江苏省靖江市2017_2018学年七年级数学下学期期中试题(无答案)苏科版
- 格式:doc
- 大小:178.00 KB
- 文档页数:5
七年级下册数学期中考试卷及答案2017(苏科版)一、选择题(本大题共10小题,每小题2分,共20分)1.如图所示,∠1和∠2是对顶角的是()2.计算的结果是( )A.2B.±2C.-2D.43.实数-2,0.3,,,-π中,无理数的个数有( )A.1个B.2个C.3个D.4个4.我们常用如图所示的方法过直线外一点画已知直线的平行线,其依据是( )A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.两直线平行,同位角相等5.估计的值( )A.在3到4之间B.在4到5之间C.在5到6之间D.在6到7之间6.方程组的解为,则被遮盖的两个数分别为( )A.5,2B.1,3C.2,3D.4,27.把点(2,一3)先向右平移3个单位长度,再向下平移2个单位长度得到的点的坐标是( )A.(5,-1)B.(-1,-5)C.(5,-5)D.(-1,-1)8.若点P是第二象限内的点,且点P到x轴的距离是4,到y轴的距离是3,则点P的坐标是()A.(-4,3)B.(4,-3)C.(-3,4)D.(3,-4)9.甲、乙两种商品原来的单价和为100元,因市场变化,甲商品降价10%,乙商品提价40%,调价后两种商品的单价和比原来的单价和提高了20%.若设甲、乙两种商品原来的单价分别为x元、y元,则下列方程组正确的是()A.B.C.D.10.如图,数轴上表示1、的对应点分别为点A、点B.若点A是BC的中点,则点C所表示的数为()A.B.C.D.二、填空题(本大题共8小题,每小题3分,共24分)11.如果用(7,1)表示七年级一班,那么八年级五班可表示成.12.计算:=.13.把命题“等角的补角相等”写成“如果……,那么……”形式为:.14.已知是方程的解,则的值为.15.一个正数的两个平方根分别为a+3和2a+3,则a= .16.已知2a+3b+4=0,则.17.已知点A(4,3),AB∥y轴,且AB=3,则B点的坐标为.18.三个同学对问题“若方程组的解是,求方程组的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替换的方法来解决”.参考他们的讨论,你认为这个题目的解应该是.三、解答题(本大题共8小题,共56分)19.(本题满分8分)(1)解方程:(2)解方程组:20.(本题满分6分)如图,AB∥CD,BE平分∠ABC,∠DCB=140°,求∠ABD和∠EDC的度数.21.(本题满分6分)在y=中,当时,y=;时,y=;时,y=,求的值.22.(本题满分6分)如图,直线AB是某天然气公司的主输气管道,点C、D是在AB异侧的两个小区,现在主输气管道上寻找支管道连接点,铺设管道向两个小区输气.有以下两个方案:方案一:只取一个连接点P,使得向两个小区铺设的支管道总长度最短;方案二:取两个连接点M和N,使得点M到C小区铺设的支管道最短,使得点N到D小区铺设的管道最短.(1)在图中标出点P、M、N的位置,保留画图痕迹;(2)设方案一中铺设的支管道总长度为L1,方案二中铺设的支管道总长度为L2,则L1与L2的大小关系为:L1L2(填“>”、“<”或“=”).23.(本题满分6分)已知:如图AB⊥BC,BC⊥CD且∠1=∠2,试说明:BE∥CF.解:∵AB⊥BC,BC⊥CD(已知)∴==90°()∵∠1=∠2(已知)∴=(等式性质)∴BE∥CF()24.(本题满分8分)与在平面直角坐标系中的位置如图.⑴分别写出下列各点的坐标:;;;⑵说明由经过怎样的平移得到.⑶若点(,)是内部一点,则平移后内的对应点的坐标为;⑷求的面积.25.(本题满分7分)如图,DE⊥AC于点E,BF⊥AC于点F,∠1+∠2=180°,试判断∠AGF与∠ABC的大小关系,并说明理由.26.(本题满分9分)某商场第1次用39万元购进A、B两种商品,销售完后获得利润6万元,它们的进价和售价如下表:(总利润=单件利润×销售量)(1)该商场第1次购进A、B两种商品各多少件(2)商场第2次以原价购进A、B两种商品,购进B商品的件数不变,而购进A商品的件数是第1次的2倍,A商品按原价销售,而B 商品打折销售,若两种商品销售完毕,要使得第2次经营活动获得利润等于72000元,则B种商品是打几折销售的【参考答案】一、选择题题号12345678910答案CABACDCCBD二、填空题11、(8,5)12、13、如果两个角相等,那么这两个角的补角相等.或(如果两个角是相等的两个角的补角,那么这两个角相等.)14、3 15、-216、1317、(4,6)或(4,0)18、三、解答题19、(1)解:x-1=±2…………………………………………………………(2分) ∴x=3或-1…………………………………………………………(4分)。
2017~2018学年度第二学期期中考试七年级数学试题(考试时间:120分钟 满分:150分)请注意:1.本试卷分选择题和非选择题两个部分.2.所有试题的答案均填写在答题卡上,答案写在试卷上无效.一、选择题(每小题3分,共18分)1.如图所示的图案是一些汽车的车标,可以看作由“基本图案”经过平移得到的是A .B .C .D .2.下列每组数分别是三根木棒的长度,能用它们搭成三角形的是 A .2cm ,2cm ,4cm B .3cm ,9cm ,5cm C .5cm ,12cm ,13cmD .6cm ,10cm ,4cm3.下列运算中,正确的是A .2224ab a b =() B .2242a a a += C .236•a a a =D .632a a a ÷=4.若a b <,则下列各式一定成立的是 A .+3+3a b > B .22ab>C .11a b --<D .33a b > 5.下列各式从左边到右边的变形中,是因式分解的是 A .a x y ax ay +=+()B .24444x x x x +=-+-() C .()()224x x x +-=-2D .2105521x x x x -=-()6.已知方程组5354x y ax y +=⎧⎨+=⎩和2551x y x by -=⎧⎨+=⎩有相同的解,则a ,b 的值为A .⎩⎨⎧==21b aB .⎩⎨⎧=-=26b aC .⎩⎨⎧==214b a D .⎩⎨⎧-==614b a二、填空题(每空3分,共30分) 7.23-= ▲ .8.将0.00000034用科学记数法表示为 ▲ .9.一个多边形的内角和等于1080°,则这个多边形是 ▲ 边形. 10.若2,3m n a a ==,则m na -= ▲ .11.如果32x y =⎧⎨=⎩是方程632x by +=的解,则b = ▲ .12.若()()2153x mx x x n +-=++,则mn = ▲ . 13.计算:()20182017133⎛⎫-⨯= ⎪⎝⎭▲ .14.若3=+b a ,2=ab ,则=+22b a ▲ .15.已知关于x 的不等式()224m x m -->的解集为x <2,则m 的取值范围是 ▲ . 16.已知方程组1122a x y b a x y b +=⎧⎨+=⎩的解是24x y =⎧⎨=⎩,则关于x 、y 的方程组1112222222a x y a b a x y a b -=+⎧⎨-=+⎩的解是▲ .三、解答题(本大题共102分)17.(10分)(1)计算:()-201+232π⎛⎫---- ⎪⎝⎭;(2)先化简,再求值:()()()2333x y x y x y ++-﹣,其中3,2x y ==-.18.(10分)把下列各式因式分解:(1)29x - (2)32232a b a b ab +-19.(10分)解方程组:(1) 215x y x y +=⎧⎨-=-⎩ (2)22123x y x y +=⎧⎪⎨+=⎪⎩20.(10分)解下列不等式,并把它们的解集在数轴上表示出来................. (1)()2134x x +-> (2)63421---x x >3121. (10分)(1)求x 的值:x 2·x -34·3281=+x;(2)已知2310x x --=,求代数式()()()2131+2+5x x x -+-的值.22.(8分)如图,D 、E 、F 分别在△ABC 的三条边上,DE ∥AB ,∠1+∠2=180°. (1)试说明:DF ∥AC;(2)若∠1=110°,DF 平分∠BDE,求∠C 的度数.23.(8分)观察下列各式:21543⨯+=…………① 23745⨯+=…………② 25947⨯+=…………③……探索以上式子的规律: (1)试写出第6个等式;(2)试写出第n 个等式(用含n 的式子表示),并用你所学的知识说明第n 个等式成立.24. (10分)用二元一次方程组解决问题:某商场按定价销售某种商品时,每件可获利35元;按定价的八折销售该商品5件与将定价降低20元销售该商品8件所获得的利润相等.求该商品每件的进价、定价各是多少元?25. (12分)仔细阅读下列解题过程: 若2222690a ab b b ++-+=,求a 、b 的值. 解:∵2222690a ab b b ++-+=∴2222690a ab b b b +++-+= ∴()()2230a b b ++-= ∴+0,30a b b =-= ∴3,3a b =-=根据以上解题过程,试探究下列问题:(1)已知2222210x xy y y -+-+=,求2x y +的值; (2)已知2254210a b ab b +--+=,求a 、b 的值; (3)若=+4m n ,28200mn t t +-+=,求2m tn -的值.26.(14分)已知关于x 、y 的二元一次方程组23221x y k x y k-=-⎧⎨+=-⎩(k 为常数).(1)求这个二元一次方程组的解(用含k 的代数式表示); (2)若方程组的解x 、y 满足+x y >5,求k 的取值范围; (3)若()24+21yx =,直接写出k 的值;(4)若k ≤1,设23m x y =-,且m 为正整数,求m 的值.2017-2018学年度七年级下学期数学期中试卷答案一、选择题(每小题3分,共18分) 1.D 2.C 3.A 4.C 5.D 6.C 二、填空题(每小题3分,共30分)7. 19 8.73.410-⨯ 9.八 10. 2311.7 12.10 13.13- 14. 5 15.2m < 16.42x y =⎧⎨=-⎩三、解答题(本大题共102分)17.(本题满分10分,每小题5分)(1)2(2)2618xy y +,3618.(本题满分10分,每小题5分)(1)()()33x x +- (2)()2ab a b -19.(本题满分10分,每小题5分)(1) 32x y =-⎧⎨=⎩ (2)26x y =-⎧⎨=⎩ 20.(本题满分10分,每小题5分)(1)6x <,略 (2)x <-2,略 21.(本题满分10分,每小题5分)(1)2x =- (2)226x x -,2 22.(本题满分8分)(1) 略 (2)70°23.(本题满分8分,每小题4分)(1)21115413⨯+= (2)()()()22123421n n n -++=+理由:()()21234n n -++=246234n n n +--+=2441n n ++=()221n +24.(本题满分10分)设该商品每件的定价为x 元,进价为y 元,由题意得:()()3550.8820x y x y x y -=⎧⎪⎨-=--⎪⎩,解得5520x y =⎧⎨=⎩. 答:该商品每件的定价为55元,进价为20元.25.(本题满分12分,每小题4分)(1)2=3x y + (2)2,1a b == (3)126.(本题满分14分)(1)214342k x k y -⎧=⎪⎪⎨-⎪=⎪⎩ ……(3分)(2)52k<-……(3分)(3)34k=或……(4分)(4)12m=或……(4分)。
………外………○…………装……学校:___________姓名:__内…………○…………装……○…………订…………绝密★启用前 2017--2018学年度第二学期 苏科版七年级期中考试数学试卷 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.本卷25题,答卷时间100分钟,满分120分A. 623a a a ÷=B. 44a a a ⋅=C. ()437a a =D. ()22124a a --= 2.(本题3分)在下列实例中,不属于平移过程的有( ) ①时针运行的过程;②火箭升空的过程;③地球自转的过程;④飞机从起跑到离开地面的过程 A. 1个 B. 2个 C. 3个 D. 4个 3.(本题3分)(2017新疆乌鲁木齐第2题)如图,直线a ∥b ,∠1=72∘ ,则∠2的度数是 ( ) A. 118∘ B. 108∘ C. 98∘ D. 72∘ 4.(本题3分)若a m =5,a n =3,则a m+n 的值为( ) A. 15 B. 25 C. 35 D. 45 5.(本题3分)如图,直线AB ∥CD ,∠A=70°,∠C=40°,则∠E 等于( )…………订…………○……订※※线※※内※※线………A. 30°B. 40°C. 60°D. 70°6.(本题3分)把多项式()()222m a m a-+-分解因式正确的是 ( )A. ()()22a m m-+ B. ()()21m a m--C. ()()21m a m-+ D. ()()21m a m--7.(本题3分)若9x2+kxy+16y2是完全平方式,则k的值为( )A. 12B. 24C. ±12D. ±248.(本题3分)(2017内蒙古呼和浩特第12题)如图,AB//CD,AE平分∠CAB交CD于点E,若∠C=48°,则∠AED为__________.9.(本题3分)当x=-712时,式子(x-2)2-2(2-2x)-(1+x)²(1-x)的值等于()A. -2372B.2372C. 1D.497210.(本题3分)若20.3a=,23b-=-,213c-⎛⎫=-⎪⎝⎭,13d⎛⎫=-⎪⎝⎭,则().A. a b c d<<< B. b a d c<<<C. a d c b<<< D. c a d b<<<二、填空题(计32分)0.25)5=________.12.(本题4分)已知27m-1÷32m=27,则m=___________.13.(本题4分)在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线________ .(1)它的理由如下:(如图1)∵b⊥a,c⊥a,∴∠1=∠2=90°,∴b∥c________(2)如图2是木工师傅使用角尺画平行线,有什么道理?________ .…○…………订……○…………………○……___班级:__________________ ……线…………○………○…………内…○…………装…………○… 14.(本题4分)分解因式: 23269a b ab -=_______ 15.(本题4分)如图,a ∥b ,PA ⊥PB ,∠1=35°,则∠2的度数是______.16.(本题4分)已知a+1a =5,则a 2+21a 的结果是___________. 17.(本题4分)如图,直线AB ∥CD ,BC 平分∠ABD ,若∠1=54°, 则∠2=__________. 18.(本题4分)如果()()2a 2b 12a 2b-1+++=63,那么a+b 的值为___________. 三、解答题(计58分) 19.(本题8分)分解因式: 2212x 1815y xy xy -+- 20.(本题8分)若4m x =, 8n x =,求3m n x -的值。
2017-2018学年七年级数学下期中考试卷及答案2017―2018学年度第二学期初一年级数学学科期中检测试卷(全卷满分150分,答题时间120分钟)一、选择题(共8小题,每小题3分,共24分) 1.下列图形中,能将其中一个图形平移得到另一个图形的是(▲) A. B. C. D. 2.下列计算正确的是(▲)A. B. C. D. 3.下列长度的3条线段,能首尾依次相接组成三角形的是(▲) A.1cm,2cm,4cm B.8cm,6cm,4cm C.15cm,5cm,6cm D.1cm ,3cm,4cm 4.下列各式能用平方差公式计算的是(▲) A. B. C. D. 5.若 , ,则的值为(▲) A.6 B.8 C.11 D.18 6.如图,4块完全相同的长方形围成一个正方形. 图中阴影部分的面积可以用不同的代数式进行表示,由此能验证的等式是(▲ ) A. B. C. D. 7.当x=�6,y= 时,的值为(▲)A.�6 B.6 C. D. 8.如图,四边形ABCD中,E、F、G、H依次是各边中点,O是形内一点,若四边形AEOH、四边形BFOE、四边形CGOF的面积分别为7、9、10,则四边形DHOG面积为(▲) A. 7 B.8 C.9 D.10 二、填空题(共10小题,每小题3分,共30分)9.任意五边形的内角和与外角和的差为度. 10. 已知一粒米的质量是0.000021千克,这个数字用科学记数法表示为. 11.若是一个完全平方式,则= . 12.已知,,则的值是______. 13.如果(x+1)(x+m)的乘积中不含x的一次项,则m的值为. 14.若,则= . 15. 若{�(x=3@y=-2)是方程组{�(ax+by=1@ax-by=5)的解,则a+b=________. 16.已知,且,那么的值为. 17.如图,将△ABC沿DE、EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠CDO+∠CFO=78°,则∠C的度数为= . 18. 如图,长方形ABCD中,AB=4cm,BC=3cm,点E是CD的中点,动点P从A点出发,以每秒1cm的速度沿A→B→C→E 运动,最终到达点E.若点P运动的时间为x秒,那么当x= _________时,△APE的面积等于.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答)19.计算(每小题4分,共16分)(1)(2)(3)(4)(a-b +1)(a+b-1) 20. 解方程组(每小题4分,共8分)(1)(2)21. (本题满分8分)画图并填空:如图,每个小正方形的边长为1个单位,每个小正方形的顶点叫格点. (1)将△ABC向左平移8格,再向下平移1格.请在图中画出平移后的△A′B′C′ (2)利用网格线在图中画出△ABC的中线CD,高线AE;(3)△A′B′C′的面积为_____. 22.(本题满分6分)已知:如图,AB∥CD,EF交AB于G,交CD于F,FH平分∠EFD,交AB于H ,∠AGE=40°,求∠BHF 的度数. 23.(本题满分10分)已知:如图,在△ABC中,BD⊥AC于点D,E为BC上一点,过E点作EF⊥AC,垂足为F,过点D作DH∥BC交AB于点H.(1)请你补全图形。
…………外…………订……_______考号:_…内…………○…………○……………绝密★启用前 2017-2018学年度第二学期 苏科版七年级期中考试数学试卷 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.本卷23题,答卷时间100分,满分120分一、单选题(计40分) 1.(本题4分)下列图形中,可以由其中一个图形通过平移得到的是( ) A. B. C. D. 2.(本题4分)一种病毒的长度约为0.00000432毫米,数据0.00000432用科学记数法表示 为( ) A. 432× B. 4.32× C. 4.32× D. 0.432× 3.(本题4分)一个多边形的每个内角均为140°,则这个多边形是( ) A .七边形 B .八边形 C .九边形 D .十边形 4.(本题4分)若等腰三角形有两条边的长分别是3和1,则此等腰三角形的周长是( )A .5B .7C .5或7D .6 5.(本题4分)2017201823 的计算结果的末位数字是( ) A. 7 B. 5 C. 3 D. 1 6.(本题4分)已知一个二元一次方程组的解是 则这个二元一次方程组可能是( ) A. B. C. D. 7.(本题4分)如图,直线AB ,CD 相交于点O ,OE ⊥AB 于O ,若∠BOD=40°,则不正确的结论是( ) A. ∠AOC=40° B. ∠COE=130° C. ∠BOE=90° D. ∠EOD=40°……外………………订………………线……线※※内※※答※※……○………○…8.(本题4分)已知2{ 3x y ==-是二元一次方程4x+ay=7的一组解,则a 的值为( )A. 13B. 5C. ﹣5D. ﹣139.(本题4分)根据以下对话,可以求得小红所买的笔和笔记本的价格分别是( )A. 0.8元/支,2.6元/本B. 0.8元/支,3.6元/本C. 1.2元/支,2.6元/本D. 1.2元/支,3.6元/本10.(本题3分)如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 的外部时,则A ∠与1∠和2∠ 之间有一种数量关系始终保持不变,你发现的规律是( )A. 212A ∠=∠-∠B. ()3212A ∠=∠-∠C. 3212A ∠=∠-∠D. 12A ∠=∠-∠二、填空题(计40分)11.(本题5分)分解因式: =__________________.12.(本题5分)若x +y =3,则 的值为_________.13.(本题5分)比较大小: ________ .(填“>”“=”或“<”)14.(本题5分)若4x 2-kx +9(k 为常数)是完全平方式,则k =________.15.(本题5分)如上图,直角三角板内部三角形的一个顶点恰好在直线a 上(三角板内部三角形的三边分别与三角板的三边平行),若∠2=30°,∠3=50°,则∠1=_______°.16.(本题5分)16.(本题5分)如图,计划把河水引到水池A 中,先作AB ⊥CD ,垂足为B ,然后沿AB 开渠,能使所开的渠道最短,这样设计的依据是 ______________________.……线…………○………………○……装…………○… 17.(本题5分)17.(本题5分)将直角三角形ABC 沿CB 方向平移BE 的距离后,得到直角三角形DEF ,已知AG =4,BE =6,DE =12,求阴影部分的面积. 18.(本题5分)若方程组352{ 23x y k x y k +=++= 的解x 、y 的和为0,则k 的值为______. 三、解答题(计40分) 19.(本题8分)解方程组: (1)3{ 3814x y x y -=-= (2)()()231{ 34243217x y x y x y -=--+=………○………………○…………线………※※请※※不※题※※ ○…………○…20.(本题8分)如图,BE 是△ABC 的角平分线,点D 是AB 边上一点,且∠DEB =∠DBE . ⑴ DE 与BC 平行吗?为什么?⑵ 若∠A =40°,∠ADE =60°,求∠C 的度数.21.(本题8分)如图,EF ∥AD ,∠1=∠2,∠BAC=80°.将求∠AGD 的过程填写完整.解:因为EF ∥AD ,所以∠2= ( ).又因为∠1=∠2,所以∠1=∠3( ).所以AB ∥ ( ).所以∠BAC+ =180°( ).因为∠BAC=80°,所以∠AGD= .22.(本题8分)如图,MF ⊥NF 于F ,MF 交AB 于点E ,NF 交CD 于点G ,∠1=140°,线…………○………○…………装…………○…23.(本题8分)2008 年北京奥运会,中国运动员获得金、银、铜牌共 100 枚,金牌数位列世界第一。
江苏省徐州市部分学校2017-2018学年七年级数学下学期期中试题(全卷共140分,考试时间90分钟)一、选择题(本大题有8小题,每小题3分,共24分) 1.下列运算正确的是 A .B .C .D .2.目前,世界上能制造出的最小晶体管的长度只有0.000 000 04m ,将0.000 000 04 用科学计数法表示为 A.B.C.D.3.长度分别为2、7、的三条线段能组成一个三角形,的值可以是 A .4 B .5 C .6 D .94.下列各式由左边到右边的变形,是因式分解的是 A. B.C.D.5.如图,下列说法中,正确的是 A .因为,所以 B .因为,所以 C .因为,所以 D .因为,所以6.如图,直线a ∥b ,将一个直角三角板按如图所示的位置摆放, 若∠1=58°,则∠2的度数为A .58°B .48°C .42°D .32°7.如图,正方形卡片A 类、B 类和长方形卡片C 类各若干张,如果要拼一个长为(a +3b ),宽为(2a +b )的大长方形,则需要A 类、B 类和C 类卡片的张数分别为: A .2,3,7B .3,7,2 C .2,5,3D .2,5,7 8.如果,,,那么、、三数的大小为A .>>B .>>C .>>D .>>二、填空题(本大题共有8小题,每小题4分,共32分) 9.在△ABC 中,∠A =40°,∠B =60°,则∠C =▲°.10.若一个正多边形的一个外角是40°,则这个正多边形的边数是▲. 11.若,则▲.12.若,则=▲.( 第5题 )( 第13题 )( 第6题 )13.将一副三角板如图放置,使点A 在DE 上,BC ∥DE ,则∠ACE 的度数为▲°.14.已知单项式与的积为,那么▲.15.若是一个完全平方式,则的值是▲.16.观察下列等式:;;;…,请用含正整数的等式表示你所发现的规律:▲.三、解答题(本大题共有9小题,共84分) 17.(本题16分)计算: (1);(2);(3);(4).18.(本题6分)先化简,再求值:,其中.19.(本题8分)把下列各式分解因式: (1);(2)20.(本题8分)如图,在方格纸中,每个小正方形的边长为1个单位长度,△ABC 的顶点都在格点上.(1)画出△ABC 先向右平移6格,再向上平移1格所得的△A ′B ′C ′; (2)画出△ABC 的AB 边上的中线CD 和高线CE ; (3)△ABC 的面积为___▲___.21.(本题8分)如图,点E 、F 分别在AB 、CD 上,AD 分别交BF 、CE 于点H 、G ,∠1=∠2,∠B =∠C .(1)探索BF 与CE 有怎样的位置关系?为什么? (2)探索∠A 与∠D 的数量关系,并说明理由. 22.(本题6分)已知:,,试求(1)的值; (2)的值.23.(本题10分) (1)填空:CBAA( 第21题 )…(2)探索(1)中式子的规律,试写出第n 个等式,并说明第n 个等式成立; (3)计算:.24. (本题10分)阅读材料:已知,求、的值.解:∵,∴∴,∴,,∴,.根据你的观察,探究下面的问题: (1),则=▲,=▲;(2)已知,求的值;(3)已知△ABC 的三边长、、都是正整数,且满足,求△ABC 的周长.25.(本题12分)(1)如图1,在△ABC 中,∠DBC 与∠ECB 分别为△ABC 的两个外角,若∠A =60°,∠DBC +∠ECB=▲°; (2)如图2,在△ABC 中,BP 、CP 分别平分外角∠DBC 、∠ECB ,∠P 与∠A 有怎样的数量关系?为什么? (3)如图3,在四边形ABCD 中,BP 、CP 分别平分外角∠EBC 、∠FCB ,∠P 与∠A +∠D 有怎样的数量关系?为什么?(4)如图4,在五边形ABCDE 中,BP 、CP 分别平分外角∠NBC 、∠MCB ,∠P 与∠A +∠D +∠E 有怎样的数量关系?直接写出答案▲.2017—2018学年度第二学期期中检测七年级数学试题参考答案及评分标准一、选择题二、填空题 2107( 第25题 )。
2017-2018学年下学期期中考试初一数学试题(考试时间:120分钟 满分:100 分)一、选择题(每题2分,共12分)1.下列图形中,可以由其中一个图形通过平移得到的是A. B. C. D.2.下列计算正确的是A. x 2•x 4=x 8B. a 10÷a 2=a 5C. m 3+m 2=m 5D. (−a 2)3=−a 6 3.某球形流感病毒的直径约为0.000 000 085m ,用科学记数法表示该数据为 A. 8.5−8 B. 85×10−9 C. 0.85×10−7 D. 8.5×10−8 4.若M =2(x −3)(x −5),N =(x −2)(x −14),则M 与N 的关系为A. M >NB. M <NC. M =ND. M 与N 的大小由x 的取值而定 5.实数a ,b ,c 在数轴上对应点的位置如图所示,则下列不等式成立的是C. ab<cbD. ab 2<cb 2 6.已知⎩⎨⎧==1719y x 是方程组⎩⎨⎧-=+=+15ay bx by ax 的解,则9−3a +3b 的值是二、填空题(每题2分,共20分) 7.计算3x 2•2xy 2的结果是___________. 8.写出一个解为⎩⎨⎧=-=21y x 的二元一次方程组 ______________.9.若等腰三角形的两边长分别为3cm 和8cm ,则它的周长是________cm .10.某校男子100m 校运动会记录是12s ,在今年的校田径运动会上,小刚的100m 跑成绩是ts ,打破了该项记录,则t 与12的关系用不等式可表示为_________. 11.0.52017×(-2)2018=__________.12.若(a -2)x1a -+3y =1是二元一次方程,则a =________.13.若x 2+(m −2)x +9是一个完全平方式,则m 的值是________.14.已知a 、b 、c 为一个三角形的三条边长,则代数式(a −b )2−c 2的值一定为________(选填“正数”、“负数”、“零”) .15.如图,△ABC 的两条中线AM 、BN 相交于点O ,已知△ABO 的面积为6,则四边形MCNO 的面积为_________.16.设有n 个数a 1,a 2,…a n ,其中每个数都可能取0,1,−3这三个数中的一个,且满足下列等式:a 1+a 2+…+a n =0,a 21+a 22+…+a 2n =24,则a 31+a 32+…+a 3n 的值是______. 三、解答题(共68分) 17.(6分)计算:(1) −12018+π0-(-3)-2 (2)(a +b -2)(a −b +2)18.(6分)把下列各式分解因式:(1)2x 3y -18xy (2)(x 2+4)2−16x 219.(6分)解方程组:(1)⎩⎨⎧=-=-52302y x y x20.(6分)先化简,再求值:已知(x+a)(x -3)的结果中不含关于字母x 的一次项,求(a+2)2-(1+a)(a -1)的值.21.(6分)小明学习了“第八章 幂的运算”后做这样一道题:若(a−1)a +3=1,求a 的值.他解出来的结果为a =2,老师说小明考虑问题不全面,聪明的你能帮助小明解决这个问题吗?小明解答过程如下: 解:因为1的任何次幂为1,所以a−1=1,a =2.且2+3=5故(a−1)a +3=(2-1)2+3=15=1,所以a =2.你的解答是:22. (6分)观察下列式子: ①1×3+1=4, ②3×5+1=16, ③5×7+1=36,(2)写出第○n 个等式,并说明其正确性.23.(6分)请认真观察图形,解答下列问题:(1) 根据图中条件,试用两种不同方法表示两个阴影图形的面积的和.(3)利用(2)中结论解决下面的问题:如图,两个正方形边长分别为a 、b ,如果a +b =ab =7, 求阴影部分的面积.24.(8分)已知,关于x ,y 的方程组⎩⎨⎧-=+-=-a y x a y x 5234的解为x 、y 。
2017-2018学年七年级(下)期中数学试卷一、填空题:(每题2分,共24分)1.PM 2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为______.2.计算:﹣3x2•2x=______;(﹣0.25)12×411=______.3.多项式2ax2﹣12axy中,应提取的公因式是______.4.若a+b=2,a﹣b=﹣3,则a2﹣b2=______.5.一个多边形的内角和等于它的外角和的3倍,它是______边形.6.若(x+m)与(x+2)的乘积中,不含x的一次项,则常数m的值是______.7.若2x=3,4y=5,则2x﹣2y的值为______.8.如图,已知AB∥CD,BC平分∠ABE,∠C=34°,则∠BED=______.9.如图,将一副三角板的两个直角重合,使点B在EC上,点D在AC上,已知∠A=45°,∠E=30°,则∠BFD的度数是______.10.如图,在长方形ABCD中,AB=10cm,BC=6cm,若此长方形以2cm/S的速度沿着A→B 方向移动,则经过______S,平移后的长方形与原来长方形重叠部分的面积为24.11.当三角形中一个内角是另一个内角的3倍时,我们称此三角形为“梦想三角形”.如果一个“梦想三角形”有一个角为108°,那么这个“梦想三角形”的最小内角的度数为______.12.已知:(n=1,2,3,…),记b1=2(1﹣a1),b2=2(1﹣a1)(1﹣a2),…,b n=2(1﹣a1)(1﹣a2)…(1﹣a n),则通过计算推测出b n的表达式b n=______.(用含n的代数式表示)二、选择题:(每题3分,共15分)13.下列各组图形可以通过平移互相得到的是()A.B.C.D.14.已知三角形两边的长分别是4和9,则此三角形第三边的长可能是()A.4 B.5 C.12 D.1315.下列各式能用平方差公式计算的是()A.(2a+b)(2b﹣a)B.(﹣x+1)(﹣x﹣1)C.(a+b)(a﹣2b)D.(2x﹣1)(﹣2x+1)16.如图,四边形ABCD中,点M,N分别在AB,BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B的度数是()A.80°B.100°C.90°D.95°17.如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF.以下结论:①AD∥BC;②∠ACB=2∠ADB;③∠ADC=90°﹣∠ABD;④BD平分∠ADC;⑤∠BDC=∠BAC.其中正确的结论有()A.2个B.3个C.4个D.5个三、解答题(本大题共8题,共计61分)18.计算:(1)(2)(a+2)(a﹣2)﹣a(a﹣1)(3)(﹣2a2b3)4+(﹣a8)•(2b4)3(4)(2x+y﹣3)(2x﹣y﹣3)19.因式分解:(1)ax2﹣4axy+4ay2(2)(3)(a2+b2)2﹣4a2b2(4)4x2﹣4x+1﹣y2.20.已知ab=3,求b(2a3b2﹣3a2b+4a)的值.21.已知x+y=2,xy=﹣1,求下列代数式的值:(1)5x2+5y2;(2)(x﹣y)2.22.如图,在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.(1)补全△A′B′C′根据下列条件,利用网格点和三角板画图:(2)画出AB边上的中线CD;(3)画出BC边上的高线AE;(4)△A′B′C′的面积为______.23.如图,已知∠1+∠2=180°,∠DAE=∠BCF.(1)试判断直线AE与CF有怎样的位置关系?并说明理由;(2)若∠BCF=70°,求∠ADF的度数.24.如图,在长方形ACDF中,AC=DF,点B在CD上,点E在DF上,BC=DE=a,AC=BD=b,AB=BE=c,且AB⊥BE.(1)用两种不同的方法表示长方形ACDF的面积S方法一:S=______方法二:S=______(2)求a,b,c之间的等量关系(需要化简)(3)请直接运用(2)中的结论,求当c=5,a=3,S的值.25.课本拓展旧知新意:我们容易证明,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?1.尝试探究:(1)如图1,∠DBC与∠ECB分别为△ABC的两个外角,试探究∠A与∠DBC+∠ECB之间存在怎样的数量关系?为什么?2.初步应用:(2)如图2,在△ABC纸片中剪去△CED,得到四边形ABDE,∠1=130°,则∠2﹣∠C=______;(3)小明联想到了曾经解决的一个问题:如图3,在△ABC中,BP、CP分别平分外角∠DBC、∠ECB,∠P与∠A有何数量关系?请利用上面的结论直接写出答案______.3拓展提升:(4)如图4,在四边形ABCD中,BP、CP分别平分外角∠EBC、∠FCB,∠P与∠A、∠D有何数量关系?为什么?(若需要利用上面的结论说明,可直接使用,不需说明理由)七年级(下)期中数学试卷参考答案与试题解析一、填空题:(每题2分,共24分)1.PM 2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为 2.5×10﹣6.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000025=2.5×10﹣6,故答案为:2.5×10﹣6.2.计算:﹣3x2•2x=﹣6x3;(﹣0.25)12×411=.【考点】单项式乘单项式;幂的乘方与积的乘方.【分析】根据单项式乘单项式的法则计算可得,由原式变形可得=×()11×411,再逆用积的乘方运算法则即可得.【解答】解:﹣3x2•2x=﹣6x3,(﹣0.25)12×411=(﹣)12×411=×()11×411=×(×4)11=;故答案为:﹣6x3,.3.多项式2ax2﹣12axy中,应提取的公因式是2ax.【考点】公因式.【分析】找出系数的最大公约数,相同字母的最低指数次幂,即可确定出公因式.【解答】解:∵2ax2﹣12axy=2ax(x﹣6y),∴应提取的公因式是2ax.4.若a+b=2,a﹣b=﹣3,则a2﹣b2=﹣6.【考点】因式分解-运用公式法.【分析】原式利用平方差公式分解后,将已知等式代入计算即可求出值.【解答】解:∵a+b=2,a﹣b=﹣3,∴a2﹣b2=(a+b)(a﹣b)=﹣6.故答案为:﹣6.5.一个多边形的内角和等于它的外角和的3倍,它是八边形.【考点】多边形内角与外角.【分析】根据多边形的内角和公式及外角的特征计算.【解答】解:多边形的外角和是360°,根据题意得:180°•(n﹣2)=3×360°解得n=8.故答案为:8.6.若(x+m)与(x+2)的乘积中,不含x的一次项,则常数m的值是﹣2.【考点】多项式乘多项式.【分析】直接利用多项式乘法去括号,进而得出一次项系数为0,求解即可.【解答】解:∵x+m与x+2的乘积中不含x的一次项,∴(x+m)(x+2)=x2+(2+m)x+2m,中2+m=0,∴m=﹣2.故答案为:﹣2.7.若2x=3,4y=5,则2x﹣2y的值为.【考点】同底数幂的除法;幂的乘方与积的乘方.【分析】所求式子中有22y,根据所给条件可得22y的值,所求式子中的指数是相减的关系,那么可整理为同底数幂相除的形式.【解答】解:∵4y=5,∴22y=5,∴2x﹣2y=2x÷22y=.故答案为.8.如图,已知AB∥CD,BC平分∠ABE,∠C=34°,则∠BED=68°.【考点】平行线的性质.【分析】根据两直线平行,内错角相等求出∠ABC,再根据角平分线的定义求出∠ABE,然后利用两直线平行,内错角相等求解即可.【解答】解:∵AB∥CD,∠C=34°,∴∠ABC=∠C=34°,∵BC平分∠ABE,∴∠ABE=2∠ABC=2×34°=68°,∵AB∥CD,∴∠BED=∠ABE=68°.故答案为:68°.9.如图,将一副三角板的两个直角重合,使点B在EC上,点D在AC上,已知∠A=45°,∠E=30°,则∠BFD的度数是165°.【考点】三角形的外角性质.【分析】根据直角三角形的性质可得∠ABC=45°,根据邻补角互补可得∠EBF=135°,然后再利用三角形的外角的性质可得∠BFD=135°+30°=165°.【解答】解:∵∠A=45°,∴∠ABC=45°,∴∠EBF=135°,∴∠BFD=135°+30°=165°,故答案为:165°.10.如图,在长方形ABCD中,AB=10cm,BC=6cm,若此长方形以2cm/S的速度沿着A→B 方向移动,则经过3S,平移后的长方形与原来长方形重叠部分的面积为24.【考点】平移的性质;矩形的性质.【分析】先用时间表示已知面积的矩形的长和宽,并以面积作为相等关系解关于时间x的方程即可.【解答】解:设x秒后,平移后的长方形与原来长方形重叠部分的面积为24cm2,则6(10﹣2x)=24,解得x=3,即3秒时平移后的长方形与原来长方形重叠部分的面积为24cm2.故答案为:3.11.当三角形中一个内角是另一个内角的3倍时,我们称此三角形为“梦想三角形”.如果一个“梦想三角形”有一个角为108°,那么这个“梦想三角形”的最小内角的度数为18°或36°.【考点】三角形内角和定理.【分析】根据三角形内角和等于180°,如果一个“梦想三角形”有一个角为108°,可得另两个角的和为72°,由三角形中一个内角是另一个内角的3倍时,可以分别求得最小角为180°﹣108°﹣108÷3°=36°,72°÷(1+3)=18°,由此比较得出答案即可.【解答】解:当108°的角是另一个内角的3倍时,最小角为180°﹣108°﹣108÷3°=36°,当180°﹣108°=72°的角是另一个内角的3倍时,最小角为72°÷(1+3)=18°,因此,这个“梦想三角形”的最小内角的度数为36°或18°.故答案为:18°或36°.12.已知:(n=1,2,3,…),记b1=2(1﹣a1),b2=2(1﹣a1)(1﹣a2),…,b n=2(1﹣a1)(1﹣a2)…(1﹣a n),则通过计算推测出b n的表达式b n=.(用含n的代数式表示)【考点】规律型:数字的变化类.【分析】根据题意按规律求解:b1=2(1﹣a1)=2×(1﹣)==,b2=2(1﹣a1)(1﹣a2)=×(1﹣)==,….所以可得:b n的表达式b n=.【解答】解:根据以上分析b n=2(1﹣a1)(1﹣a2)…(1﹣a n)=.二、选择题:(每题3分,共15分)13.下列各组图形可以通过平移互相得到的是()A.B.C.D.【考点】生活中的平移现象.【分析】根据平移不改变图形的形状和大小,将题中所示的图案通过平移后可以得到的图案是C.【解答】解:观察图形可知图案C通过平移后可以得到.故选:C.14.已知三角形两边的长分别是4和9,则此三角形第三边的长可能是()A.4 B.5 C.12 D.13【考点】三角形三边关系.【分析】已知三角形的两边长分别为3和9,根据在三角形中任意两边之和>第三边,任意两边之差<第三边;即可求第三边长的范围.【解答】解:设第三边长为x,则由三角形三边关系定理得9﹣4<x<9+4,即5<x<13.因此,本题的第三边应满足5<x<13,把各项代入不等式符合的即为答案.只有12符合不等式,故答案为12.故选C.15.下列各式能用平方差公式计算的是()A.(2a+b)(2b﹣a)B.(﹣x+1)(﹣x﹣1)C.(a+b)(a﹣2b)D.(2x﹣1)(﹣2x+1)【考点】平方差公式.【分析】原式利用平方差公式的结构特征判断即可得到结果.【解答】解:能用平方差公式计算的是(﹣x+1)(﹣x﹣1).故选B.16.如图,四边形ABCD中,点M,N分别在AB,BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B的度数是()A.80°B.100°C.90°D.95°【考点】平行线的性质.【分析】根据两直线平行,同位角相等求出∠BMF、∠BNF,再根据翻折的性质求出∠BMN 和∠BNM,然后利用三角形的内角和定理列式计算即可得解.【解答】解:∵MF∥AD,FN∥DC,∴∠BMF=∠A=100°,∠BNF=∠C=70°,∵△BMN沿MN翻折得△FMN,∴∠BMN=∠BMF=×100°=50°,∠BNM=∠BNF=×70°=35°,在△BMN中,∠B=180°﹣(∠BMN+∠BNM)=180°﹣(50°+35°)=180°﹣85°=95°;故选D.17.如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF.以下结论:①AD∥BC;②∠ACB=2∠ADB;③∠ADC=90°﹣∠ABD;④BD平分∠ADC;⑤∠BDC=∠BAC.其中正确的结论有()A.2个B.3个C.4个D.5个【考点】三角形的外角性质;平行线的判定与性质.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠EAC=∠ABC+∠ACB=2∠ABC,根据角平分线的定义可得∠EAC=2∠EAD,然后求出∠EAD=∠ABC,再根据同位角相等,两直线平行可得AD∥BC,判断出①正确;根据两直线平行,内错角相等可得∠ADB=∠CBD,再根据角平分线的定义可得∠ABC=2∠CBD,从而得到∠ACB=2∠ADB,判断出②正确;根据两直线平行,内错角相等可得∠ADC=∠DCF,再根据三角形的一个外角等于与它不相邻的两个内角的和和角平分线的定义整理可得∠ADC=90°﹣∠ABD,判断出③正确;根据三角形的外角性质与角平分线的定义表示出∠DCF,然后整理得到∠BDC=∠BAC,判断出⑤正确,再根据两直线平行,内错角相等可得∠CBD=∠ADB,∠ABC与∠BAC不一定相等,所以∠ADB与∠BDC不一定相等,判断出④错误.【解答】解:由三角形的外角性质得,∠EAC=∠ABC+∠ACB=2∠ABC,∵AD是∠EAC的平分线,∴∠EAC=2∠EAD,∴∠EAD=∠ABC,∴AD∥BC,故①正确,∴∠ADB=∠CBD,∵BD平分∠ABC,∴∠ABC=2∠CBD,∵∠ABC=∠ACB,∴∠ACB=2∠ADB,故②正确;∵AD∥BC,∴∠ADC=∠DCF,∵CD是∠ACF的平分线,∴∠ADC=∠ACF=(∠ABC+∠BAC)===90°﹣∠ABD,故③正确;由三角形的外角性质得,∠ACF=∠ABC+∠BAC,∠DCF=∠BDC+∠DBC,∵BD平分∠ABC,CD平分∠ACF,∴∠DBC=∠ABC,∠DCF=∠ACF,∴∠BDC+∠DBC=(∠ABC+∠BAC)=∠ABC+∠BAC=∠DBC+∠BAC,∴∠BDC=∠BAC,故⑤正确;∵AD∥BC,∴∠CBD=∠ADB,∵∠ABC与∠BAC不一定相等,∴∠ADB与∠BDC不一定相等,∴BD平分∠ADC不一定成立,故④错误;综上所述,结论正确的是①②③⑤共4个.故选C.三、解答题(本大题共8题,共计61分)18.计算:(1)(2)(a+2)(a﹣2)﹣a(a﹣1)(3)(﹣2a2b3)4+(﹣a8)•(2b4)3(4)(2x+y﹣3)(2x﹣y﹣3)【考点】整式的混合运算;零指数幂;负整数指数幂.【分析】(1)根据幂的乘方、负整数指数幂、零指数幂可以解答本题;(2)根据平方差公式、单项式乘以多项式可以解答本题;(3)根据积的乘方,然后合并同类项即可解答本题;(4)根据平方差公式和完全平方公式可以解答本题.【解答】解:原式===﹣2+=﹣1;(2)原式=a2﹣4﹣a2+a=a﹣4;(3)原式=16a8b12+(﹣a8)•(8b12)=16a8b12﹣8a8b12=8a8b12;(4)原式=[(2x﹣3)+y][(2x﹣3)﹣y]=(2x﹣3)2﹣y2=4x2﹣12x+9﹣y2.19.因式分解:(1)ax2﹣4axy+4ay2(2)(3)(a2+b2)2﹣4a2b2(4)4x2﹣4x+1﹣y2.【考点】提公因式法与公式法的综合运用.【分析】(1)直接提取公因式a,再利用完全平方公式分解因式得出答案;(2)直接提取公因式,再利用完全平方公式分解因式得出答案;(3)直接利用平方差公式分解因式,再结合完全平方公式分解因式即可;(4)将前三项利用完全平方公式分解因式,进而利用平方差公式分解因式即可.【解答】解:(1)原式=a(x2﹣4xy+4y2)=a(x﹣2y)2;(2)原式=(m2﹣6mn+9n2)=(m﹣3n)2;(3)原式=(a2+b2+2ab)(a2+b2﹣2ab)=(a+b)2(a﹣b)2;(4)原式=(2x﹣1)2﹣y2=(2x﹣1+y)(2x﹣1﹣y).20.已知ab=3,求b(2a3b2﹣3a2b+4a)的值.【考点】整式的混合运算—化简求值.【分析】原式利用单项式乘以多项式法则计算,将ab=3代入即可求出值.【解答】解:b(2a3b2﹣3a2b+4a)=2a3b3﹣3a2b2+4ab,当ab=3时,原式=2×(ab)3﹣3(ab)2+4ab=2﹣3×32+4×3=39.21.已知x+y=2,xy=﹣1,求下列代数式的值:(1)5x2+5y2;(2)(x﹣y)2.【考点】完全平方公式.【分析】(1)原式提取5,利用完全平方公式变形,将x+y与xy的值代入计算即可求出值;(2)原式利用完全平方公式变形,将x+y与xy的值代入计算即可求出值.【解答】解:(1)∵x+y=2,xy=﹣1,∴5x2+5y2=5(x2+y2)=5[(x+y)2﹣2xy]=5×[22﹣2×(﹣1)]=30;(2)∵x+y=2,xy=﹣1,∴(x﹣y)2=(x+y)2﹣4xy=22﹣4×(﹣1)=4+4=8.22.如图,在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.(1)补全△A′B′C′根据下列条件,利用网格点和三角板画图:(2)画出AB边上的中线CD;(3)画出BC边上的高线AE;(4)△A′B′C′的面积为8.【考点】作图—复杂作图.【分析】(1)连接BB′,过A、C分别做BB′的平行线,并且在平行线上截取AA′=CC′=BB′,顺次连接平移后各点,得到的三角形即为平移后的三角形;(2)作AB的垂直平分线找到中点D,连接CD,CD就是所求的中线.(3)从A点向BC的延长线作垂线,垂足为点E,AE即为BC边上的高;(4)根据三角形面积公式即可求出△A′B′C′的面积.【解答】解:(1)如图所示:△A′B′C′即为所求;(2)如图所示:CD就是所求的中线;(3)如图所示:AE即为BC边上的高;(4)4×4÷2=16÷2=8.故△A′B′C′的面积为8.故答案为:8.23.如图,已知∠1+∠2=180°,∠DAE=∠BCF.(1)试判断直线AE与CF有怎样的位置关系?并说明理由;(2)若∠BCF=70°,求∠ADF的度数.【考点】平行线的判定与性质.【分析】(1)求出∠1=∠BDC,根据平行线的判定推出即可;(2)根据平行线的性质得出∠BCF=∠CBE,求出∠DAE=∠CBE,根据平行线的判定推出AD∥BC,根据平行线的性质得出即可.【解答】解:(1)AE∥CF,理由是:∵∠1+∠2=180°,∠BDC+∠2=180°,∴∠1=∠BDC,∴AE∥CF;(2)∵AE∥CF,∴∠BCF=∠CBE,又∵∠DAE=∠BCF,∴∠DAE=∠CBE,∴AD∥BC,∴∠ADF=∠BCF=70°.24.如图,在长方形ACDF中,AC=DF,点B在CD上,点E在DF上,BC=DE=a,AC=BD=b,AB=BE=c,且AB⊥BE.(1)用两种不同的方法表示长方形ACDF的面积S方法一:S=ab+b2方法二:S=ab+b2﹣a2+c2.(2)求a,b,c之间的等量关系(需要化简)(3)请直接运用(2)中的结论,求当c=5,a=3,S的值.【考点】整式的混合运算;整式的混合运算—化简求值.【分析】(1)方法一,根据矩形的面积公式就可以直接表示出S;方法二,根据矩形的面积等于四个三角形的面积之和求出结论即可;(2)根据方法一与方法二的S相等建立等式就可以表示出a,b,c之间的等量关系;(3)先由(2)的结论求出b的值,然后代入S的解析式就可以求出结论.【解答】解:(1)由题意,得方法一:S1=b(a+b)=ab+b2方法二:S2=ab+ab+(b﹣a)(b+a)+c2,=ab+b2﹣a2+c2.(2)∵S1=S2,∴ab+b2=ab+b2﹣a2+c2,∴2ab+2b2=2ab+b2﹣a2+c2,∴a2+b2=c2.(3)∵a2+b2=c2.且c=5,a=3,∴b=4,∴S=3×4+16=28.答:S的值为28.故答案为:ab+b2,ab+b2﹣a2+c2.25.课本拓展旧知新意:我们容易证明,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?1.尝试探究:(1)如图1,∠DBC与∠ECB分别为△ABC的两个外角,试探究∠A与∠DBC+∠ECB之间存在怎样的数量关系?为什么?2.初步应用:(2)如图2,在△ABC纸片中剪去△CED,得到四边形ABDE,∠1=130°,则∠2﹣∠C= 50°;(3)小明联想到了曾经解决的一个问题:如图3,在△ABC中,BP、CP分别平分外角∠DBC、∠ECB,∠P与∠A有何数量关系?请利用上面的结论直接写出答案∠P=90°﹣∠A.3拓展提升:(4)如图4,在四边形ABCD中,BP、CP分别平分外角∠EBC、∠FCB,∠P与∠A、∠D有何数量关系?为什么?(若需要利用上面的结论说明,可直接使用,不需说明理由)【考点】三角形的外角性质;三角形内角和定理.【分析】(1)根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠DBC+∠ECB,再利用三角形内角和定理整理即可得解;(2)根据(1)的结论整理计算即可得解;(3)表示出∠DBC +∠ECB ,再根据角平分线的定义求出∠PBC +∠PCB ,然后利用三角形内角和定理列式整理即可得解;(4)延长BA 、CD 相交于点Q ,先用∠Q 表示出∠P ,再用(1)的结论整理即可得解.【解答】解:(1)∠DBC +∠ECB=180°﹣∠ABC +180°﹣∠ACB=360°﹣(∠ABC +∠ACB )=360°﹣=180°+∠A ;(2)∵∠1+∠2=∠180°+∠C ,∴130°+∠2=180°+∠C ,∴∠2﹣∠C=50°;(3)∠DBC +∠ECB=180°+∠A ,∵BP 、CP 分别平分外角∠DBC 、∠ECB ,∴∠PBC +∠PCB=(∠DBC +∠ECB )=,在△PBC 中,∠P=180°﹣=90°﹣∠A ;即∠P=90°﹣∠A ;故答案为:50°,∠P=90°﹣∠A ;(4)延长BA 、CD 于Q ,则∠P=90°﹣∠Q ,∴∠Q=180°﹣2∠P ,∴∠BAD +∠CDA=180°+∠Q ,=180°+180°﹣2∠P ,=360°﹣2∠P .2016年9月24日。
2017-2018学年第二学期期中统一测试初一数学试卷注意事项:1.本试卷满分100分,考试时间100分钟;2.答卷前将密封线内的项目填写清楚,所有解答均须写在答题卷上,在试卷上答题无效.一、选择题(本大题共10小题,每小题2分,共20分.每小题只有一个选项是正确的,把正确选项前的字母填在答题卷相应位置上.)1.观察下列图案,在A、B、C、D四幅图案中,能通过图案(1)平移得到的是2.水是生命之源,水是由氢原予和氧原子组成的,其中氢原子的直径为0.0000000001m,把这个数值用科学记数法表示为A.1×109 B.1×1010 C.1×10-9 D.1×10-103.已知∠1与∠2是同位角,则A.∠1 = ∠2 B.∠1 > ∠2 C.∠1 < ∠2 D.以上都有可能4.下列方程组中,属于二元一次方程组的是A .51156x y x y +=⎧⎪⎨+=⎪⎩,B .2102x y x y ⎧+=⎨+=-⎩,C .85x y x y +=⎧⎨=-⎩,D .13x x y =⎧⎨+=-⎩,5.如图,下列说法中,正确的是A .因为∠A +∠D =180°,所以AD ∥BCB .因为∠C +∠D =180°,所以AB ∥CDC .因为∠A +∠D =180°,所以AB ∥CDD .因为∠A +∠C =180°,所以AB ∥CD6.计算:()5a -·()()342a a ÷-的结果,正确的是 A .-7a B .-6a C . 7a D .6a 7.若一个多边形的每个内角都为135°,则它的边数为A .6B .8C .5D .108.下列各多项式中,能用公式法分解因式的是A .ab b a 222+-B .ab b a ++22C .91242++a aD .915252++n n 9.下列计算:①()1212232+-=+-x x x x x ;②()222b a b a-=-; ③()164422+-=-x x x;④()()12515152-=---a a a ; ⑤()2222b ab a b a ++=--.其中正确的有A . 1个B .2个C .3个D .4个10.算式(2+1) ×(22+1) ×(24+1) ×…×(232+1)+1计算结果的个位数字是A .4B .2C .8D .6二、填空题(本大题共8小题,每小题2分,共16分.把答案填在答题卷相应位置上.)11.计算:)(2ab a a -= ▲ .12.三角形的内角和是 ▲ °.13.因式分解:12-a= ▲ . 14.若把多项式26x m x +-分解因式后得(2x -)(3+x ),则m 的值为 ▲ .15.已知方程组32223x y m x y m +=-⎧⎨+=⎩的解适合2=+y x ,则m 的值为 ▲ .16.如图,在△ABC 中,∠ABC =∠ACB ,∠A =40°,P 是△ABC 内一点,且∠ACP =∠PBC ,则∠BPC = ▲ °.17.已知()121=-+x x ,则x 的值为 ▲ .18.如图,在△ABC 中,∠A=m °,∠ABC 和∠ACD 的平分线交于点A1,得∠A1;∠A1BC 和∠A1CD 的平分线交于点A2,得∠A2;…∠A2016 BC 和∠A20l6CD 的平分线交于点A2017,则∠A2017= ▲ °.三、解答题(本大题共9题,共64分.解答时应写出文字说明、证明过程或演算步骤.)19.计算:(每小题4分,共8分.)(1)1201(3)(2)3π-⎛⎫---+- ⎪⎝⎭; (2)()()()6233425a a a -∙-+.第16题 第18题20.先化简,再求值:(每小题4分,共8分.)(1)()()b a a b a 344)2(2---+ ,其中a =-2,b =21;(2)()()2232)2(b a b a b a ---+,其中a =-1,b =-3.21.把下列各式进行因式分解:(每小题3分,共9分.)(1)a a a 5623+-; (2)222()(1)x x x +-+; (3)2216164y xy x +-.22.解方程组:(每小题4分,共8分)(1)383516x yx y =-+=⎧⎨⎩; (2)13821325x y x y +=⎧⎨+=⎩.23.(本题满分5分)如图,∠1=65°∠3+∠4=180°,求∠2的度数.24.(本题满分5分)已知4=+y x ,3=xy ,求下列代数式的值: (1)22x y +; (2)22y x -.25.(本题满分5分)将一副三角板拼成如图所示的图形,过点C 作CF ∥AB 交DE 于点F(1) CF 平分∠DCE 吗?请说明理由(2) 求∠DFC 的度数.26.(本题满分8分)阅读下列材料: 第23题 第25题C D ME B 图1 NM Q E P O BA “2a ≥0”这个结论在数学中非常有用,有时我们需要将代数式配成完全平方式.例如:()1214454222++=+++=++x x x x x , ∵()22+x≥0, ∴()122++x≥1, ∴542++x x ≥1. 试利用“配方法”解决下列问题:(1)填空:=+-542x x(x ▲ )2+ ▲ ; (2)已知052422=+++-y y x x ,求y x +的值;(3)比较代数式12-x 与32-x 的大小. 27.(本题满分8分)直线MN 与直线PQ 垂直相交于点O ,点A 在直线PQ 上运动,点B 在直线MN 上运动.(1)如图1,已知AE 、BE 分别是∠BAO 和∠ABO 角的平分线,点A 、B在运动的过程中,∠AEB 的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,试求出∠AEB 的大小.(2)如图2,已知AB 不平行CD , AD 、BC 分别是∠BAP 和∠ABM 的角平分线,又DE 、CE 分 别是∠ADC 和∠BCD 的角平分线,点A 、B图3F G N M Q E P O BA 在运动的过程中,∠CED 的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,请直接写出其值.(3)如图3,延长BA 至G ,已知∠BAO 、∠OAG 的角平分线与∠BOQ的角平分线及延长线相交于E 、F ,在△AEF 中,如果有一个角是另一个角的3倍,试求∠ABO 的度数.。
一、选择题(每题2分,共12分)
1、下列是一名同学做的6道练习题:①0(3)1-=;②336a a a +=;③5()a -÷3()a -=
2a -;④4m 2-=214m
;⑤2336()xy x y =;⑥225222+=其中做对的题有 ( ) A .1道 B .2道 C .3道 D .4道
2、下列各式能用平方差公式进行计算的是 ( )
A .(x ﹣3)(﹣x+3)
B .(a+2b )(2a ﹣b )
C .(a ﹣1)(﹣a ﹣1)
D .(x ﹣3)2
3、已知x 2-2(m-3)x+16是一个完全平方式,则m 的值是 ( )
A. -7
B. 1
C. -7或1
D. 7或-1 4、已知是方程组的解,则、间的关系是( ) A. B. C. D.
5、小明在学习之余去买文具,打算购买5
支单价相同的签字笔和3本单价相同的笔记
本,期间他与售货员对话如图:1支笔和1
本笔记本应付( )
A .10元
B .11元
C .12元
D .13元
6、一个六边形ABCDEF 纸片上剪去一个角∠BGD 后,得到
∠1+∠2+∠3+∠4+∠5=430°,则∠BGD=( )
A .60°
B .70°
C .80°
D .90°
二、填空(每题2分,共16分)
7、计算:(﹣2x )³= ▲ ,1011021
()33
-⨯= ▲ . 8、若8))(22++=+mx x n x x -(,则m= ▲ , n= ▲ ,
9、据测算,5万粒芝麻才200 g ,则1粒芝麻有____▲____千克.(结果用科学记数法表示)
10、已知a +b =3,ab =﹣2,则a ²+b ²的值是 ▲ .
11、当a ▲ 时,方程组2122x y a x y a -=+⎧⎨+=⎩
的解为x =y . 12、如图是我们常用的折叠式小刀,刀柄外形是一个矩形挖去一
个小半圆,其中刀片的两条边缘线可看成两条平行的线段,转动
刀片时会形成∠1与∠2,若∠1=75°,则∠2是的度数为 ▲ .
13、小王只带2元和5元两种面值的人民币,他买一件学习用品要支付27元,则付款的方式有 ▲ 种
14、如图,在△ABC 中,点D 、E 分别在边BC 、AC 上,∠DCE =∠
DEC ,点
F 在AC 、点
G 在DE 的延长线上,∠DFG =∠DGF .若∠EFG =35°,
则∠CDF 的度数为 ▲ .
三、简答题
15、计算或解方程组(每题3分,共18分)
① 0321)2()2
1()31(π--⨯+- ② (3x 3)2·(-2y 2)3÷(-6xy 4)
244523x y x y -=-
⎧⎨-=-⎩2311313()()()433434y x x y x y +---
④
已知9m ÷322m +=1()3m ,求m 2+2m+1
16、因式分解(每题3分,共18分)
(a-b)(3a+b)2+(a+3b)2(b-a)
(x+2)(x+4)+1. ⑥ 时,哥哥正确地解得,弟弟因把c 写错而解得.求:
17、在解方程组(1)a +b +c 的值.(2)弟弟把c 写错成了什么数?(6分)
18、已知关于、的二元一次方程组的解满足二元一次方程,
22216)4(a a -+⑤22416m n -
①
④222(2)2(2)1
x x x x ++++⑤
11233210
x y x y +⎧-=⎪⎨⎪+=
⎩
⑥222(4)420
x x x x +--
-
求的值。
(6分)
19、某商场按定价销售某种电器时,每台可获利48元,•按定价的九折销售该电器6台与将定价降低30元销售该电器9台所获得的利润相等.求该电器每台的进价、•定价各是多少元?(6分)
20、把几个图形拼成一个新的图形,再通过两种不同的方法计算同一个图形的面积,可以得到一个等式,也可以求出一些不规则图形的面积。
例如,由1,可得等式:(a+2b)(a+b)=a2+3ab+2b2
(1)如图2,将几个面积不等的小正方形与小长方形拼成一个边长为a+b+c的正方形,试用不同的形式表示这个大正方形的面积,你能发现什么结论?请用等式表示出来。
(2)利用(1)中所得到的结论,解决下面的
已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值。
(3)如图3,将两个边长分别为a和b的正方形拼在一起,B,C,G三点在同一直线上,连接BD和BF。
若这两个正方形的边长满足a+b=10,ab=20,请求出阴影部分的面积。
(8分)
21、现有一副直角三角板(角度分别为30°、60°、90°和45°、45°、90°),如图(1)所示,其中一块三角板的直角边AC⊥数轴,AC的中点过数轴原点O,AC=8,斜边AB交数轴于点G,点G 对应数轴上的数是4;另一块三角板的直角边AE交数轴于点F,斜边AD交数轴于点H.
(1)如果△AGH的面积是10,△AHF的面积是8,则点F对应的数轴上的数是▲,点H对应的数轴上的数是▲;
(2)如图(2),设∠AHF的平分线和∠AGH的平分线交于点M,若∠HAO=a,试用a来表示∠M的大小:
(3)如图(2),设∠AHF的平分线和∠AGH的平分线交于点M,设∠EFH的平分线和∠FOC的平分线交于点N,求∠N+∠M的值.(10分)。