 所以直线l 的方程可化为ρcos θ+ρsin θ=2, 从而直线l 的直角坐标方程为x +y -2=0.(2)由已知得圆C 的直角坐标方程为(x -1)2+y 2=1, 所以圆C 的圆心为(1,0),半径r =1,因为圆心C 到直线l 的距离d =12=22<1,所以直线l 与圆C 相交.12.(2013·辽宁卷)在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.圆C 1,直线C 2的极坐标方程分别为ρ=4sin θ,ρcos ⎝⎛⎭⎪⎫θ-π4=2 2. (1)求C 1与C 2交点的极坐标;(2)设P 为C 1的圆心,Q 为C 1与C 2交点连线的中点.已知直线PQ 的参数方程为⎩⎨⎧x =t 3+a y =b 2t 3+1(t ∈R 为参数),求a ,b 的值.解:(1)圆C 1的直角坐标方程为x 2+(y -2)2=4, 直线C 2的直角坐标方程为x +y -4=0.解⎩⎪⎨⎪⎧ x 2+(y -2)2=4,x +y -4=0,得⎩⎪⎨⎪⎧x 1=0,y 1=4,⎩⎪⎨⎪⎧x 2=2,y 2=2. 所以C 1与C 2交点的极坐标为⎝ ⎛⎭⎪⎫4,π2,⎝ ⎛⎭⎪⎫22,π4.注:极坐标系下点的表示不惟一.(2)由(1)可得,P 点与Q 点的直角坐标分别为(0,2),(1,3). 故直线PQ 的直角坐标方程为x -y +2=0, 由参数方程可得y =b 2x -ab2+1. 所以⎩⎪⎨⎪⎧b 2=1,-ab2+1=2,解得a =-1,b =2.13.(2013·东北三校第一次联考)在直角坐标系xOy 中,圆C 1和C 2的参数方程分别是⎩⎪⎨⎪⎧ x =2+2cos φy =2sin φ(φ为参数)和⎩⎪⎨⎪⎧x =cos φy =1+sin φ(φ为参数).以O 为极点,x 轴的正半轴为极轴建立极坐标系.(1)求圆C 1和C 2的极坐标方程;(2)射线OM :θ=α与圆C 1的交点为O 、P ,与圆C 2的交点为O 、Q ,求|OP |·|OQ |的最大值.解:(1)圆C 1和C 2的普通方程分别是(x -2)2+y 2=4和x 2+(y -1)2=1,所以圆C 1和C 2的极坐标方程分别是ρ=4cos θ和ρ=2sin θ. (2)依题意得,点P ,Q 的极坐标分别为P (4cos α,α)和Q (2sin α,α)所以|OP |=|4cos α|,|OQ |=|2sin α|.从而|OP |·|OQ |=|4sin 2α|≤4. 当且仅当sin 2α=±1时,上式取“=”即|OP |·|OQ |的最大值是4. 14.(2013·辽宁卷)在直角坐标xOy 中,圆C 1:x 2+y 2=4,圆C 2:(x -2)2+y 2=4.(1)在以O 为极点,x 轴正半轴为极轴的极坐标系中,分别写出圆C 1,C 2的极坐标方程,并求出圆C 1,C 2的交点坐标(用极坐标表示);(2)求圆C 1与C 2的公共弦的参数方程.解:(1)圆C 1:x 2+y 2=4的极坐标方程为ρ=2,圆C 2:(x -2)2+y 2=4的极坐标方程为ρ=4cos θ,由⎩⎪⎨⎪⎧ρ=4cos θρ=2得⎩⎨⎧θ=±π3ρ=2,故圆C 1与圆C 2交点的坐标为⎝ ⎛⎭⎪⎫2,π3,⎝⎛⎭⎪⎫2,-π3(2)法一:由⎩⎪⎨⎪⎧x =ρcos θy =ρsin θ,得圆C 1与圆C 2交点的直角坐标为(1,3),(1,-3),故圆C 1与圆C 2交点的公共弦的参数方程为⎩⎪⎨⎪⎧x =1y =t ,t ∈[-3, 3 ]法二:将x =1代入⎩⎪⎨⎪⎧x =ρcos θy =ρsin θ,得ρcos θ=1,从而ρ=1cos θ故圆C 1与圆C 2交点的公共弦的参数方程为⎩⎨⎧x =1y =ρsin θ=sin θcos θ=tan θ,θ∈⎣⎢⎡⎦⎥⎤-π3,π3.15.(2014·河北沧州质量监测)曲线C 1的参数方程为⎩⎪⎨⎪⎧x =4cos θ,y =2sin θ(θ为参数),曲线C 2的极坐标方程为ρ=2cos θ-2sin θ. (1)化曲线C 1,C 2的方程为普通方程,并说明它们分别表示什么曲线;(2)设曲线C 1与x 轴的一个交点的坐标为P (m,0)(m >0),经过点P 作曲线C 2的切线l ,求切线l 的方程.解:(1)曲线C 1:x 216+y 24=1,曲线C 2:(x -1)2+(y +1)2=2,曲线C 1为中心为坐标原点,焦点在x 轴上,长半轴长是4,短半轴长是2的椭圆;曲线C 2为圆心是(1,-1),半径是2的圆.(2)曲线C 1:x 216+y 24=1与x 轴的交点坐标为(-4,0)和(4,0),因为m >0,所以点P 的坐标为(4,0),显然切线l 的斜率存在,设为k ,则切线l 的方程为y =k (x -4),则|-3k +1|k 2+1=2,所以7k 2-6k -1=0,得k =1或k =-17,所以切线l 的方程为x -y -4=0或x +7y -4=0. [热点预测]16.(2013·泉州质检)在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =2-t y =3t(t 为参数),P 、Q 分别为直线l 与x 轴、y 轴的交点,线段PQ 的中点为M .(1)求直线l 的直角坐标方程;(2)以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,求点M 的极坐标和直线OM 的极坐标方程.解:(1)由⎩⎪⎨⎪⎧x =2-t ,y =3t .得3x +y -23=0,∴直线l 的平面直角坐标方程为3x +y -23=0. (2)当y =0时,x =2,∴点P 的直角坐标为(2,0); 当x =0时,y =23,∴点Q 的直角坐标为(0,23), ∴线段PQ 的中点M 的直角坐标为(1,3), ∵ρ=12+(3)2=2和tan θ=31=3, 且x =1>0,y =3>0, ∴M 的极坐标为⎝ ⎛⎭⎪⎫2,π3,直线OM 的极坐标方程为θ=π3(ρ∈R ).。