渡槽水力计算软件
- 格式:xls
- 大小:78.00 KB
- 文档页数:8
Hydrolab Basic)广东水文水利计算软件使用手册水文频率计算是指根据历史水文资料,通过统计学方法估算一定时间内发生一定水文事件的概率。
HydroLab Basic软件提供了水文频率计算的功能,可以方便地进行设计洪水计算和水资源规划。
水文频率计算的步骤如下:1、打开HydroLab Basic软件,选择“水文频率计算”功能。
2、导入历史水文资料。
可以选择导入已有的数据文件,或者手动输入数据。
3、选择需要计算的水文事件类型,如洪峰流量、径流量等。
4、选择计算方法,如经验公式法、概率分布法等。
5、设置计算参数,如计算时段、置信水平等。
6、进行计算并生成结果报告。
在进行水文频率计算时,需要注意以下几点:1、历史水文资料的选择和处理应该符合实际情况,避免数据的误差和偏差。
2、计算方法的选择应该考虑到数据的特点和计算精度的要求。
3、计算参数的设置应该合理,避免结果的误差和不确定性。
4、结果报告应该清晰、准确、可靠,包括计算结果、参数设置、数据来源等信息。
XXX软件提供了多种水文频率计算方法和参数设置,可以满足不同用户的需求。
用户可以根据实际情况选择适合自己的计算方法和参数设置,进行准确可靠的水文频率计算。
该软件提供了两个功能模块:水力计算和暴雨洪水设计计算。
水力计算模块:用户可以输入水位和高程数据,也可以通过数据表的复制和粘贴快速输入数据。
计算结果将给出不同水位下的水力要素列表和水位流量关系表。
需要注意的是,只有在点击“计算水力要素”按钮后,才会在右侧显示断面示意图。
如果想定义左滩和右滩,必须在显示断面示意图之后进行。
另外,定义断面的节点最大支持1000个,计算水力要素的间距控制为最大高程差的1/500以上。
最后,Excel格式的报表需要通过菜单“工具”->“更新Excel报表”进行更新,也可以通过“文件”->“导出Excel文件”另存为Excel文件进行进一步处理。
暴雨洪水设计计算模块:该模块提供了综合单位线法和推理公式法两种计算方法,可计算设计流域内指定频率的设计洪峰流量、洪水总量和相应设计洪水过程线。
渡槽水力计算设计渡槽水力计算设计是指通过对渡槽的水力特性进行分析和计算,确定渡槽的尺寸、水深、水流速度等参数,以满足渡槽设计要求的计算与设计过程。
渡槽是水力工程中常见的一种边壁开挖的通道结构,用于引导水流穿越障碍物,实现河道间的互联。
因此,在渡槽水力计算设计中,需要分析水流的流量、压力等特性,以确保正常运行并满足设计要求。
首先,在渡槽水力计算设计之前,需要进行场地勘测,确定渡槽的位置、长度和宽度等基本参数。
然后,根据场地勘测数据,进行水流量的计算。
水流量是指单位时间内通过渡槽横截面的水量,通常以单位时间内通过横截面的面积为单位。
水流量的计算可以通过测量水位或通过水流速度测量计算得到。
通过测量水位,可以使用流速-流量公式计算水流量,而通过水流速度测量,则可以直接计算得到水流量。
在水流量计算确定之后,需要进一步计算渡槽的水深和水流速度。
水深是指水流通过渡槽时,水面相对于渡槽底部或边壁的高度。
正常情况下,渡槽的水深应该满足一定的设计要求,以确保渡槽能够承受经常的水流冲击和压力。
水流速度是指单位时间内,水流通过渡槽的速度。
水流速度的计算可以通过流量和渡槽横截面积计算得到,以确保水流速度在设计范围内。
在确定水流量、水深和水流速度之后,需要进一步进行渡槽的水力附件设计,包括进水口、出水口、导流溢流口等。
进水口是指水流进入渡槽的口部,通常需要考虑水流进入速度和水流冲击等因素。
出水口是指水流从渡槽流出的口部,通常需要考虑水流顺畅流出和减缓水流速度等因素。
导流溢流口是指渡槽中的溢流口,用于控制渡槽的水位和水流量,并调整渡槽的操作流程。
最后,在渡槽水力计算设计中,还需要考虑防渗结构的设计。
渡槽的防渗结构主要用于防止水流从渡槽底部、边壁渗漏出来,导致渡槽失效。
常见的防渗结构包括透水管、防渗墙等。
综上所述,渡槽水力计算设计是根据场地勘测数据和设计要求,通过对水流量、水深、水流速度等进行计算,确定渡槽的尺寸、水深、水流速度和水力附件设计等的过程。
给排水计算工具集
在给排水工程设计中,有许多计算工具和软件可供使用,这些工具可以帮助工程师进行快速准确的计算和设计。
以下是一些常用的给排水计算工具集:
1.水力计算软件:这类软件用于进行水力计算,包括水管网络的流量、压力、水头损失等参数的计算。
一些流行的水力计算软件包括EPANET、WaterCAD、WaterGEMS等。
2.下水道设计软件:用于进行排水系统设计和模拟,包括污水管道的流量、泵站选择、雨水径流计算等。
一些常用的下水道设计软件有SWMM、SewerCAD、SewerGEMS等。
3.雨水收集软件:用于计算雨水收集系统的尺寸和设计。
这类软件可以帮助工程师确定雨水收集的面积、储水容量等。
常见的软件包括Rainwater Harvesting Design和Rainwater Calculator等。
4.管道流量计算工具:这类工具用于计算不同尺寸和材质的管道的流量和速度。
工程师可以使用这些工具来优化管道尺寸和材质,以满足设计要求。
5.水泵选型软件:用于根据给定的流量和扬程条件选择合适的水泵。
这类软件可以帮助工程师快速选定适合工程需求的水泵。
6.水池和水箱设计软件:用于设计和计算不同类型的水池和水箱的容量和尺寸,例如储水池、水塔等。
7.管道材料计算工具:用于计算不同材料的管道的压力损失和流量特性,帮助工程师选择合适的管道材料。
渡槽水力计算书项目名称_____________日期_____________设计者_____________校对者_____________一、示意图:二、基本设计资料1.依据规范及参考书目:武汉大学水利水电学院《水力计算手册》(第二版)中国水利水电出版社《灌区建筑物的水力计算与结构计算》(熊启钧编著)2.计算参数:计算目标: 已知槽身比降及水深,求槽宽及水头损失。
渡槽断面型式: 矩形渡槽。
进口渐变段型式: 扭曲面;出口渐变段型式: 扭曲面。
设计流量Q = 20.000 m3/s槽内水深h = 2.800m;槽身比降i = 1/1050洞身长度L = 200.000m 糙率n = 0.0140上游渠道水深h1 = 3.200m;下游渠道水深h2 = 3.200m上游渠道流速v1 = 0.659m/s;下游渠道流速v2 = 0.659m/s上游渠道底部高程▽1 = 100.000m三、计算过程1.断面尺寸计算槽身宽度需采用试算法求得。
假定槽身宽度B = 3.201m,流量计算过程如下:断面面积:A = B×h = 3.201×2.800 = 8.963 m2渠道湿周:X = B+h×2 = 3.201+2.800*2 = 8.801 m水力半径:R = A/X = 8.963/8.801 = 1.018m谢才系数:C = 1/n×R1/6 (曼宁公式)代入上式:C = 1/0.0140×1.0181/6 = 71.646计算流量:Q' = A×C×(R×i)0.5= 8.963×71.646×(1.018×0.00095)0.5 = 19.998 m3/sQ'=19.998m3/s与设计流量Q=20.000m3/s近似,渡槽宽度B=3.201m即为所求。
2.进口水头损失(水面降落)计算洞身流速:v = Q/A = 20.000/8.963 = 2.231 m/s进口渐变段型式为扭曲面,取进口水头损失ξ1 = 0.10 进口水头损失(水面降落)计算公式为:z1= (1+ξ1)×(v2-v12)/2/g= (1+0.10)×(2.2312-0.6592)/2/9.81 = 0.255 m 3.出口水面回升(恢复落差)计算出口渐变段型式为扭曲面,取进口水头损失ξ2 = 0.30 出口水面回升(恢复落差)计算公式为:z2 = (1-ξ2)×(v2-v22)/2/g= (1-0.30)×(2.2312-0.6592)/2/9.81 = 0.162 m 4.总水头损失(上下游总水面降落)及各部位高程计算总水头损失(上下游总水面降落)值为:z = z1 + i×L - z2= 0.255 + 0.0009524×200.00 - 0.162 = 0.283 m 上游渠道水位为:▽2 = ▽1+h1 = 100.000+3.200 = 103.200m 槽身进口水位为:▽3 = ▽2-z1 = 103.200-0.255 = 102.945m 槽身进口底部高程为:▽4 = ▽3-h = 102.945-2.800 = 100.145m槽身出口水位为:▽5 = ▽3-i×L = 102.945-1/1050×200.00 = 102.755m 槽身出口底部高程为:▽6 = ▽5-h = 102.755-2.800 = 99.955m出口渐变段末端(下游渠道)水位为:▽7 = ▽2-z = 103.200-0.283 = 102.917m出口渐变段末端(下游渠道)底部高程为:▽8 = ▽7-h2 = 102.917-3.200 = 99.717m。
水利工程中的水利工程设计软件推荐水利工程设计是指根据一定的工作要求和目标,利用专业的技术和方法,进行水利工程项目的设计与规划。
水利工程设计的准确性和高效性对于工程的成功实施和效果具有重要影响。
而在现代化的水利工程设计过程中,使用适合的水利工程设计软件能够提高设计效率和准确性,成为必不可少的工具。
下面将介绍几款在水利工程中广泛使用、功能强大的水利工程设计软件。
一、Hec-RASHec-RAS是美国陆地水资源局开发的一款专业水力学软件,被广泛应用于水利工程的水力学计算和水文水资源方面的研究。
Hec-RAS具有强大的模拟水流、水力分析和泥沙运移能力,可以模拟河流、水库、渠道等不同水体形态的变化,对于进行河流洪水模拟、水库多截面计算等方面具有较高的精度和可靠性。
二、AutoCAD Civil 3DAutoCAD Civil 3D是一款由Autodesk公司开发的专业土木工程设计软件,也被广泛应用于水利工程设计领域。
它的功能强大,能够支持三维建模、土方量计算、道路和水利工程的设计与分析等多个领域。
在水利工程设计方面,AutoCAD Civil 3D可以进行河流、河道等水体的划界和容积计算,并支持地形图、剖面图等多种功能,提供了丰富的设计工具和数据交互平台,方便工程师进行水利工程的设计和分析。
三、HEC-HMSHEC-HMS是美国陆地水资源局开发的一款流域水文模型软件,主要应用于水文水资源学中的水文过程建模和流域响应分析。
对于水利工程的降雨径流模拟、洪水预测和水资源利用规划等方面具有较高的可靠性和精度。
HEC-HMS提供了多种流域参数计算方法、模型算法和数据分析工具,能够帮助工程师进行水利工程设计前的参数计算和方案评价。
四、HEC-GeoHMSHEC-GeoHMS是HEC-HMS模型的地理信息系统(GIS)插件,主要用于处理空间数据和生成HEC-HMS所需的输入文件。
它提供了一套完整的工具,用于从地理信息系统中获取流域边界、降雨数据、土地利用数据、河道网络、土地类型等信息,并生成HEC-HMS所需的输入文件。
一、设计基本资料1.1工程综合说明根据丰田灌区渠系规划,在灌区输水干渠上需建造一座跨越小禹河的渡槽,由左岸向右岸输水。
渡槽槽址及渡槽轴线已由规划选定(见渡槽槽址地形图)。
渡槽按4级建筑物设计。
1.2气候条件槽址地区位于大禹乡境内,植被良好。
夏季最高气温36℃,冬季最低气温-32℃,最大冻层深度1.7m。
地区最大风力为9级,相应风速v = 24 m / s。
1.3水文条件根据水文实测及调查,槽址处小禹河平时基流量在0.2—0.4 m3/S之间,有时断流。
洪水多发生在每年7、8月份;春汛一般发生在每年3月上旬,但流量不大。
经水文计算,槽址处设计洪水位为1242.41m,相应流量 Q = 698 m3/S;最高洪水位为1243.83m,相应流量 Q = 1075 m3/S。
据调查,洪水中漂浮物多为树木、牲畜,最大不超过400 kg。
在春汛中无流冰发生。
槽址处小禹河两岸表层为壤土分布;表层以下及河床为砂卵石分布(见渡槽轴线断面图)。
地基基本承载力壤土为34 t / m2;砂卵石为43 t / m2。
1.4工程所需材料要求在建材方面,距槽址50km大禹镇有县办水泥厂一座,水泥质量合格,可满足渡槽建造水泥需要;槽址附近有大量砂石骨料分布,质量符合混凝土拌制需要,运距均在5km以内;槽址东北禹王山有石料可供开采,运距350km。
1.5上、下游渠道资料根据灌区渠系规划,渡槽上下游渠道坡降均为1/5000。
渠道底宽按设计流量计算2.7 m,边坡1:1.5,采用混凝土板衬砌。
渠道设计流量6立方米每秒, 加大流量7.5立方米每秒。
渠道堤顶超高0.5m。
根据灌区渠系规划,上游渠口(左岸)水面高程加大流量时为1251.04m。
下游渠口(右岸)水面高程加大流量时为1250.54m。
渠口位置见渡槽槽址地形图。
1.6设计要求1、学生须在规定期限内独立完成下述毕业设计内容并提交纸质版和电子版毕业设计各一份。
2、毕业设计内容要达到设计的要求,设计说明书要叙述简明,计算正确,符合编写规程要求。
渡槽水力计算M.0.1 渡槽过水能力可按下列公式计算;1、当L>15h 0时:Q=1/nAR 2/3i 1/2 (M.0.1-1) 式中 L ——渡槽长度(m );h 0——渡槽上游渠道(进口渐变段前)正常水深(m ); Q ——渡槽设计流量(m 3/s ); A ——渡槽过水断面面积(m 2); R ——水力半径(m ); i ——槽底比降; n ——槽身糙率。
2、当L ≤15h 0时: 1)矩形断面:(M.0.1-2)H 0=h 1+αV 12/2g (M.0.1-3) 式中 σn ——淹没系数,可根据h s /H 0值由表M.0.1查得;表M.0.1 淹没系数hs ——下游渠道(出口渐变段后)水位超出槽底(未满)值(m ); H 0——渡槽进口水头(m );h 1——上游渠道水位超出槽底(始端)值(m ); α——流速分布系数,可取1.0~1.05; V 1——渡槽上游渠道断面平均流速(m/s ); g ——重力加速度(m/s 2); є——侧向收缩系数,可取0.9~0.95; m ——流量系数,可取0.36~0.385;2302HgmB Q n εσ=B ——槽底宽度(m )。
2)U 形断面:(M.0.1-4)Z 0=Z 1+2V 12/2g (M.0.1-5) 式中 φ——流速系数,可取0.9~0.95;Z 0——渡槽进口水头损失(m ); Z 1——渡槽进口段水头损失(m )。
M.0.2 渡槽总水头损失可按下列公式计算:1、渡槽进口段水头损失:Z1=(1+ξ1)(V 2-V 12)/2g (M.0.2-1)式中 ξ1——进口段局部水头损失系数,可根据进口渐变段形式由表M.0.2-1查得;表M.0.2-1 进口段局部水头损失系数2、槽身段水头损失:Z 2=iL (M.0.2-2)式中 Z 2——槽身段水头损失(m )。
3、渡槽出口段水头损失(水位回升值):Z 3=(1+ξ2)(V 2-V 22)/2g (M.0.2-3)式中 Z 3——出口段水头损失(m );ξ2——出口段局部水头损失系数,可根据出口渐变形式由表M.0.2-2查得;表M.0.2-2 出口段局部水头损失系数Z=Z 1+Z 2-Z 3 (M.0.2-4)式中 Z ——渡槽总水头损失(m ),应等于或小于渠系分配的水头损失值。
“取水输水及灌溉工程水力计算及结构计算软件”说明
1.本软件共包括44个有关取水输水及灌溉工程水力计算及结构计算的应用程序,各程序均采用VB语言编制。
程序名称及主要计算项目见表一;
2.取水输水及灌溉工程中的各种建筑物,均可分别采用本软件中的有关程序完成相应的水力计算及结构计算,程序按设计内容及建筑物类型的分类见表二;
3.所有程序均经过手算算例的验证,手算与电算的对照以及有关软件编制使用的详细说明可详见中国水利电力出版社出版的《灌区建筑物的水力计算与结构计算》。
“水力计算软件2002”安装指南
“水力计算软件2002”是在AutoCAD 2002绘图平台的基础上开发的,因此,AutoCAD 2002对计算机的要求就是“水力计算软件2002”对计算机的要求。
建议用户在奔腾二代、64MB内存以上的PC机上使用“水力计算软件2002”。
另外在安装前,PC机硬盘上最好有400MB以上的自由空间。
安装步骤如下:
1、参考有关材料,安装AutoCAD 2002绘图平台。
安装完成后,运行一次,
看是否运行正常,然后关闭AutoCAD 2002。
(若已安装,该步可省略) 2、安装“水力计算软件2002”:
运行断面CAD软件光盘中SMX2002 文件夹下的smx.exe。
安装口令:。
其它地方都使用默认值,用户只需按“下一步”或“完成”按纽。
安装完毕,安装程序自动建立水力计算软件程序组和快捷方式。
3、安装水力计算软件软件狗驱动程序:
运行断面CAD软件光盘中的软件狗驱动程序文件夹下的SoftDogInstdrv.exe文件。
安装过程中,根据提示,在计算机上插入软件狗。
安装完毕,重新启动计算机。
(试用版,该步可省略)。
矩形渡槽水力计算1、上游渠道水深h0计算1.1 已知数据上游渠道设计流量(m3/s):Q=7.88 上游渠道断面参数:底宽(m):b=4边坡系数:m=1.5底坡:i=0.000167渠床糙率:n=0.016 1.1 用试算法计算上游渠道水深h02、下游渠道水深h0计算2.1 已知数据下游渠道设计流量(m3/s):Q=7.88 下游渠道断面参数:底宽(m):b=4边坡系数:m=1.5底坡:i=0.000167渠床糙率:n=0.016 2.2 用试算法计算下游渠道水深h03、渡槽底坡i 、槽身净宽B 、净深H 设计3.1 已知数据渡槽长度(m ):L=55渡槽设计流量(m 3/s ):Q=7.88渡槽加大流量(m 3/s):Q=9.46渡槽糙率:n=0.014渡槽纵坡:i=0.0014、渡槽总水头损失计算1=0.1出口段局部水头损失系数:ξ2=0.3允许水头损失(m ):[△Z ]=0.151取出口渐变段长度(m ):L 2=5.56、进出口槽底高程计算6.1 已知数据进口前渠底高程(m ):▽3=1107.9416.2 计算计算:校核:审查:日期:日期:日期:陈军编制贵州省水利水电勘测设计研究院提示一:计算稿中未着色部分需要你手工输入数据,着色部分为自动计算数据。
提示二:计算稿中所列计算公式参见《灌溉与排水设计规范》及有关水力学书籍。
提示三:本计算稿采用C5(162×229mm)排版,接近16K。
提示四:梁式渡槽满槽时槽内水深与水面宽度的比值一般取0.6~0.8;拱式渡槽可适当减少。
提示五:槽身过水断面的平均流速宜控制为1.0~2.0m/s 。
提示六:局部水头损失系数查《灌溉与排水工程设计规范》P110页表提示六:局部水头损失系数查《灌溉与排水工程设计规范》P110页表M.0.2-1和M.0.2-2。
输水引水及灌溉工程计算软件目录1.软件的编制过程及功能………………………………………………………………2.软件的特色与创新…………………………………………………………………3.使用说明……………………………………………………………………………4.各程序编制说明……………………………………………………………………4.1 开敞式水闸孔径计算……………………………………………………………4.2 胸墙式水闸(孔流)孔径计算……………………………………………………4.3 消能计算…………………………………………………………………………4.4 矩形断面涵洞水力计算…………………………………………………………4.5 明渠均匀流水力计算……………………………………………………………4.6 明渠非均匀流水力计算…………………………………………………………4.7 矩形渡槽水力计算………………………………………………………………4.8 U形渡槽水力计算………………………………………………………………4.9 多管矩形断面倒虹水力计算……………………………………………………4.10 多管圆形断面倒虹水力计算……………………………………………………4.11 圆形压力管道(单管)水力计算………………………………………………4.12 压力管弯道局部水头损失系数计算……………………………………………4.13 无压隧洞水力计算………………………………………………………………4.14 水闸稳定计算及底板计算(弹性基础粱法)……………………………………4.15 弹性基础粱计算………………………………………………………………4.16 重力式挡土墙及闸墙计算………………………………………………………4.17 钢筋混凝土结构构件计算(按《水工混凝土结构设计规范》SL/T191-96)…………………………………………………………………………………4.18 钢筋混凝土结构构件计算(按《水工钢筋混凝土结构设计规范》 SDJ 20-78)…………………………………………………………………………………4.19 预应力钢筋混凝土结构构件计算………………………………………………4.20 钢筋混凝土矩形断面渡槽槽身结构计算………………………………………4.21 U 型薄壳渡槽结构计算…………………………………………………………4.22 钢筋混凝土箱形管结构计算…………………………………………………4.23 钢筋混凝土钻孔灌注桩排架承载力及内力计算……………………………4.24 钢筋混凝土钻孔灌注桩桩长(承载力)计算…………………………………4.25 渡槽钢筋混凝土变截面悬链线无铰肋拱及板拱主拱圈计算………………4.26 渡槽钢筋混凝土排架内力及配筋计算………………………………………4.27 沉沙条渠计算…………………………………………………………………4.28 圆拱直墙式无压隧洞衬砌结构计算…………………………………………4.29 马蹄形无压隧洞衬砌结构计算………………………………………………4.30 蛋形无压隧洞衬砌结构计算…………………………………………………4.31 钢筋混凝土圆形有压隧洞衬砌断面结构计算…………………………………4.32 基础沉降计算…………………………………………………………………4.33 弹性地基上梁的温度应力计算………………………………………………4.34 基坑井点排水计算……………………………………………………………5.程序附图…………………………………………………………………………闸后消能计算程序消力池尺寸符号图……………………………………………水闸稳定计算及底板计算程序图…………………………………………………基础沉降计算程序图………………………………………………………………重力式挡土墙及闸墙计算程序尺寸符号图………………………………………钢筋混凝土矩形断面渡槽槽身结构计算程序尺寸符号图………………………U 型薄壳渡槽结构计算程序尺寸符号图…………………………………………渡槽钢筋混凝土变截面悬链线无铰肋拱及板拱主拱圈计算程序尺寸符号图…钢筋混凝土钻孔灌注桩排架承载力及内力计算程序尺寸符号图………………渡槽钢筋混凝土排架内力及配筋计算程序尺寸符号图…………………………钢筋混凝土箱形管结构计算程序图………………………………………………马蹄形无压隧洞衬砌结构计算程序尺寸符号图…………………………………蛋形无压隧洞衬砌结构计算程序尺寸符号图……………………………………6.程序示例………………………………………………………………………………6.1附录平底闸孔流与堰流判别标准及孔流计算公式研讨挡土墙不同土压力公式及参数计算成果分析比较钢筋混凝土结构构件电算程序介绍沉沙条渠计算方法及算例渡槽水力计算不同方法计算成果比较1.软件的编制过程及功能输水、引水及灌溉工程的水工建筑物不仅型式多种多样,而且每一个工程项目的建筑物及渠道数量也都很多,各种水力计算及结构计算工作量大而繁琐,为了提高设计效率及设计质量,有必要采用电算。
输水引水及灌溉工程计算软件目录1.软件的编制过程及功能………………………………………………………………2.软件的特色与创新…………………………………………………………………3.使用说明……………………………………………………………………………4.各程序编制说明……………………………………………………………………4.1 开敞式水闸孔径计算……………………………………………………………4.2 胸墙式水闸(孔流)孔径计算……………………………………………………4.3 消能计算…………………………………………………………………………4.4 矩形断面涵洞水力计算…………………………………………………………4.5 明渠均匀流水力计算……………………………………………………………4.6 明渠非均匀流水力计算…………………………………………………………4.7 矩形渡槽水力计算………………………………………………………………4.8 U形渡槽水力计算………………………………………………………………4.9 多管矩形断面倒虹水力计算……………………………………………………4.10 多管圆形断面倒虹水力计算……………………………………………………4.11 圆形压力管道(单管)水力计算………………………………………………4.12 压力管弯道局部水头损失系数计算……………………………………………4.13 无压隧洞水力计算………………………………………………………………4.14 水闸稳定计算及底板计算(弹性基础粱法)……………………………………4.15 弹性基础粱计算………………………………………………………………4.16 重力式挡土墙及闸墙计算………………………………………………………4.17 钢筋混凝土结构构件计算(按《水工混凝土结构设计规范》SL/T191-96)…………………………………………………………………………………4.18 钢筋混凝土结构构件计算(按《水工钢筋混凝土结构设计规范》 SDJ 20-78)…………………………………………………………………………………4.19 预应力钢筋混凝土结构构件计算………………………………………………4.20 钢筋混凝土矩形断面渡槽槽身结构计算………………………………………4.21 U 型薄壳渡槽结构计算…………………………………………………………4.22 钢筋混凝土箱形管结构计算…………………………………………………4.23 钢筋混凝土钻孔灌注桩排架承载力及内力计算……………………………4.24 钢筋混凝土钻孔灌注桩桩长(承载力)计算…………………………………4.25 渡槽钢筋混凝土变截面悬链线无铰肋拱及板拱主拱圈计算………………4.26 渡槽钢筋混凝土排架内力及配筋计算………………………………………4.27 沉沙条渠计算…………………………………………………………………4.28 圆拱直墙式无压隧洞衬砌结构计算…………………………………………4.29 马蹄形无压隧洞衬砌结构计算………………………………………………4.30 蛋形无压隧洞衬砌结构计算…………………………………………………4.31 钢筋混凝土圆形有压隧洞衬砌断面结构计算…………………………………4.32 基础沉降计算…………………………………………………………………4.33 弹性地基上梁的温度应力计算………………………………………………4.34 基坑井点排水计算……………………………………………………………5.程序附图…………………………………………………………………………闸后消能计算程序消力池尺寸符号图……………………………………………水闸稳定计算及底板计算程序图…………………………………………………基础沉降计算程序图………………………………………………………………重力式挡土墙及闸墙计算程序尺寸符号图………………………………………钢筋混凝土矩形断面渡槽槽身结构计算程序尺寸符号图………………………U 型薄壳渡槽结构计算程序尺寸符号图…………………………………………渡槽钢筋混凝土变截面悬链线无铰肋拱及板拱主拱圈计算程序尺寸符号图…钢筋混凝土钻孔灌注桩排架承载力及内力计算程序尺寸符号图………………渡槽钢筋混凝土排架内力及配筋计算程序尺寸符号图…………………………钢筋混凝土箱形管结构计算程序图………………………………………………马蹄形无压隧洞衬砌结构计算程序尺寸符号图…………………………………蛋形无压隧洞衬砌结构计算程序尺寸符号图……………………………………6.程序示例………………………………………………………………………………6.1附录平底闸孔流与堰流判别标准及孔流计算公式研讨挡土墙不同土压力公式及参数计算成果分析比较钢筋混凝土结构构件电算程序介绍沉沙条渠计算方法及算例渡槽水力计算不同方法计算成果比较1.软件的编制过程及功能输水、引水及灌溉工程的水工建筑物不仅型式多种多样,而且每一个工程项目的建筑物及渠道数量也都很多,各种水力计算及结构计算工作量大而繁琐,为了提高设计效率及设计质量,有必要采用电算。
给排水水力计算工具集*********************************************************** ********************版本号:1.1更新日期:2004.7.28版本更新说明:1.修正了给水水力计算默认管材下改变温度时计算报错的bug;2.修正了排水水力计算铸铁管和PVC-U排水管管径变化时无法自动调整坡度的bug,修正了PVC-U管材计算内径。
*********************************************************** ********************摘要依据国家最新规范及标准图等,并通过实际工程应用,设计开发的给排水计算工具。
关键词给排水设计计算软件开发Visual Basic从事给排水设计过程中,使用过一些他人开发的计算软件,发现有些软件的操作不太方便,功能不全,毕业到现在2年来,机器上积攒了不少软件,存在功能交叉,管理不便,同时由于新规范的颁布,有些计算方法已不能满足新规范要求,为此决定开发一个功能相对集成的软件。
部分版块参考相关软件进行界面设计,经过数月内部测试,目前v1版基本完成,主要包括如下版块:给水水力计算、满流非满流水力计算、雨水水力计算、消火栓水力计算、灭火器配置计算、化粪池选型、钢制管件、防水套管、排水管件。
下面将介绍各版块的设计依据及设计思路。
1. 给水水力计算用于钢衬塑复合管、PP-R 冷、热水管、薄壁不锈钢管、衬树脂铸铁管、普通钢管、铸铁管、铜管的水力计算。
设计依据《建筑给排水设计规范》 GB50015-2003 《给水排水设计手册》第二版《2003全国民用建筑工程设计技术措施》给排水分册 沿程水头损失h i =k ·i ·L= k ·105C h -1.85d j -4.87q g 1.85·L, 流速v=2g 41q j d Sh i -沿程水头损失 i-单位长度水头损失d j-管道计算内径q g-给水设计流量C h-海澄-威廉系数L-管道长度v-流速k-温度修正系数,默认值为1.0当输入流量、管长后,选择管材、管径,软件自动确定海澄-威廉系数、计算内径等。
鸿业水力计算器V4.0.0版使用说明“鸿业水力计算器”无需进行安装,点击“SLJS.exe”即可运行使用,程序主界面如下:该版主要新增、加强的功能如下:1、水管计算增加"流量/负荷,比摩阻->管径,阻力"功能。
2、对话框界面可拖动大小。
3、提供"打开/保存"功能。
4、生成Excel计算书。
5、管段列表框计算后显示所有管段的统计结果。
6、优化文本计算书,使其数据对其,更易查看。
7、可以直接输入负荷或输入流量,操作更简易。
一、界面说明:1、计算:对当前管段进行水力计算,包括对各管段的统计。
比如,我们在管段列表中输入一负荷为12kW,管径DN15,管长为50m的管段,并设置好其他相应的计算参数、依据等,见下图:点击按钮,对序号为1的管段进行计算,结果界面如下:2、保存:点击按钮,保存当前的所有计算管段、计算参数及依据等,参考界面如下:3、打开点击按钮,打开现有的水力计算文件(后缀名为“.hysl”),参考界面如下:4、点击按钮,生成Excel计算书,参考界面如下:5、点击按钮,生成文本计算书,参考界面如下:6、退出点击按钮,退出程序。
备注:退出时,对于本机没有安装正版“暖通空调Acs5.0”(包括后续版本)的,会弹出一广告图片,时间一秒左右,除此之外,不影响任何使用。
7、帮助点击按钮,弹出软件帮助界面,如下:二、使用注意事项:1、在“计算依据”中选择“输入负荷”,如图:,从而可以在管段列表中输入管段负荷值(此时流量为不可输状态),水力计算时由负荷计算出相应的流量,如下图:2、在“计算依据”中选择“输入流量”,如图:,从而可以在管段列表中输入管段流量值(此时负荷为不可输状态),水力计算时由流量计算出相应的负荷,如下图:3、对于水管,在计算内容中选择“流量/负荷,比摩阻->管径,阻力”,,则界面由不可输入状态变为可以输入状态:从而按控制比摩阻的方法进行水力计算。
矩形渡槽水力计算
1、上游渠道水深h0计算
1.1 已知数据
上游渠道设计流量(m3/s):Q=7.88
上游渠道断面参数:
底宽(m):b=4
边坡系数:m=1.5
底坡:i=0.000167
渠床糙率:n=0.016 1.1 用试算法计算上游渠道水深h0
2、下游渠道水深h0计算
2.1 已知数据
下游渠道设计流量(m3/s):Q=7.88
下游渠道断面参数:
底宽(m):b=4
边坡系数:m=1.5
底坡:i=0.000167
渠床糙率:n=0.016 2.2 用试算法计算下游渠道水深h0
3、渡槽底坡i 、槽身净宽B 、净深H 设计3.1 已知数据
渡槽长度(m ):L=55
渡槽设计流量(m 3/s ):Q=7.88
渡槽加大流量(m 3/s
):Q=9.46
渡槽糙率:n=0.014
渡槽纵坡:i=0.001
4、渡槽总水头损失计算
1=0.1
出口段局部水头损失系数:ξ2=0.3
允许水头损失(m ):[△Z ]=0.15
1取出口渐变段长度(m ):L 2=5.5
6、进出口槽底高程计算
6.1 已知数据
进口前渠底高程(m ):▽3=1107.941
6.2 计算
计算:校核:审查:
日期:日期:日期:
陈军编制贵州省水利水电勘测设计研究院
提示一:计算稿中未着色部分需要你手工输入数据,着色部分为自动计算数据。
提示二:计算稿中所列计算公式参见《灌溉与排水设计规范》及有关水力学书籍。
提示三:本计算稿采用C5(162×229mm)排版,接近16K。
提示四:梁式渡槽满槽时槽内水深与水面宽度的比值一般取0.6~0.8;拱式渡槽可适当减少。
提示五:槽身过水断面的平均流速宜控制为1.0~2.0m/s 。
提示六:局部水头损失系数查《灌溉与排水工程设计规范》P110页表
提示六:局部水头损失系数查《灌溉与排水工程设计规范》P110页表M.0.2-1和M.0.2-2。