工程力学部分习题答案,基本划出的习题一至十一章
- 格式:doc
- 大小:878.00 KB
- 文档页数:26
工程力学练习册学校学院专业学号教师姓名第一章静力学基础1-1 画出下列各图中物体A,构件AB,BC或ABC的受力图,未标重力的物体的重量不计,所有接触处均为光滑接触。
(a)(b)(c)(d)(e)(f)(g)1-2 试画出图示各题中AC杆(带销钉)和BC杆的受力图(a)(b)(c)(a)1-3 画出图中指定物体的受力图。
所有摩擦均不计,各物自重除图中已画出的外均不计。
(a)(b)(c)(d)(e)(f)(g)第二章平面力系2-1 电动机重P=5000N,放在水平梁AC的中央,如图所示。
梁的A端以铰链固定,另一端以撑杆BC支持,撑杆与水平梁的夹角为30 0。
如忽略撑杆与梁的重量,求绞支座A、B处的约束反力。
题2-1图∑∑=︒+︒==︒-︒=PFFFFFFBAyABx30sin30sin,030cos30cos,0解得: NPFFBA5000===2-2 物体重P=20kN,用绳子挂在支架的滑轮B上,绳子的另一端接在绞车D上,如图所示。
转动绞车,物体便能升起。
设滑轮的大小及轴承的摩擦略去不计,杆重不计,A、B、C三处均为铰链连接。
当物体处于平衡状态时,求拉杆AB和支杆BC所受的力。
题2-2图∑∑=-︒-︒-==︒-︒--=30cos30sin,030sin30cos,0PPFFPFFFBCyBCABx解得:PFPFABBC732.2732.3=-=2-3 如图所示,输电线ACB架在两电线杆之间,形成一下垂线,下垂距离CD=f=1m,两电线杆间距离AB=40m。
电线ACB段重P=400N,可近视认为沿AB直线均匀分布,求电线的中点和两端的拉力。
题2-3图以AC段电线为研究对象,三力汇交NFNFFFFFFFCAGAyCAx200020110/1tansin,0,cos,0=======∑∑解得:ααα2-4 图示为一拔桩装置。
在木桩的点A上系一绳,将绳的另一端固定在点C,在绳的点B系另一绳BE,将它的另一端固定在点E。
第一章 静力学基本概念与物体的受力分析下列习题中,未画出重力的各物体的自重不计,所有接触面均为光滑接触。
1.1 试画出下列各物体(不包括销钉与支座)的受力图。
解:如图(g)(j)P (a)(e)(f)WWF F A BF DF BF AF ATF BA1.2画出下列各物体系统中各物体(不包括销钉与支座)以及物体系统整体受力图。
解:如图F BB(b)(c)C(d)DCF D(e)AF D(f)FD(g)(h)EOBO EFO(i)(j) BYFB XBFXE(k)1.3铰链支架由两根杆AB、CD和滑轮、绳索等组成,如题1.3图所示。
在定滑轮上吊有重为W的物体H。
试分别画出定滑轮、杆CD、杆AB和整个支架的受力图。
解:如图'D1.4题1.4图示齿轮传动系统,O1为主动轮,旋转方向如图所示。
试分别画出两齿轮的受力图。
解:1o xF2o xF2o yF o yFFF'1.5结构如题1.5图所示,试画出各个部分的受力图。
解:第二章 汇交力系2.1 在刚体的A 点作用有四个平面汇交力。
其中F 1=2kN ,F 2=3kN ,F 3=lkN , F 4=2.5kN ,方向如题2.1图所示。
用解析法求该力系的合成结果。
解 00001423cos30cos45cos60cos45 1.29Rx F X F F F F KN ==+--=∑ 00001423sin30cos45sin60cos45 2.54Ry F Y F F F F KN ==-+-=∑2.85R F KN ==0(,)tan63.07Ry R RxF F X arc F ∠==2.2 题2.2图所示固定环受三条绳的作用,已知F 1=1kN ,F 2=2kN ,F 3=l.5kN 。
求该力系的合成结果。
解:2.2图示可简化为如右图所示023cos60 2.75Rx F X F F KN ==+=∑013sin600.3Ry F Y F F KN ==-=-∑2.77R F KN ==0(,)tan6.2Ry R RxF F X arc F ∠==-2.3 力系如题2.3图所示。
工程力学练习册学校学院专业学号教师姓名第一章静力学基础1-1 画出下列各图中物体 A ,构件 AB , BC 或 ABC 的受力图,未标重力的物体的重量不计,所有接触处均为光滑接触。
(a(b(c(d(e(f(g1-2 试画出图示各题中 AC 杆(带销钉和 BC 杆的受力图(a (b (c(a1-3 画出图中指定物体的受力图。
所有摩擦均不计, 各物自重除图中已画出的外均不计。
(a(b(c(d(e(f(g第二章平面力系2-1 电动机重 P=5000N ,放在水平梁 AC 的中央,如图所示。
梁的 A 端以铰链固定, 另一端以撑杆 BC 支持, 撑杆与水平梁的夹角为 30 0。
如忽略撑杆与梁的重量, 求绞支座 A 、 B 处的约束反力。
题 2-1图∑∑=︒+︒==︒-︒=P F F F F F FB A y A B x 30sin 30sin , 0030cos 30cos , 0解得 : N P F F B A 5000=== 2-2 物体重 P=20kN ,用绳子挂在支架的滑轮 B 上,绳子的另一端接在绞车D 上,如图所示。
转动绞车,物体便能升起。
设滑轮的大小及轴承的摩擦略去不计,杆重不计, A 、 B 、 C 三处均为铰链连接。
当物体处于平衡状态时,求拉杆 AB 和支杆BC 所受的力。
题 2-2图∑∑=-︒-︒-==︒-︒--=030cos 30sin , 0030sin 30cos , 0P P F F P F F FBC y BC AB x解得 :P F P F BC AB 732. 2732. 3=-=2-3 如图所示,输电线 ACB 架在两电线杆之间,形成一下垂线,下垂距离 CD =f =1m , 两电线杆间距离 AB =40m。
电线 ACB 段重 P=400N ,可近视认为沿 AB 直线均匀分布,求电线的中点和两端的拉力。
题 2-3图以 AC 段电线为研究对象,三力汇交NF NF F F F F F FC A GA y C A x 200020110/1tan sin , 0, cos , 0=======∑∑解得:ααα2-4 图示为一拔桩装置。
工程力学练习册学校学院专业学号教师姓名第一章静力学基础 1第一章静力学基础1-1 画出下列各图中物体A,构件AB,BC或ABC的受力图,未标重力的物体的重量不计,所有接触处均为光滑接触。
(a)(b)(c)2 第一章静力学基础(d)(e)(f)(g)第一章静力学基础 3 1-2 试画出图示各题中AC杆(带销钉)和BC杆的受力图(a)(b)(c)(a)4 第一章静力学基础1-3 画出图中指定物体的受力图。
所有摩擦均不计,各物自重除图中已画出的外均不计。
(a)第一章静力学基础 5 (b)(c)(d)6 第一章静力学基础(e)第一章静力学基础7 (f)(g)8 第二章 平面力系第二章 平面力系2-1 电动机重P=5000N ,放在水平梁AC 的中央,如图所示。
梁的A 端以铰链固定,另一端以撑杆BC 支持,撑杆与水平梁的夹角为30 0。
如忽略撑杆与梁的重量,求绞支座A 、B 处的约束反力。
题2-1图∑∑=︒+︒==︒-︒=PF F FF F F B A yA B x 30sin 30sin ,0030cos 30cos ,0解得: N P F F B A 5000===2-2 物体重P=20kN ,用绳子挂在支架的滑轮B 上,绳子的另一端接在绞车D 上,如第二章 平面力系 9图所示。
转动绞车,物体便能升起。
设滑轮的大小及轴承的摩擦略去不计,杆重不计,A 、B 、C 三处均为铰链连接。
当物体处于平衡状态时,求拉杆AB 和支杆BC 所受的力。
题2-2图∑∑=-︒-︒-==︒-︒--=030cos 30sin ,0030sin 30cos ,0P P F FP F F F BC yBC AB x解得: PF P F AB BC 732.2732.3=-=2-3 如图所示,输电线ACB 架在两电线杆之间,形成一下垂线,下垂距离CD =f =1m ,两电线杆间距离AB =40m 。
电线ACB 段重P=400N ,可近视认为沿AB 直线均匀分布,求电线的中点和两端的拉力。
工程力学习题答案第一章 静力学基础知识思考题:1. ×;2. √;3. √;4. √;5. ×;6. ×;7. √;8. √习题一1.根据三力汇交定理,画出下面各图中A 点的约束反力方向。
解:(a )杆AB 在A 、B 、C 三处受力作用。
由于力p 和B R的作用线交于点O 。
如图(a )所示,根据三力平衡汇交定理,可以判断支座A 点的约束反力必沿通过A 、O 两点的连线。
(b )同上。
由于力p 和B R的作用线交于O 点,根据三力平衡汇交定理,可判断A 点的约束反力方向如下图(b )所示。
2.不计杆重,画出下列各图中AB 解:(a )取杆AB 为研究对象,杆除受力p外,在B 处受绳索作用的拉力B T ,在A 和E 两处还受光滑接触面约束。
约束力A N 和E的方向分别沿其接触表面的公法线,并指向杆。
其中力E N与杆垂直,力A N通过半圆槽的圆心O 。
AB 杆受力图见下图(a )。
(b)由于不计杆重,曲杆BC 只在两端受铰销B 和C 对它作用的约束力B N 和C N ,故曲杆BC 是二力构件或二力体,此两力的作用线必须通过B 、C 两点的连线,且B N =C N 。
研究杆A N 和B N,以及力偶m 的作用而平衡。
根据力偶的性质,A N 和B N必组成一力偶。
(d)由于不计杆重,杆AB 在A 、C 两处受绳索作用的拉力A T 和C T,在B 点受到支座反力B N 。
A T 和C T相交于O 点,根据三力平衡汇交定理,可以判断B N必沿通过B 、O 两点的连线。
见图(d).第二章力系的简化与平衡思考题:1. √;2. ×;3. ×;4. ×;5. √;6. ×;7. ×;8. ×;9. √.1.平面力系由三个力和两个力偶组成,它们的大小和作用位置如图示,长度单位为cm ,求此力系向O 点简化的结果,并确定其合力位置。
第一章静力学基础1-1 画出下列各图中物体A,构件AB,BC或ABC的受力图,未标重力的物体的重量不计,所有接触处均为光滑接触。
(a)(b)(c)(d)(e)(f)(g)1-2 试画出图示各题中AC杆(带销钉)和BC杆的受力图(a)(b)(c)(a)1-3 画出图中指定物体的受力图。
所有摩擦均不计,各物自重除图中已画出的外均不计。
(a)(b)(c)(d)(e)(f)(g)第二章平面力系2-1 电动机重P=5000N,放在水平梁AC的中央,如图所示。
梁的A端以铰链固定,另一端以撑杆BC支持,撑杆与水平梁的夹角为30 0。
如忽略撑杆与梁的重量,求绞支座A、B处的约束反力。
题2-1图∑∑=︒+︒==︒-︒=PF F FF F F B A yA B x 30sin 30sin ,0030cos 30cos ,0解得: N P F F B A 5000=== 2-2 物体重P=20kN ,用绳子挂在支架的滑轮B 上,绳子的另一端接在绞车D 上,如图所示。
转动绞车,物体便能升起。
设滑轮的大小及轴承的摩擦略去不计,杆重不计,A 、B 、C 三处均为铰链连接。
当物体处于平衡状态时,求拉杆AB 和支杆BC 所受的力。
题2-2图∑∑=-︒-︒-==︒-︒--=030cos 30sin ,0030sin 30cos ,0P P F FP F F F BC yBC AB x解得: PF P F BC AB 732.2732.3=-=2-3 如图所示,输电线ACB 架在两电线杆之间,形成一下垂线,下垂距离CD =f =1m ,两电线杆间距离AB =40m 。
电线ACB 段重P=400N ,可近视认为沿AB 直线均匀分布,求电线的中点和两端的拉力。
题2-3图以AC 段电线为研究对象,三力汇交NF N F F F FF F F C A GA yC A x 200020110/1tan sin ,0,cos ,0=======∑∑解得:ααα2-4 图示为一拔桩装置。
工程力学练习册学校学院专业学号教师姓名第一章静力学基础 1第一章静力学基础1-1 画出下列各图中物体A,构件AB,BC或ABC的受力图,未标重力的物体的重量不计,所有接触处均为光滑接触。
(a)(b)(c)2 第一章静力学基础(d)(e)(f)(g)第一章静力学基础 3 1-2 试画出图示各题中AC杆(带销钉)和BC杆的受力图(a)(b)(c)(a)4 第一章静力学基础1-3 画出图中指定物体的受力图。
所有摩擦均不计,各物自重除图中已画出的外均不计。
(a)第一章静力学基础 5 (b)(c)(d)6 第一章静力学基础(e)第一章静力学基础7 (f)(g)8 第二章 平面力系第二章 平面力系2-1 电动机重P=5000N ,放在水平梁AC 的中央,如图所示。
梁的A 端以铰链固定,另一端以撑杆BC 支持,撑杆与水平梁的夹角为30 0。
如忽略撑杆与梁的重量,求绞支座A 、B 处的约束反力。
题2-1图∑∑=︒+︒==︒-︒=PF F FF F F B A yA B x 30sin 30sin ,0030cos 30cos ,0解得: N P F F B A 5000===2-2 物体重P=20kN ,用绳子挂在支架的滑轮B 上,绳子的另一端接在绞车D 上,如第二章 平面力系 9图所示。
转动绞车,物体便能升起。
设滑轮的大小及轴承的摩擦略去不计,杆重不计,A 、B 、C 三处均为铰链连接。
当物体处于平衡状态时,求拉杆AB 和支杆BC 所受的力。
题2-2图∑∑=-︒-︒-==︒-︒--=030cos 30sin ,0030sin 30cos ,0P P F FP F F F BC yBC AB x解得: PF P F AB BC 732.2732.3=-=2-3 如图所示,输电线ACB 架在两电线杆之间,形成一下垂线,下垂距离CD =f =1m ,两电线杆间距离AB =40m 。
电线ACB 段重P=400N ,可近视认为沿AB 直线均匀分布,求电线的中点和两端的拉力。
第一章 1-2 试画出以下各题中AB 杆的受力图。
1-3 试画出以下各题中AB 梁的受力图。
1-4 试画出以下各题中指定物体的受力图 (d) 杠杆AB (f) 节点B 。
1-5 试画出以下各题中指定物体的受力图。
(d) 杠杆AB ,切刀CEF 及整体;第二章(a)B (b)(c)B (a)F (b) (c)(d)F C D(e)WB(f)F ABF BC’C2-2 杆AC 、BC 在C 处铰接,另一端均与墙面铰接,如图所示,F 1和F 2作用在销钉C 上,F 1=445 N ,F 2=535 N ,不计杆重,试求两杆所受的力。
解:(1) 取节点C 为研究对象,画 受力图,注意AC 、BC 都为二力杆(右上图)(2) 列平衡方程:12140 sin 600530 cos 6005207 164 o y AC o x BC AC AC BCF F F F F F F F F N F N=⨯+-==⨯--=∴==∑∑ AC 与BC 两杆均受拉。
2-7 在四连杆机构ABCD 的铰链B 和C 上分别作用有力F 1和F 2,机构在图示位置平衡。
试求平衡时力F 1和F 2的大小之间的关系。
解:(1)取铰链B 为研究对象,AB 、BC 均为二力杆,画受力图和封闭力三角形;1BC F =(2) 取铰链C 为研究对象,BC 、CD 均为二力杆,画受力图和封闭力三角形;F 1F F F BCF ABF 1 CF CDF 2F CB F CD22cos302oCB F F F == 由前二式可得:121222120.61 1.634BC CB F F F F F F or F F ==∴===2-8 无第三章3-2 在题图所示结构中二曲杆自重不计,曲杆AB 上作用有主动力偶,其力偶矩为M ,试求A 和C 点处的约束力。
解:(1) 取BC 为研究对象,受力分析,BC 为二力杆,画受力图;B C F F =(2) 取AB 为研究对象,受力分析,A 、B 的约束力组成一个力偶,画受力图;FC()''030 0.3540.354B B AC M M a a M F a MF F a=⨯+-===∴==∑3-5 四连杆机构在图示位置平衡。
已知OA=60cm ,BC=40cm ,作用BC 上的力偶的力偶矩大小为M 2=1N.m ,试求作用在OA 上力偶的力偶矩大小M 1和AB 所受的力F AB 所受的力。
各杆重量不计。
解:(1) 研究BC 杆,受力分析,画受力图:列平衡方程:220 sin 30015 0.4sin 30sin 30o BB o oM FBC M M F N BC =⨯-====⨯∑ (2) 研究AB (二力杆),受力如图:可知:''5 A B B F F F N ===(3) 研究OA 杆,受力分析,画受力图:列平衡方程:BF BA B AF110 050.6 3 AA M FOA M M F OA Nm=-⨯+=∴=⨯=⨯=∑3-8 在图示结构中,各构件的自重都不计,在构件BC 上作用一力偶矩为M 的力偶,各尺寸如图。
求支座A 的约束力。
解:(1) 取BC 为研究对象,受力分析,画受力图;0 0 C C M M F l M F l=-⨯+==∑ (2) 取DAC 为研究对象,受力分析,画受力图;画封闭的力三角形;解得'cos 45C A oF F == 第四章4-1 试求题4-1图所示各梁支座的约束力。
设力的单位为kN ,力偶矩的单位为kN ⋅m ,长度单位为m ,分布载荷集度为kN/m 。
(提示:计算非均布载荷的投影和与力矩和时需应用积分)。
(C)(E)(c):(1) 研究AB 杆,受力分析,画出受力图(平面任意力系);F ’CF D F A F ’CF DF Axx(2) 选坐标系Axy ,列出平衡方程;2()0: 33200.33 kNBAy Ay MF F dx x F =-⨯-+⨯⨯==∑⎰20: 2cos3004.24 kNo yAy B B FF dx F F =-⨯+==∑⎰0: sin 3002.12 kNo xAx B Ax FF F F =-==∑约束力的方向如图所示。
(e):(1) 研究C ABD 杆,受力分析,画出受力图(平面任意力系);(2) 选坐标系Axy ,列出平衡方程;0: 0xAx FF ==∑0.80()0: 208 1.620 2.4021 kNA B B M F dx x F F =⨯⨯++⨯-⨯==∑⎰0.80: 2020015 kNy Ay B Ay F dx F F F =-⨯++-==∑⎰约束力的方向如图所示。
4-4无4-15 在齿条送料机构中杠杆AB =500 mm ,AC =100 mm ,齿条受到水平阻力F Q 的作用。
已知Q =5000 N ,各零件自重不计,试求移动齿条时在点B 的作用力F 是多少?q解:(1) 研究齿条和插瓜(二力杆),受力分析,画出受力图(平面任意力系);(2) 选x 轴为投影轴,列出平衡方程;0: -cos3005773.5 No xA Q A FF F F =+==∑(4) 选C 点为矩心,列出平衡方程;'()0: sin150373.6 No CA MF F AC F BC F =⨯⨯-⨯==∑4-16 由AC 和CD 构成的复合梁通过铰链C 连接,它的支承和受力如题4-16图所示。
已知均布载荷集度q =10 kN/m ,力偶M =40 kN ⋅m ,a =2 m ,不计梁重,试求支座A 、B 、D 的约束力和铰链C 所受的力。
F AxM解:(1) 研究CD 杆,受力分析,画出受力图(平面平行力系);(2) 选坐标系Cxy ,列出平衡方程;()0: -205 kNaC D D M F q dx x M F a F =⨯⨯+-⨯==∑⎰0: 025 kNayC D C FF q dx F F =-⨯-==∑⎰(3) 研究ABC 杆,受力分析,画出受力图(平面平行力系);(4) 选坐标系Bxy ,列出平衡方程;'0()0: 035 kNaBA C A MF F a q dx x F a F =⨯-⨯⨯-⨯==∑⎰'00: 080 kNay A B C B F F q dx F F F =--⨯+-==∑⎰约束力的方向如图所示。
4-18 由杆AB 、BC 和CE 组成的支架和滑轮E 支持着物体。
物体重12 kN 。
D 处亦为铰链连接,尺寸如题4-18图所示。
试求固定铰链支座A 和滚动铰链支座B 的约束力以及杆BC 所受的力。
CqF CxFAA解:(2) 选坐标系Axy,列出平衡方程;0:012 kNx AxAxF F WF=-==∑()()()0:4 1.52010.5 kNA BBM F F W r W rF=⨯-⨯-+⨯+==∑0:01.5 kNy Ay BAyF F F WF=+-==∑(3) 研究CE杆(带滑轮),受力分析,画出受力图(平面任意力系);(4) 选D点为矩心,列出平衡方程;()()0:sin 1.5 1.5015 kND CBCBM F F W r W rFα=⨯-⨯-+⨯==∑约束力的方向如图所示。
第五章xFCB5-6 某传动轴以A 、B 两轴承支承,圆柱直齿轮的节圆直径d =17.3 cm ,压力角α=20o 。
在法兰盘上作用一力偶矩M =1030 N ⋅m 的力偶,如轮轴自重和摩擦不计,求传动轴匀速转动时的啮合力F 及A 、B 轴承的约束力(图中尺寸单位为cm)。
解: (1) 研究整体,受力分析,画出受力图(空间任意力系);(2) 选坐标系Axyz ,列出平衡方程;()0: cos200212.67 kNo y dM F F M F =⨯-==∑ ()0: sin 202233.202.87 kNo xBz Bz MF F F F =⨯-⨯==∑()0: cos202233.207.89 kNozBx Bx M F F F F =⨯-⨯==∑0: cos2004.02 kNo xAx Bx Ax FF F F F =-+==∑0: sin 2001.46 kNo zAz Bz Az FF F F F =-+-==∑约束力的方向如图所示。
第六章 无 第七章 无 第八章8-1 试求图示各杆的轴力,并指出轴力的最大值。
(c)(1) 用截面法求内力,取1-1、2-2、3-3截面;(2) 取1-1截面的左段;110 20 2 xN N FF F kN =+==-∑(3) 取2-2截面的左段;220 230 1 xN N FF F kN =-+==∑(4) 取3-3截面的右段;330 30 3 xN N FF F kN =-==∑(5) 轴力最大值:max 3 N F kN =(d)(1) 用截面法求内力,取1-1、2-2截面;1 1F N1N 2F N 3(2) 取1-1截面的右段;110 210 1 xN N FF F kN =--==∑(3) 取2-2截面的右段;220 10 1 xN N FF F kN =--==-∑(4) 轴力最大值:max 1 N F kN =8-2 试画出8-1所示各杆的轴力图。
解:(a)(b) (c)F N1F N 2(a)(c)(d)FFFF(d)8-5 图示阶梯形圆截面杆,承受轴向载荷F 1=50 kN 与F 2作用,AB 与BC 段的直径分别为d 1=20 mm 和d 2=30 mm ,如欲使AB 与BC 段横截面上的正应力相同,试求载荷F 2之值。
解:(1) 用截面法求出1-1、2-2截面的轴力;11212 N N F F F F F ==+(2) 求1-1、2-2截面的正应力,利用正应力相同;311215010159.210.024N F MPa A σπ⨯===⨯⨯32221225010159.210.034N F F MPa A σσπ⨯+====⨯⨯262.5F kN ∴=8-9无8-14 图示桁架,杆1与杆2的横截面均为圆形,直径分别为d 1=30 mm 与d 2=20 mm ,两杆材料相同,许用应力[σ]=160 MPa 。
该桁架在节点A 处承受铅直方向的载荷F =80 kN 作用,试校核桁架的强度。
解:(1) 对节点A 受力分析,求出AB 和AC 两杆所受的力;F1kN(2) 列平衡方程0000 sin 30sin 4500 cos30cos 450x AB AC yAB AC F F F FF F F =-+==+-=∑∑解得:41.4 58.6AC AB F F kN F kN ==== (2) 分别对两杆进行强度计算;[][]1282.9131.8ABAB AC ACF MPa A FMPa A σσσσ====所以桁架的强度足够。