7.2 解二元一次方程组达标测试
- 格式:docx
- 大小:53.86 KB
- 文档页数:1
学习必备欢迎下载新人教版七年级数学下册《二元一次方程组》测试题(时间120分钟,满分120分)一、填一填(3分×10=30分) 1、已知24x y,则.142______x y-72、若3321m nm nmxny是关于x 、y 的二元一次方程组,则______m n5/4.3、若一个二元一次方程组的解是32x y,请写出一个符合要求的二元一次方程组_____________________{x+y=5 x-y=1.4、已知2563640x y x y ,则2_____xy100/9.5、消去方程组235342x t yt中的t ,得_____4x+15y=26______.6、当m=___6或4 2____时,方程组2448x my x y的解是正整数.7、某学生在n 次考试中,其考试成绩满足条件:如果最后一次考试得97分,则平均为90分,如果最后一次考试得73分,则平均分为87分,则n=___8____.8、一轮船从重庆到上海要5昼夜,而从上海到重庆要7昼夜,那么一木排从重庆顺流漂到上海要_______昼夜.9、一批宿舍,若每间住1人,则10人无法安排;若每间住3人,则有10间无人住,这批宿舍有___20____间.10、某商品售价a 元,利润为成本的20%,若把利润提高到30%,售价应提高到____13/12a___元.二、选一选(3分×10=30分) 11、下列方程中的二元一次方程组的是( B )A .32141x y yz B .3232ab aC .13124y xxyD .13mn m n 12、已知2012S v tat ,当t=1时,S=13;当t=2时,S=42,则当t=3时,S 等于( B . ) A .106.5B .87C .70.5D .6913、已知单项式532y xab 与2244yab的和仍是单项式,则x 、y 的值为()。
蓬溪外国语实验学校数学学案模板 课题:7.2.二元一次方程组的解法(第二课时) 班级: 七年级2班 姓名:一、学习目标:1、进一步理解代入消元法的基本思想和代入法解题的一般步骤。
2、选择较为合理、简单的表示方法,将一个未知数表示为含另一个未知数的代数式 五、达标检测一、解下列方程组:⎩⎨⎧=+=-⎩⎨⎧=+=-751424.21732623.1y x y x y x y x⎩⎨⎧=-=-⎩⎨⎧=+-=-575832.410073203.3x y y x y x y x )原方程组的解.(的值;)试求:(写成了相反数,解得乙将一个方程中的;,解得甲解题时看错了)()(组甲、乙两位同学解方程二.2,1112325311b a y x b y x a by x by ax ⎩⎨⎧-==⎩⎨⎧==⎩⎨⎧=+=-.23213523的值、的解,试求是方程组已知三b a ay bx by ax y x 、⎩⎨⎧-=+=-⎩⎨⎧-==二、自学指导: 1、回忆:13212=--=y x y x15212=+=+y x y x 的解题关键是什么?解题步骤是什么?2、把方程652=-y x 写成用含y 的代数式表示x 的形式______________ 把方程652=-y x 写成用含x 的代数式表示y 的形式______________3、请认真看P29的例2,思考:(1)这两个方程中未知数的系数都不是1,怎么办?(2)这个题目进行方程变形为什么选择的是x 2而不是别的未知数?用别的未知数可以解方程组吗? 三 、自学检测试: 1、853642=-=-y x y x 2、 224743=+=-y x y x3、 13132=-=-y x y x 4、 2343553=-=-y x y x四、检查自己测试效果,自己哪里出错,总结解题步骤和思路。
小结:对于一般形式的二元一次方程组用代入消元法求解关键是选择哪一个方程方程变形,消什么元,选取的恰当往往会使计算简单,而且不易出错,选取的原则是: 1.选择未知数的系数是1或–1的方程2.若未知数的系数不是1或–1,选系数的绝对值比较小的方程如224743=+=-y x y x 就选择y 2进行变形。
第7章 一次方程7.2.3 用加减法解二元一次方程组(1)1.用加减法解二元一次方程组⎩⎨⎧3x -2y =5,①3x +4y =-1.②下列四种解法中,正确的是( )A .①+②,得6x -2y +(-4y )=5-1B .②-①,得4y -2y =-1+5,所以y =2C .②-①,得4y +2y =-1-5,所以y =-1D .②-①,得4y +2y =1-5,所以y =-232.[xx·宁夏]已知x 、y 满足方程组⎩⎨⎧x +6y =12,3x -2y =8,则x +y 的值为( )A .9B .7C .5D .33.[xx·北京]方程组⎩⎨⎧x -y =3,3x -8y =14的解为 ( )A.⎩⎨⎧x =-1y =2B.⎩⎨⎧x =1y =-2 C.⎩⎨⎧x =-2y =1 D.⎩⎨⎧x =2y =-1 4.[xx·无锡]方程组⎩⎨⎧x -y =2,x +2y =5的解是____.5.[xx·嘉兴]用消元法解方程组⎩⎨⎧x -3y =5,①4x -3y =2 ②时,两位同学的解法如下:解法一:由①-②,得3x =3.解法二:由②,得3x +(x -3y )=2.③把①代入③,得3x +5=2.(1)反思:上述两个解题过程中有无计算错误?若有误,请在错误处打“×”; (2)请选择一种你喜欢的方法,完成解答. 6.解方程组:(1)[xx·常州]⎩⎨⎧2x -3y =7,x +3y =-1;(2)[xx·宿迁]⎩⎨⎧x +2y =0,3x +4y =6.7.[xx·随州]已知⎩⎨⎧x =2,y =1是关于x 、y 的二元一次方程组⎩⎨⎧ax +by =7,ax -by =1的一组解,则a+b =____.8.校田园科技社团计划购进A 、B 两种花卉,两次购买每种花卉的数量以及每次的总费用如下表所示:花卉数量/株 总费用/元AB 第一次购买 10 25 225 第二次购买2015275(1)你从表格中获取了什么信息?(请用自己的语言描述,写出一条即可) (2)A 、B 两种花卉每株的价格各是多少元?9.对于有理数x 、y ,定义新运算:x y =ax +by ,其中a 、b 是常数,等式右边是通常的加法和乘法运算.例如,34=3a +4b ,则若34=8,即可知3a +4b =8.已知12=1,(-3)3=6,求2(-5)的值.参考答案【分层作业】 1. C 2. C 3. D【解析】⎩⎨⎧x -y =3,①3x -8y =14.②②-①×3,得-5y =5,解得y =-1. 把y =-1代入①,得x +1=3,解得x =2.故原方程组的解为⎩⎨⎧x =2,y =-1.4.⎩⎨⎧x =3,y =1【解析】⎩⎨⎧x -y =2,①x +2y =5.②②-①,得3y =3,解得y =1.把y =1代入①,得x -1=2,解得x =3.故原方程组的解是⎩⎨⎧x =3,y =1.5.解:(1)解法一中的解题过程有错误. 由①-②,得3x =3“×”, 应为由①-②,得-3x =3.(2)由①-②,得-3x =3,解得x =-1. 把x =-1代入①,得-1-3y =5,解得y =-2.所以原方程组的解是⎩⎨⎧x =-1,y =-2.6. (1)解:⎩⎨⎧2x -3y =7,①x +3y =-1.②①+②,得3x =6,解得x =2. 将x =2代入①,得y =-1.故原方程组的解为⎩⎨⎧x =2,y =-1.(2)解:⎩⎨⎧x +2y =0,①3x +4y =6.②由①,得x =-2y .③把③代入②,得3×(-2y )+4y =6, 解得y =-3.将y =-3代入③,得x =6.故原方程组的解为⎩⎨⎧x =6,y =-3.7. 5【解析】根据二元一次方程组的定义,将⎩⎨⎧x =2,y =1代入⎩⎨⎧ax +by =7,ax -by =1,得⎩⎨⎧2a +b =7,2a -b =1,解得⎩⎨⎧a =2,b =3,所以a +b =5.8.解:(1)略.答案不唯一,信息合理即可. (2)设A 、B 两种花卉每株的价格分别是x 元、y 元.由题意,得⎩⎨⎧10x +25y =225,20x +15y =275,解得⎩⎨⎧x =10,y =5.答:A 、B 两种花卉每株的价格分别是10元、5元.9.解:根据题意,得⎩⎨⎧a +2b =1,①-3a +3b =6.②①×3+②,得b =1. 将b =1代入①,得a =-1. 故2(-5)=2a -5b =-2-5=-7.。
专题7.2 二元一次方程组的解法姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,考试时间60分钟,试题共23题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020·江西赣州市·七年级期末)方程组:251x y x y +=⎧⎨-=⎩的解是( )A .14x y =⎧⎨=⎩B .01x y =⎧⎨=-⎩C .21x y =⎧⎨=⎩D .12x y =-⎧⎨=-⎩2.(2021·全国七年级)已知22m nx y +与45n m x y --是同类项,则mn 的值是( )A .1B .3C .1-D .3-3.(2020·山东枣庄市·八年级月考)已知方程组1222x y x y n⎧-=⎪⎨⎪-=⎩中的x ,y 互为相反数,则n 的值为( ) A .2B .﹣2C .0D .44.(2020·山东枣庄市·八年级月考)已知关于x 、y 方程组734521x y x y m +=⎧⎨-=-⎩的解能使等式4x ﹣3y =7成立,则m 的值为( ) A .8B .0C .4D .﹣25.(2020·四川巴中市·七年级期末)下列说法正确的是( ) A .二元一次方程2317x y +=的正整数解有2组B .若52x y =⎧⎨=⎩是232x y k -=的一组解,则k 的值是12C .方程组23321y x x y =-⎧⎨+=⎩的解是11x y =⎧⎨=-⎩ D .若3m n x +与22112m x y --是同类项,则2m =,1n = 6.(2020·苏州高新区实验初级中学七年级月考)整式mx n +的值随x 的取值不同而不同,下表是当x 取不同值时对应的整式的值,则关于x 的方程4mx n --=的解为( ) A .-1B .0C .1D .27.(2020·浙江金华市·七年级期中)已知关于x ,y 的方程组343x y a x y a +=-⎧⎨-=⎩,给出下列结论:①51x y =⎧⎨=-⎩是方程组的一个解;①当0a =时,x ,y 的值相等;①当22264x y ⨯=时,1a =;①当1a =-时,方程组的解,也是方程21x y a +=+的解.其中正确的是( ) A .①①①B .①①①C .①①①D .①①①①8.(2021·全国八年级)已知关于x 、y 的二元一次方程组2125x y ax ky a +=-⎧⎨-=-⎩给出下列结论:①当k =2时,此方程组无解;①若k =1,则代数式22x •4y =14;①当a =0时,此方程组一定有八组整数解(k 为整数),其中正确的是( ) A .①①①B .①①C .①①D .①①9.(2020·城固县第三中学八年级月考)对于任意实数,规定新运算:x y ax by xy =+-※,其中a 、b 是常数,等式右边是通常的加减乘除运算.已知211=※,()322-=-※,则a b ※的值为( ) A .3B .4C .6D .710.(2021·全国七年级)若关于x 、y 的方程组228x y ax y +=⎧⎨+=⎩的解为整数,则满足条件的所有a 的值的和为( ) A .6B .9C .12D .16二、填空题(本大题共6小题,每小题4分,共24分.不需写出解答过程,请把答案直接填写在横线上) 11.(2020·浙江杭州市·七年级其他模拟)把方程21x y -=变形:用含x 的代数式表示y =______;用含y 的代数式表示x =______.12.(2020·浙江杭州市·七年级其他模拟)已知2(32)5230x x y -+--=∣∣,则x =____,y =____.13.(2020·浙江杭州市·七年级其他模拟)方程组23632x y x y +=⎧⎨-=⎩,则52x y +=________.14.(2020·南阳市实验学校七年级月考)小红和小风两人在解关于x ,y 的方程组3528ax y bx y +=⎧⎨+=⎩时,小红只因看错了系数a ,得到方程组的解为12x y =-⎧⎨=⎩,小风只因看错了系数b ,得到方程组的解为14x y =⎧⎨=⎩,则ab =____________.15.(2020·浙江杭州市·七年级其他模拟)已知关于x 、y 二元一次方程组31630mx y x ny -=⎧⎨-=⎩的解为53x y =⎧⎨=⎩,则关于x ,y 的二元一次方程组(1)3(1)163(1)(1)0m x y x n y +--=⎧⎨+--=⎩的解是___.16.(2020·浙江杭州市·七年级其他模拟)已知关于x ,y 的方程组35225x y ax y a -=⎧⎨-=-⎩,则下列结论:①当10a =时,方程组的解是155x y =⎧⎨=⎩;①当x ,y 的值互为相反数时,20a =;①不存在一个实数a 使得x y =;①若3533x a -=,则5a =,正确的有__________(写编号)三、解答题(本大题共7小题,共46分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(2021·山东青岛市·八年级期末)解方程(本题共有2道小题)(1)34528a b a b -=⎧⎨+=⎩ (2)11233210x y x y +⎧-=⎪⎨⎪+=⎩18.(2021·武汉外国语学校七年级期末)已知关于x 、y 的二元一次方程组为3331x y x y a +=⎧⎨+=+⎩(1)直接写出....二元一次方程组的解为(结果用含a 的式子表示)______________ (2)若21x y a -=-,求a 的值19.(2021·全国七年级)阅读小林同学数学作业本上的截图内容并完成任务.任务:(1)这种解方程组的方法称为________;(2)小林的解法正确吗?________(填“正确”或“不正确”),如果不正确,错在第________步,并选择恰当的方法解该方程组.20.(2021·全国七年级)已知关于x ,y 的方程组260250x y x y mx +-=⎧⎨-++=⎩(1)请直接写出方程260x y +-=的所有正整数解(2)若方程组的解满足0x y +=,求m 的值 (3)无论实数m 取何值,方程250x y mx -++=总有一个固定的解,请求出这个解?21.(2020·丰县欢口镇欢口初级中学七年级月考)若关于x 、y 的二元一次方程组3x 2y m 22x y m 5-=+⎧⎨-=-⎩.()1解方程组(结果用含m 的式子表示x 、y);()2若方程组的解x 、y 满足方程x y 3+=-,求m 的值; ()3若方程组的解x 、y 满足31x y -<+<,且m 为整数,求m 的值.22.(2020·磴口县第一完全中学)根据要求,解答下列问题. (1)解下列方程组(直接写出方程组的解即可): A .2323x y x y +=⎧⎨+=⎩ B .32102310x y x y +=⎧⎨+=⎩ C .2727x y x y -=⎧⎨-+=⎩方程组A 的解为 ,方程组B 的解为 ,方程组C 的解为 ;(2)以上每个方程组的解中,x 值与y 值的大小关系为 ;(3)请你构造一个具有以上外形特征的方程组,并直接写出它的解.23.(2021·全国七年级)善于思考的小军在解方程组253?4115?x yx y+=⎧⎨+=⎩①②时,采用了一种“整体代换”的解法:解:将方程①变形:4x+10y+y=5,即2(2x+5y)+y=5,①把方程①代入①,得2×3+y=5.①y=﹣1.把y=﹣1代入①,得x=4.①原方程组的解为41 xy=⎧⎨=⎩.请你解决以下问题:(1)模仿小军的“整体代换法”解方程组:325? 9419?x yx y-=⎧⎨-=⎩①②(2)已知x,y满足方程组22223212472836?x xy yx xy y⎧-+=⎨++=⎩①②,求x2+4y2的值.。
专题7.2 二元一次方程组的应用【十一大题型】【华东师大版】【题型1 行程问题】 (1)【题型2 工程问题】 (2)【题型3 配套问题】 (3)【题型4 年龄问题】 (4)【题型5 销售问题】 (4)【题型6 分配问题】 (5)【题型7 几何图形问题】 (7)【题型8 数字问题】 (8)【题型9 古代问题】 (9)【题型10 方案问题】 (10)【题型11 图表问题】 (11)【题型1 行程问题】【例1】(2023春·山东临沂·七年级统考期末)甲、乙两人在400米的环形跑道上练习赛跑,如果两人同时同地反向跑,经过25秒第一次相遇;如果两人同时同地同向跑,经过200秒甲第一次追上乙,求甲、乙两人的平均速度.【变式1-1】(2023春·江苏连云港·七年级统考期末)我县境内的某段铁路桥长2200m,现有一列高铁列车从桥上通过,测得此列高铁从开始上桥到完全过桥共用30s,整列高铁在桥上的时间是25s,试求此列高铁的车速和车长.【变式1-2】(2023春·河北廊坊·七年级廊坊市第四中学校考期中)琪琪沿街匀速行走,发现每隔12min从背后驶过一辆7路公交车,每隔6min从迎面驶来一辆7路公交车.假设每辆7路公交车行驶速度相同,而且7路公交车总站每隔固定时间发一辆车.问:(1)7路公交车行驶速度是琪琪行走速度的倍.(2)7路公交车总站每间隔min发一辆车.【变式1-3】(2023春·湖南娄底·七年级统考期末)小华从家里到学校的路是一段平路和一段下坡路.假设他始终保持平路每分钟走60米,下坡路每分钟走80米,上坡路每分钟走40米,则他从家里到学校需10分钟,从学校到家里需15分钟.(1)小华家离学校多远?(2)小华从家里到学校到达中点的时间与小华从学校到家里到达中点的时间会一样吗?如果不一样,哪种情况所花的时间更多?请通过计算说明理由.【题型2 工程问题】【例2】(2023春·安徽芜湖·七年级校考期末)自来水厂的供水池有7个进出水口,每天早晨6点开始进出水,且此时水池中有水15%,在每个进出水口是匀速进出的情况下,如果开放3个进口和4个出口,5小时将水池注满;如果开放4个进口和3个出口,2小时将水池注满.若某一天早晨6点时水池中有水24%,又因为水管改造,只能开放3个进口和2个出口,则从早晨6点开始经过小时水池的水刚好注满.【变式2-1】(2023春·四川泸州·七年级泸县五中校考期中)制造某种产品,1人用机器,3人靠手工,每天可制造60件;2人用机器,2人靠手工,每天可制造80件.3人用机器,1人靠手工,每天可制造多少件产品?【变式2-2】(2023春·湖南常德·七年级统考期末)玲玲家准备装修一套新住房,若甲、乙两个装饰公司合作,需要6周完成,共需装修费5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周才能完成,共需装修费4.8万元,玲玲的爸爸妈妈商量后决定只选一个公司单独完成.(1)设工作总量为1,甲公司的每周工作效率为m,乙公司每周的工作效率为n,根据题意列出关于m、n的二元一次方程组.(2)如果从节约时间的角度考虑,应选哪家公司?请说明理由.(3)如果从节约开支的角度考虑,应选哪家公司?请说明理由.【变式2-3】(2023春·河北邯郸·七年级统考期中)有一块面积为180亩的荒地需要绿化,甲工程队绿化若干天后,因有急事,剩余工作由乙工程队完成,已知甲工程队每天绿化8亩,乙工程队每天绿化12亩,一共用20天完成.(1)设甲工程队绿化m天,乙工程队绿化n天,依题意可列方程组:______.(2)设甲工程队绿化荒地x亩,乙工程队绿化荒地y亩,请列方程组求甲、乙两工程队分别绿化荒地的亩数.【例3】(2023春·全国·七年级期末)张氏包装厂承接了一批纸盒加工任务,用如图①所示的长方形和正方形纸板作侧面和底面,做成如图①所示的竖式与横式两种上面无盖的长方体纸盒(加工时接缝材料不计).(1)做1个竖式纸盒和2个横式纸盒,需正方形纸板___________张(直接填空),需长方形纸板___________张(直接填空).(2)若该厂购进正方形纸板162张,长方形纸板338张,问竖式纸盒、横式纸盒各加工多少个,恰好能将购进的纸板全部用完?(要求列二元一次方程组解决此问题)3.(2023秋·山东济南·七年级校考期末)列方程组解应题某校为7年级寄宿学生安排宿舍,每间宿舍住5人,则有4人住不下;若每间住6人,则有一间只住4人,求该年级寄宿的学生人数和宿舍间数?【变式3-1】(2023春·山东菏泽·七年级统考期中)一套餐桌有一张桌子和六把椅子组成.如果1立方米木料可以制作10张桌子,或制作15把椅子.现有15立方米的木料,请你设计一下,用多少立方米的木料做桌子,多少立方米的木料做椅子,恰好配套成餐桌?【变式3-2】(2023春·广东江门·七年级统考期末)用铁皮材料做罐头盒,每张铁皮可制盒身30个,或制盒底50个,一个盒身与两个盒底配成一套.现有33张铁皮材料,分别用多少张制盒身、盒底,才能保证既恰好用完铁皮材料,又使盒身和盒底正好配套?【变式3-3】(2023秋·安徽滁州·七年级校考开学考试)一工厂有60名工人,要完成1200套产品的生产任务,每套产品由4个A型零件和3个B型零件配套组成,每个工人每天能加工6个A型零件或者3个B型零件.现将工人分成两组,每组分别加工一种零件,并要求每天加工的零件正好配套.(1)工厂每天应安排多少名工人生产A型零件?每天能生产多少套产品?(2)现工厂要在20天内完成1200套产品的生产,决定补充一些新工人,这些新工人只能独立进行A型零件的加工,且每人每天只能加工4个A型零件.①设每天安排x名熟练工人和m名新工人生产A型零件,求x的值(用含m的代数式表示)①请问至少需要补充多少名新工人才能在规定期限完成生产任务?【例4】(2023春·全国·七年级专题练习)5年前母亲的年龄是女儿年龄的15倍,15年后,母亲的年龄比女儿年龄的2倍多6岁.那么现在这对母女的年龄分别是多少?【变式4-1】(2023春·七年级课时练习)爸爸、妈妈、我、妹妹,四人今年的年龄之和是101岁,爸爸比妈妈大1岁,我比妹妹大6岁,十年前,我们一家的年龄之和是63岁,今年爸爸的年龄是()A.38岁B.39岁C.40岁D.41岁【变式4-2】(2023秋·湖南永州·七年级校考开学考试)甲对乙说:“我像你这样大岁数的那年,你的岁数等于我今年的岁数的一半;当你到我这样大岁数的时候,我的岁数是你今年岁数的二倍少7岁.”则今年甲的年龄为岁,乙的年龄为岁.【变式4-3】(2023春·福建泉州·七年级统考期末)南安英都拔拔灯是国家级非物质文化遗产之一,因疫情原因停办了好几年,今年正月又重新举行,吸引了众多的海内外游客参与.其中一位34岁的男子带着他的两个孩子参与了拔拔灯活动,下面是记者与两个孩子的对话:记者:两位小朋友,你们几岁了?这么小就来拔拔灯了.妹妹:我比哥哥少4岁;哥哥:两年后,妹妹年龄的3倍与我的年龄相加.恰好等于爸爸的年龄;根据对话内容,请你用方程(组)的知识帮记者求出今年哥哥和妹妹的年龄.【题型5 销售问题】【例5】(2023春·山东泰安·七年级统考期末)2020年1月底,武汉爆发“新冠”疫情,并开始向全国蔓延,出于防疫的需求,医用口罩迅速成为紧俏物资.某药店为解市民的燃眉之急,先后两次采购了A、B两种型号的医用口罩进行销售.已知这两种型号的医用口罩进货情况如表:(1)问A,B两种型号的口罩的进货单价各是多少元?(2)销售中发现B型口罩的销量明显好于A型,药店在计划第三次采购时,决定购进B型口罩的箱数比A 型口罩的箱数的2倍还多10箱,在采购总价不超过90000元的情况下,最多能购进多少箱B型口罩?【变式5-1】(2023春·重庆·七年级重庆市育才中学校考期中)向日葵水果店推出甲乙两种礼盒,甲礼盒中有樱桃1千克,枇杷0.5千克,香梨1千克,乙礼盒中有樱桃1千克,枇杷0.5千克,哈密瓜1千克,已知樱桃每千克30元,甲礼盒每盒100元,乙礼盒每盒98元,当然,顾客也可根据需要自由搭配,小陶用1100元买乙礼盒和自由搭配礼盒(香梨1千克,枇杷1千克,哈密瓜1千克)若干盒,则小陶一共可买礼盒个.【变式5-2】(2023春·黑龙江大庆·七年级校考期末)某商店分两次购进A,B型两种台灯进行销售,两次购进的数量及费用如下表所示,由于物价上涨,第二次购进A,B型两种台灯时,两种台灯每台进价分别上涨30%,20%.(1)求第一次购进A,B型两种台灯每台进价分别是多少元?(2)A,B型两种台灯销售单价不变,第一次购进的台灯全部售出后,获得的利润为2800元,第二次购进的台灯全部售出后,获得的利润为1800元.①求A,B型两种台灯每台售价分别是多少元?①若按照第二次购进A,B型两种台灯的价格再购进一次,将再次购进的台灯全部售出后,要想使获得的利润为1000元,求有哪几种购进方案?【变式5-3】(2023秋·全国·七年级统考期末)为了解决农民工子女入学难的问题,我市建立了一套进城农民工子女就学的保障机制,其中一项就是免交“借读费”.据统计,2004年秋季有5000名农民工子女进入主城区中小学学习,预计2005年秋季进入主城区中小学学习的农民工子女比2004年有所增加,其中小学增加20%,中学增加30%,这样,2005年秋季将新增1160名农民工子女在主城区中小学学习.(1)如果按小学每生每年收“借读费”500元,中学每生每年收“借读费”1000元计算,求2005年新增加的1160名中小学学生共免收多少“借读费”?(2)如果小学每增加40名学生需配备2名教师,中学每增加40名学生需配备3名教师,若按2005年秋季入学后,农民工子女在主城区中小学就读的学生增加的人数计算,一共需要配备多少名中小学教师?【题型6 分配问题】【例6】(2023春·北京海淀·七年级北京育英中学校考期末)为迎接2008年奥运会,某工艺厂准备生产奥运会标志“中国印”和奥运会吉祥物“福娃”.该厂主要用甲、乙两种原料,已知生产一套奥运会标志需要甲原料和乙原料分别为4盒和3盒,生产一套奥运会吉祥物需要甲原料和乙原料分别为5盒和10盒.该厂购进甲、乙原料的量分别为20000盒和30000盒,如果所进原料全部用完,求该厂能生产奥运会标志和奥运会吉祥物各多少套?【变式6-1】(2023春·广西桂林·七年级校考期中)某汽车制造厂生产一款电动汽车,计划一个月生产200辆.由于抽调不出足够的熟练工来完成电动汽车的安装,工厂决定招聘一些新工人,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车,2名熟练工和3名新工人每月可安装14辆电动汽车(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(2)若工厂现在有熟练工人30人,求还需要招聘多少新工人才能完成一个月的生产计划?【变式6-2】(2023春·浙江·七年级期末)杭州某公司准备安装完成6000辆如图所示款共享单车投入市场.由于抽调不出足够熟练工人,公司准备招聘一批新工人.生产开始后发现:1名熟练工人和2名新工人每天共安装28辆共享单车;2名熟练工人每天装的共享单车数与3名新工人每天安装的共享单车数一样多.(1)求每名熟练工人和新工人每天分别可以安装多少辆共享单车?(2)若公司原有熟练工a人,现招聘n名新工人(a>n),使得最后能刚好一个月(30天)完成安装任务,求a的值.【变式6-3】(2023春·吉林长春·七年级统考期末)问题解决:糖葫芦一般是用竹签串上山楂.再蘸以冰糖制作而成,现将一些山楂分别串在若干个竹签上,如果每根竹签串4个山楂,还剩余3个山楂;如果每根竹签串7个山楂,还剩余6根竹签,求竹签有多少根?山楂有多少个?反思归纳:现有m根竹签,n个山楂,若每根竹签串a个山楂,还剩b个山楂,则m、n、a、b满足的等量关系为(用含m、n、a、b的代数式表示).【题型7 几何图形问题】【例7】(2023春·江苏苏州·七年级校联考阶段练习)把长都是宽的两倍的1个大长方形纸片和4个相同的小长方形纸片按图①、图①方式摆放,则图①中的大长方形纸片未被4个小长方形纸片覆盖部分的面积为cm2.【变式7-1】(2023春·江苏常州·七年级统考期末)在长为18m,宽为15m的长方形空地上,沿平行于长方形各边的方向分别割出三个大小完全一样的小长方形花圃,其示意图如图所示,则其中一个小长方形花圃的面积为()A.10m2B.12m2C.18m2D.28m2【变式7-2】(2023春·河南新乡·七年级校考阶段练习)如图,在长方形ABCD中,放入6个形状、大小都相同的小长方形,所标尺寸如图所示.(1)小长方形的长和宽各是多少?(2)求阴影部分的面积.【变式7-3】(2023春·山西·七年级统考期中)小敏通过观察发现,生活中很多产品的包装都是长方体,她从家里找了一个长方体包装盒,将其展开后,得到如图所示的示意图,根据示意图中的数据可得原长方体的体积为cm3.【题型8 数字问题】【例8】(2023春·河北唐山·七年级统考期中)某两位数,两个数位上的数之和为11.这个两位数加上45,得到的两位数恰好等于原两位数的两个数字交换位置所表示的数,求原两位数.(1)列一元一次方程求解.(2)如果设原两位数的十位数字为x,个位数字为y,列二元一次方程组.(3)检验(1)中求得的结果是否满足(2)中的方程组.【变式8-1】(2023春·重庆沙坪坝·七年级重庆市第七中学校校考期末)幻方的历史很悠久,传说最早出现在夏禹时代的“洛书”.三阶幻方的填写规则是将9个不同的整数填入方格中,使得每行、每列、每条对角线上的三个数之和都相等.(1)如图1所示幻方,求x的值;(2)如图2所示幻方,求a,b的值;(3)如图3所示幻方,若m,n为正整数,直接写出一共有多少种填法,并把其中一种幻方填写完整.【变式8-2】(2023秋·辽宁铁岭·七年级统考阶段练习)在《最强大脑》节目中,有很多具有挑战性的比赛项目,其中《幻图圆》这个项目充分体现了数学的魅力.如图是一个最简单的二阶幻圆的模型,要求:①内、外两个圆周上的四个数字之和相等;①外圆两直径上的四个数字之和相等;则图中外圆周上空白圆圈内填,内圆周上空白圆圈内填内应填.【变式8-3】(2023春·山东潍坊·七年级校考阶段练习)小明和小华在一起玩数字游戏,他们每人取了一张数字卡片,拼成了一个两位数,小明说:“哇!这个两位数的十位数字与个位数字之和恰好是9.”他们又把这两张卡片对调,得到了一个新的两位数,小华说:“这个两位数恰好也比原来的两位数大9.”那么,你能回答以下问题吗?(1)他们取出的两张卡片上的数字分别是几?(2)第一次,他们拼出的两位数是多少?(3)第二次,他们拼成的两位数又是多少呢?请你好好动动脑筋哟!【题型9 古代问题】【例9】(2023秋·安徽滁州·七年级校联考期中)被历代数学家尊为“算经之首”的《九章算术》是中国古代算法的扛鼎之作.《九章算术》中记载:“今有五雀、六燕,集称之衡,雀俱重,燕俱轻.一雀一燕交而处,衡适平.并燕、雀重一斤.问燕、雀一枚各重几何?”译文:“今有5只雀、6只燕,分别聚集而且用衡器称之,聚在一起的雀重,燕轻.将一只雀、一只燕交换位置而放,重量相等.5只雀、6只燕重量为1斤.问雀、燕每1只各重多少斤?”请列方程组解答上面的问题.【变式9-1】(2023春·湖北武汉·七年级校考阶段练习)我国古代问题:以绳测井,若将绳三折测之,绳多四尺,若将绳四折测之,绳多一尺,井深几何?这段话的意思是:用绳子量井深,把绳三折来量,井外余绳四尺,把绳四折来量,井外余绳一尺,井深几尺?则该问题的井深是()尺.A.5B.8C.32D.36【变式9-2】(2023春·江西南昌·七年级统考期末)《九章算术》是我国古代第一部数学专著,书中记载了这样一个问题:“今有上禾三秉,益实六斗,当下禾十秉.下禾五秉,益实一斗,当上禾二秉.问上、下禾实一秉各几何?”其大意是:今有上等水稻3捆,加稻谷6斗,与下等水稻10捆相当.下等水稻5捆,加稻谷1斗,与上等水稻2捆相当.问上等水稻、下等水稻每捆各有稻谷多少斗?【变式9-3】(2023秋·安徽·七年级校联考阶段练习)《九章算术》中有这样一道题,原文如下:今有上禾六秉,损实一斗八升,当下禾一十秉.下禾十五秉,损实五升,当上禾五秉.问:上、下禾实一秉各几何?大意为:今有上禾6束,减损其中之“实”1斗8升,与下禾10束之“实”相当;下禾15束,减损其中之“实”5升,与上禾5束之“实”相当.问上、下禾每1束之实各为多少?(10升为1斗)【题型10 方案问题】【例10】(2023春·湖南株洲·七年级校考期末)某电器超市销售每台进价为200元,170元的A、B两种型号的电风扇.如表所示是近2周的销售情况:(进价、售价均保持不变,利润=销售收入-进货成本)(1)求A、B两种型号电风扇的销售单价;(2)超市销售完A、B两种型号的电风扇共25台,能否实现利润为1200元的目标?请说明理由.(3)一家公司打算花费4000元同时购买A、B两种型号的电风扇若干台,请你为该公司设计不同的购买方案.【变式10-1】(2023秋·福建漳州·七年级校考阶段练习)某公司接到240台空调的安装任务.由于时间紧,该公司没有足够的熟练工人,故决定招聘一批新工人.根据以往安装经验可知,1名熟练工人和2名新工人每天一共可以安装8台空调;2名熟练工人和3名新工人每天一共可以安装14台空调.(1)求每名熟练工人和新工人每天分别可以安装多少台空调?(2)若该公司原有m名熟练工人,现计划招聘n名新工人(m,n均为正整数),为保证刚好用12天完成安装任务,你认为该公司有哪几种招聘方案?【变式10-2】(2023春·湖北荆州·七年级统考期末)荆州作为荆楚文化根脉所在,是楚文化发祥地.首届楚文化节于2023年3月至4月在荆州举办.为更好展现荆州,荆州市特推出A、B两种不同明信片套盒和单张明信片.已知一种A套盒和一种B套盒总价13元,2种A套盒和3种B套盒总价31元;单张明信片1元/张.(1)请求出A、B两种套盒的单价各是多少元?(2)某顾客计划用200元购买这三种商品共127件,如果资金刚好全部用完,问有几种购买方案?【变式10-3】(2023春·广东广州·七年级执信中学校考期中)杂交水稻的发展对解决世界粮食不足问题有着重大的贡献,某超市购进A、B两种大米销售,其中两种大米的进价、售价如下表:(1)该超市在3月份购进A、B两种大米共70袋,进货款恰好为1800元.①求这两种大米各购进多少袋;①据3月份的销售统计,两种大米的销售总额为900元,求该超市3月份已售出大米的进货款为多少元.(2)超市决定在4月份销售A、B两种大米共盈利100元(A,B两种品种都有购进),请你帮助设计一下进货方案,并写出来.【题型11 图表问题】【例11】(2023春·浙江嘉兴·七年级校联考阶段练习)流感期间,小李家购买防护用品的收据如表,有部分数据因污染无法识别,根据表格,解决下列问题:(1)小李家此次购买的酒精喷剂和医用口罩各多少件?(2)小李家计划再次购买消毒水和酒精喷剂共15件,且总价刚好490元,则消毒水购买多少件?(3)小李家准备用270元再次购买消毒纸巾和医用口罩,在270元刚好用完的条件下,有哪些购买方案?【变式11-1】(2023春·河南新乡·七年级统考期末)如图,2个塑料凳子叠放在一起的高度为60cm,4个塑料凳子叠放在一起的高度为80cm,塑料凳子相同且叠放时均忽略缝隙,则11个塑料凳子叠放在一起时的高度为()A.120cm B.130cm C.140cm D.150cm【变式11-2】(2023秋·甘肃武威·七年级校考开学考试)课余活动中,小杰、小明和小丽一起玩飞镖游戏,飞镖盘上A区域所得分值和B区域所得分值不同,每人投5次飞镖,其落点如图所示,已知小杰和小明的5次飞镖总分分别为39分和43分,小丽的5次飞镖总分为分.【变式11-3】(2023春·浙江温州·七年级校联考期中)根据以下素材,完成任务.。
7。
2二元一次方程组的解法一.选择题(共8小题)1.方程组的解是()A.B.C.D.2.方程组的解是()A.B.C.D.3.若x=1,y=2满足方程(ax+by﹣12)2+|ay﹣bx+1|=0,则a,b的值为()A.a=3,b=4 B.a=﹣4,b=﹣3 C.a=2,b=5 D.a=﹣5,b=﹣24.解方程组时你认为最简单的方法是()A.用代入法先消去x或y B.用①×15﹣②×23,先消去xC.用①×6﹣②×4,先消去y D.用①×3+②×2,先消去y5.若4a﹣3b=7,3a+2b=19,则14a﹣2b是()A.48 B.52 C.58 D.606.已知两数x,y之和是10,x比y的3倍大2,则下面所列方程组正确的是() A.B.C.D.7.如果ma m b3﹣n与nab m是同类项,那么(m﹣n)2001的值是( )A.0 B.1 C.﹣1 D.﹣320018.已知,则x y的值为()A.16 B.9 C 8 D.6二.填空题(共6小题)9.二元一次方程组的解为_________ .10.若|x﹣8y+2|+(2y﹣x+1)2=0,则(﹣x+5y)3的值是_________ .11.若(3x﹣2y+4)2与|4x﹣y﹣3|互为相反数,则x= _________ ,y= _________ .12.x与y互为相反数,且x﹣y=3,那么x2+2xy+1的值为_________ .13.方程组有正整数解,则正整数a= _________ .14.若二元一次方程组的解中,x与y的值相等,那么m+n的值等于_________ .三.解答题(共10小题)15.解方程组.16.解方程(组):(1).(2).17.解方程组:(1);(2).18.解方程组:.19.解方程组:.20.解方程组.21.解方程组.22.解方程组:.23.解方程组:.24.解下列方程组:.7。