应用ANSYS实现几何非线性分析方法
- 格式:doc
- 大小:28.00 KB
- 文档页数:3
ansys workbench非线性屈曲分析(2013-08-26 21:26:29)转载▼标签:ansys很多旋转受压结构必须进行屈曲分析,常规结构屈曲分析软件有nastran、abaqus和ansys,nastran对线性大型模型分析效率较高;abaqus屈曲分析使用较少;ansys使用比较频繁,其快速建模,与CAD软件的良好借口及有限元模型前处理的便捷性(WB界面)很有吸引力,屈曲分析功能较为完善,可以进行线性、非线性和后屈曲分析。
ansys学习资料中介绍较多的是线性屈曲分析。
线性屈曲分析在工业实际中预测的值偏高,有的甚至超过实际实验测试值的几十倍,线性分析唯一优势是其分析速度较快。
但在实际中其预测值参考价值不大,仅给定结构屈曲失效的上限值。
非线性屈曲分析考虑其他因素,包括结构加工缺陷(几何),材料非线性等,因此较为接近实际情况,但计算耗时较长。
针对最艰难学习情况归纳总结非线性屈曲分析时技术要点及应注意事项。
对于规则旋转壳,承受外压载荷作用,进行非线性屈曲分析时,必须加上几何缺陷,关键步是添加APDL语句/prep7upgeom,0.1,1,1,file,rstcdwrite,db,file,cdb/solu该步引入屈曲模态情况下的几何缺陷,缺陷为屈曲模态变形相对值的0.1倍,该值可以根据实际加工水平等其他条件确定,上述语句保存在txt文档中,在workbench流程APDL模块调用。
分析详细流程为,static structure模块导入几何,施加载荷和边界条件,分析求解,将linear buckling拖入流程中,共享static structure模块数据,进行线性屈曲模块分析,Mechanial APDL模块调用屈曲分析结果,并调入(addinput)上面内含几何缺陷命令语句命令的txt文件,更新,将Mechanical结果导入Finite Element modeler模块,更新,此时在缺陷附近的单元节点位置发生改变。
ansys非线性分析收敛讨论(转)我最近做了一些非线性方面的计算,7也遇到了非线性计算中难以收敛的问题,现在就我分析使得一些感受写出来,希望对大家有用,如果有误,还望大家不吝指正。
ansys计算非线性时会绘出收敛图,其中横坐标是cumulative iteration number 纵坐标是absolute convergence norm。
他们分别是累积迭代次数和绝对收敛范数,用来判断非线性分析是否收敛。
ansys在每荷载步的迭代中计算非线性的收敛判别准则和计算残差。
其中计算残差是所有单元内力的范数,只有当残差小于准则时,非线性叠代才算收敛。
ansys的位移收敛是基于力的收敛的,以力为基础的收敛提供了收敛量的绝对值,而以位移为基础的收敛仅提供表现收敛的相对量度。
一般不单独使用位移收敛准则,否则会产生一定偏差,有些情况会造成假收敛.(ansys非线性分析指南--基本过程Page.6) 。
因此ansys官方建议用户尽量以力为基础(或力矩)的收敛误差,如果需要也可以增加以位移为基础的收敛检查。
ANSYS缺省是用L2范数控制收敛。
其它还有L1范数和L0范数,可用CNVTOL命令设置。
在计算中L2值不断变化,若L2 由于ANSYS缺省的criterion计算是你全部变量的平方和开平方(SRSS)*valuse(你设置的值),所以crition也有小”浠H缬行枰部勺约褐付╟rition为某一常数,CNVTOL,F,10000,0.0001,0就指定力的收敛控制值为10000*0.0001=1。
另外,非线性计算中用到的一个开关是SOLCONTROL如关闭SOLCONTROL 选项,那么软件默认收敛准则:力或弯矩的收敛容差是0.001,而不考虑位移的收敛容差;如果打开SOLCONTROL 选项,同样的默认收敛准则:力或弯矩的收敛容差是0.005,而位移收敛容差是0.05。
非线性收敛非常麻烦,与网格精度、边界条件、荷载步等一系列因素有关,单元的特点对收敛的影响很大,单元的性态不好收敛则困难些;合理的步长可以使求解在真解周围不至于振荡,步长过小,计算量太大,步长过大,会由于过大的荷载步造成不收敛。
ANSYS详细全介绍开放、灵活的仿真软件,为产品设计的每一阶段提供解决方案通用仿真电磁分析流体力学行业化分析模型建造设计分析多目标优化客户化结构分析解决方案结构非线性强大分析模块Mechanical显式瞬态动力分析工具LS-DYNA新一代动力学分析系统AI NASTRAN电磁场分析解决方案流体动力学分析行业化分析工具设计人员快捷分析工具仿真模型建造系统多目标快速优化工具CAE客户化及协同分析环境开发平台ANSYS StructureANSYS Structure 是ANSYS产品家族中的结构分析模块,她秉承了ANSYS家族产品的整体优势,更专注于结构分析技术的深入开发。
除了提供常规结构分析功能外,强劲稳健的非线性、独具特色的梁单元、高效可靠的并行求解、充满现代气息的前后处理是她的四大特色。
ANSYS Structure产品功能非线性分析• 几何非线性• 材料非线性• 接触非线性• 单元非线性动力学分析•模态分析- 自然模态- 预应力模态- 阻尼复模态- 循环模态• 瞬态分析- 非线性全瞬态- 线性模态叠加法•响应谱分析- 单点谱- 模态- 谐相应- 单点谱- 多点谱•谐响应分析•随机振动叠层复合材料•非线性叠层壳单元•高阶叠层实体单元•特征- 初应力- 层间剪应力- 温度相关的材料属性- 应力梯度跟踪- 中面偏置•图形化- 图形化定义材料截面- 3D方式察看板壳结果- 逐层查看纤维排布- 逐层查看分析结果•Tsai-Wu失效准则求解器•迭代求解器- 预条件共轭梯度(PCG)- 雅可比共轭梯度(JCG)- 非完全共轭梯度(ICCG)自然模态• 直接求解器- 稀疏矩阵- 波前求解器•特征值- 分块Lanczos法- 子空间法- 凝聚法- QR阻尼法(阻尼特征值)•分布式并行求解器-DDS-自动将大型问题拆分为多个子域,分发给分布式结构并行机群不同的CPU(或节点)求解- 支持不限CPU数量的共享式并行机或机群- 求解效率与CPU个数呈线性提高• 代数多重网格求解器-AMG- 支持多达8个CPU的共享式并行机- CPU每增加一倍,求解速度提高80%- 对病态矩阵的处理性能优越, ,屈曲分析• 线性屈曲分析• 非线性屈曲分析• 热循环对称屈曲分析断裂力学分析• 应力强度因子计算• J积分计算• 裂纹尖端能量释放率计算大题化小•单元技术•子结构分析技术•子模型分析技术设计优化•优化算法- 一阶法•多种辅助工具- 随机搜索法- 等步长搜索法- 乘子计算法- 最优梯度法- 设计灵敏度分析•拓扑优化二次开发特征• ANSYS参数化设计语言(APDL) • 用户可编程特性(UPF)• 用户界面设计语言(UIDL) • 专用界面开发工具(TCL/TK)• 外部命令概率设计系统(PDS)•十种概率输入参数•参数的相关性•两种概率计算方法- 蒙特卡罗法*直接抽样* Latin Hypercube抽样- 响应面法*中心合成*Box-Behnken设计•支持分布式并行计算•可视化概率设计结果- 输出响应参数的离散程度*Statistics* LHistogram* Sample Diagram- 输出参数的失效概率* Cumulative Function* Probabilities- 离散性灵敏度*Sensitivities* Scatter Diagram* Response Surface前后处理(AWE)• 双向参数互动的CAD接口• 智能网格生成器• 各种结果的数据处理• 各种结果的图形及动画显示• 全自动生成计算报告支持的硬软件平台• Compaq Tru64 UNIX • Hewlett-Packard HP-UX • IBM RS/6000 AIX• Silicon Graphics IRIX• Sun Solaris• Windows: 2000,NT,XP• LinuxANSYS MultiphysicsTM MultiphysicsANSYS MultiphysicsTM集结构、热、计算流体动力学、高/低频电磁仿真于一体,在统一的环境下实现多物理场及多物理场耦合的仿真分析;精确、可靠的仿真功能可用于航空航天、汽车、电子电气、国防军工、铁路、造船、石油化工、能源电力、核工业、土木工程、冶金与成形、生物医学等各个领域,功能强大的各类求解器可求解从冷却系统到发电系统、从生物力学到MEMS等各类工程结构。
ANSYS几何非线性概述一、什么是非线性什么是非线性(non-linear)?按照百度百科的解释,非线性是指变量之间的数学关系不是直线而是曲线、曲面或不确定的属性。
而对于工程结构而言,非线性或者说非线性行为,是指外部荷载引起工程结构刚度显著改变的一种行为。
如果绘制一个非线性结构的荷载-位移曲线,则力与位移的曲线为非线性函数。
ANSYS非线性主要分为以下三大类:1、几何非线性大应变、大位移、大旋转2、材料非线性塑性、超弹性、粘弹性、蠕变3、状态改变非线性接触、单元生死其中几何非线性和材料非线性是土木工程结构计算中最为常见的两种类型。
二、结构几何非线性概念理解如果一个结构在受荷的过程经历了大变形,则变化后的几何形状能引起非线性行为。
例如,上述例子,杆梢在轻微横向作用下是柔软的,当外部横向荷载加大时,杆的几何形状发生改变,力矩臂减小,引起杆的刚化响应。
几何非线性主要分为如下三种现象:1.单元的形状改变(面积、厚度),其单独的单元刚度也将改变2.单元的取向发生转动,其局部刚度在转化为全局分量时将会发生变化。
3.单元应变产生较大的平面内应力状态引起平面法向刚度的改变。
随着垂直挠度UY 的增加,较大的膜应力SX 将会导致刚化效应。
上述三种情况的关系如下:应力刚化三、ANSYS几何非线性注意事项1、建模注意事项 (a )单元选择注意事项在定义单元类型时,应明白如果分析的过程中有几何非线性,应确保所选单元类型支持相应的几何非线性效应。
例如shell63单元支持应力刚化和大挠度,但不支持大应变;而shell181则支持所有的三类几何非线性,可在单元描述的特殊特征列表中找到类似信息。
特别是在选择接触单元的时候应慎重,有的接触单元是没有任何非线性能力,例如CONTAC52.同时应注意剪切锁定以及体积锁定等不可压缩性所带来的收敛困难。
(b )预见网格扭曲ANSYS 在第一迭代之前,会检查网格的质量;在大应变分析中,迭代计算过后的网格或许会变得严重扭曲,为防止出现不良形状,可以预见网格扭曲从而修改原始网格。
非线性结构分析非线性结构的定义在日常生活中,会经常遇到结构非线性。
例如,无论何时用钉书针钉书,金属钉书钉将永久地弯曲成一个不同的形状。
(看图1─1(a))如果你在一个木架上放置重物,随着时间的迁移它将越来越下垂。
(看图1─1(b))。
当在汽车或卡车上装货时,它的轮胎和下面路面间接触将随货物重量的啬而变化。
(看图1─1(c))如果将上面例子所载荷变形曲线画出来,你将发现它们都显示了非线性结构的基本特征--变化的结构刚性.图1─1 非线性结构行为的普通例子非线性行为的原因引起结构非线性的原因很多,它可以被分成三种主要类型:状态变化(包括接触)许多普通结构的表现出一种与状态相关的非线性行为,例如,一根只能拉伸的电缆可能是松散的,也可能是绷紧的。
轴承套可能是接触的,也可能是不接触的, 冻土可能是冻结的,也可能是融化的。
这些系统的刚度由于系统状态的改变在不同的值之间突然变化。
状态改变也许和载荷直接有关(如在电缆情况中),也可能由某种外部原因引起(如在冻土中的紊乱热力学条件)。
ANSYS程序中单元的激活与杀死选项用来给这种状态的变化建模。
接触是一种很普遍的非线性行为,接触是状态变化非线性类型形中一个特殊而重要的子集。
几何非线性如果结构经受大变形,它变化的几何形状可能会引起结构的非线性地响应。
一个例的垂向刚性)。
随着垂向载荷的增加,杆不断弯曲以致于动力臂明显地减少,导致杆端显示出在较高载荷下不断增长的刚性。
图1─2 钓鱼杆示范几何非线性材料非线性非线性的应力──应变关系是结构非线性名的常见原因。
许多因素可以影响材料的应力──应变性质,包括加载历史(如在弹─塑性响应状况下),环境状况(如温度),加载的时间总量(如在蠕变响应状况下)。
牛顿一拉森方法ANSYS程序的方程求解器计算一系列的联立线性方程来预测工程系统的响应。
然而,非线性结构的行为不能直接用这样一系列的线性方程表示。
需要一系列的带校正的线性近似来求解非线性问题。
非线性逼近技术。
在ANSYS里还是牛顿-拉普森法和弧长法。
牛顿-拉普森法是常用的方法,收敛速度较快,但也和结构特点和步长有关。
弧长法常被某些人推崇备至,它能算出力加载和位移加载下的响应峰值和下降响应曲线。
但也发现:在峰值点,弧长法仍可能失效,甚至在非线性计算的线性阶段,它也可能会无法收敛。
本文介绍了ANSYS中常见的一些非线性不收敛问题和相关分析。
影响非线性收敛稳定性及其速度的因素很多:1、模型——主要是结构刚度的大小。
对于某些结构,从概念的角度看,可以认为它是几何不变的稳定体系。
但如果结构相近的几个主要构件刚度相差悬殊,在数值计算中就可能导致数值计算的较大误差,严重的可能会导致结构的几何可变性——忽略小刚度构件的刚度贡献。
如出现上述的结构,要分析它,就得降低刚度很大的构件单元的刚度,可以加细网格划分,或着改用高阶单元(BEAM->SHELL,SHELL->SOLID)。
构件的连接形式(刚接或铰接)等也可能影响到结构的刚度。
2、线性算法(求解器)。
ANSYS中的非线性算法主要有:稀疏矩阵法(SPARSE DIREC T SOLVER)、预共轭梯度法(PCG SOLVER)和波前法(FRONT DIRECT SLOVER)。
稀疏矩阵法是性能很强大的算法,一般默认即为稀疏矩阵法(除了子结构计算默认波前法外)。
预共轭梯度法对于3-D实体结构而言是最优的算法,但当结构刚度呈现病态时,迭代不易收敛。
为此推荐以下算法:1)、BEAM单元结构,SHELL单元结构,或以此为主的含3-D SOLID的结构,用稀疏矩阵法;2)、3-D SOLID的结构,用预共轭梯度法;3)、当你的结构可能出现病态时,用稀疏矩阵法;4)、当你不知道用什么时,可用稀疏矩阵法。
3、非线性逼近技术。
在ANSYS里还是牛顿-拉普森法和弧长法。
牛顿-拉普森法是常用的方法,收敛速度较快,但也和结构特点和步长有关。
弧长法常被某些人推崇备至,它能算出力加载和位移加载下的响应峰值和下降响应曲线。
解决非线性分析不收敛的技巧大家都提到了收敛困难的问题为加速收敛应该注意一下几个问题: 1收敛容差ANSYS缺省的收敛准则会根据单元的不同而检查不同的收敛力素和容差例如当采用solid65和link8时,缺省的要检查F和DISP两个力素其容差也是缺省的(Help中有)对于钢筋混凝土结构一般而言其位移比较小仅使用F力素收敛即可但其容差也同时放松一般采用5%即可(缺省是5)命令:cnvtol,f,,0.05,22 其它选项的设置自动时间步打开此选择可以让程序决定子步间荷载增量的大小及其是增加或是减小收敛速度较快(命令autots,1)打开后似乎定义的子步数不起控制作用了打开线性搜索可以帮助收敛的速度(命令:lnsrch,1)打开预测器可以帮助收敛的速度(命令red,on)平衡迭代次数在每一子步中的迭代次数缺省是25,将其增加例如改为50(命令: neqit,50)NSUBST此值不宜过小否则计算过程中老是调整影响计算速度当然对于比较简单的算例或是分布模型可能不需要如此多的选项但对于复杂的模型是需要的各位可以试试影响非线性收敛稳定性及其速度的因素很多:1、模型——主要是结构刚度的大小。
对于某些结构,从概念的角度看,可以认为它是几何不变的稳定体系。
但如果结构相近的几个主要构件刚度相差悬殊,在数值计算中就可能导致数值计算的较大误差,严重的可能会导致结构的几何可变性——忽略小刚度构件的刚度贡献。
如出现上述的结构,要分析它,就得降低刚度很大的构件单元的刚度,可以加细网格划分,或着改用高阶单元(BEAM->SHELL, SHELL->SOLID)。
构件的连接形式(刚接或铰接)等也可能影响到结构的刚度。
2、线性算法(求解器)。
ANSYS中的非线性算法主要有:稀疏矩阵法(SPARSE DIRECT SOLVER)、预共轭梯度法(PCG SOLVER)和波前法(FRONT DIRECT SLOVER)。
稀疏矩阵法是性能很强大的算法,一般默认即为稀疏矩阵法(除了子结构计算默认波前法外)。
第二章材料本构关系§2.1本构关系的概念本构关系:应力与应变关系或内力与变形关系结构的力学分析,必须满足三类基本方程:(1)力学平衡方程:结构的整体或局部、静力荷载或动力荷载作用下的分析、精确分析或近似分析都必须满足;(2)变形协调方程:根据结构的变形特点、边界条件和计算精度等,可精确地或近似地满足;(3)本构关系:是连接平衡方程和变形协调方程的纽带,具体表达形式有:材料的应力-应变关系,截面的弯矩-曲率关系,轴力-变形(伸长、缩短)关系,扭矩-转角关系,等等。
所有结构(不同材料、不同结构形式和体系)的力学平衡方程和变形协调方程原则上相同、数学形式相近,但本构关系差别很大。
有弹性、弹塑性、与时间相关的粘弹性、粘塑性,与温度相关的热弹性、热塑性,考虑材料损伤的本构关系,考虑环境对材料耐久性影响的本构关系,等等。
正确、合理的本构关系是可靠的分析结果的必要条件。
混凝土结构非线性分析的复杂性在于:钢筋混凝土---复杂的本构关系:有限元法---结构非线性分析的工具:非线性全过程分析---解决目前结构分析与结构设计理论矛盾的途径:§2.2 一般材料本构关系分类1.线弹性(a) 线性本构关系; (b) 非线性弹性本构关系图2-1 线弹性与非线性弹性本构关系比较在加载、卸载中,应力与应变呈线性关系:}]{[}{εσD = (图2-1a ) 适用于混凝土开裂前的应力-应变关系。
2. 非线性弹性在加载、卸载中,应力与应变呈非线性弹性关系。
即应力与应变有一一对应关系,卸载沿加载路径返回,没有残余变形(图2-1b )。
}{)]([}{εεσD = 或 }{)]([}{εσσD =适用于单调加载情况结构力学性能的模拟分析。
3. 弹塑性图2 – 2 弹塑性本构关系(a)典型弹塑性;(b)理想弹塑性;(c)线性强化;(d)刚塑性典型的钢筋拉伸应力、应变曲线 (图2-2(a ))包含弹性阶段(OA )、流动阶段(AB )及硬化阶段(BC )。
应用ANSYS实现几何非线性分析方法
摘要:本文简要介绍了用ANSYS对杆系结构进行非线性分析时应当注意的
问题及方法。通过Williams双杆体系这个算例来介绍几何非线性全过程分析,
表明ANSYS软件丰富的单元库、强大的求解器以及便捷的后处理功能,对工程
结构进行非线性分析不失为一种很好的方法。
关键词:杆系结构;几何非线性 ANSYS;全过程分析BEAM3
对于许多工程问题,结构的刚度是变化的,必须用非线性理论解决,而几何
非线问题就是非线性理论中的一类。因几何变形引起的结构刚度变化的一类问题
都属于几何非线性问题。几何非线性理论一般可以分成大位移小应变即有限位移
理论和大位移大应变理论即有限应变理论。其核心是由于结构的几何形状或位置
的改变引起结构刚度矩阵发生变化,也就是结构的平衡方程必须建立在变形后的
位置上。ANSYS程序充分考虑了这两种理论。ANSYS所考虑的几何非线性通常
分为3类:①大应变,即认为应变不再是有限的,结构本身的形状可以发生变化,
结构的位移和转动可以是任意大小;②大位移,即结构发生了大的刚体转动,但
其应变可以按照线性理论来计算,结构本身形状的改变可以忽略不计;③应力刚
化,是指单元较大的应变使得单元在某个面内具有较大的应力状态,从而显著影
响面外的刚度。
大应变包括大位移和应力刚化,此时应变不再是“小应变”,而是有限应变或
“大应变”;大位移包括了其自身和应力刚化效应,但假定为“小应变”;应力刚化
被激活时,程序计算应力刚度矩阵并将其添加到结构刚度矩阵中,应力刚度矩阵
仅是应力和几何的函数,因此又称为“几何刚度”。
几何非线性问题一般指的是大位移问题,只有在材料发生塑性变形时,以及
类似橡皮这样的材料才会遇到的大的应变,大变形一般包含大应变、大位移和应
力刚化,而不加区分。
1几何非线性分析应注意的问题
用ANSYS进行几何非线性分析时,首先要打开大位移选项,即(NLGEOM,
ON),并设置求解控制选项,可根据问题类型而定。其次是模型修正问题或缺陷
问题,在大多数实际问题分析中,该项可根据实际结构修正模型,或不修正模型
也可直接进行计算分析。但对于理想柱、梁侧倾的非线性分析,则必须进行模型
修正(可采用实际缺陷或采用ANSYS设置),否则无法进行非线性分析。
ANSYS采用工程应变和工程应力,对数应变和真实应力,Green-Lagrange
应变和第二Piola-Kirchoff应力3种应变和应力。具体采用何种应变和应力,程
序根据分析类型和采用的单元自动选择。
在大应变分析的任何迭代中,大的纵横比,过度的顶角以及具有负面积的已
扭曲单元都是有害的。因此,必须注意单元已扭曲的形状。如果已扭曲的网格是
不能接受的,可以人工改变开始网格,以产生合理的最终结果见图1。
某些单元支持大的转动,但不支持大的形状改变。在一个大挠度分析中,单
元的转动可以任意地大,但是应变假定是小应变。在所有梁单元以及除了LINK11
单元的所有杆单元都具有大挠度效应。通过打开NLGEOM命令来激活挠度效应。
图1在大应变分析中避免低劣单元形状的发展具有小应变的大偏移
在大变形分析中(NLGEOM,ON)包含应力刚化效应(SSTIF,ON),这
时,把应力刚度矩阵加到主刚度矩阵上以在具有大应变或大挠度性能的大多数单
元中产生一个“近似的”协调切向刚度矩阵。BEAM4和SHELL63是通过设置
KEYOPT(2)=1和NLGEOM,ON在初始求解前激活应力刚化。当大变形效应
打开时,这个KEYOPT设置激活一个协调切向刚度矩阵选项。当协调切向刚度
矩阵被激活时,也就是当KEYOPT(2)=1且NLGEOM,ON时,SSTIF,ON
对BEAM4和SHELL63将不起作用。
对于杆、梁和壳单元,在大挠度分析中通常应使用应力刚化。在应用这些单
元进行非线性分析时,只有当打开应力刚化时才得到精确的解。但当用杆、梁或
壳单元来模拟刚性连杆,耦合端或者结构刚度有大的变化时不应使用应力刚化。
网格密度对收敛有较大影响,同时影响结果的正确性,应进行灵敏度分析。
避免单点集中力和单点约束以及“过约束条件”等。
在大变形分析中,节点坐标系不随变形更新,因此节点结果均以原始节点坐
标系列出。但是多数单元坐标系跟随单元变形,因此单元应力或应变会随单元坐
标系而转动。
采用合适的计算方法,对于一般的几何非线性分析可以采用牛顿-辛普森
法,但对于结构的刚度发生突然的变化,或者说结构刚度变化较大的情况,应采
用弧长法,此外还必须合理的配置荷载步和荷载子步。
2几何非线性全过程分析
结构条件不变而仅考虑某个加载过程中结构随时间的力学响应,叫做全过程
分析,本节通过Williams双杆体系这个算例来介绍几何非线性全过程分析。
图2表示一个由两个梁单元组成的平面刚架,该结构具有较高的几何非线
性。最初Williams从理论和实验两方面研究了该结构的非线性性能。后来Wood
和Zienkiewicz则用有限元法对该结构做了计算分析,计算中每半跨结构取为五
个单元,沈世钊用SNAP程序对此刚架也进行了分析。
本文用ANSYS对此结构进行模拟。采用BEAM3单元,每个杆件划分为5
个单元,打开弧长法。并采用缺省的弧长控制选项,荷载子步为100,计算结果
见图2。
图2中的荷载-位移曲线Williams的试验结构和Wood等的有限元分析结果
以及和沈世钊用SNAP程序算得的结果十分接近。
3结束语
从上文的分析中可以看出,用ANSYS对杆系结构进行几何非线性数值分析
十分优越。因为ANSYS软件具有丰富的单元库、强大的求解器以及便捷的后处
理功能,用其对工程结构进行非线性分析不失为一种很好的方法
参考文献
1 王新敏.ANSYS工程结构数值分析[M].北京:人民交通出版社,2007:
346~365
2 F S WILLIANS.An Approach to the Nonlinear Behaviour of the Members of a
Rigid Jointed plane Framework with Finite Element Deflections. Quart.[J].
Mech.Appl.Math. Val 17, 1964: 451~469
3 R D WOOD and O.C.ZIENKIEWICZZ. Geometrically Nonlinear Finite
Element Analysis of Beams, Frames, Arches and Axisymmetric Shells Computand
Struct[J]. Vol.7, 1977:725~735
4 沈世钊.网壳结构稳定性[M]北京:科学出版社,1998:37~39
The Method of Analysing Geometrical Nonlinearity by ANSYS
Chen Xueling
Abstract:The problem and methods of using ANSYS to analyse geometrical
nonlinearity is introduced briefly. The Williams double-rod system is used for
example to introduce the geometric nonlinear analysis, show that the ANSYS
software have rich of cell libraries and powerful solver and convenient post-
processing. ANSYS is a good method to analyse the geometric nonlinear of
engineering structures.
Key words:frame structures; geometrical nonlinearity; ANSYS; full-range
analysis ;BEAM3