概率论第3讲
- 格式:ppt
- 大小:458.50 KB
- 文档页数:39
概率论第三章知识点总结咱今儿个就来说说概率论第三章的知识点。
这概率论第三章啊,就像那一片神秘的树林,里面藏着好些个有趣的东西。
我就记得那些个随机变量的分布,就好比是树林里不同种类的鸟,各有各的特点。
离散型随机变量就像是一群麻雀,叽叽喳喳的,它们的分布律啊,就像是麻雀们各自占着的小树枝,每个树枝上有几只麻雀那都是有规律的。
你看那伯努利试验,就像两只麻雀在抢一根树枝,要么这只抢到,要么那只抢到,每次试验就这么简单,但是一连串的试验下来,就像一群麻雀抢好多树枝,那可就复杂又有趣了。
再说说连续型随机变量,这就像是树林里那些看不见的风,没有个具体的个数,到处都是。
它的概率密度函数就像是风的强弱分布,在这个地方风强点儿,那个地方风弱点儿。
咱就说那正态分布吧,这正态分布可太常见了,就像树林里最常见的那种微风,到处都有它的影子。
它的图像就像一个钟,中间鼓起来,两边慢慢低下去。
我当时看到这个图像,就觉得它像我们村儿东头那个大钟,挂在树上,风一吹,微微晃动。
还有那些个期望和方差,期望就像是这群鸟的平均体重,方差呢,就像是这些鸟体重的差别。
有的鸟胖,有的鸟瘦,方差大的时候,就像鸟群里肥瘦差距大;方差小的时候,就像鸟的肥瘦都差不多。
我那时候学这个,可费了不少劲儿。
我跟同桌说:“这概率论第三章啊,就像一团乱麻,我这脑子啊,就像钻进了迷宫的老鼠,找不到出路。
”同桌就笑话我:“你呀,就是想得太复杂了,就把那些概念当成咱村里的事儿,不就好理解了嘛。
”我听了他的话,还真有点开窍了。
就像看那些随机变量的分布,就想象成村里的鸡鸭鹅分布在各个院子里,这么一想,还真就简单了不少。
这第三章里的知识点啊,一个连着一个,就像那一串糖葫芦,你要是弄断了其中一个,这串糖葫芦就不完整了。
所以啊,得一个一个地把这些知识点都吃透喽,就像把每颗糖葫芦都细细品尝一样。
有时候我觉得概率论就像一个调皮的孩子,老是跟我捉迷藏,我得费好大劲儿才能找到它藏起来的宝贝知识点。
第三章 多维随机变量及其分布在很多随机现象中, 只用一个随机变量来描述往往不够, 而要涉及到多个随机变量. 如炮弹命中点的位置要用一对随机变量(横坐标与纵坐标)来描述, 正弦交流电压要用振幅、频率和相位三个随机变量来描述等等. 要研究这些随机变量之间的联系, 就应当同时考虑若干个随机变量即多维随机变量及其取值规律——多维分布. 本章将介绍有关这方面的内容, 为简明起见, 主要介绍二维情形, 有关内容可以类推到多于二维的情形.第一节 二维随机变量一、二维随机变量的分布函数设E 是一个随机试验, 它的样本空间是S . 设X 、Y 是定义在S 上的随机变量, 则由它们构成的一个向量(X , Y )称为二维随机向量或二维随机变量.一般地, (X , Y )的性质不仅与X 有关, 与Y 有关, 而且还依赖于X 、Y 的相互关系, 因此必须把(X , Y )作为一个整体来研究.首先引入(X , Y )的分布函数的概念.定义 设(X , Y )为二维随机变量, 对于任意实数x 、y , 二元函数F (x , y ) = P {(X ≤ x )∩(Y ≤ y )}= P {X ≤ x , Y ≤ y }称为二维随机变量(X , Y )的分布函数, 或称为随机变量X 和y 的联合分布函数.分布函数F (x , y )表示事件(X ≤ x )与事件(Y ≤ y )同时发生的概率. 如果把(X , Y )看成平面上具有随机坐标(X , Y )的点, 则分布函数F (x , y )在(x , y )处的函数值就是随机点(X , Y )落在平面上的以(x , y )为顶点而位于该点左下方的无限矩形内的概率..由上面的几何解释, 容易得到随机点(X , Y )落在矩形区域{x 1 < X ≤ x 2, y 1 < Y ≤ y 2}的概率为P {x 1 < X ≤ x 2, y 1 < Y ≤ y 2} = F (x 2, y 2) - F (x 2, y 1) - F (x 1, y 2) + F (x 1, y 1) (1)与二元函数类似, 二元分布函数F (x , y )也具有如下一些性质: 1︒ F (x , y )是变量x 和y 的单调不减函数, 即当x 1 < x 2时, F (x 1, y ) ≤ F (x 2, y ); 当y 1 < y 2时, F (x , y 1) ≤ F (x , y 2).2︒ 0 ≤ F (x , y ) ≤ 1, 且F (-∞, y ) = 0, F (x , -∞) = 0, F (-∞,-∞) = 0, F (+∞,+∞) = 1. 3︒ F (x , y )关于x 和y 都是右连续的, 即F (x + 0, y ) = F (x , y ), F (x , y + 0) = F (x , y ).4︒ 对任意的(x 1, y 1)、(x 2, y 2), x 1 < x 2, y 1 < y 2, 有F (x 2, y 2) - F (x 2, y 1) - F (x 1, y 2) + F (x 1, y 1) ≥ 0.注: 二元分布函数具有性质1︒~ 4︒, 其逆也成立(2︒中0 ≤ F (x , y ) ≤ 1可去), 即若二元实值函数F (x , y )(x ∈ R , y ∈ R )满足1︒~ 4︒, 则F (x , y )必是某二维随机变量的(X , Y )的分布函数. 其中4︒是必不可少的, 即它不能由1︒~ 3︒推出(除去0 ≤ F (x , y ) ≤ 1).二、二维离散型随机变量如果二维随机变量(X , Y )的所有可能取的值是有限对或可列无限多对, 则称(X , Y )是二维离散型随机变量.设二维离散型随机变量(X , Y )所有可能取的值为(x i , y j ) (i , j = 1, 2, 3, …). 记 P {X = x i , Y = y j } = p ij (i , j = 1, 2, 3, …)则由概率定义有 p ij ≥ 0;111=∑∑∞=∞=i j ij p .我们称P {X = x i , Y = y j } = p ij (i , j = 1, 2, 3, …)为二维离散型随机变量(X , Y )的分布律(概率分布)或随机变量X 和Y 的联合分布律, (X , Y )的分布律也可用表格表示. 其分布函数为=),(y x F ∑∑≤≤==x x yy j i i j y Y x X P },{=∑∑≤≤x x yy ij i j p这里∑∑≤≤x x yy i j 表示对一切x i ≤ x , y j ≤ y 的那些指标i 、j 求和.例1 一个口袋中有三个球, 依次标有1、2、2, 从中任取一个, 不放回袋中, 再任取一个. 设每次取球时, 各球被取到的可能性相等, 以X 、Y 分别记第一次和第二次取到的球上标有的数字, 求X 、Y 的联合分布律与分布函数..解: (X , Y )的可能取值为(1, 2)、(2, 1)、(2, 2). P {X = 1, Y = 2}= P {X = 1}P {Y = 2 / X = 1}=312231=⋅.同理, 有 P {X = 2, Y = 1}=31 , P {X = 2, Y = 2}=31.即(X , Y )的分布律如右表所示.当x < 1, 或y < 1时, F {x , y } = 0;当1 ≤ x < 2, 1 ≤ y <2时, F {x , y } = 0;当1 ≤ x < 2, y ≥ 2时, F {x , y } = =+1211p p 31;当x ≥ 2, 1 ≤ y <2时, F {x , y } ==+2111p p 31;当x ≥ 2, y ≥ 2时, F {x , y } = 1.所以, (X , Y )的分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧>>⎩⎨⎧<≤≥⎩⎨⎧≥<≤⎩⎨⎧<≤<≤<<=.2,2,1,21,22,21,31,21,2111,0),(y x y x y x y x y x y x F 或或或三、二维连续型随机变量设二维随机变量(X , Y )的分布函数为F {x , y }, 若存在非负函数f (x , y ), 使对任意的x 、y 有⎰⎰∞-∞-=y xdudvv u f y x F ),(),(,则称(X , Y )为连续型的二维随机变量, f (x , y )称为二维连续型随机变量(X , Y )的概率密度, 或称随机变量X 、Y 的联合概率密度.概率密度f (x , y )具有以下性质: 1︒ f (x , y ) ≥ 0;2︒1),(),(=+∞+∞=⎰⎰∞+∞-∞+∞-F dxdy y x f3︒ 若f (x , y )在点(x , y )处连续, 则有),(),(2y x f yx y x F =∂∂∂4︒ 设G 是xOy 平面上的一个区域, 则点(X , Y )落在G 内的概率为⎰⎰=∈Gdxdyy x f G Y X P ),(}),{( (2)例2 设二维连续型随机变量(X , Y )的概率密度为⎩⎨⎧>>=+-.,0,0,0,2),()(其它y x Ae y x f y x求: (1) 系数A ; (2) 分布函数F (x , y ); (3) 概率P {(X , Y )∈D }, 其中D : x ≥ 0, y ≥ 0, x + y ≤ 1.解: (1) 由1),(=⎰⎰∞+∞-∞+∞-dxdy y x f ,得21=A .(2) ⎰⎰∞-∞-+-=yxy x dxdy e y x F )(),(=⎪⎩⎪⎨⎧>>⎰⎰+-,,0,0,0,)(其它y x dxdy ey xy x=⎩⎨⎧>>----.,0,0,0),1)(1(其它y x e e y x(3) edxdy eedxdxdy y x f Y X P xyxD21),()},{(1010-===⎰⎰⎰⎰---.例3 设二维连续型随机变量(X , Y )的概率密度为⎪⎩⎪⎨⎧≤≤≤≤+=,,0,20,10,3),(2其它y x xy x y x f , 求P {Y ≥ X }.解: P {Y ≥ X }=2417)3(),(2210=+=⎰⎰⎰⎰≤xxy dy xy xdxdxdy y x f .以上关于二维随机变量的讨论, 不难推广到n (n > 2)维随机变量的情形. 一般地, 设E 是一个随机试验, 它的样本空间为S , 设X 1、X 2、…、X n 是定义在S 上的随机变量, 则由它们构成的一个n 维向量(X 1, X 2, …, X n )称为n 维随机向量或n 维随机变量.对任意n 个实数x 1、x 2、…、x n , n 元函数F (x 1, x 2, …, x n ) = P {X 1 ≤ x 1, X 2 ≤ x 2, …, X n ≤ x n }称为n 维随机变量(X 1, X 2, …, X n )的分布函数或随机变量(X 1, X 2, …, X n )的联合分布函数, 它具有与二元分布函数类似的性质.第二节 边 缘 分 布设(X , Y )是二维随机变量, 其分布函数为F (x , y ), 事件{X ≤ x }即为{ X ≤ x , Y < +∞}, 从而由(X , Y )的分布函数可定出X 的分布函数, 记为F X (x ).F X (x ) = P {X ≤ x } = P { X ≤ x , Y < +∞} = F (x , +∞)=),(lim y x F y +∞→.我们称F X (x )为关于X 的边缘分布函数. 类似的可定义关于Y 的边缘分布函数为F Y (y ) = P {Y ≤ y } = P {X < +∞, Y ≤ y }= F (+∞, y ) = ),(lim y x F x +∞→.一、离散型设(X , Y )为二维离散型随机变量, 其分布律为P {X = x i , Y = y j } = p ij (i , j = 1, 2, 3, …), 则∑∑≤∞==+∞=x x j ijX i p x F x F 1),()(, ∑∑≤∞==+∞=y y i ijY i p y F y F 1),()(.从而X 与Y 的分布律分别为∑∞===1}{j iji p x X P , i = 1, 2, …; ∑∞===1}{i ijj p y Y P , j = 1, 2, …;记=⋅i p ∑∞===1}{j iji p x X P , i = 1, 2, …;=⋅j p ∑∞===1}{i ijj p y Y P , j = 1, 2, ….分别称p i ⋅和p ⋅ j 为(X , Y )关于X 与Y 的边缘分布律.注: 1︒ 边缘分布律具有一维分布律的一般性质. 2︒ 联合分布律唯一决定边缘分布律, 反之不然.例1 一袋中装有3只黑球和2只白球, 分别采用有放回与不放回摸球两种方式. 若设⎩⎨⎧=;,0,,1第一次摸出黑球第一次摸出白球X⎩⎨⎧=.,0,,1第二次摸出黑球第二次摸出白球Y求(X , Y )的联合分布律及关于X 与Y 的边缘分布律.解: 有放回 不放回边缘分布律经常写在联合分布律的边缘, 这就是为什么称为边缘分布律的缘由.二、连续型设二维连续型随机变量(X , Y )的概率密度为f (x , y ), 由⎰⎰∞-∞+∞-=+∞=xX dxdy y x f x F x F ]),([),()(;⎰⎰∞-∞+∞-=+∞=yY dydx y x f y F y F ]),([),()(.知X 与Y 都是连续型随机变量. 它们的概率密度分别为⎰∞+∞-=dy y x f x f X ),()(;⎰∞+∞-=dxy x f y f Y ),()(.称f X (x )与f Y (y )分别为(X , Y )关于X 与Y 的边缘概率密度.例2 设D 是平面上的有界区域, 其面积为A , 若二维随机变量(X , Y )的概率密度为⎪⎩⎪⎨⎧∈=,,0,),(,1),(其它D y x Ay x f则称(X , Y )在D 上服从均匀分布.现(X , Y )在以原点为中心、1为半径的圆域上服从均匀分布, 求边缘概率密度.解: 由1),(=⎰⎰∞+∞-∞+∞-dxdy y x f , 得A = π.当|x | < 1时, ⎰∞+∞-=dy y x f x f X ),()(21112122xdy xx-==⎰---ππ; 当|x | ≥ 1时, f X (x ) = 0, 即⎪⎩⎪⎨⎧≥<-=.1,0,1,12)(2x x x x f Xπ同理可得,⎪⎩⎪⎨⎧≥<-=.1,0,1,12)(2y y y y f Y π例3 设二维随机变量(X , Y )的概率密度为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎦⎤⎢⎢⎣⎡-+------⋅-=2222212121212221)())((2)()1(21exp 121),(σμσσμμρσμρρσπσy y x x y x f ⎪⎪⎭⎫⎝⎛+∞<<∞-+∞<<∞-y x . 其中μ1、μ2、σ1、σ2、ρ 都是常数, 且σ1 > 0, σ2 > 0, -1 < ρ < 1. 我们称(X , Y )为服从参数为μ1、μ2、σ1、σ2、ρ的二维正态分布, 试求二维正态随机变量的边缘概率密度.解: 令m = ⎥⎦⎤⎢⎣⎡-+----222221212121)())((2)(σμσσμμρσμy y x x2121212122121221212222)()()())((2)(σμσμρσμρσσμμρσμ-+---+----=x x x y x y2121221122)()1(σμρσμρσμ--+⎥⎦⎤⎢⎣⎡---=x x y .所以, ⎰∞+∞-=dyy x f x f X ),()(=⎰∞+∞----dyem )1(22212121ρρσπσ⎰∞+∞-⎥⎦⎤⎢⎣⎡--------=dy eex y x 2112222121)1(212)(221121σμρσμρσμρσπσ.令⎪⎪⎭⎫⎝⎛----=1122211σμρσμρx y t , 则dt dy 221σρ⋅-=, 从而,22222)1(211212211222ρσπσρσμρσμρ-=⋅-=⎰⎰∞+∞--∞+∞-⎥⎦⎤⎢⎣⎡-----dt edy etx y .所以, 21212)(121)(σμσπ--=x X ex f (+∞<<-∞x ). 同理可得, 22222)(221)(σμσπ--=y Y ey f (+∞<<-∞y ).表明, ),(~211σμN X , ),(~222σμN Y .此例说明, 二维正态随机变量(X , Y )中的X 、Y 都服从正态分布, 并且与参数ρ 无关. 所以对于确定的μ1、μ2、σ1、σ2而取不同的ρ, 对应了不同的二维正态分布, 但是其中每个随机变量都分别服从相同的正态分布. 因此, 仅由关于X 和Y 的边缘概率密度(分布), 一般不能确定X 和Y 的联合概率密度(分布).第四节 相互独立的随机变量我们知道, 两事件A 、B 相互独立的充要条件是 P (AB ) = P (A )P (B ) 由此我们引进随机变量相互独立的定义. 定义 设F (x , y )及F X (x )、F Y (y )分别是二维随机变量(X , Y )的分布函数及边缘分布函数, 若对于所有的x 、y , 有 P {X ≤ x , Y ≤ y } = P {X ≤ x } P {Y ≤ y }, 即F (x , y ) = F X (x )F Y (y ) (1) 则称随机变量X 和Y 是相互独立的.可见, 在随机变量X 和Y 相互独立的情况下, 由关于X 和Y 的边缘分布函数就唯一地确定(X , Y )的联合分布函数, 而且还可推得}{},{}/{x X P x X y Y P x X y Y P ==≤==≤}{},{limx x X x P x x X x y Y P x ∆+≤≤∆+≤≤≤=→∆),(),(),(),(lim+∞-+∞∆+-∆+=→∆x F x x F y x F y x x F x)()()()()()()()(lim+∞-+∞∆+-∆+=→∆Y X Y X Y X Y X x F x F F x x F y F x F y F x x F )()()()]()([limx F x x F y F x F x x F X X Y X X x -∆+-∆+=→∆= F Y (y ) = P {Y ≤ y }.这就是说在X 和Y 相互独立的情况下条件分布与边缘分布相同, 即条件分布化成了无条件分布.一、离散型设二维离散型随机变量(X , Y )的联合分布律为 P {X = x i , Y = y j } = p ij (i , j = 1, 2, 3, …), (X , Y )关于X 和关于Y 的边缘分布律分别为=⋅i p ∑∞===1}{j iji p x X P , i = 1, 2, …;=⋅j p ∑∞===1}{i ijj p y Y P , j = 1, 2, ….则X 和Y 相互独立的充要条件是P {X = x i , Y = y j } = P {X = x i } P {Y = y j }, 即p ij =⋅i p j p ⋅ (2)例1 设(X , Y )的联合分布律为证明: X 和Y 相互独立.二、连续型设二维连续型随机变量(X , Y )的联合概率密度为f (x , y ), 关于X 和Y 的边缘概率密度为f X (x )和f Y (y ), 则X 和Y 相互独立的充要条件是等式 f (x , y ) = f X (x ) f Y (y ) (3) 几乎处处成立.例3 设(X , Y )服从二维正态分布, 即其联合概率密度为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎦⎤⎢⎢⎣⎡-+------⋅-=2222212121212221)())((2)()1(21exp 121),(σμσσμμρσμρρσπσy y x x y x f ⎪⎪⎭⎫⎝⎛+∞<<∞-+∞<<∞-y x . 证明: X 和Y 相互独立的充要条件是ρ = 0. 例4 若(X , Y )的联合概率密度为⎩⎨⎧≥≥=+-,,0,0,0,),()(其它y x e y x f y x则X 和Y 相互独立. 证: 显然⎩⎨⎧≥=-,,0,0,)(其它x e x f x X⎩⎨⎧≥=-,,0,0,)(其它y e y f y Y 故有f (x , y ) = f X (x ) f Y (y ). 从而X 和Y 相互独立.例5 设X 与Y 是两个相互独立的随机变量, X 在[0, 0.2]上服从均匀分布, Y 的概率密度为⎩⎨⎧≥=-,,0,0,5)(5其它y e x f y Y试求: (1) X 与Y 的联合概率密度;(2) P {Y ≤ X }.解: (1) 由已知条件, 得⎩⎨⎧≤≤=,,0,2.00,5)(其它x x f X 从而得X 与Y 的联合概率密度为⎩⎨⎧≥≤≤=-.,00,2.00,25),(5其它y x e y x f y(2) P {Y ≤ X }= P {Y - X }⎰⎰≥-=),(y x dxdyy x f ,积分区域如图, 化成二次积分后得⎰⎰≈=⎥⎦⎤⎢⎣⎡=≤-2.0013679.0),(}{e dx dy y x f X Y P x .以上关于二维随机变量的一些概念, 很容易推广到n 维随机变量的情形.设n 维随机变量(X 1, X 2, …, X n )的联合分布函数为F (x 1, x 2, …, x n ), 若存在非负函数f (x 1, x 2, …, x n ), 使得对于任意实数x 1、x 2、…、x n , 有F (x 1, x 2, …, x n ) =⎰⎰⎰∞-∞-∞--n n x x x nn dx dx dx x x x f 112121),,,(,则称f (x 1, x 2, …, x n )为n 维随机变量(X 1, X 2, …, X n )的联合概率密度.称),,,()(111+∞+∞= x F x F X , ),,,,(),(2121,21+∞+∞= x x F x x F X X , …为关于X 1, (X 1, X 2), …的边缘分布函数, ⎰⎰⎰∞+∞-∞+∞-∞+∞-=n n X dx dx dx x x x f x f32211),,,()(1,⎰⎰⎰∞+∞-∞+∞-∞+∞-=nn X Xdx dx dx x x x f x x f432121,),,,(),(21, …为关于X 1, (X 1, X 2), …的边缘概率密度.若对于所有的x 1、x 2、…、x n , 有F (x 1, x 2, …, x n ))()()(2121n X X X x F x F x F n=, 则称X 1, X 2, …, X n 是相互独立的, 对离散型即连续型随机变量, 也有类似的结论. 若对于所有的x 1、x 2、…、x m ; y 1、y 2、…、y n , 有F (x 1, x 2, …, x m ; y 1, y 2, …, y n ) = F 1 (x 1, x 2, …, x m ) F 2 (y 1, y 2, …, y n )其中F 1、F 2和F 依次为(X 1, X 2, …, X m )、(Y 1, Y 2, …, Y n )和(X 1, X 2, …, X m ; Y 1, Y 2, …, Y n )的分布函数, 则称随机变量(X 1, X 2, …, X m )和(Y 1, Y 2, …, Y n )是相互独立的.定理 设随机变量(X 1, X 2, …, X m )和(Y 1, Y 2, …, Y n )相互独立, 则X i (i = 1, 2, …, m )与Y j (j = 1, 2, …, n )相互独立. 又若h 、g 是连续函数, 则h (X 1, X 2, …, X m )和g (Y 1, Y 2, …, Y n )也相互独立.。
第3讲概率初步知识点1 随机事件与概率随机事件的概念在一定条件下,必然会发生的事件叫必然事件。
在一定条件下,一定不可能发生的事件叫不可能事件。
在一定条件下,可能发生也可能不发生的事件叫随机事件概率的概念及意义一般地,在大量重复试验中,如果事件A发生的频率会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率。
①事件A的概率是一个大于等于0,且小于等于1的数,即,其中P(必然事件)=1,P(不可能事件)=0,0<P(随机事件) <1.②概率是事件在大量重复实验中频率逐渐稳定到的值,即可以用大量重复实验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同,两者存在一定的偏差是正常的,也是经常的.【典例】1.下列问题哪些是必然事件?哪些是不可能事件?哪些是随机事件?(1)太阳从西边落山;(2)a2+b2=﹣1(其中a、b都是实数);(3)水往低处流;(4)三个人性别各不相同;(5)一元二次方程x2+2x+3=0无实数解;(6)经过有信号灯的十字路口,遇见红灯.2.在一个不透明的口袋中装有大小、外形一模一样的5个红球、3个篮球和2个白球,它们已经在口袋中被搅匀了,请判断以下是不确定、不可能事件、还是必然事件.(1)从口袋中一次任意取出一个球,是白球;(2)从口袋中一次任取5个球,全是篮球;(3)从口袋中一次任取5个球,只有篮球和白球,没有红球;(4)从口袋中一次任意取出6个球,恰好红、蓝、白三种颜色的球都齐了.3.掷一个骰子,观察向上一面的点数,求下列事件的概率:(1)点数为偶数;(2)点数大于2且小于5.4.已知一个口袋中装有7个只有颜色不同的球,其中3个白球,4个黑球.(1)求从中随机抽取出一个黑球的概率是多少?(2)若往口袋中再放入x个白球和y个黑球,从口袋中随机取出一个白球的概率是,求y与x之间的函数关系式.【方法总结】要知道事件发生的可能性大小首先要确定事件是什么类型.一般地,必然发生的事件发生的可能性最大,不可能发生的事件发生的可能性最小,随机事件发生的可能性有大有小,不同的随机事件发生的可能性的大小可能不同.①事件A的概率是一个大于等于0,且小于等于1的数,即,其中P(必然事件)=1,P(不可能事件)=0,0<P(随机事件) <1.②概率是事件在大量重复实验中频率逐渐稳定到的值,即可以用大量重复实验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同,两者存在一定的偏差是正常的,也是经常的.【随堂练习】1.(2018春•鄄城县期末)如图,超市举行有奖促销活动:凡一次性购物满300元者即可获得一次摇奖机会,摇奖机是一个圆形转盘,被分成16等分,指针分别指向红、黄、蓝色区域,分获一、二、三获奖,奖金依次为60、50、40元.(1)分别计算获一、二、三等奖的概率.(2)老李一次性购物满了300元,摇奖一次,获奖的概率是多少?请你预测一下老李摇奖结果会有哪几种情况?2.(2018春•奉贤区期末)布袋中放有x只白球、y只黄球、2只红球,它们除颜色外其他都相同,如果从布袋中随机摸出一个球,恰好是红球的概率是.(1)试写出y与x的函数关系式;(2)当x=6时,求随机地取出一只黄球的概率P.3.(2018春•相城区期中)一只不透明的袋子中装有a个白球,b个黄球和10个红球,这些球除颜色外都相同,将球摇匀,从中任意摸出一个球,摸到红球的概率是40%;(1)当a=8时,求摸到白球的概率;(2)若摸到黄球的概率是摸到白球的两倍,求a,b的值.知识点2 用列举法求概率用列表法和树状图法,求事件的概率1. 列表法:当试验中存在两个元素且出现的所有可能的结果较多时,为了不重不漏地列举出所有可能的结果,我们采用列表法来求出某事件的概率.2. 树状图法:当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图法来求出某事件的概率.树形图列举法一般是选择一个元素再和其他元素分别组合,依次列出,像树的树丫形式,最末端的树丫个数就是总的可能的结果.【典例】1.一个不透明的口袋中有三个小球,上面分别标有字母A,B,C,除所标字母不同外,其它完全相同,从中随机摸出一个小球,记下字母后放回并搅匀,再随机摸出一个小球,用画树状图(或列表)的方法,求该同学两次摸出的小球所标字母相同的概率.2.如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).3.三个小球上分别标有-2,0,1三个数,这三个球除了标的数不同外,其余均相同、将小球放入一个不透明的布袋中搅匀.(1)从布袋中任意摸出一个小球,将小球上所标之数记下,然后将小球放回袋中,搅匀后再任意摸出一个小球,再记下小球上所标之数,求两次记下之数的和大于0的概率.(请用“画树状图”或“列表”的方法给出分析过程,并求出结果)(2)从布袋中任意摸出一个小球,将小球上所标之数记下,然后将小球放回袋中,搅匀后再任意摸出一个小球,将小球上所标之数再记下,…,这样一共摸了13次,若记下的13个数之和等于-4,平方和等于14,求:这13次摸球中,摸到球上所标之数是0的次数. 【方法总结】求概率应掌握以下方法:2. 求概率的一般步骤:①判断使用列表法或画树状图法:列表法一般适用于两步计算;画树状图法适用于两步及两步以上求概率;②不重不漏的列举出所有事件出现的可能结果,并判断每种事件发生的可能性是否相等;③确定所有可能出现的结果数n及所求事件A出现3. 判断游戏的公平性:判断游戏的公平性是通过概率来判断的,在条件相等的前提下,如果对于参加游戏的每一个人获胜的概率相等,则游戏公平,否则不公平.4. 在重复实验计算概率的题中,第一次取出后放回,然后第二次再取出计算概率,做这类考题时要注意两次取得的结果总数是一致的,如果不放回,那么第二次取出的结果的总数比第一次少一种情况【随堂练习】1.(2018•深圳模拟)为了提高学生书水平.我市举办了首届“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分.根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图:请结合图表完成下列各题:(1)求表中a的值,并把频数分布方图补充完整;(2)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小宇与小强两名男同学能分在同一组的概率.2.(2018•云南)将正面分别写着数字1,2,3的三张卡片(注:这三张卡片的形状、大小、质地、颜色等其他方面完全相同,若背面向上放在桌面上,这三张卡片看上去无任何差别)洗匀后,背面向上放在桌面上,从中先随机抽取一张卡片,记该卡片上的数字为x,再把剩下的两张卡片洗匀后,背面向上放在桌面上,再从这两张卡片中随机抽取一张卡片,记该卡片上的数字为y.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出(x,y)所有可能出现的结果.(2)求取出的两张卡片上的数字之和为偶数的概率P.3.(2018•利辛县模拟)合肥合家福超市为了吸引顾客,设计了一种促销活动:在三等分的转盘上依次标有“合”,“家”,“福”字样,购物每满200元可以转动转盘1次,转盘停下后,指针所指区域是“福”时,便可得到30元购物券(指针落在分界线上不计次数,可重新转动一次),一个顾客刚好消费400元,并参加促销活动,转了2次转盘.(1)求出该顾客可能获得购物券的最高金额和最低金额;(2)请用画树状图法或列表法求出该顾客获购物券金额不低于30元的概率.知识点3用频率估计概率用频率估计概率实际上,从长期实践中,人们观察到,对一般的随机事件,在做大量重复试验时,随着试验次数的增加,一个时间出现的频率,总在一个固定的数附近摆动,显示出一定的稳定性.因此,我们可以通过大量的重复试验,用一个随机事件发生的频率去估计它的概率【典例】1.在一个不透明的口袋里装有颜色不同的黑、白两种颜色的球共4个,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复,下表是活动进行中的一组统计数据:(1)请估计:当n很大时,摸到白球的频率将会接近;(精确到0.1)(2)试估算口袋中白球有多少个?(3)若从中先摸出一球,放回后再摸出一球,请用列表或树状图的方法(只选其中一种),求两次摸到的球颜色相同的概率..2.某商场设立了一个可以自由转动的转盘,并规定:顾客购物10元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是活动进行中的一组统计数据:(1)计算并完成表格:(2)请估计,当n很大时,频率将会接近(精确到0.1)(3)假如你去转动该转盘一次,你获得铅笔的概率约是,理由是:.3.在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:(1)请估计:当n很大时,摸到白球的频率将会接近;(精确到0.1)(2)假如你摸一次,你摸到白球的概率P(白球)=;(3)试估算盒子里黑、白两种颜色的球各有多少只?【方法总结】1.当试验的可能结果不是有限个,或各种结果发生的可能性不相等时,一般用统计频率的方法来估计概率.2.利用频率估计概率的数学依据是大数定律:当试验次数很大时,随机事件A出现的频率,稳定地在某个数值P附近摆动.这个稳定值P,叫做随机事件A的概率,并记为P(A)=P.3.利用频率估计出的概率是近似值.【随堂练习】1.(2017秋•福州期末)盒中有若干枚黑棋和白棋,这些棋除颜色外无其他差别,现让学生进行摸棋试验:每次摸出一枚棋,记录颜色后放回摇匀.重复进行这样的试验得到以下数据:摸到黑棋的频率(精确到0.001)(1)根据表中数据估计从盒中摸出一枚棋是黑棋的概率是____;(精确到0.01)(2)若盒中黑棋与白棋共有4枚,某同学一次摸出两枚棋,请计算这两枚棋颜色不同的概率,并说明理由2.(2018春•东台市期中)“2018东台西溪半程马拉松”的赛事共有两项:A、“半程马拉松”、B、“欢乐跑”.小明参加了该项赛事的志愿者服务工作,组委会随机将志愿者分配到两个项目组.(1)小明被分配到“半程马拉松”项目组的概率为____.(2)为估算本次赛事参加“半程马拉松”的人数,小明对部分参赛选手作如下调查:①请估算本次赛事参加“半程马拉松”人数的概率为____.(精确到0.1)②若本次参赛选手大约有3000人,请你估计参加“半程马拉松”的人数是多少?3.(2017•张家港市模拟)4件同型号的产品中,有l件不合格品和3件合格品.(1)从这4件产品中随机抽取1件进行检测,不放回,再随机抽取1件进行检测.请用列表法或画树状图的方法,求两次抽到的都是合格品的概率;(解答时可用A表示l件不合格品,用B、C、D分别表示3件合格品)(2)在这4件产品中加入x件合格品后,进行如下试验:随机抽取1件进行检侧,然后放回,多次重复这个试验,通过大量重复试验后发现,抽到合格品的频率稳定在0.95,则可以推算出x的值大约是多少?综合运用:概率初步1.有100张卡片(从1号到100号),从中任取1张,计算:(1)取到卡片号是7的倍数的情况有多少种?(2)取到卡片号是7的倍数的概率是多少?2.在不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其余都相同),其中白球有2个,黄球有1个,现从中任意摸出一个是白球的概率为.(1)试求袋中篮球的个数;(2)第一次任意摸出一个球(不放回),请画出树状图或列表的方法,求两次摸到都是白球的概率.3.甲、乙两个不透明的口袋,甲口袋中装有3个分别标有数字1,2,3的小球,乙口袋中装有2个分别标有数字4,5的小球,它们的形状、大小完全相同,现随机从甲口袋中摸出一个小球记下数字,再从乙口袋中摸出一个小球记下数字.(1)请用列表或树状图的方法(只选其中一种),表示出两次所得数字可能出现的所有结果;(2)求出两个数字之积能被2整除的概率.4.有4个完全一样的小球,上面分别标着数字,2,1,﹣3,﹣4.现随机摸出一个小球后不放回,将该小球上的数字记为m,再随机地摸出一个小球,将小球上的数字记为n.(1)请列表或画出树状图并写出(m,n)所有可能的结果;(2)求所选出的m,n能使一次函数y=mx+n 的图像经过第二、三、四象限的概率.5.小明和小刚用如图所示的两个转盘各转一次做“配紫色”游戏,配成紫色(一红一蓝),小明得1分,否则小刚得1分.(1)这个游戏公平吗?为什么?(2)如果不公平,如何修改规则才能使该游戏对双方公平?6.随着通讯技术的迅猛发展,人与人之间的沟通方式更多样、便捷.某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次统计共抽查了名学生;在扇形统计图中,表示“QQ”的扇形圆心角的度数为;(2)将条形统计图补充完整;(3)该校共有1500名学生,请估计该校最喜欢用“微信”进行沟通的学生有多少名?(4)某天甲、乙两名同学都想从“微信”、“QQ”、“电话”三种沟通方式中选一种方式与对方联系,请用列表或画树状图的方法求出甲、乙两名同学恰好选择同一种沟通方式的概率.7.在“植树节”期间,小王、小李两人想通过摸球的方式来决定谁去参加学校植树活动,规则如下:在两个盒子内分别装入标有数字1,2,3,4的四个和标有数字1,2,3的三个完全相同的小球,分别从两个盒子中各摸出一个球,如果所摸出的球上的数字之和小于6,那么小王去,否则就是小李去.(1)用树状图或列表法求出小王去的概率;(2)小李说:“这种规则不公平”,你认同他的说法吗?请说明理由.。