七年级上数学期中考试试卷(二)
- 格式:doc
- 大小:56.50 KB
- 文档页数:4
人教版2019-2020学年七年级上学期期中考试数学试题(II)卷姓名:________ 班级:________ 成绩:________一、单选题1 . 下面选项中符合代数式书写要求的是()A.ay·3B.C.D.a×b÷c2 . 一件工作,甲单独做需a天完成,乙单独做需b天完成,如果两人合作7天,完成的工作量是()A.B.7(a-b)C.7(a+b)D.3 . 下列说法错误的是()A.﹣xy的系数是﹣1B.3x3﹣2x2y2﹣y3的次数是4C.当a<2b时,2a+b+2|a﹣2b|=5bD.多项式中x2的系数是﹣34 . 在0,2,,-5这四个数中,最大的数是()A.0B.2C.D.-55 . 下列计算正确的是()A.a+2a=3B.C.D.6 . 2018年政府工作报告指出,过去五年来,我国经济实力跃上新台阶.国内生产总值从54万亿元增加到82.7万亿元,稳居世界第二.82.7万亿用科学记数法表示为()A.B.C.D.7 . -的相反数是()A.2016B.﹣2016C.D.-8 . 若△ABC三条边的长度分别为m,n,p,且,则这个三角形为A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形9 . 下列各组运算中,结果为负数的是()A.-(-3)B.(-3)×(-2)C.-|-3|D.10 . 下列各式符合代数式书写格式的为()A.B.C.D.二、填空题11 . 若数轴上点A与点B的距离是2018,点B表示的数为7,则点A表示的数是_______.12 . 单项式﹣x3y的系数是_____.13 . 张老师在黑板上写出以下四个结论:①−3的绝对值为;②一个负数的绝对值一定是正数;③若=−a,则a一定是负数;④一个五棱柱的截面最多是七边形. 认为张老师写的结论正确的有_______.(填序号)14 . 如果,那么代数式的值为______.15 . 金砖五国成员国巴西的首都巴西利亚、新西兰的首都惠灵顿与北京的时差如下表:城市惠灵顿巴西利亚时差/h+4﹣11若现在的北京时间是11月16日8:00,请从A,B两题中任选一题作答.A.那么,现在的惠灵顿时间是11月_____日_____B.那么,现在的巴西利亚时间是11月_____日_____.16 . 单项式x2y的系数是_____;次数是______.17 . 李先生要用按揭贷款的方式购买一套商品房,由于银行提高了贷款利率,他想尽量减少贷款额,就将自己的全部积蓄a元交付了所需购房款的60%,其余部分向银行贷款,则李先生应向银行贷款________元.18 . 若a、b为实数,且满足|a-2|+=0,则a=______ ,b=______.三、解答题19 . 计算下列各题:(1)(-9)-(-7)+(-6)-(+4)-(-5);(2)(+4.3)-(-4)+(-2.3)-(+4).20 . 已知:,且。
七年级(上)期中数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.冬季某天我国三个城市的最高气温分别是﹣8℃,2℃,﹣3℃,把它们从高到低排列正确的是()A.﹣8℃,﹣3℃,2℃B.﹣3℃,﹣8℃,2℃C.2℃,﹣3℃,﹣8℃D.2℃,﹣8℃,﹣3℃2.2016年3月份我省农产品实现出口额8362万美元,其中8362万用科学记数法表示为()A.8.362×107B.83.62×106C.0.8362×108 D.8.362×1083.小新准备用如图的纸片做一个正方体礼品盒,为了美观,他想在六个正方形纸片上画上图案,使做成后三组对面的图案相同,那么画上图案后正确的是()A.B.C.D.4.如图,数轴上有A、B、C、D四个点,其中表示互为相反数的点是()A.点A与点D B.点A与点C C.点B与点D D.点B与点C5.小红分别从正面、左面和上面观察由一些相同小立方块搭成的几何体时,发现几何体的形状图均为如图,则构成该几何体的小立方块的个数有()A.3个 B.4个 C.5个 D.6个6.小红要购买珠子串成一条手链,黑色珠子每个a元,白色珠子每个b元,要串成如图所示的手链,小红购买珠子应该花费()A.(3a+4b)元B.(4a+3b)元C.4(a+b)元D.3(a+b)元7.下列各式计算正确的是()A.﹣2a+5b=3ab B.6a+a=6a2C.4m2n﹣2mn2=2mn D.3ab2﹣5b2a=﹣2ab28.一列火车长m米,以每秒n米的速度通过一个长为p米的桥洞,用代数式表示它通过桥洞所需的时间为()A.秒 B.秒C.秒D.秒二、填空题(本小题共6小题,每小题3分,共16分)9.如果向东走150米,记为+150米,那么向西走250米,记为米.10.如图所示的图形绕虚线旋转一周,便能形成某个几何体,这个几何体的名称叫做.11.用一个平面去截一个几何体,截面形状为三角形,则这个几何体可能为:①正方体;②圆柱;③圆锥;④正三棱柱(写出所有正确结果的序号).12.一个边长为1的正方形,第一次截去正方形的一半,第二次截去剩下的一半,如此截下去,第六次后剩下的面积为米13.一个长方形的宽为xcm,长比宽的2倍多3cm,这个长方形的周长为cm.14.如图是一组有规律的图案,它们是由边长相同的正方形和正三角形镶嵌而成,第(1)个图案有4个三角形,第(2)个图案有7个三角形,第(3)个图案有10个三角形,…依此规律,第n个图案有个三角形(用含n的代数式表示)三、解答题(本题共78分)15.如图,是一个几何体从上面看到的形状图,正方形中的数字是该位置上的小立方块的数量,请画出从正面和从左面看到的图形.16.计算(1)4﹣(﹣28)+(﹣2)(2)(﹣)×(﹣24)(3)(﹣2)3﹣(﹣13)÷(﹣)(4)﹣12﹣(1﹣0.5)÷×.17.如图是一个几何体的表面展开图,图中的数字表示相应的棱的长度(单位:cm)(1)写出该几何体的名称;(2)计算该几何体的表面积.18.在数轴上表示下列数,并用“<”号把这些数连接起来.﹣(﹣4),﹣|﹣3.5|,+(﹣),0,+(+2.5),119.如图所示,已知直角三角形纸板ABC,直角边AB=4cm,BC=8cm.(1)将直角三角形纸板绕三角形的边所在的直线旋转一周,能得到种大小不同的几何体?(2)分别计算绕三角形直角边所在的直线旋转一周,得到的几何体的体积?(圆锥的体积=πr2h,其中π取3)20.计算:(1)3x+2y﹣5x﹣y(2)a+(5a﹣3b)﹣(a﹣2b)(3)(5mn﹣2m+3n)+(﹣7m﹣7mn)(4)﹣3(2x2﹣xy)+4(x2+xy﹣6)21.一辆货车从某超市出发,向西走3千米到达A点,继续向西走1.5千米到达B点,然后回头向东走9.5千米到达C点,最后回到超市.(1)以超市为原点O,向东为正,以一个单位长度表示1千米,在数轴上画出表示上述各点的位置;(2)计算出点A到点C之间的距离;(3)求出货车这趟一共走了多少千米?22.先化简,再求值:(1)3a2﹣(2a2+5a﹣1)﹣(3a+1),其中a=2(2)x2y﹣3x2y﹣6xy+5xy+2x2y,其中x=11,y=﹣6.23.如图所示:(1)用代数式表示阴影部分的面积;(2)当a=10,b=4时,π取值为3.14,求阴影部分的面积.24.观察下列等式:第一等式:a1==(1﹣);第二等式:a2==(﹣);第三等式:a3==(﹣);第四等式:a4==(﹣);…问题解决:(1)按以上规律列出第6个等式:a6==;(2)若n是正整数,请用含n的代数式表示第n个等式,a n==;(3)求a1+a2+a3+…+a2014+a2015+a2016的值.参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.冬季某天我国三个城市的最高气温分别是﹣8℃,2℃,﹣3℃,把它们从高到低排列正确的是()A.﹣8℃,﹣3℃,2℃B.﹣3℃,﹣8℃,2℃C.2℃,﹣3℃,﹣8℃D.2℃,﹣8℃,﹣3℃【考点】有理数大小比较.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得2℃>﹣3℃>﹣8℃,∴把它们从高到低排列正确的是:2℃,﹣3℃,﹣8℃.故选:C.2.2016年3月份我省农产品实现出口额8362万美元,其中8362万用科学记数法表示为()A.8.362×107B.83.62×106C.0.8362×108 D.8.362×108【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:8362万=8362 0000=8.362×107,故选:A.3.小新准备用如图的纸片做一个正方体礼品盒,为了美观,他想在六个正方形纸片上画上图案,使做成后三组对面的图案相同,那么画上图案后正确的是()A.B.C.D.【考点】几何体的展开图.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:正方体的平面展开图中,相对的面一定之间相隔一个正方形,所以使做成后三组对面的图案相同,正确的应是C故选C.4.如图,数轴上有A、B、C、D四个点,其中表示互为相反数的点是()A.点A与点D B.点A与点C C.点B与点D D.点B与点C【考点】相反数;数轴.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:2与﹣2互为相反数,故选:A.5.小红分别从正面、左面和上面观察由一些相同小立方块搭成的几何体时,发现几何体的形状图均为如图,则构成该几何体的小立方块的个数有()A.3个 B.4个 C.5个 D.6个【考点】由三视图判断几何体.【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:从俯视图发现有3个立方体,从左视图发现第二层最多有1个立方块,则构成该几何体的小立方块的个数有4个;故选B.6.小红要购买珠子串成一条手链,黑色珠子每个a元,白色珠子每个b元,要串成如图所示的手链,小红购买珠子应该花费()A.(3a+4b)元B.(4a+3b)元C.4(a+b)元D.3(a+b)元【考点】列代数式.【分析】直接利用两种颜色的珠子的价格进而求出手链的价格.【解答】解:∵黑色珠子每个a元,白色珠子每个b元,∴要串成如图所示的手链,小红购买珠子应该花费为:3a+4b.故选:A.7.下列各式计算正确的是()A.﹣2a+5b=3ab B.6a+a=6a2C.4m2n﹣2mn2=2mn D.3ab2﹣5b2a=﹣2ab2【考点】合并同类项.【分析】本题考查同类项的概念,含有相同的字母,并且相同字母的指数相同,是同类项的两项可以合并,否则不能合并.合并同类项的法则是系数相加作为系数,字母和字母的指数不变.【解答】解:解:A、﹣2a+5b不是同类项,不能合并.错误;B、6a+a=7a,错误;C、4m2n﹣2mn2不是同类项,不能合并.错误;D、3ab2﹣5b2a=﹣2ab2.正确.故选D.8.一列火车长m米,以每秒n米的速度通过一个长为p米的桥洞,用代数式表示它通过桥洞所需的时间为()A.秒 B.秒C.秒D.秒【考点】列代数式(分式).【分析】通过桥洞所需的时间为=(桥洞长+车长)÷车速.【解答】解:它通过桥洞所需的时间为秒.故选D.二、填空题(本小题共6小题,每小题3分,共16分)9.如果向东走150米,记为+150米,那么向西走250米,记为﹣250米.【考点】正数和负数.【分析】用正负数来表示具有意义相反的两种量:向东走记为正,则向西走就记为负,直接得出结论即可.【解答】解:如果向东走150米记作+150米,那么向西走250米记作﹣250米.故答案为:﹣250.10.如图所示的图形绕虚线旋转一周,便能形成某个几何体,这个几何体的名称叫做圆锥.【考点】点、线、面、体.【分析】如图,一个直角三角形围绕一条直角边为中心对称轴旋转一周,根据面动成体的原理即可解.【解答】解:直角三角形绕它的直角边旋转一周可形成圆锥.故答案为圆锥.11.用一个平面去截一个几何体,截面形状为三角形,则这个几何体可能为:①正方体;②圆柱;③圆锥;④正三棱柱①③④(写出所有正确结果的序号).【考点】截一个几何体.【分析】当截面的角度和方向不同时,圆柱体的截面无论什么方向截取圆柱都不会截得三角形.【解答】解:①正方体能截出三角形;②圆柱不能截出三角形;③圆锥沿着母线截几何体可以截出三角形;④正三棱柱能截出三角形.故截面可能是三角形的有3个.故答案为:①③④.12.一个边长为1的正方形,第一次截去正方形的一半,第二次截去剩下的一半,如此截下去,第六次后剩下的面积为米【考点】有理数的乘方.【分析】根据题意知,易求出前几次裁剪后剩下的纸片的面积,第一次剩下的面积为,第二次剩下的面积为,第三次剩下的面积为,根据规律,总结出一般式,由此可以求出【解答】解:∵第一次剩下的面积为,第二次剩下的面积为,第三次剩下的面积为,∴第n次剩下的面积为,∴,故答案为:.13.一个长方形的宽为xcm,长比宽的2倍多3cm,这个长方形的周长为6x﹣6cm.【考点】列代数式.【分析】根据题意可以分别表示出长方形的长和宽,进而解答即可.【解答】解:一个长方形的长比宽的2倍少3cm,若宽为xcm,则长为:(2x ﹣3)cm,周长为:2(2x﹣3+x)=6x﹣6(cm)故答案为:6x﹣614.如图是一组有规律的图案,它们是由边长相同的正方形和正三角形镶嵌而成,第(1)个图案有4个三角形,第(2)个图案有7个三角形,第(3)个图案有10个三角形,…依此规律,第n个图案有3n+1个三角形(用含n的代数式表示)【考点】规律型:图形的变化类.【分析】由题意可知:第(1)个图案有3+1=4个三角形,第(2)个图案有3×2+1=7个三角形,第(3)个图案有3×3+110个三角形,…依此规律,第n个图案有(3n+1)个三角形.【解答】解:∵第(1)个图案有3+1=4个三角形,第(2)个图案有3×2+1=7个三角形,第(3)个图案有3×3+1=10个三角形,…∴第n个图案有(3n+1)个三角形.故答案为:3n+1.三、解答题(本题共78分)15.如图,是一个几何体从上面看到的形状图,正方形中的数字是该位置上的小立方块的数量,请画出从正面和从左面看到的图形.【考点】作图﹣三视图.【分析】由已知条件可知,主视图有3列,每列小正方数形数目分别为3,1,4,左视图有3列,每列小正方形数目分别为2,3,4.据此可画出图形.【解答】解:如图所示:16.计算(1)4﹣(﹣28)+(﹣2)(2)(﹣)×(﹣24)(3)(﹣2)3﹣(﹣13)÷(﹣)(4)﹣12﹣(1﹣0.5)÷×.【考点】有理数的混合运算.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式利用乘法分配律计算即可得到结果;(3)原式先计算乘方运算,再计算除法运算,最后算加减运算即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=4+28﹣2=30;(2)原式=﹣8+4=﹣4;(3)原式=﹣8﹣26=﹣34;(4)原式=﹣1﹣=﹣1.17.如图是一个几何体的表面展开图,图中的数字表示相应的棱的长度(单位:cm)(1)写出该几何体的名称;(2)计算该几何体的表面积.【考点】几何体的展开图.【分析】(1)根据几何体的表面展开图可知该几何体是长方体;(2)根据长方体的表面积=2(长×宽+长×高+宽×高),结合图形中所标的数据即可求出表面积.【解答】解:(1)该几何体的名称是长方体;(2)(20×15+20×10+15×10)×2=×2=650×2=1300(cm2).答:该几何体的表面积是1300cm2.18.在数轴上表示下列数,并用“<”号把这些数连接起来.﹣(﹣4),﹣|﹣3.5|,+(﹣),0,+(+2.5),1【考点】有理数大小比较;数轴.【分析】根据题意,先把这些数的绝对值符号和括号去掉,再在数轴上表示出来,然后根据在数轴上表示的数用“<”号把这些数连接起来即可.【解答】解:.19.如图所示,已知直角三角形纸板ABC,直角边AB=4cm,BC=8cm.(1)将直角三角形纸板绕三角形的边所在的直线旋转一周,能得到3种大小不同的几何体?(2)分别计算绕三角形直角边所在的直线旋转一周,得到的几何体的体积?(圆锥的体积=πr2h,其中π取3)【考点】点、线、面、体.【分析】(1)将直角三角形纸板ABC绕三角形的三条边所在的直线旋转一周,能得到3种大小不同的几何体.(2)如果以AB所在的直线旋转一周得到的圆锥的底面半径是8厘米,高是4厘米;如果以BC所在的直线旋转一周得到的圆锥的底面半径是4厘米,高是8厘米,根据圆锥的体积公式:v=πr2h,把数据代入公式解答.【解答】解:(1)将直角三角形纸板ABC绕三角形的三条边所在的直线旋转一周,能得到3种大小不同的几何体.(2)以AB为轴:×3×82×4=×3×64×4=256(立方厘米);以BC为轴:×3×42×8=×3×16×8=128(立方厘米).答:以AB为轴得到的圆锥的体积是256立方厘米,以BC为轴得到的圆锥的体积是128立方厘米.故答案为:3.20.计算:(1)3x+2y﹣5x﹣y(2)a+(5a﹣3b)﹣(a﹣2b)(3)(5mn﹣2m+3n)+(﹣7m﹣7mn)(4)﹣3(2x2﹣xy)+4(x2+xy﹣6)【考点】整式的加减.【分析】(1)根据合并同类项法则即可求出答案.(2)﹣﹣(4)根据去括号法则和合并同类项法则即可求出答案.【解答】解:(1)原式=﹣2x+y(2)原式=a+5a﹣3b﹣a+2b=5a﹣b(3)原式=5mn﹣2m+3n﹣7m﹣7mn=﹣2mn﹣9m+3n(4)原式=﹣6x2+3xy+4x2+4xy﹣24=﹣2x2+7xy﹣2421.一辆货车从某超市出发,向西走3千米到达A点,继续向西走1.5千米到达B点,然后回头向东走9.5千米到达C点,最后回到超市.(1)以超市为原点O,向东为正,以一个单位长度表示1千米,在数轴上画出表示上述各点的位置;(2)计算出点A到点C之间的距离;(3)求出货车这趟一共走了多少千米?【考点】数轴.【分析】(1)根据题意可以画出相应的数轴;(2)根据第一问画出的数轴,由两点间的距离公式可以求出点A到点C之间的距离;(3)根据题意可以求出货车一共行驶了多少千米.【解答】解:(1)如图所示:(2)4.5﹣(﹣4.5)=9(千米).故点A到点C之间的距离是9千米;(3)3+1.5+9.5+4.5=18.5(千米).故货车这趟一共走了18.5千米.22.先化简,再求值:(1)3a2﹣(2a2+5a﹣1)﹣(3a+1),其中a=2(2)x2y﹣3x2y﹣6xy+5xy+2x2y,其中x=11,y=﹣6.【考点】整式的加减—化简求值.【分析】(1)先去括号,再合并同类项即可化简,将a的值代入化简后的代数式计算可得;(2)合并同类项即可化简,再将x、y的值代入求值即可.【解答】解:(1)原式=3a2﹣2a2﹣5a+1﹣3a﹣1=a2﹣8a,当a=2时,原式=4﹣16=﹣12;(2)原式=﹣xy,当x=11、y=﹣6时,原式=66.23.如图所示:(1)用代数式表示阴影部分的面积;(2)当a=10,b=4时,π取值为3.14,求阴影部分的面积.【考点】列代数式;代数式求值.【分析】(1)阴影部分的面积=长方形的面积﹣半圆的面积;(2)把各数代入求值即可.【解答】解:(1)阴影部分的面积=;(2)当a=10,b=4时,阴影部分的面积==14.88.24.观察下列等式:第一等式:a1==(1﹣);第二等式:a2==(﹣);第三等式:a3==(﹣);第四等式:a4==(﹣);…问题解决:(1)按以上规律列出第6个等式:a6==(﹣);(2)若n是正整数,请用含n的代数式表示第n个等式,a n===(﹣);(3)求a1+a2+a3+…+a2014+a2015+a2016的值.【考点】规律型:数字的变化类.【分析】(1)根据给定的等式依次写出第5、6个等式,由此即可得出结论;(2)分析等式各分母与a n下标之间的关系,由此即可得出第n个等式;(3)根据变化规律a n==(﹣)将代数式进行分解,再运用分式的加、减法即可求出结论.【解答】解:(1)∵a1==(1﹣),a2==(﹣),a3==(﹣),a4==(﹣),∴a5==(﹣),a6==(﹣).故答案为:;(﹣).(2)观察发现等式的分母为(2n ﹣1)(2n +1)、2n ﹣1以及2n +1,∴a n ==(﹣).故答案为:;(﹣).(3)原式=(1﹣)+(﹣)+(﹣)+…+(﹣)+(﹣),=×1﹣×,=.。
七年级数学上册期中检测试卷2(含答案解析)一、选择题(每小题2分,共16分,请把正确答案填入下面对应表格中)1.下列各数中,绝对值最大的数是( )A.﹣3 B.﹣2 C.0 D.12.下列各式中不是整式的是( )A.3x B.C.D.x﹣3y3.下列各组数中,互为相反数的是( )A.﹣(﹣2)与2 B.(﹣2)2与4 C.|﹣2|与2 D.﹣22与44.若﹣3x2m y3与2x4y n是同类项,则|m﹣n|的值是( )A.0 B.1 C.7 D.﹣15.如图,数轴上的A、B、C三点所表示的数分别为a、b、c,AB=BC,如果|a|>|c|>|b|,那么该数轴的原点O的位置应该在( )A.点A的左边B.点A与点B之间C.点B与点C之间D.点C的右边6.下列根据等式基本性质变形正确的是( )A.由﹣x=y,得x=2y B.由3x﹣2=2x+2,得x=4C.由2x﹣3=3x,得x=3 D.由3x﹣5=7,得3x=7﹣57.如图,是李明同学在求阴影部分的面积时,列出的4个式子,其中错误的是( )A.ab+(c﹣a)a B.ac+(b﹣a)a C.ab+ac﹣a2D.bc+ac﹣a28.一个长方形的周长为26cm,这个长方形的长减少1cm,宽增加2cm,就可成为一个正方形,设长方形的长为xcm,则可列方程( )A.x﹣1=(26﹣x)+2 B.x﹣1=(13﹣x)+2 C.x+1=(26﹣x)﹣2 D.x+1=(13﹣x)﹣2二、填空题(每小题2分,共16分)9.在一条东西走向的跑道上,设向东的方向为正方形,如果小芳向东走了8m,记作“+8m”,那么她向西走了10m,应该记作__________.10.对单项式“0.8a”可以解释为:一件商品原价为a元,若按原价的8折出售,这件商品现在的售价是0.8a 元,请你对“0.8a”再赋予一个含义:__________.11.2015年初,一列CRH5型高速车组进行了“300000公里正线运营考核”标志着中国高速快车从“中国制造”到“中国创造”的飞越,将300000用科学记数法表示为__________.12.已知x2+3x+5的值是7,则式子x2+3x﹣2的值为__________.13.若关于x的方程(2a+1)x2+5x b﹣2﹣7=0是一元一次方程,则方程ax+b=0的解是__________.14.若多项式2x3﹣8x2+x﹣1与多项式3x3+2mx2﹣5x+3相加后不含二次项,则m的值为__________.15.李明与王伟在玩游戏,游戏的规则是=ad﹣bc,李明计算,根据规则=3×1﹣2×5=3﹣10=﹣7,现在轮到王伟计算,请你帮忙算一算,其结果是__________.16.《庄子.天下篇》中写道:“一尺之棰,日取其半,万世不竭”意思是:一根一尺的木棍,如果每天截取它的一半,永远也取不完,如图.由图易得:=__________.三、解答题(17题10分,18、19题各6分,共22分)17.(1)计算:(﹣4)2×[(﹣)+(﹣)](2)计算:﹣22﹣(1﹣0.5)××[2﹣(﹣4)2].18.化简,求值.已知:(a+2)2+|b﹣3|=0,求(ab2﹣3)+(7a2b﹣2)+2(ab2+1)﹣2a2b的值.19.解方程:=3x﹣.四、解答题(每小题8分,共24分)20.有8筐白菜,以每筐25千克为标准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:回答下列问题:(1)这8筐白菜中最接近标准重量的这筐白菜重__________千克;(2)与标准重量比较,8筐白菜总计超过或不足多少千克?(3)若白菜每千克售价2.6元,则出售这8筐白菜可卖多少元?21.已知多项式+2xy2﹣4x3+1是六次四项式,单项式26x2n y5+m的次数与该多项式的次数相同,求(﹣m)3+2n的值.22.关于x的方程x﹣2m=﹣3x+4与2﹣m=x的解互为相反数.求m的值.五、23.小华在课外书中看到这样一道题:计算:()+().她发现,这个算式反映的是前后两部分的和,而这两部分之间存在着某种关系,利用这种关系,她顺利地解答了这道题(1)前后两部分之间存在着什么关系?(2)先计算哪部分比较简便?并请计算比较简便的那部分.(3)利用(1)中的关系,直接写出另一部分的结果.(4)根据以上分析,求出原式的结果.六、列方程解应用题24.假期里,某学校组织部分学生参加社会实践活动,分乘大、小两辆车去农业科技园区体验生活,早晨6点钟出发,计划2小时到达;(1)若大车速度为80km/h,正好可以在规定时间到达,而小车速度为100km/h,如果两车同时到达,那么小车可以晚出发多少分钟?(2)若小车每小时能比大车多行30千米,且大车在规定时间到达,小车要提前30分钟到达,求大、小车速度.(3)若小车与大车同时以相同速度出发,但走了20分钟以后,发现有物品遗忘,小车准备返回取物品,若小车仍想与大车同时在规定时间到达,应提速到原来的多少倍?2015-2016学年辽宁省鞍山市台安县七年级(上)期中数学试卷一、选择题(每小题2分,共16分,请把正确答案填入下面对应表格中)1.下列各数中,绝对值最大的数是( )A.﹣3 B.﹣2 C.0 D.1【考点】绝对值;有理数大小比较.【分析】根据绝对值是实数轴上的点到原点的距离,可得答案.【解答】解:|﹣3|>|﹣2|>|1|>|0|,故选:A.【点评】本题考查了绝对值,绝对值是实数轴上的点到原点的距离.2.下列各式中不是整式的是( )A.3x B.C.D.x﹣3y【考点】整式.【分析】根据单项式与多项式统称为整式,根据整式及相关的定义解答即可.【解答】解:A、3x是单项式,是整式,故A不符合题意;B、既不是单项式,又不是多项式,不是整式,故B符合题意;C、是单项式,是整式,故C不符合题意;D、x﹣3y是多项式,是整式,故D不符合题意.故选:B.【点评】本题主要考查整式的相关的定义,解决此题的关键是熟记整式的相关定义.3.下列各组数中,互为相反数的是( )A.﹣(﹣2)与2 B.(﹣2)2与4 C.|﹣2|与2 D.﹣22与4【考点】相反数;有理数的乘方.【分析】利用化简符号法则,绝对值的性质,有理数的乘方,以及只有符号不同的两个数叫做互为相反数对各选项分析判断后利用排除法求解.【解答】解:A、﹣(﹣2)=2,不是互为相反数,故本选项错误;B、(﹣2)2=4,不是互为相反数,故本选项错误;C、|﹣2|=2,不是互为相反数,故本选项错误;D、﹣22=﹣4,﹣4与4互为相反数,故本选项正确.故选D.【点评】本题考查了相反数的定义,绝对值的性质,有理数的乘方,是基础题,熟记概念是解题的关键.4.若﹣3x2m y3与2x4y n是同类项,则|m﹣n|的值是( )A.0 B.1 C.7 D.﹣1【考点】同类项.【分析】根据同类项的定义得出2m=4,n=3,求出后代入,即可得出答案.【解答】解:∵﹣3x2m y3与2x4y n是同类项,∴2m=4,n=3,∴m=2,∴|m﹣n|=|2﹣3|=1,故选B.【点评】本题考查了同类项的定义的应用,注意:所含字母相同,并且相同字母的指数也分别相等的项,是同类项.5.如图,数轴上的A、B、C三点所表示的数分别为a、b、c,AB=BC,如果|a|>|c|>|b|,那么该数轴的原点O的位置应该在( )A.点A的左边B.点A与点B之间C.点B与点C之间D.点C的右边【考点】实数与数轴.【分析】根据绝对值是数轴上表示数的点到原点的距离,分别判断出点A、B、C到原点的距离的大小,从而得到原点的位置,即可得解.【解答】解:∵|a|>|c|>|b|,∴点A到原点的距离最大,点C其次,点B最小,又∵AB=BC,∴原点O的位置是在点B、C之间且靠近点B的地方.故选C.【点评】本题考查了实数与数轴,理解绝对值的定义是解题的关键.6.下列根据等式基本性质变形正确的是( )A.由﹣x=y,得x=2y B.由3x﹣2=2x+2,得x=4C.由2x﹣3=3x,得x=3 D.由3x﹣5=7,得3x=7﹣5【考点】等式的性质.【分析】根据等式的性质1,等式的两边都加或减同一个整式,结果不变,根据等式的性质2,等式的两边都乘或除以同一个不为零的整式,结果不变,可得答案.【解答】解:A、等是左边乘以﹣﹣3,右边乘以3,故A错误;B、等式的两边都加(2﹣2x),得x=4,故B正确;C、等式的两边都减2x,得x=﹣﹣3,故C错误;D、等式的两边都加5,得3x=7+5,故D错误;故选:B.【点评】本题考查了等式的性质,利用了等式的性质1,等式的性质2.7.如图,是李明同学在求阴影部分的面积时,列出的4个式子,其中错误的是( )A.ab+(c﹣a)a B.ac+(b﹣a)a C.ab+ac﹣a2D.bc+ac﹣a2【考点】列代数式.【专题】计算题;整式.【分析】根据图形表示出阴影部分面积,化简得到结果,即可作出判断.【解答】解:根据题意得:阴影部分面积S=ab+a(c﹣a)=ac+a(b﹣a)=ab+ac﹣a2.故选D.【点评】此题考查了列代数式,正确表示出阴影部分面积是解本题的关键.8.一个长方形的周长为26cm,这个长方形的长减少1cm,宽增加2cm,就可成为一个正方形,设长方形的长为xcm,则可列方程( )A.x﹣1=(26﹣x)+2 B.x﹣1=(13﹣x)+2 C.x+1=(26﹣x)﹣2 D.x+1=(13﹣x)﹣2【考点】由实际问题抽象出一元一次方程.【专题】几何图形问题.【分析】首先理解题意找出题中存在的等量关系:长方形的长﹣1cm=长方形的宽+2cm,根据此列方程即可.【解答】解:设长方形的长为xcm,则宽是(13﹣x)cm,根据等量关系:长方形的长﹣1cm=长方形的宽+2cm,列出方程得:x﹣1=(13﹣x)+2,故选B.【点评】列方程解应用题的关键是找出题目中的相等关系,有的题目所含的等量关系比较隐藏,要注意仔细审题,耐心寻找.二、填空题(每小题2分,共16分)9.在一条东西走向的跑道上,设向东的方向为正方形,如果小芳向东走了8m,记作“+8m”,那么她向西走了10m,应该记作﹣10m.【考点】正数和负数.【分析】首先审清题意,明确“正”和“负”所表示的意义;在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:正”和“负”相对,所以向东是正,则向西就是负,因而向西运动10m应记作﹣10m.故答案为:﹣10m.【点评】此题考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.10.对单项式“0.8a”可以解释为:一件商品原价为a元,若按原价的8折出售,这件商品现在的售价是0.8a 元,请你对“0.8a”再赋予一个含义:练习本每本0.8元,小明买了a本,共付款0.8a元(答案不唯一).【考点】代数式.【专题】开放型.【分析】根据生活实际作答即可.【解答】解:答案不唯一,例如:练习本每本0.8元,小明买了a本,共付款0.8a元.【点评】本题考查了代数式的意义,此类问题应结合实际,根据代数式的特点解答.11.2015年初,一列CRH5型高速车组进行了“300000公里正线运营考核”标志着中国高速快车从“中国制造”到“中国创造”的飞越,将300000用科学记数法表示为3×105.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将300000用科学记数法表示为:3×105.故答案为:3×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.已知x2+3x+5的值是7,则式子x2+3x﹣2的值为0.【考点】代数式求值.【分析】首先根据已知列出方程x2+3x+5=7,通过移项推出x2+3x=2,通过代入式子即可推出结果为0.【解答】解:∵x2+3x+5=7,∴x2+3x=2,∴x2+3x﹣2=2﹣2=0.故答案为0.【点评】本题主要考查代数式的求值,关键在于根据已知推出x2+3x=2.13.若关于x的方程(2a+1)x2+5x b﹣2﹣7=0是一元一次方程,则方程ax+b=0的解是x=6.【考点】一元一次方程的定义.【分析】根据一元一次方程的定义可知2a+1=0,b﹣2=1,从而得到a、b的值,然后将a、b的值代入方程ax+b=0求解即可.【解答】解:∵关于x的方程(2a+1)x2+5x b﹣2﹣7=0是一元一次方程,∴2a+1=0,b﹣2=1.解得:a=﹣,b=3.将a=﹣,b=3代入ax+b=0得:﹣x+3=0.解得x=6.故答案为:x=6.【点评】本题主要考查的是一元一次方程的定义,由一元一次方程的定义得到2a+1=0,b﹣2=1是解题的关键.14.若多项式2x3﹣8x2+x﹣1与多项式3x3+2mx2﹣5x+3相加后不含二次项,则m的值为4.【考点】整式的加减.【分析】先把两式相加,合并同类项得5x3﹣8x2+2mx2﹣4x+2,不含二次项,即2m﹣8=0,即可得m的值.【解答】解:据题意两多项式相加得:5x3﹣8x2+2mx2﹣4x+2,∵相加后结果不含二次项,∴当2m﹣8=0时不含二次项,即m=4.【点评】本题主要考查整式的加法运算,涉及到二次项的定义知识点.15.李明与王伟在玩游戏,游戏的规则是=ad﹣bc,李明计算,根据规则=3×1﹣2×5=3﹣10=﹣7,现在轮到王伟计算,请你帮忙算一算,其结果是8.【考点】有理数的混合运算.【专题】计算题;新定义.【分析】原式利用已知的新定义计算即可得到结果.【解答】解:根据题意得:原式=2×(﹣5)﹣3×(﹣6)=﹣10+18=8.故答案为:8.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.16.《庄子.天下篇》中写道:“一尺之棰,日取其半,万世不竭”意思是:一根一尺的木棍,如果每天截取它的一半,永远也取不完,如图.由图易得:=1﹣.【考点】规律型:图形的变化类.【专题】规律型.【分析】由图可知第一次剩下,截取1﹣;第二次剩下,共截取1﹣;…由此得出第n次剩下,共截取1﹣,得出答案即可.【解答】解:=1﹣故答案为:1﹣.【点评】此题考查图形的变化规律,找出与数据之间的联系,得出规律解决问题.三、解答题(17题10分,18、19题各6分,共22分)17.(1)计算:(﹣4)2×[(﹣)+(﹣)](2)计算:﹣22﹣(1﹣0.5)××[2﹣(﹣4)2].【考点】有理数的混合运算.【专题】计算题.【分析】(1)原式先计算乘方运算,再利用乘法分配律计算即可;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可.【解答】解:(1)原式=16×(﹣﹣)=﹣12﹣10=﹣22;(2)原式=﹣4﹣××(﹣14)=﹣4+=﹣1.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.化简,求值.已知:(a+2)2+|b﹣3|=0,求(ab2﹣3)+(7a2b﹣2)+2(ab2+1)﹣2a2b的值.【考点】整式的加减—化简求值.【专题】计算题.【分析】原式去括号合并得到最简结果,利用非负数的性质求出a与b的值,代入计算即可求出值.【解答】解:原式=ab2﹣1+7a2b﹣2+2ab2+2﹣2a2b=ab2+5a2b﹣1,∵(a+2)2+|b﹣3|=0,∴a+2=0,b﹣3=0,即a=﹣2,b=3,则原式=﹣42+60﹣1=17.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.19.解方程:=3x﹣.【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去分母得2(2x﹣1)﹣2×6=18x﹣3(x+4),去括号得4x﹣2﹣12=18x﹣3x﹣12,移项得4x﹣18x+3x=2+12﹣12,合并同类项得﹣11x=2,系数化成1得x=﹣.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.四、解答题(每小题8分,共24分)20.有8筐白菜,以每筐25千克为标准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:回答下列问题:(1)这8筐白菜中最接近标准重量的这筐白菜重﹣0.5千克;(2)与标准重量比较,8筐白菜总计超过或不足多少千克?(3)若白菜每千克售价2.6元,则出售这8筐白菜可卖多少元?【考点】正数和负数.【分析】(1)根据绝对值的意义,绝对值越小越接近标准,可得答案;(2)根据有理数的加法运算,可得答案;(3)根据单价乘以数量等于总价,可得答案.【解答】解:(1)∵|﹣3|>|﹣2.5|>|﹣2|=|2|>|1.5|>|1|>|﹣0.5|,∴﹣0.5的最接近标准.故答案为:﹣0.5千克;(2)由题意,得1.5+(﹣3)+2+(﹣0.5)+1+(﹣2)+(﹣2)+(﹣2.5)=﹣5.5(千克).答:与标准重量比较,8筐白菜总计不足5.5千克;(3)由题意,得(25×8﹣5.5)×2.6=194.5×2.6=505.7(元).答:出售这8筐白菜可卖505.7元.【点评】本题考查了正数和负数,利用了绝对值的意义,有理数的加法运算.21.已知多项式+2xy2﹣4x3+1是六次四项式,单项式26x2n y5+m的次数与该多项式的次数相同,求(﹣m)3+2n的值.【考点】多项式;单项式.【分析】利用多项式与单项式的次数与系数的确定方法得出关于m与n的等式进而得出答案.【解答】解:由于多项式是六次四项式,所以m+1+2=6,解得:m=3,单项式26x2n y5﹣m应为26x2n y2,由题意可知:2n+2=6,解得:n=2,所以(﹣m)3+2n=(﹣3)3+2×2=﹣23.【点评】此题主要考查了多项式与单项式的次数,正确得出m,n的值是解题关键.22.关于x的方程x﹣2m=﹣3x+4与2﹣m=x的解互为相反数.求m的值.【考点】一元一次方程的解.【专题】计算题.【分析】将m看做已知数分别表示出两方程的解,根据互为相反数两数之和为0列出关于m的方程,求出方程的解即可得到m的值.【解答】解:x﹣2m=﹣3x+4,移项合并得:4x=2m+4,解得:x=m+1,根据题意得:m+1+2﹣m=0,解得:m=6.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.五、23.小华在课外书中看到这样一道题:计算:()+().她发现,这个算式反映的是前后两部分的和,而这两部分之间存在着某种关系,利用这种关系,她顺利地解答了这道题(1)前后两部分之间存在着什么关系?(2)先计算哪部分比较简便?并请计算比较简便的那部分.(3)利用(1)中的关系,直接写出另一部分的结果.(4)根据以上分析,求出原式的结果.【考点】有理数的除法.【分析】(1)根据倒数的定义可知:()与()互为倒数;(2)利用乘法的分配律可求得()的值;(3)根据倒数的定义求解即可;(4)最后利用加法法则求解即可.【解答】解:(1)前后两部分互为倒数;(2)先计算后一部分比较方便.()=()×36=9+3﹣14﹣1=﹣3;(3)因为前后两部分互为倒数,所以()=﹣;(4)根据以上分析,可知原式==﹣3.【点评】本题主要考查的是有理数的乘除运算,发现()与()互为倒数是解题的关键.六、列方程解应用题24.假期里,某学校组织部分学生参加社会实践活动,分乘大、小两辆车去农业科技园区体验生活,早晨6点钟出发,计划2小时到达;(1)若大车速度为80km/h,正好可以在规定时间到达,而小车速度为100km/h,如果两车同时到达,那么小车可以晚出发多少分钟?(2)若小车每小时能比大车多行30千米,且大车在规定时间到达,小车要提前30分钟到达,求大、小车速度.(3)若小车与大车同时以相同速度出发,但走了20分钟以后,发现有物品遗忘,小车准备返回取物品,若小车仍想与大车同时在规定时间到达,应提速到原来的多少倍?【考点】一元一次方程的应用.【专题】应用题.【分析】(1)计算出小车需要的时间,然后可得出可以晚出发的时间;(2)设大车速度为每小时x千米,则小车速度为每小时(x+30)千米,根据小车要提前30分钟到达,可得出方程,解出即可.(3)设原速度为a,小车提速到原来的m倍,根据仍按时到达可得出方程,解出即可.【解答】解:(1)总路程=80×2=160km,小车需要的时间为:=1.6(小时),故小车可以晚出发0.4小时,即24分钟,(2)设大车速度为每小时x千米,则2x=1.5(x+30),解得x=90,即大车速度为每小时90千米,小车速度为每小时120千米.(3)设原速度为a,小车提速到原来的m倍,根据题意得:a+2a=(2﹣)ma,解得:m=1.4,答:应提速到原来的1.4倍.【点评】本题考查了一元一次方程的应用,属于行程问题,解答本题的关键是仔细审题,找到等量关系,利用方程思想解答.。
七年级上册数学期中考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟注意事项:1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分。
笞卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第I卷时,选出每小题答案后,把答案填写在答题卡上对应题目的位置,填空题填写在答题卡相应的位置写在本试卷上无效。
3.回答第II卷时,将答案写在第II卷答题卡上。
4.考试结束后,将本试卷和答题卡一并交回。
第I卷一、选择题(每题只有一个正确选项,每小题3分,满分36分)1.将“1410000000”用科学记数法表示正确的是()A.14.1×108B.1.41×109C.0.141×1010D.1.41×10102.下列各对数中,数值相等的是()A.﹣(﹣3)2与﹣(2)3B.﹣32与(﹣3)2C.﹣3×23与﹣32×2D.﹣27与(﹣2)73.下列表示数轴的方法正确的是()A.B.C.D.4.质检员抽查某种零件的质量,超过规定长度记为正数,短于规定长度记为负数,检查结果如下:第一个为0.13毫米,第二个为﹣0.12毫米,第三个为﹣0.15毫米,第四个为0.16毫米,则质量最差的零件是()A.第一个B.第二个C.第三个D.第四个5.下列有理数大小关系判断正确的是()A.﹣(﹣)>﹣|﹣|B.0>|﹣10|C.|﹣3|<|+3|D.﹣1>﹣0.016.下列说法正确的有()A.是整式B.是单项式C.不是整式D.是多项式7.如果a表示一个任意有理数,那么下面说法正确的是()A.﹣a是负数B.|a|一定是正数C.|a|一定不是负数D.|a|一定是负数8.把数轴上表示2的点移动5个单位后,所得的对应点表示的数是()A.7B.﹣3C.7或﹣3D.不能确定9.如图所示,点在数轴上,则将m、n、0、﹣m、﹣n从小到大排列正确的是()A.﹣m<﹣n<0<m<n B.m<n<0<﹣m<﹣nC.﹣n<﹣m<0<m<n D.m<n<0<﹣n<﹣m 10.如图,长为y(cm),宽为x(cm)的大长方形被分割为7小块,除阴影A,B外,其余5块是形状、大小完全相同的小长方形,其较短的边长为4cm,下列说法中正确的有()①小长方形的较长边为(y﹣12)cm;②阴影A的较短边和阴影B的较短边之和为(x﹣y+4)cm;③若x为定值,则阴影A和阴影B的周长和为定值;④当x=20时,阴影A和阴影B的面积和为定值.A.1个B.2个C.3个D.4个二、填空题(6小题,每题3分,共18分)11.笔记本的单价是x元,圆珠笔的单价是y元,买4本笔记本和2支圆珠笔共需元.12.2024的倒数是.13.单项式的系数是14.若关于a,b的代数式﹣3a3b x与9a y b是同类项,则x y的值是15.已知x与y互为相反数,m与n互为倒数,且|a|=3,则=.16.已知有理数a≠1,我们把称为a的差倒数,如:2的差倒数是=﹣1,﹣1的差倒数是=如果a1=﹣2,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数…依此类推,那么a1+a2+…+a100的值是第II卷七年级上册数学期中模拟考试试卷人教版2024—2025学年七年级上册姓名:____________ 学号:____________准考证号:___________ 12345678910题号答案11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17.计算(1);(2).18.先化简,再求值:a+2(5a﹣3b)﹣3(a﹣3b),其中a=,b=﹣2.19.有理数a、b、c在数轴上的位置如图所示:(1)比较﹣a、b、c的大小(用“<”连接);(2)化简|c﹣b|﹣|b﹣a|+|a+c|.20.足球比赛中,根据场上攻守形势,守门员会在球门前来回跑动.如果以球门线为基准,向前跑记作正数,返回则记作负数,一段时间内,某守门员的跑动情况记录如下(单位:m)+10,﹣2,+5,﹣6,+12,﹣9,+4,﹣14(假定开始计时时,守门员正好在球门线上).(1)守门员最后是否回到了球门线上?(2)守门员在这段时间内共跑了多少米?(3)如果守门员离开球门线的距离超过10m(不包括10m),那么对方球员挑射极有可能破门.请问在这段时间内,对方球员有几次挑射破门的机会?21.为了加强公民的节水意识,合理利用水资源,某市采取价格调控手段以达到节水的目的,如表是该市自来水收费价格的价目表(注:水费按月结算)每月用水量单价不超过6立方米的部分2元/立方米超过6立方米但不超过10立方米的部分4元/立方米超过10立方米的部分8元/立方米(1)若某户居民2月份用水4立方米,则应缴纳水费元.(2)若某户居民3月份用水a(6<a<10)立方米,则该用户3月份应缴纳水费多少元(用含a的代数式表示,并化成最简形式)?(3)若某户居民4,5月份共用水15立方米(5月份用水量多于4月份),设4月份用水x立方米,求该户居民4,5月份共缴纳水费多少元.(用含x的代数式表示,并化成最简形式)22.有四个数,第一个数是a2+b,第二个数比第一个数的2倍少a2,第三个数是第一个数与第二个数的差的3倍,第四个数比第一个数少﹣2b,若第二个数用x表示,第三个数用y表示,第四个数用z表示.(1)用a,b分别表示x,y,z三个数;(2)若第一个数的值是3时,求这四个数的和;(3)已知m,n为常数,且mx+2ny﹣3z﹣4的结果与a,b无关,求m,n的值.23.数学中,运用整体思想方法在求代数式的值中非常重要,例如:已知,a2+2a=3,则代数式2a2+4a+1=2(a2+2a)+1=2×3+1=7.请你根据以上材料解答以下问题:(1)若a2﹣2a=2,则2a2﹣4a=;(2)已知a﹣b=5,b﹣c=3,求代数式(a﹣c)2+3a﹣3c的值;(3)当x=﹣1,y=2时,代数式ax2y﹣bxy2﹣1的值为5,则当x=1,y=﹣2时,求代数式ax2y﹣bxy2﹣1的值.24.两个边长分别为a和b的正方形按如图1放置,记未叠合部分(阴影)的面积为S1.在图1大正方形的右下角再摆放一个边长为b的小正方形(如图2),记两个小正方形叠合部分(阴影)的面积S2.(1)用含a,b的代数式分别表示S1,S2.(2)若a=5,b=3,求S1+S2的值.(3)若S1+S2=64,求图3中阴影部分的面积S3.25.已知:在一条东西向的双轨铁路上迎面驶来一快一慢两列火车,快车长AB=2(单位长度),慢车长CD=4(单位长度),设正在行驶途中的某一时刻,如图,以两车之间的某点O为原点,取向右方向为正方向画数轴,此时快车头A在数轴上表示的数是a,慢车头C在数轴上表示的数是b.若快车AB以6个单位长度/秒的速度向右匀速继续行驶,同时慢车CD以2个单位长度/秒的速度向左匀速继续行驶,且|a+8|与(b﹣16)2互为相反数.(1)求此时刻快车头A与慢车头C之间相距多少单位长度?(2)从此时刻开始算起,问再行驶多少秒钟两列火车行驶到车头AC相距8个单位长度?(3)此时在快车AB上有一位爱动脑筋的七年级学生乘客P,他发现行驶中有一段时间t秒钟,他的位置P到两列火车头A、C的距离和加上到两列火车尾B、D的距离和是一个不变的值(即P A+PC+PB+PD为定值).你认为学生P发现的这一结论是否正确?若正确,求出这个时间及定值;若不正确,请说明理由.。
七年级数学期中测试卷(二)(满分:100分)一、选择题(每小题3分,共30分) 1.3-的相反数是( )A .3-B . 13-C .3D .132.下列四个数中,最大的数是( ) A .(2)-+B . 1--C . 2(1)-D . 03.若(2)3x =-⨯,则x 的倒数是( ) A .16-B .16C . 6-D . 64.下列说法中正确的是( )A .近似数0.720有两个有效数字B .近似数3.6万精确到万位C .近似数2.10精确到十分位 D. 近似数35.0810⨯有三个有效数字 5.下列说法:①相反数等于它本身的数只有0;②倒数等于它本身的数只有1;③绝对值等于它本身的数只有0;④平方等于它本身的数只有1;其中错误的有( ) A .1个B .2个C .3个D .4个6.下列各组中,是同类项的是( )A .222x y xy -和B .22x y x z 和 C .24mn nm 和 D .ab abc -和7.化简:()a b a b ++-的结果是( )A.22a b +B.2bC.2aD. 08.下列概念表述正确的是( ) A .单项式ab 的系数是0,次数是2B .224,3,5435a b ab a b ab --+-是多项式的项 C .单项式3232a b -的系数是2-,次数是5 D .12xy -是二次二项式 9.若x x y xy 52,00+<<-则且等于( )A .7xB . 3y -C . 3x -D . 3x 10.多项式2213383x kxy y xy --+-合并同类项后不含xy 项,则k 的值是( ) A .13B .16C .19D .0二、填空题(每小题2分,共20分)11.如果+20%表示增加20%,那么-6%表示__________________12.地球离太阳约有一亿五千万千米,一亿五千万用科学记数法表示为______________ 13.多项式3232578x xy y x y --+按x 的降幂排列为______________________ 14.已知教室里座位的行数是m ,并且座位的行数是每行座位的23,则教室里总共的座位是_______________ 15.32422()93-÷⨯-=_______ 16.已知有理数b 120110a a b -+-=、满足 ,那么ab =________ 17.已知有理数a 、b 在数轴上的位置如图所示,化简a b b a +--的结果是_________18.已知一个两位数M 的个位数字是a ,十位数字是b ,交换这个两位数的十位上的数与个位上的数的位置,所得的新数记为N ,则M -N=_________________ 19.按一定规律排列的一列数依次为111111,,,,,, (2310152635)---按此规律排列下去,这列数中第七个数是______________20.有两组数,第一组:30.25,1,34--,第二组数:430.35,,510--,从这两组数中各取一个数,将它们相乘,那么所有这样的乘积的总和是_____________三.解答题:21.计算(每小题3分,共18分)①(-8)+10+2+(-1) ② )75.1(6.0)2131(215-÷⨯-⨯-③ 322(10)[(4)(13)2]-+---⨯ ④)24()836143()31(322-⨯+++-⨯-⑤)2()35(a b b a a -+-- ⑥)3(2)]25([52222x x x x x x ---++·· ·ba 017题图22.(每小题5分,共10分)先化简,再求值(1)2213[(33)][2(44)]3,3y x xy y x xy x y ----+-==,其中(2)已知11323()2()32m n mn n mn mn m +=-=--+-,,求的值23.(本题6分)甲、乙两家超市以相同的价格出售同样的商品,但为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超过400元后,超过部分按原价七折优惠;在乙超市购买商品只按原价的八折优惠;设顾客累计购物x 元(400>x ) (1)用含x 的整式分别表示顾客在两家超市购买所付的费用。
2024-2025学年七年级数学上学期期中卷(长沙)(考试时间:120分钟 试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:人教版2024七年级上册第一至第四章。
5.难度系数:0.75。
一、选择题(本题共10小题,每小题3分,共30分)1.在一组数7-,p ,13-,0.10100100¼(每两个1中依次多一个0)中,有理数的个数是( )A .1B .2C .3D .42.2023年我国高校毕业生近1160万人,教育部等七部门拟联合开展促就业的“国聘行动”.数据“1160万”用科学记数法表示为( )A .81.1610´B .71.1610´C .611.610´D .80.11610´【答案】B【解析】1160万711600000 1.1610==´,故选B .3.手机移动支付给生活带来便捷.如图是王老师某日微信账单的收支明细(正数表示收入,负数表示支出,单位:元),王老师当天微信收支的最终结果是( )A .收入15元B .支出2元C .支出17元D .支出9元【答案】B【解析】15(8)(9)2+-+-=-(元),即张老师当天微信收支的最终结果是支出2元.故选B .4.下列各组数中,相等的一组是( )A .()2--与2--B .21-与()21-C .()32-与32-D .223与223æöç÷èø5.下列说法中,错误的是( )A .数字0是单项式B .22356x y y xy -+是四次三项式C .单项式2223x y p -的系数是23p -D .多项式332x x -+-的常数项是2【答案】D【解析】A 、数字0是单项式,故不符合题意;B 、22356x y y xy -+是四次三项式,故不符合题意;6.下列去括号中,正确的是( )A .()3232x x +-=-+B .()116322a b a b -=-C .()2222x x x x--=--D .()24386a a --=--7.有理数a b 、在数轴上的位置如图所示,则下列各式正确的是( )A .0ab >B .0a b +<C .0a b ->D .0b a ->8.若1x =时,式子39ax bx ++的值为4.则当1x =-时,式子39ax bx ++的值为( )A .14-B .4C .13D .14【答案】D【解析】因为1x =时,式子39ax bx ++的值为4,所以94a b ++=,所以5a b +=-,当1x =-时,39ax bx ++9a b =--+()9a b =-++59=--+()14=.故选D .9.由于受禽流感影响,某市2月份鸡的价格比1月份下降%a ,3月份比2月份下降%b ,已知1月份鸡的价格为24元/千克,设3月份鸡的价格为m 元/千克,则( )A .()241%%m a b =--B .()241%%m a b =-C .24%%m a b =--D .()()241%1%m a b =--【答案】D【解析】因为2月份鸡的价格比1月份下降%a ,1月份鸡的价格为24元/千克,所以2月份鸡的价格为()241%a -元,因为3月份比2月份下降%b ,所以3月份鸡的价格为()()241%1%a b --元,即()()241%1%m a b =--.故选D .10.如图,长方形ABCD 长为a ,宽为b ,若()123412S S S S ==+,则4S 等于( ),ab=1:2,二、填空题(本题共6小题,每小题3分,共18分)11.在数轴上,A ,B 两点之间的距离是5,若点A 表示的数是2,则点B 表示的数是__________.【答案】−3或7/7或-3【解析】根据数轴的特点分两种情况讨论:①当点B 在点A 的右边时,2+5=7;②当点B 在点A 的左边时,2-5=-3.所以点B 表示的数是-3或7.故答案为:-3或7.12.把3.1415926精确到百分位的近似值为__________.【答案】3.14【解析】把3.1415926精确到百分位的近似值为3.14,故答案为:3.14.1314.某种商品的原价每件a 元,第一次降价打“八折”,第二次降价又减10元.则两次降价后的售价为__________元.【答案】()0.810a -【解析】第一次降价打“八折”为0.8a 元,第二次降价又减10元为()0.810a -元,故答案为:()0.810a -元.15.如果a ,b 满足()2320a b ++-=,那么b a =__________.【答案】916.一个四位正整数n ,各数位上的数字均不为0,若其千位数字比百位数字大2,十位数字比个位数字小3,将n 的千位数字和百位数字去掉后得到一个两位数s ,将n 的十位数字和个位数字去掉后得到一个两位数t ,记()3s tF n +=,若()F n 为整数,则称数n 为“善雅数”,若“善雅数”n 满足101s t ++能被13整除,则n = .……同理可得当4,5,6,7b =时,d 不能为整数,所以2,6b d ==,所以24,33a b c d =+==-=,所以4236n =,故答案为:4236.三、解答题(本题共9小题,共72分,其中第17、18、19题各6分,第20、21题各8分,22、23题各9分,24、25题各10分)17.(6分)计算3125(2)|4|2æöéù´+----¸ç÷ëû.18.(6分)定义一种新的运算“⊕”,规则如下:3a b ab Å=-.(1)142æöÅ-=ç÷èø______;19.(6分)先化简,再求值:()()22222322a b ab a b ab a b -+---,其中2a =,1b =-.【解析】()()22222322a b ab a b ab a b-+---22222423a b ab a b ab a b+=-+--2ab =-,(3分)把2a =,1b =-代入得原式()221212=-´-=-´=-.(6分)20.(8分)如图所示:已知a b c ,,在数轴上的位置(1)化简:a b c b b a+--+-(2)若a 的绝对值的相反数是2b -,-的倒数是它本身,24c =,求()2a b c a b c -++-+-的值.【解析】(1)解:由数轴可得:0c b a <<<,所以0,0,0+>-<-<a b c b b a ,所以原式2a b c b b a a b c =++--+=-+.(4分)(2)因为a 的绝对值的相反数是2b -,-的倒数是它本身,24c =,0c <,所以2,1,2a b c ==-=-,所以2()2224149a b c a b c a b c a b c a b c -++-+-=-++--+=-++=---=-.(8分)21.(8分)李军大学毕业后返乡创业,成为一名电商老板,把村里农民的苹果放在网上销售,计划每天销售2000千克,实际每天的销售量与计划销售量相比有增减,超过计划量记为正,不足计划量记为负.下表是李军某一周苹果的销售情况:(1)李军该周销售苹果最多的一天比最少的一天多销售多少千克?(2)李军该周实际销售苹果的总量是多少千克?(3)若李军按5元/千克收购,按9.5元/千克进行苹果销售,运费及包装费等平均为2.5元/千克,则李军该周销售苹果一共收入多少元?【解析】(1)解:130-(-70)=200(千克)答:李军该周销售苹果最多的一天比最少的一天多200千克.(3分)(2)2000×7+30-50-70+130-20+50+110=14180(千克)答:李军该周实际销售苹果的总量是14180千克.(6分)(3)14180×(9.5-5-2.5)=28360(元).答:李军该周销售苹果一共收入28360元.(8分)22.(9分)如图,学校有一块长方形地皮,计划在白色扇形部分种植花卉,其余阴影部分种草皮.(1)用代数式表示图中阴影部分的面积;(2)当6a =,4b =时,草皮种植费用为6元每单位面积,求草皮的种植费用为多少?(π取3)23.(9分)已知关于x 的整式2332A x ax x =+-+,整式22422B x ax x =+-+,若a 是常数,且3A B -不含x 的一次项.(1)求a 的值;(2)若b 为整数,关于x 的一元一次方程230bx x +-=的解是整数,求5a b +的值.24.(10分)定义:若a+b=2,则称a与b是关于2的平衡数.(1)3与__________是关于2的平衡数,7﹣x与__________是关于2的平衡数.(填一个含x的代数式)(2)若a=x2﹣4x﹣1,b=x2﹣2(x2﹣2x﹣1)+1,判断a与b是否是关于2的平衡数,并说明理由.(3)若c=kx+1,d=x﹣3,且c与d是关于2的平衡数,若x为正整数,求非负整数k的值.【解析】(1)因为2﹣3=﹣1,所以3与﹣1是关于2的平衡数,因为2﹣(7﹣x)=2﹣7+x=x﹣5,所以7﹣x与x﹣5是关于2的平衡数,故答案为:﹣1,x﹣5;(2分)(2)a与b是关于2的平衡数,理由:因为a=x2﹣4x﹣1,b=x2﹣2(x2﹣2x﹣1)+1,所以a+b=(x2﹣4x﹣1)+[x2﹣2(x2﹣2x﹣1)+1]=x2﹣4x﹣1+x2﹣2(x2﹣2x﹣1)+1=x2﹣4x﹣1+x2﹣2x2+4x+2+1=2,所以a与b是关于2的平衡数;(6分)(3)因为c=kx+1,d=x﹣3,且c与d是关于2的平衡数,所以c+d=2,所以kx+1+x﹣3=2,所以(k+1)x=4,因为x为正整数,所以当x =1时,k +1=4,得k =3,当x =2时,k +1=2,得k =1,当x =4时,k +1=1,得k =0,所以非负整数k 的值为0或1或3.(10分)25.(10分)数轴上两点之间的距离等于相应两数差的绝对值,如2与3的距离可表示为231-=,2与3-的距离可表示为()23--.(1)数轴上表示3和8的两点之间的距离是__________;数轴上表示3-和9-的两点之间的距离是__________;(2)数轴上表示x 和2-的两点A 和B 之间的距离是__________;如果AB 4=,则x 为__________;(3)数a ,b ,c 在数轴上对应的位置如图所示,化简a c c b a b +-++-.(4)当代数式123x x x ++-+-取最小值时,x 的值为__________.【解析】(1)解:835-=,()396---=.故答案为:5,6;(2分)(2)解:数轴上表示x 和4-的两点A 和B 之间的距离是()22x x --=+,24x +=,则24x +=或24x +=,即2x =或6-.故答案为:2x +,2或6-;(4分)(3)解:由数轴可知,0a c +<,0c b +<,0a b ->,则|a c c b a b+-++-()()()a c cb a b =-++++-ac c b a b=--+++-0=;(8分)(4)解:代数式123x x x ++-+-的几何意义是:数轴上表示数x 的点到表示1-,2,3的三点的距离之和,显然只有当2x =时,距离之和才是最小,则123x x x ++-+-取最小值时,x 的值为2;故答案为:2.(10分)。
泗县2024-2025学年度第一学期七年级期中质量检测数学试卷考试时间:100分钟;总分:120分注意事项:1.答题前填写好自己的姓名、班级、考号等信息;2.请将答案正确填写在答题卷上。
一、单选题(每小题3分,共30分)1.的绝对值是()A.99B.C.D.2.由4个相同的小立方体搭成的几何体如图所示,则从上面看得到的图形是()A.B.C.D.3.如果a与b互为相反数,则下列各式不正确的是()A.B.C.D.4.已知有理数a、b在数轴上的位置如图所示,下列结论正确的是()A.B.C.D.5.用科学记数法表示为的数是()A.1888B.188.8C.0.001888D.188806.一个两位数,十位上的数字是a,个位上的数字是b,如果把十位上的数与个位上的数对调,所得的两位数是()A.B.C.D.7.今年10月14日泗县最低气温是16,温差是9,那么这一天的最高气温是()A.24B.25C.7D.208.已知代数式的值是9,那么代数式的值是()A.32B.33C.35D.369.下列图形不能围成正方体的是()A.B.C.D.10.用棋子摆出下列一组“□”字,按照这种方法摆下去,则摆第n个“□”字需用棋子枚数为()99-99-199199-a b+=0a b-=a b=a b=-a b>0ab<0b a->0a b+>31.88810⨯ba b a+10b a+10a b+℃℃℃℃℃℃21x x++2339x x++A .4nB .C .D .二、填空题(每小题3分,共24分)11.的相反数是________,倒数是________,绝对值是________。
12.次数是________。
13.比较大小:________。
14.在数轴上,如果A 点表示,那么与点A 距离4个长度单位的点表示的数是________。
15.若与是同类项,则________。
16.观察下面一列数,按规律在横线上填写适当的数,,,,,________。
一、选择题1.若8m x y 与36n x y 的和是单项式,则()3m n +的平方根为( ).A .4B .8C .±4D .±8 2.在代数式a 2+1,﹣3,x 2﹣2x ,π,1x 中,是整式的有( ) A .2个B .3个C .4个D .5个 3.若 3x m y 3 与﹣2x 2y n 是同类项,则( ) A .m=1,n=1 B .m=2,n=3 C .m=﹣2,n=3 D .m=3,n=2 4.如图,阴影部分的面积为( )A .228ab a π-B .222ab a π-C .22ab a π-D .224ab a π- 5.已知整数1234,,,a a a a ……满足下列条件:12132430,1,2,3a a a a a a a ==-+=-+=-+……,依次类推,则2019a 的值为( ) A .2018B .2018-C .1009-D .1009 6.下列同类项合并正确的是( )A .x 3+x 2=x 5B .2x ﹣3x =﹣1C .﹣a 2﹣2a 2=﹣a 2D .﹣y 3x 2+2x 2y 3=x 2y 3 7.下列说法中,①a - 一定是负数;② a -一定是正数;③倒数等于它本身的数是±1;④一个数的平方等于它本身的数是1;⑤两个数的差一定小于被减数;⑥如果两个数的和为正数,那么这两个数中至少有一个正数正确的有( )A .2个B .3个C .4个D .5个8.在数轴上距原点4个单位长度的点所表示的数是( ).A .4B .-4C .4或-4D .2或-2 9.下列各组数中,互为相反数的是( ) A .(﹣3)2和﹣32 B .(﹣3)2和32 C .(﹣2)3和﹣23 D .|﹣2|3和|﹣23| 10.一名粗心的同学在进行加法运算时,将“-5”错写成“+5”进行运算,这样他得到的结果比正确答案( )A .少5B .少10C .多5D .多10 11.下列分数不能化成有限小数的是( ) A .625 B .324 C .412 D .11612.下列计算结果正确的是( )A .-3-7=-3+7=4B .4.5-6.8=6.8-4.5=2.3C .-2-13⎛⎫- ⎪⎝⎭=-2+13=-213 D .-3-12⎛⎫-⎪⎝⎭=-3+12=-212 二、填空题13.如图是用棋子摆成的“上”字:如果按照以下规律继续摆下去,第n 个“上”字需用______枚棋子.14.已知|a|=-a ,bb =-1,|c|=c ,化简 |a+b| + |a-c| - |b-c| = _________.15.已知()()2420b k k a k =--≠,用含有b 、k 的代数式表示a ,则a =______.16.在x y +,0,21>,2a b -,210x +=中,代数式有______个.17.截至格林尼治标准时间2020年6月7日10时,全球累计报告新冠肺炎确诊病例达7000000例;其中累计死亡病例超过40万例,数据7000000科学记数法表示为_____. 18.计算:(1)(-0.8)+1.2+(-0.7)+(-2.1)=[________]+1.2=________+1.2=____;(2)32.5+46+(-22.5) =[____]+46=_____+46=____.19.若两个不相等的数互为相反数,则两数之商为____.20.在一次区级数学竞赛中,某校8名参赛学生的成绩与全区参赛学生平均成绩80分的差分别为(单位:分):5,2-,8,14,7,5,9,6-,则该校8名参赛学生的平均成绩是______ .三、解答题21.计算(1)1140336177⎛⎫⎛⎫-+-+-- ⎪ ⎪⎝⎭⎝⎭(2)()()341110.5123⎡⎤---⨯⨯--⎣⎦22.某儿童自行车厂计划一周生产儿童自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天的生产量与计划每天的生产量有出入.实际情况如下表(超产记为正,减产记为负) 星期 一 二 三 四 五 六 日 增减 5+ 2- 4- 13+ 10- 16+ 9-(2)这周生产量最多的一天比生产量最少的一天多生产多少辆?(3)该厂实行每周计件工资制,每生产一辆可得50元,若超额完成任务,则超出部分每辆另奖12元;少生产一辆扣20元,那么该工厂这周的工资总额是多少元?23.计算(1)28()5(0.4)5+----;(2)1571361236⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭; (3)2336()(2)()(6)575⨯---⨯-+-⨯; (4)42019213(20.2)(2)(1)5⎡⎤---+-÷⨯---⎢⎥⎣⎦; (5)24512.5()(0.1)(2)(2)10⎡⎤÷-⨯---+-⎣⎦. 24.试写出一个含a 的代数式,使a 不论取何值,这个代数式的值不大于1.25.已知,,a b c 在数轴上的位置如图所示,解答下列问题.(1)化简:||||||a b c b b a +--+-;(2)若a 的绝对值的相反数是2,b --的倒数是它本身,24c =,求2()a b c a b c -++-+-的值.26.当0.2x =-时,求代数式22235735x x x x -+-+-的值。
2024-2025学年七年级数学上学期期中模拟卷(湖北省卷专用)(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:人教版第1章有理数+第2章有理数的运算+第3章代数式+第4章整式的加减。
5.难度系数:0.72。
第一部分(选择题共30分)一、选择题(本大题共10小题,每小题3分,满分30分.在每个小题给出的四个选项中,只有一项符合题目要求的)1.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数.若收入80元记作+80元,则﹣60元表示( )A.收入60元B.收入20元C.支出60元D.支出20元2.下列四个数中,是负数的是( )A.|﹣1|B.﹣|﹣4| C.﹣(﹣3)D.(﹣2)23.下列说法正确的是( )A.―2xy5的系数是﹣2B.x2+x﹣1的常数项为1C.22ab3的次数是6次D.x﹣5x2+7是二次三项式4.2023年4月26日,成都市统计局、国家统计局成都调查队联合发布2023年第一季度成都市经济运行情况.数据显示,一季度全市实现地区生产总值5266.82亿元,同比增长5.3%.将数据“5266.82亿”用科学记数法表示为( )A .5266.82×108B .5.26682×109C .5.26682×1010D .5.26682×10115.下列运算中,正确的是( )A .3a +2b =5abB .2x 2+2x 3=4x 5C .3a 2b ﹣3ba 2=0D .5a 2b ﹣4a 2b =16.在数轴上,a 所表示的点在b 所表示的点的左边,且|a |=3,b 2=1,则a ﹣b 的值为( )A .﹣2B .﹣3C .﹣4或﹣2D .﹣2或47.下列说法:①平方等于4的数是±2;②若a ,b 互为相反数,则b a=―1;③若|﹣a |=a ,则(﹣a )3<0;④若ab ≠0,则a |a|+b |b|的取值在0,1,2,﹣2这4个数中,不能得到的是0,其中正确的个数为( )A .0个B .1个C .2个D .3个8.如图,把半径为1的圆放到数轴上,圆上一点A 与表示﹣1的点重合,圆沿着数轴滚动2周,此时点A 表示的数是( )A .﹣1+4πB .﹣1+2πC .﹣1+4π或﹣1﹣4πD .﹣1+2π或﹣1﹣2π9.如图,把四张形状大小完全相同的小长方形卡片(如图1),不重叠地放在一个长为a cm 、宽为b cm 长方形内(如图2),未被卡片覆盖的部分用阴影表示,则图2中两块阴影部分的周长和是( )A .4b cmB .4a cmC .2(a +b )cmD .4(a ﹣b )cm10.如图是一组有规律的图案,它们是由边长相同的灰白两种颜色的小正方形组成的,按照这样的规律,若组成的图案中有2025个灰色小正方形,则这个图案是( )A .第505个B .第506个C .第507个D .第508个第二部分(非选择题 共90分)二、填空题(本大题共5小题,每小题3分,满分15分)11.若x 与3互为相反数,则2x +4等于 .12.若x ,y 为有理数,且|x +2|+(y ﹣2)2=0,则(x y )2023的值为 .13.定义一种新运算:a *b =a 2﹣b +ab .例如:(﹣1)*3=(﹣1)2﹣3+(﹣1)×3=﹣5,则4*[2*(﹣3)]= .14.当x =2时,ax 3﹣bx +3的值为15,那么当x =﹣2时,ax 3﹣bx +3的值为 .15.如图是一个运算程序的示意图,若开始输入的x 的值为81,我们看到第一次输出的结果为27,第二次输出的结果为9…第2024次输出的结果为 .三、解答题(本大题共9小题,满分75分.解答应写出文字说明,证明过程或演算步骤)16.(每小题4分,共8分)计算:(1)―4+|5―8|+24÷(―3)×13; (2)―14―(1―0.5)×13×[2―(―3)2].17.(每小题4分,共8分)计算:(1)3(4x 2﹣3x +2)﹣2(1﹣4x 2+x ); (2)4y 2﹣[3y ﹣(3﹣2y )+2y 2].18.(6分)先化简,再求值:x2﹣3(2x2﹣4y)+2(x2﹣y),其中x,y满足|x+2|+(y﹣3)2=0.19.(8分)已知a2=4,|b|=3.(1)已知ba<0,求a+b的值;(2)|a+b|=﹣(a+b),求a﹣b的值.20.(8分)已知M=2x2+ax﹣5y+b,N=bx2―32x―52y﹣3,其中a,b为常数.(1)求整式M﹣2N;(2)若整式M﹣2N的值与x的取值无关,求(a+2M)﹣(2b+4N)的值.21.(8分)随着网络直播的兴起,凉山州“建档立卡户”刘师傅在帮扶队员的指导下做起了“主播”,把自家的石榴放到网上销售.他原计划每天卖100千克石榴,但由于种种原因,实际每天的销售量与计划量相比有出入.如表是某周的销售情况(超额记为正,不足记为负,单位:千克):星期一三三四五六日与计划量的差值+5﹣2﹣5+14﹣8+22﹣6(1)根据记录的数据可知前三天共卖出 千克.(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售多少千克?(3)若石榴每千克按10元出售,每千克石榴的运费平均3元,那么刘师傅本周出售石榴的纯收入一共多少元?22.(8分)已知有理数a,b,c在数轴上的位置如图所示且|a|=|b|,(1)求值:a+b= ;(2)分别判断以下式子的符号(填“>”或“<”或“=”):b+c 0;a﹣c 0;ac 0;(3)化简:﹣|2c|+|﹣b|+|c﹣a|+|b﹣c|.23.(9分)定义一种新的运算⊗:已知a,b为有理数,规定a⊗b=ab﹣b+1.(1)计算(﹣2)⊗3的值.(2)已知x2⊗a与3⊗x2的差中不含x2项,求a的值.(3)如图,数轴上有三点A,B,C,点A在数轴上表示的数是(﹣6)⊗1,点C在数轴上表示的数是1⊗(﹣8)点B在点A的右侧,距点A两个单位长度.若点B以每秒3个单位长度的速度向右匀速运动,8同时点C以每秒1个单位长度的速度向左匀速运动,问运动多少秒时,BC=4?24.(12分)某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:①买一套西装送一条领带;②西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条(x>20):(1)若该客户按方案①购买,需付款 元(用含x的代数式表示);(答案写在下面)若该客户按方案②购买,需付款 元(用含x的代数式表示);(答案写在下面)(2)若x=30,通过计算说明此时按哪种方案购买较为合算?(3)当x=30。
七年级上数学期中考试试卷(二)
一、填得圆圆满满(每小题3分,共30分)
1.-1-(-3)= 。
2.-0.5的绝对值是 ,相反数是 ,倒数是 。
3.单项式22
xy π的系数是 ,次数是 。
4.若逆时针旋转90o 记作+1,则-2表示 。
5.如果a 、b 互为相反数,x 、y 互为倒数,那么(a+b )x y -xy+a 2-b 2
= 。
6.在数轴上,点A 表示数-1,距A 点2.5个单位长度的点表示的数是 。
7.灾难无情人有情!某次在抗震救灾文艺汇演中,各界艺人和人士为地震灾区人民捐款捐物达349.8万元。
将这个数字用科学计数法表示并保留三个有效数字为 元。
8.长方形的长是a 米,宽比长的2倍少b 米,则宽为 米。
9.若m 、n 满足2)3(2++-n m =0,则.__________=m n
10.某厂10月份的产值是125万元,比3月份的产值的3倍少13万元,若设3月份的产值为x 万元,则可列出的方程为
二、做出你的选择(每小题3分,共30分)
11.如果向东走2km 记作+2km ,那么-3km 表示( ).
A.向东走3km
B.向南走3km
C.向西走3km
D.向北走3km
12.下列说法正确的是( C )
A.x 的系数为0
B. a
1
是一项式 C.1是单项式 D.-4x 系数是4 13.下列各组数中是同类项的是( )
A.4x 和4y
B.4xy 2和4xy
C.4xy 2和-8x 2y
D.-4xy 2和4y 2
x
14.下列各组数中,互为相反数的有( ) ①2)2(----和 ②221)1(--和 ③2332和 ④332)2(--和
A.④
B.①②
C.①②③
D.①②④
15.若a+b<0,ab<0,则下列说法正确的是( )
A.a 、b 同号
B.a 、b 异号且负数的绝对值较大
C.a 、b 异号且正数的绝对值较大
D.以上均有可能
16.下列计算正确的是( )
A.4x-9x+6x=-x
B.xy-2xy=3xy
C.x 3-x 2=x
D.21a-21
a=0 17.数轴上的点M 对应的数是-2,那么将点M 向右移动4个单位长度,此时点M 表示的数是( )
A. -6
B. 2
C. -6或2
D.都不正确
18.若x 的相反数是3,5y =,则x+y 的值为( ).
A.-8
B. 2
C. 8或-2
D.-8或2
19.若 3x=6,2y=4则5x+4y 的值为( )
A.18
B.15
C.9
D. 6
20.若-3xy 2m 与5x 2n-3y 8的和是单项式,则m 、n 的值分别是( )
A.m =2,n =2
B.m =4,n =1
C.m =4,n =2
D.m =2,n =3
三、用心解答(共60分)
21.(16分)计算
(1) -26-(-15) (2)(+7)+(-4)-(-3)-14
(3)(-3)×31
÷(-2)×(-21) (4)-(3-5)+32
×(-3)
22.解方程(本题8分)
(1)x+3x= -12 (2)3x+7=32-2x
23.(6分)将下列各数在数轴上表示出来,并用“<”连接:
-22, -(-1), 0,3- , -2.5
24.(6分)若a 是绝对值最小的数,b 是最大的负整数。
先化简,再求值:
)33()2(22222b ab a b ab a ++-+--
25.(6分)列方程解应用题。
把一批图书分给某班学生阅读,如果每人分3本,则剩余20本,如果每人分4本,则还缺25本。
这个班有多少名学生?
26.(9分)出租车司机小李某天上午营运时是在东西走向的大街上进行的,如果规定向东为正,向西为负,他这天上午所接六位乘客的行车里程(单位:km)如下:-2,+5,-1,+1,-6,-2,问:
(1)将最后一位乘客送到目的地时,小李在什么位置?
(2)若汽车耗油量为0.2L/km(升/千米),这天上午小李接送乘客,出租车共耗油多少升?(3)若出租车起步价为8元,起步里程为3km(包括3km),超过部分每千米1.2元,问小李这天上午共得车费多少元?
27.(9分)从2开始,连续的偶数相加,它们和的情况如下表:
(1)若n=8时,则 S的值为_____________.
(2)根据表中的规律猜想:用n的式子表示S的公式为:
S=2+4+6+8+…+2n=____________.
(3)根据上题的规律计算2+4+6+8+10+…+98+100的值.
试题答案
一填得圆圆满满(每小题3分,共30分)
1、2
2、0.5 ,0.5,-2
3、2π
,3 4、顺时针旋转180o
5、-1
6、-3.5或1.5
7、3.50×106
8、2a-b 9、9 10、3x-13=125
二.做出你的选择(每小题3分,共30分)
11、C 12、C 13、D 14、B 15、D 16、D 17、B 18、
D 19、A 20、C
三、用心解答(共60分)
21、(16分)(1)-11 (2)8 (3)-4
1 (4)-25 22、(8分)(1)x=-3 (2)x=25
23、(6分)-22<-2.5<0<-(-1)<3-
24、(6分)解:由题意,得 a =0,b =-1
原式=2a 2-4ab -2b 2-a 2+3ab +3b 2
=a 2-ab +b 2
当a =0,b =-1时, 原式=(-1)2=1
25、(6分)这个班有45名学生
26、(9分)解:(1)-2+5-1+1-6-2=-5
答:小李在起始的西5km 的位置 (2)261152-+-+++-+++-
=2+5+1+1+6+2=17 17×0,2=3.4
答:出租车共耗油3.4升
(3)6×8+(2+3)×1.2=54
答:小李这天上午共得车费54元。
27、(9分)(1)72; (2)(1)n n +;
(3)2+4+6+8+10+…+98+100=50×51=2550。