工业镜头在机器视觉中的作用
- 格式:pdf
- 大小:146.05 KB
- 文档页数:3
机器视觉(相机、镜头、光源)全面概括分类:机器视觉2013-08-19 10:52 1133人阅读评论(0) 收藏举报机器视觉工业相机光源镜头1.1.1视觉系统原理描述机器视觉就是用机器代替人眼来做测量和判断。
机器视觉系统是指通过机器视觉产品(即图像摄取装置,分CMOS 和CCD 两种)将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。
2.1.1视觉系统组成部分视觉系统主要由以下部分组成1.照明光源2.镜头3.工业摄像机4.图像采集/处理卡5.图像处理系统6.其它外部设备2.1.1.1相机篇详细介绍:工业相机又俗称摄像机,相比于传统的民用相机(摄像机)而言,它具有高的图像稳定性、高传输能力和高抗干扰能力等,目前市面上工业相机大多是基于CCD(ChargeCoupled Device)或CMOS(Complementary Metal OxideSemiconductor)芯片的相机。
CCD是目前机器视觉最为常用的图像传感器。
它集光电转换及电荷存贮、电荷转移、信号读取于一体,是典型的固体成像器件。
CCD的突出特点是以电荷作为信号,而不同于其它器件是以电流或者电压为信号。
这类成像器件通过光电转换形成电荷包,而后在驱动脉冲的作用下转移、放大输出图像信号。
典型的CCD相机由光学镜头、时序及同步信号发生器、垂直驱动器、模拟/数字信号处理电路组成。
CCD作为一种功能器件,与真空管相比,具有无灼伤、无滞后、低电压工作、低功耗等优点。
CMOS图像传感器的开发最早出现在20世纪70 年代初,90 年代初期,随着超大规模集成电路(VLSI) 制造工艺技术的发展,CMOS图像传感器得到迅速发展。
CMOS图像传感器将光敏元阵列、图像信号放大器、信号读取电路、模数转换电路、图像信号处理器及控制器集成在一块芯片上,还具有局部像素的编程随机访问的优点。
机器视觉中用的工业相机与普通相机的区
别
机器视觉系统就是利用机器代替人眼来作各种测量和判断。
机器视觉相机的目的是将通过镜头投影到传感器的图像传送到能够储存、分析和(或者)显示的机器设备上。
作为机器的“眼睛”,相机占据非常重要的地位。
按照不同标准可分为标准分辨率数字相机和模拟相机等。
根据不同的实际应用场合选不同的相机和高分辨率相机线扫描CCD和面阵CCD;单色相机和彩色相机。
那么工业相机和我们日常生活中用的普通相机有什么区别呢?
1、工业相机的快门时间非常短,可以抓拍快速运动的物体,工业相机的快门时间般都是微秒级的,配合光源、频闪控制器以及全屏曝光,可以有效解决拖影等问题。
2、工业相机的拍摄速度远远高于一般相机。
工业相机每秒可以拍摄十幅到几百幅甚至更多的图片,而一般相机只能拍摄2-3幅图像,相差甚远。
3、工业相机的图像传感器是逐行扫描的,而一般摄像机的图像传感器是隔行扫描的,甚至是隔三行扫描的。
逐行扫描的图像传感器生产比较困难,成品率低,出货量也少,例如Dalsa、avt等,价格相对比较昂贵。
4、工业相机输出的是裸数据,其光谱范围也往往比较宽,比较适台进行高质量的图像处理算法,普遍应用于机器视觉系统中。
而一般相机(DSC)拍摄的图片,其光谱范围只适合人眼视觉,并且经过了MPEG压缩,图像质量也较差。
由于工业相机区别于普通相机的技术优势,工业相机更多的应用到各大领域中。
机器视觉系统的5个主要组成结构介绍
从机器视觉系统字面意思就可看出主要分为三部分:机器、视觉和系统。
机器负责机械的运动和控制;视觉通过照明光源、工业镜头、工业相机、图像采集卡等来实现;系统主要是指软件,也可理解为整套的机器视觉设备。
下面我们重点说下机器视觉系统中的五大模块:
1.机器视觉光源(即照明光源)
照明光源作为机器视觉系统输入的重要部件,它的好坏直接影响输入数据的质量和应用效果。
由于没有通用的机器视觉照明设备,所以针对每个特定的应用实例,要选择相应的视觉光源,以达到最佳效果。
常见的光源有:LED环形光源、低角度光源、背光源、条形光源、同轴光源、冷光源、点光源、线型光源和平行光源等。
2.工业镜头
镜头在机器视觉系统中主要负责光束调制,并完成信号传递。
镜头类型包括:标准、远心、广角、近摄和远摄等,选择依据一般是根据相机接口、拍摄物距、拍摄范围、CCD尺寸、畸变允许范围、放大率、焦距和光圈等。
3.工业相机
工业相机在机器视觉系统中最本质功能就是将光信号转变为电信号,与普通相机相比,它具有更高的传输力、抗干扰力以及稳定的成像能力。
按照不同标准可有多种分类:按输出信号方式,可分为模拟工业相机和数字工业相机;按芯片类型不同,可分CCD工业相机和CMOS工业相机,这种分类方式最为常见。
4.图像采集卡
图像采集卡虽然只是完整机器视觉系统的一个部件,但它同样非常重要,直接决定了摄像头的接口:黑白、彩色、模拟、数字等。
比较典型的有PCI采集卡、1394采集卡、VGA 采集卡和GigE千兆网采集卡。
这些采集卡中有的内置多路开关,可以连接多个摄像机,同时抓拍多路信息。
5.机器视觉软件。
工业镜头的几种接口介绍工业镜头的几种接口介绍据工业CCD相机厂家介绍,工业检测镜头是机器视觉系统中必不可少的部件,按焦距可分为短焦镜头、中焦镜头,长焦镜头;按视场大分为广角、标准,远摄镜头;按结构分为固定光圈定焦镜头,手动光圈定焦镜头,自动光圈定焦镜头,手动光圈定焦镜头、自动变焦镜头,自动光圈电动变焦镜头,电动三可变镜头等。
按接口类型可分为C接口镜头、CS接口镜头、U接口镜头和特殊接口镜头。
1、C接口镜头C接口工业检测镜头法兰焦距是安装法兰到入射镜头平行光的汇聚点之间的距离。
法兰焦距为17.526mm或0.690in。
安装罗纹为:直径1in,32牙.in。
镜头可以用在长度为0.512in(13mm)以内的线阵传感器。
但是,由于几何变形和市场角特性,必须鉴别短焦镜头是否合用。
如焦距为12.6mm的镜头不应该用长度大于6.5mm的线阵。
如果利用法兰焦距尺寸确定了镜头到列阵的距离,则对于物方放大倍数小于20倍时需增加镜头接圈。
接圈加在镜头后面,以增加镜头到像的距离,以为多数镜头的聚焦范围位5-10%。
镜头接长距离为焦距/物方放大倍数。
加一个5mm接圈,一个C接口镜头可以接CS接口的相机。
2、CS接口镜头CS接口镜头可以直接接在CS接口的相机上,但是即CS mount 镜头不能与C mount相机一起使用。
3、U接口镜头U接口镜头为一种可变焦距的镜头,其法兰焦距为47.526mm或1.7913in,安装罗纹为M42×1。
主要设计作35mm照片应用,可用于任何长度小于1.25in(38.1mm)的列阵。
工业镜头是机器视觉系统中的重要组件,其功能就是光学成像,所以对成像质量有着关键性的作用,它对成像质量的几个最主要指标都有影响,其中包括:镜头分辨率、镜头对比度、镜头景深及各种像差,镜头MTF参数。
工业镜头不仅种类繁多,而且质量差异也非常大,但一般用户在进行机器视觉系统设计时往往对工业镜头的重视不够,导致得不到理想的图像,从而导致视觉系统开发的失败。
工业相机的作用和用途
工业相机是机器视觉系统中的关键组件之一,它的作用是将通过镜头聚焦的图像转换为数字信号,并将其传输给专用的图像处理软件。
与普通相机相比,工业相机具有更高的图像稳定性、传输能力和抗干扰能力。
以下是工业相机的主要作用和用途:
1. 质量检测:工业相机可用于检测产品缺陷,如划痕、破损、尺寸误差等,确保产品质量符合标准。
2. 测量与计量:通过精确的图像分析,工业相机能够进行尺寸测量、形状识别等,用于精密制造和计量领域。
3. 定位与导航:在自动化装配、搬运和分拣过程中,工业相机提供实时图像反馈,帮助机器人或自动化设备准确定位。
4. 识别与追踪:工业相机可以识别条码、二维码、RFID等标识,用于物流追踪、生产管理等。
5. 监控与安防:在安全监控领域,工业相机提供高清晰度的视频监控,增强安全防范能力。
6. 工艺控制:在生产过程中,工业相机可以监控工艺流程,如焊接、切割、涂装等,确保工艺质量。
7. 科研与开发:在科学实验和研究开发中,工业相机用于捕捉高速运动的物体或微观世界的图像,为分析和研究提供数据支持。
机器视觉中用工业镜头与工业相机CCD选型指导手册道镜头的参数指标光学镜头一般称为摄像镜头或摄影镜头,简称镜头,其功能就是光学成像。
在机器视觉系统中,镜头的主要作用是将成像目标聚焦在图像传感器的光敏面上。
镜头的质量直接影响到机器视觉系统的整体性能;合理选择并安装光学镜头,是机器视觉系统设计的重要环节。
1.镜头的相关参数1焦距焦距是光学镜头的重要参数,通常用 f 来表示。
焦距的大小决定着视场角的大小,焦距数值小,视场角大,所观察的范围也大,但距离远的物体分辨不很清楚;焦距数值大,视场角小,观察范围小,只要焦距选择合适,即便距离很远的物体也可以看得清清楚楚。
由于焦距和视场角是一一对应的,一个确定的焦距就意味着一个确定的视场角,所以在选择镜头焦距时,应该充分考虑是观测细节重要,还是有一个大的观测范围重要,如果要看细节,就选择长焦距镜头;如果看近距离大场面,就选择小焦距的广角镜头。
2光阑系数即光通量,用 F 表示,以镜头焦距 f 和通光孔径 D 的比值来衡量。
每个镜头上都标有最大 F 值,例如6mm/F1.4 代表最大孔径为 4.29 毫米。
光通量与 F 值的平方成反比关系,F 值越小,光通量越大。
镜头上光圈指数序列的标值为 1.4,2,2.8,4,5.6,8,11,16,22 等,其规律是前一个标值时的曝光量正好是后一个标值对应曝光量的 2 倍。
也就是说镜头的通光孔径分别是 1/1.4,1/2,1/2.8,1/4,1/5.6,1/8,1/11,1/16,1/22,前一数值是后一数值的根号 2 倍,因此光圈指数越小,则通光孔径越大,成像靶面上的照度也就越大。
3景深摄影时向某景物调焦,在该景物的前后形成一个清晰区,这个清晰区称为全景深,简称景深。
决定景深的三个基本因素: 光圈光圈大小与景深成反比,光圈越大,景深越小。
焦距焦距长短与景深成反比,焦距越大,景深越小。
物距物距大小与景深成正比,物距越大,景深越大。
工作原理:机器视觉检测系统采用CCD照相机将被检测的目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号,图像处理系统对这些信号进行各种运算来抽取目标的特征,如面积、数量、位置、长度,再根据预设的允许度和其他条件输出结果,包括尺寸、角度、个数、合格/ 不合格、有/ 无等,实现自动识别功能。
①工业相机与工业镜头——这部分属于成像器件,通常的视觉系统都是由一套或者多套这样的成像系统组成,如果有多路相机,可能由图像卡切换来获取图像数据,也可能由同步控制同时获取多相机通道的数据。
根据应用的需要相机可能是输出标准的单色视频(RS-170/CCIR)、复合信号(Y/C)、RGB信号,也可能是非标准的逐行扫描信号、线扫描信号、高分辨率信号等。
②光源——作为辅助成像器件,对成像质量的好坏往往能起到至关重要的作用,各种形状的LED灯、高频荧光灯、光纤卤素灯等都容易得到。
③传感器——通常以光纤开关、接近开关等的形式出现,用以判断被测对象的位置和状态,告知图像传感器进行正确的采集。
④图像采集卡——通常以插入卡的形式安装在PC中,图像采集卡的主要工作是把相机输出的图像输送给电脑主机。
它将来自相机的模拟或数字信号转换成一定格式的图像数据流,同时它可以控制相机的一些参数,比如触发信号,曝光/积分时间,快门速度等。
图像采集卡通常有不同的硬件结构以针对不同类型的相机,同时也有不同的总线形式,比如PCI、PCI64、Compact PCI,PC104,ISA等。
⑤PC平台——电脑是一个PC式视觉系统的核心,在这里完成图像数据的处理和绝大部分的控制逻辑,对于检测类型的应用,通常都需要较高频率的CPU,这样可以减少处理的时间。
同时,为了减少工业现场电磁、振动、灰尘、温度等的干扰,必须选择工业级的电脑。
⑥视觉处理软件——机器视觉软件用来完成输入的图像数据的处理,然后通过一定的运算得出结果,这个输出的结果可能是PASS/FAIL信号、坐标位置、字符串等。
工业镜头选购手册:普通镜头远心镜头对比工业镜头作为机器视觉的重要部件,主要用于聚集光线并将被拍摄目标的光学影像成在摄像机的CCD/CMOS传感器表面上,让摄像机能够采集到清晰锐利的图像。
在整个机器视觉系统中,镜头完成了被测物信息采集和传递,其品质好坏直接影响被测物体信息的精准度。
相比普通镜头,远心镜头必须提供更小的光学畸变、足够高的光学分辨率以及更丰富的光谱响应选择,来满足不同场合视觉系统中的应用需求。
一、特点优势:1.远心镜头:优点:放大倍数恒定,不随景深变化而变化;无视差。
缺点:成本高;尺寸大;重量重。
应用:度量衡方面;基于CCD方面的测量;微晶学。
2.普通镜头:优点:成本低;实用;用途广。
缺点:放大倍率会有变化;有视差。
应用:大物体成像。
3.在用普通镜头进行尺寸测量时,会存在着如下问题:(1)由于被测量物体不在同一个测量平面,而造成放大倍率的不同;(2)镜头畸变大;(3)视差,也就是当物距变大时,对物体的放大倍数也改变;(4)镜头的解析度不高;(5)由于光源的几何特性,而造成的图像边缘位置的不确定性。
远心镜头可以有效的解决以上问题,无论何处,在特定的工作距离,重新调焦后会有相同的放大倍率,因为远心镜头的最大视场范围直接与镜头的光栏接近程度有关,镜头尺寸越大,需要的视场就越大。
远心测量镜头能提供优越的影像质素,畸变比传统定焦镜头小,这种光学设计令影像面更对称,可配合软件进行精密测量。
二、远心镜头分类:远心镜头有以下三种分类:1.物方远心镜头物方远心镜头是将孔径光阑放置在光学系统的像方焦平面上,当孔径光阑放在像方焦平面上时,即使物距发生改变,像距也发生改变,但像高并没有发生改变,即测得的物体尺寸不会变化。
物方远心镜头用于工业精密测量,畸变极小,高性能的可以达到无畸变。
2.像方远心镜头像方远心镜头,通过在物方焦平面上放置孔径光阑,使像方主光线平行于光轴,从而虽然CCD芯片的安装位置有改变,在CCD芯片上投影成像大小不变。
上海嘉肯光电科技有限公司:机器视觉光源的研发 机器工业镜头分类有哪些?工业镜头的功能主要就是光学成像,工业镜头是机器视觉系统中必不可少的组件,对成像质量有着关键性的作用。
成像质量的主要指标包括:分辨率、对比度、景深及各种像差,工业镜头不仅种类繁多,而且质量差异也非常大。
选择工业镜头需要考虑到通用性、兼容性和标配性,其接口类型比较少。
不像民用镜头那样,不同厂商,镜头接口也基本上是五花八门的,相互兼容性比较差。
工业镜头种类繁多,可按焦距、按视场、按结构进行分类区别。
下面则根据工业镜头和工业相机之间的不同接口类型进行整理分类。
工业相机常用的包括C接口、CS接口、F接口、V接口、T2接口、M42接口、M50接口等。
接口类型的不同和工业镜头性能及质量并无直接关系,只是接口方式的不同,一般可以也找到各种常用接口之间的转接口。
根据接口类型,对常用的接口进行介绍:包括C接口镜头、CS接口镜头、U接口镜头和特殊接口镜头。
C型镜头上海嘉肯光电科技有限公司:机器视觉光源的研发 目前机器视觉领域使用最多的接口类型,即C口镜头(C-Mount),后口为25mm直径的螺丝口接口,像面尺寸:2/3 / 1/2 英寸,高清镀膜,玻璃镜片,金属外壳,光圈无档位变换,有光圈值标示和聚焦值标示,光圈能够全开与全关。
CS型镜头是C接口的缩短类型。
标准的C接口法兰焦距为17.526mm,而CS接口的法兰焦距为12.5mm。
同时相机的接口也有C与CS之分。
一般来说,C接口的镜头只能用于C接口的相机,CS接口的镜头应用于CS接口的相机。
U型镜头一种可变焦距的镜头,其法兰焦距为47.526mm或1.7913in,安装罗纹为M42×1。
主要设计作35mm照片应用(如国产和进口的各种135相机镜头),可用于任何长度小于1.25in(38.1mm)的列阵,但是建议不要用短焦距镜头。
上海嘉肯光电科技有限公司是一家专业从事机器视觉光源的研发、生产和销售为一体的高新技术企业。
工业镜头在机器视觉中的作用
机器视觉在控制工业流程当中的作用越来越重要了,尤其是在机器人引导、目标识别和质量保证等领域。
当前优秀的视觉系统已经超出了那些基本功能(例如辨别零件和确定方向)的范畴,还可以提供后续功能的信息,比如将物体从一个位置移至另一个。
对于装配线和大量检测操作中使用的机器人系统,比如汽车生产和检测线,传送带通常是参考。
这里,机器人执行两项任务:识别和传送。
在绝大多数机器视觉应用里,光学控制都是非常重要的。
机器人视觉系统同样要求极高的可重复性,因此减少抖动提供清晰图像是必要的。
在类似药品工厂这样的大规模单位检测线上,视觉系统必须能够辨识缺陷包、不可读标签和产品缺失。
视觉系统必须能够以极高的准确度快速识别和测量方形、圆形和椭圆形物体。
提高机器视觉系统的精确度,可以帮助保持统一的包装表面和颜色。
对于食品检测系统,产品的尺寸、颜色、密度和形状都需要依靠多元检测才确定。
多元机器视觉系统既可以是彩色相机也可以是黑白相机,通常使用结构照明方法建立产品外表和内在结构。
尽管照相机、分析软件和照明对于机器视觉系统都是十分重要的,可能关键的元件还是成像工业镜头。
系统若想完全发挥其功能,镜头必须要能够满足要求才行。
当为控制系统选择镜头的时候,机器视觉集成商应该考虑四个主要因素:
1.可以检测物体类别和特性;
2.景深或者焦距;
3.加载和检测距离;
4.运行环境。
工业镜头在指定光线条件下辨识特定宽度的线耦或者点距的能力,决定了它的解析度。
解析度通常被模块转换功能(MTF)以图像的方式显示出来。
图形显示了指定线耦频率下可行的相对对比度。
扭曲、色差和其他波前畸变都会影响曲线的斜率,使曲线偏离理想状态或者衍射极限的光学表现。
镜头方案有时候会以每毫米线耦数量(lp/mm)为单位列出物体解析度,再将这个值除以1000就可以预测出镜头每微米的物体解析度。
在进行表面剖析的时候,通常不只使用一台照相机和工业镜头,而了解镜头的内在偏差量也是有价值的。
偏差是指镜头里的光学误差,可以引起同一张图片里不同点的图像质量差异。
剖析通常包括激光线和其他图像里的光线,这样可以确保测量的准确性。
一些软件程序可以消除诸如镜头引起的扭曲之类的误差,所以在图像里只有剖析数据是明显的。