专题逐差法求加速度
- 格式:ppt
- 大小:305.00 KB
- 文档页数:16
逐差法测加速度的公式逐差法是一种在物理实验中用于测量加速度的常用方法,它所依据的公式可是相当重要的哟!在高中物理的学习中,我们常常会遇到需要测量加速度的情况。
而逐差法就是一个非常实用的利器。
逐差法测加速度的公式是:$a =\frac{\Delta x}{T^2}$ ,其中 $\Delta x$ 表示相邻相等时间间隔内的位移之差,$T$ 表示时间间隔。
比如说,咱们做一个小车在斜面上运动的实验。
我们在斜面上每隔相等的时间记录下小车的位置,假设第一次记录的位置是$x_1$,经过一个时间间隔$T$ 后,记录的位置是$x_2$,再经过一个时间间隔$T$ ,位置是$x_3$ ,以此类推。
那这个位移之差$\Delta x$ 怎么算呢?就是用后面的位移减去前面的位移,比如:$\Delta x_1 = x_2 - x_1$ ,$\Delta x_2 = x_3 - x_2$ ,$\Delta x_3 = x_4 - x_3$ 等等。
还记得我曾经给学生们做这个实验的时候,有个学生特别较真儿。
他就一直在那琢磨,为啥要这么算,会不会有误差。
我就告诉他,你看啊,咱们这样做是为了尽可能减小误差。
因为在实验中,测量总是会有一些小偏差的,如果只用两组数据来算加速度,那偶然误差就可能会比较大。
但是用逐差法,多取几组数据,就能把这个误差给平均掉,算出来的加速度就更接近真实值啦。
而且逐差法还有个好处,就是能充分利用我们测量得到的数据。
比如说,我们测了六组数据,如果不用逐差法,可能就只用了两组,那剩下的四组不就浪费了嘛。
但是用逐差法,这六组数据都能派上用场,算出的结果自然就更可靠。
再比如说,如果时间间隔$T$ 是 0.1 秒,我们测得了 $x_1 = 0.2$ 米,$x_2 = 0.5$ 米,$x_3 = 0.9$ 米,$x_4 = 1.4$ 米,$x_5 = 2.0$ 米,$x_6 = 2.7$ 米。
那 $\Delta x_1 = x_2 - x_1 = 0.5 - 0.2 = 0.3$ 米,$\Delta x_2 = x_3 -x_2 = 0.9 - 0.5 = 0.4$ 米,$\Delta x_3 = x_4 - x_3 = 1.4 - 0.9 = 0.5$ 米,$\Delta x_4 = x_5 - x_4 = 2.0 - 1.4 = 0.6$ 米,$\Delta x_5 = x_6 - x_5 =2.7 - 2.0 = 0.7$ 米。
物理逐差法求加速度公式物理中,逐差法被广泛用于确定对象的加速度。
它涉及到测量物体的起始速度,结束速度和经过的时间,通过逐差法计算出加速度的值。
在实际应用中,我们可以使用逐差法来测量各种物体的加速度。
例如,当你乘坐过山车时,你可以使用逐差法来确定过山车的加速度,让你感受到坐在过山车上时那种强烈的向前推动的感觉。
首先,让我们学习逐差法的原理。
假设你正在测量一个物体的加速度,该物体以某个速度移动了一段时间。
你可以通过测量物体的起始速度和结束速度,以及跨越这段时间的时间来计算加速度。
这是通过以下公式完成的:a = (v2 - v1) / t其中,a是加速度,v2是物体的结束速度,v1是物体的起始速度,t是经过的时间。
接下来,我们来看一个使用逐差法求加速度的实际例子。
假设你正在测量一个物体在5秒内以10米/秒的速度向前移动的加速度。
你首先需要测量该物体的初始速度,这可以使用一个速度计来完成。
在该例子中,我们将假设该物体的初始速度为5米/秒。
接下来,你需要测量该物体在5秒后的速度。
这可以在5秒后再次使用速度计来完成。
假设你的速度计读数为25米/秒。
现在你已经测量了物体的起始速度和结束速度,以及经过的时间。
根据逐差法公式,你可以计算物体的加速度:a = (v2 - v1) / ta = (25 - 5) / 5a = 4因此,该物体的加速度为4米/秒²。
通过逐差法,你已经成功地测量了该物体的加速度。
最后,让我们总结一下逐差法的步骤。
首先,你需要测量物体的起始速度,结束速度和经过的时间。
然后,你可以使用逐差法公式来计算物体的加速度。
逐差法为我们提供了一种准确测量加速度的方法,它对于各种物理学实验都非常重要。
匀变速直线运动的位移差公式 逐差法求加速度考点一 位移差公式的应用1.(多选)如图1所示,物体做匀加速直线运动,A 、B 、C 、D 为其运动轨迹上的四点,测得AB =2 m ,BC =3 m ,且物体通过AB 、BC 、CD 所用的时间均为0.2 s ,则下列说法正确的是( )图1A .物体的加速度为20 m/s 2B .物体的加速度为25 m/s 2C .CD =4 m D .CD =5 m 答案 BC解析 由匀变速直线运动的规律,连续相等时间内的位移差为常数,即Δx =aT 2,可得:a =BC -ABT 2=25 m/s 2,故A 错误,B 正确;根据CD -BC =BC -AB ,可知CD =4 m ,故C 正确,D 错误.2.一物体从静止开始做匀加速直线运动,已知第3 s 内与第2 s 内的位移之差是6 m ,则可知( )A .物体运动的加速度大小为3 m/s 2B .第2 s 末的速度大小为12 m/sC .第1 s 内的位移大小为1 mD .物体在前4 s 内的平均速度大小为15 m/s 答案 B解析 根据Δx =aT 2可得物体运动的加速度a =Δx T 2=612 m/s 2=6 m/s 2,A 错误;第2 s 末的速度v 2=at 2=6×2 m/s =12 m/s ,B 正确; 第1 s 内的位移x 1=12at 12=12×6×12 m =3 m ,C 错误;物体在前4 s 内的位移x 4=12at 42=12×6×42 m =48 m ,则物体在前4 s 内的平均速度v =x 4t 4=484m/s =12 m/s ,D 错误.3.(多选)(2021·山西大学附中月考)如图2,一质点从A 点开始做匀加速直线运动,随后依次经过B 、C 、D 三点.已知AB 段、CD 段距离分别为5 m 、13 m ,质点经过AB 段、BC 段、CD 段时间相等,均为1 s ,则( )图2A .质点的加速度大小为4 m/s 2B .质点的加速度大小为2 m/s 2C .质点在C 点的速度大小为11 m/sD .质点在B 点的速度大小为6 m/s 答案 AC解析 AB 、BC 、CD 段时间相等,均为T =1 s 由x 3-x 1=2aT 2得a =x 3-x 12T 2=13-52×12 m/s 2=4 m/s 2由x 2-x 1=x 3-x 2得BC 段长度x 2=9 m B 点对应AC 段的中间时刻,v B =v AC =x 1+x 22T =5+92×1m/s =7 m/s C 点对应BD 段的中间时刻,v C =vBD =x 2+x 32T =9+132×1m/s =11 m/s ,故A 、C 正确. 4.如图3所示,一物块从一光滑且足够长的固定斜面顶端O 点无初速度释放后做匀加速直线运动,先后通过P 、Q 、N 三点,已知物块从P 点运动到Q 点与从Q 点运动到N 点所用的时间相等,且PQ 长度为2 m ,QN 长度为4 m ,则由上述数据可以求出OP 的长度为( )图3A.14 m B .1 m C.94 m D .1.2 m答案 A解析 设物块从P 点运动到Q 点与从Q 点运动到N 点所用的时间均为t ,加速度均为a ,由Δx =at 2得,加速度:a =Δx t 2=4-2t 2=2t2,Q 点的速度为PN 段的平均速度:v Q =vPN =4+22t=3t ,则OQ 间的长度:x OQ =v Q 22a =9t 2×t 24=94 m ,则OP 长度:x OP =x OQ -x PQ =(94-2) m =14 m ,故B 、C 、D 错误,A 正确.5.为了测定某轿车在平直路上启动阶段的加速度(轿车启动时的运动可近似看成是匀加速直线运动),某人拍摄了一张在同一底片上多次曝光的照片,如图4所示,如果拍摄时每隔2 s 曝光一次,轿车车身总长为4.5 m ,那么这辆轿车的加速度为( )图4A .1 m/s 2B .2.25 m/s 2C .3 m/s 2D .4.25 m/s 2答案 B解析 轿车车身总长为4.5 m ,则题图中每一小格为1.5 m ,由此可算出两段距离分别为x 1=12 m 和x 2=21 m ,又T =2 s ,则a =x 2-x 1T 2=21-1222 m/s 2=2.25 m/s 2,故选B.考点二 逐差法求加速度6.(1)电火花计时器使用________电源(选填“直流”或“交流”),工作电压为________ V. (2)在某次用打点计时器(工作频率为50 Hz)测定已知做匀变速直线运动物体的加速度实验中,所获得的纸带如图5所示.选好0点后,每5个间隔点取一个计数点(中间的4个点图中未画出),依次取得1、2、3、4点,测得的数据如图所示.图5则纸带的加速度大小为________ m/s 2,“1”这一点的速度大小为________ m/s.(结果均保留三位有效数字)答案 (1)交流 220 (2)0.800 0.461解析 (1)电火花计时器使用交流电源,工作电压为220 V ;(2)每5个间隔点取一个计数点,所以相邻的计数点间的时间间隔T =0.1 s ,由逐差法得: a =(x 4+x 3)-(x 2+x 1)4T 2=6.61+5.80-5.01-4.204×(0.1)2×10-2 m/s 2=0.800 m/s 2,根据匀变速直线运动时间中点的速度等于该过程中的平均速度,可以求出打纸带上1点时的速度大小:v 1=x 022T =(4.20+5.01)×10-20.2m/s ≈0.461 m/s.7.在“探究小车速度随时间变化的规律”的实验时,要用到打点计时器,打点计时器是一种计时仪器,其电源频率为50 Hz ,打点周期为0.02 s.(1)接通打点计时器电源和让纸带开始运动,这两个操作之间的时间顺序关系是________. A .先接通电源,后让纸带运动 B .先让纸带运动,再接通电源 C .让纸带运动的同时接通电源D .先让纸带运动或先接通电源都可以(2)某同学在实验中,用打点计时器记录了被小车拖动的纸带的运动情况,在纸带上确定了A 、B 、C 、D 、E 、F 、G 共7个计数点,其相邻点间的距离如图6所示,每两个相邻计数点之间还有四个点未画出,试根据纸带上各个计数点间的距离,(计算结果均保留两位有效数字)图6①计算出打下D 点时小车的瞬时速度为________ m/s. ②计算出小车的加速度为________ m/s 2. 答案 (1)A (2)①0.56 ②0.808.在“研究小车做匀变速直线运动”的实验中,电源频率为50 Hz ,如图7为一次记录小车运动情况的纸带,图中A 、B 、C 、D 、E 、F 、G 为相邻的计数点,在相邻计数点之间还有4个点未画出.图7(1)根据纸带可知,相邻计数点之间的时间间隔为____ s ,打C 点时小车的瞬时速度为v C =______ m/s ,小车运动的加速度a =________ m/s 2.(后两空结果保留两位有效数字)(2)若交流电的频率变为51 Hz 而未被发觉,则测得的小车的速度值与真实值比较将偏________(选填“大”或“小”).(已知打点周期T 与交流电的频率关系为T =1f )答案 (1)0.1 0.20 0.50 (2)小解析 (1)电源频率为50 Hz ,则相邻两个点之间的时间间隔为0.02 s ,由于相邻计数点之间还有4个点未画出,所以相邻计数点之间的时间间隔为T =0.1 s ;利用中间时刻的速度等于这段时间内的平均速度即可求得v C =x BD 2T =(5.38-1.30)×10-22×0.1 m/s ≈0.20 m/s ;根据Δx =aT 2可得加速度为:a =(x FG +x EF +x DE )-(x AB +x BC +x CD )9T 2,代入数据可得:a =0.50 m/s 2.(2)当交流电的频率变为51 Hz 时,打点的时间间隔减小,所以相邻计数点之间的时间间隔T 减小,而此时还是以50 Hz 对应的打点周期去计算,根据v =xt 可知测得的小车的速度值与真实值比较将偏小.。
例谈实验求加速度的几种方法物理是一门实验科学,要学好高中物理,必须具备一定的实验能力。
高考对物理实验能力的考核很重视,尤其是实验数据的记录,处理和得出结论的能力。
学会研究匀变速直线运动是高中物理的一个重要实验,其中求解加速度的实验数据处理方法有逐差法,图像法,直方图法等,下面通过一些实例谈谈如何利用这些方法求运动的加速度:一、利用“逐差法”求加速度.1.依据Δx =aT 2测定匀变速运动加速度。
由a 1=x 2-x 1t 2,a 2=x 3-x 2t 2,…a 5=x 6-x 5t2可得小车加速度的平均值a =a 1+a 2+a 3+a 4+a 55=x 2-x 1t 2+x 3-x 2t 2+x 4-x 3t 2+x 5-x 4t 2+x 6-x 5t 25=x 6-x 15t2显然,这种求a 的方法只用了x 1、x 6两个数据,而x 2、x 3、x 4、x 5在计算过程中被抵消了,所以丢失了多个数据,并失去了正负偶然误差相互抵消的作用,算出的a 值误差较大.这种方法不可取. 若把x 1、x 2、…x 6分成x 1、x 2、x 3和x 4、x 5、x 6两组,则有x 4-x 1=(x 4-x 3)+(x 3-x 2)+(x 2-x 1)=3at 2,写成x 4-x 1=3a 1t 2,同理x 5-x 2=3a 2t 2,x 6-x 3=3a 3t 2,故a 1=x 4-x 13t 2,a 2=x 5-x 23t 2,a 3=x 6-x 33t2.从而a =a 1+a 2+a 33=x 4-x 13t 2+x 5-x 23t 2+x 6-x 33t 23=x 4+x 5+x 6-x 1+x 2+x 39t2, 这种计算加速度平均值的方法叫做逐差法.(1)若为偶数段,设为6段,则a 1=x 4-x 13T 2,a 2=x 5-x 23T 2,a 3=x 6-x 33T 2,然后取平均值,即a =a 1+a 2+a 33;由a =x 4+x 5+x 6-x 1+x 2+x 39T2直接求得.这相当于把纸带分成二份,此法又叫整体二分法; (2)若为奇数段,则中间段往往不用,如5段,则不用第3段;a 1=x 4-x 13T 2,a 2=x 5-x 23T2,然后取平均值,即a =a 1+a 22;或由a =x 4+x 5-x 1+x 26T2直接求得.这样所给的数据全部得到利用,提高了准确程度.2、依据相邻两点速度计算加速度.因为a 1=v2-v1T ,a2=v3-v2T ,a3=v4-v3T …an =vn +1-vnT,然后取平均值,即a =a1+a2+a3+…+an n =vn +1-v1nT,从结果看,真正参与运算的只有v1和vn +1,中间各点的瞬时速度在运算中都未起作用,可见此方法不好.同理我们可以类似于上面的做法用逐差法(1)若为偶数段,设为6段,则a 1=v 4-v 13T ,a 2=v 5-v 23T ,a 3=v 6-v 33T ,然后取平均值,即a =a 1+a 2+a 33;或由a =v 4+v 5+v 6-v 1+v 2+v 39T直接求得;(2)若为奇数段,则中间段往往不用,如5段,则不用第3段;则a 1=v 4-v 13T ,a 2=v 5-v 23T,然后取平均值,即a =a 1+a 22;或由a =v 4+v 5-v 1+v 26T 直接求得;这样所给的数据利用率高,提高了准确程度. 例题1、(2016·天津理综·9(2))某同学利用图2装置研究小车的匀变速直线运动.图2(1)实验中,必须的措施是________. A.细线必须与长木板平行 B.先接通电源再释放小车 C.小车的质量远大于钩码的质量 D.平衡小车与长木板间的摩擦力(2)他实验时将打点计时器接到频率为50 Hz 的交流电源上,得到一条纸带,打出的部分计数点如图3所示(每相邻两个计数点间还有4个点,图中未画出).s 1=3.59 cm ,s 2=4.41 cm ,s 3=5.19 cm ,s 4=5.97 cm ,s 5=6.78 cm ,s 6=7.64 cm.则小车的加速度a =___m /s 2(要求充分利用测量的数据),打点计时器在打B 点时小车的速度v B =___m /s.(结果均保留两位有效数字)图3答案 (1)AB (2)0.80 0.40解析 (1)实验时,细线必须与长木板平行,以减小实验的误差,选项A 正确;实验时要先接通电源再释放小车,选项B 正确;此实验中没必要使小车的质量远大于钩码的质量,选项C 错误;此实验中不需要平衡小车与长木板间的摩擦力,选项D 错误.(2)相邻的两计数点间的时间间隔T =0.1 s ,由逐差法可得小车的加速度a =s 6+s 5+s 4-s 3-s 2-s 19T 2=(7.64+6.78+5.97-5.19-4.41-3.59)×10-29×0.12 m/s 2=0.80 m/s 2打点计时器在打B 点时小车的速度v B =s 1+s 22T =(3.59+4.41)×10-22×0.1m /s =0.40 m/s二、图像法1、用v -t 图象法求匀变速直线运动的加速度,解题思路为:图象法.图象法 (1)求出各点的瞬时速度:用各段的平均速度表示各段中间时刻的瞬时速度 (2)作v -t 图象:在v -t 坐标上将各组数据描点,作出v -t 图象①建立坐标系,纵坐标轴为速度v ,横坐标轴为时间t. ②对坐标轴进行适当分度,使测量结果差不多布满坐标系. ③描出测量点,应尽可能清晰.④用一条光滑的曲线(直线)连接坐标系中的点,明显偏离曲线(直线)的点视为无效点,连线时应使尽可能多的点在这条直线上,连线两侧的点尽可能对称的分布 . ⑤从最终结果看出v -t 图象是一条倾斜的直线. (3)求出图线的斜率即为加速度求图线的斜率时,要在图线上选取间隔距离适当较远的两个点.这样有利于减小误差.例题2、在研究加速度不变的直线运动的实验中,算出小车经过各计数点的速度,如下表所示:计数点序号 1 2 3 4 5 6 计数点对应时刻/s 0.1 0.2 0.3 0.4 0.5 0.6通过计数点的速度/(cm ·s -1) 44.0 62.0 81.0 100.0 110.0 168.0 为了算出加速度,合理的方法是( )A .根据任意两计数点的加速度公式a =ΔvΔt算出加速度B .根据实验数据,画出v -t 图象,量出其倾角α,由公式a =tan α算出加速度C .根据实验数据,画出v -t 图象,由图线上任意两点所对应的速度,用公式a =ΔvΔt算出加速度D .依次算出通过连续两计数点间的加速度,其平均值作为小车的加速度解析:选项A 偶然误差较大.选项D 实际上也仅由始、末两个速度决定,偶然误差也比较大,只有利用实验数据画出对应的v -t 图象,才可充分利用各次测量数据,减小偶然误差.由于在物理图象中两坐标轴的分度大小往往是不相等的,根据同一组数据,可以画出倾角不同的许多图线,选项B 是错误的.正确的方法是根据图线找出不同时刻所对应的速度值,然后利用公式a =ΔvΔt算出加速度,即选项C 正确.答案:C例题3、如图所示,某同学在做“研究小车速度随时间的变化规律”的实验中,由打点计时器得到表示小车运动过程的一条清晰纸带,纸带上两相邻计数点的时间间隔为T =0.10 s ,其中x 1=7.05 cm 、x 2=7.68 cm 、x 3=8.33 cm 、x 4=8.95 cm 、x 5=9.61 cm 、x 6=10.26 cm .(1)求计数点3处的瞬时速度的大小.(2)作出小车运动的速度—时间图象,由图象求小车运动的加速度.解析:(1)计数点3的瞬时速度v 3=x 3+x 42T =8.33+8.95×10-22×0.10 m /s ≈0.86 m /s ,(2)同理可求v 1=x 1+x 22T =7.05+7.68×10-22×0.10m /s ≈0.74 m /s ,v 2=x 2+x 32T =7.68+8.33×10-22×0.10m /s ≈0.80 m /s ,v 4=x 4+x 52T =8.95+9.61×10-22×0.10m /s ≈0.93 m /s ,v 5=x 5+x 62T =9.61+10.26×10-22×0.10m /s ≈0.99 m /s .以纵轴表示速度,以横轴表示时间,描点连线如图所示.由图象可以看出,小车的速度随时间均匀增加,其运动的加速度可由图线求出,即 a =v t -v 1Δt =0.63 m /s 2(0.62~0.64 m /s 2均可).2、化曲为直,画出X-t 2图像、tx -t 图像, V 2-x 图像,利用斜率求解加速度 X-t 关系,v-x 关系是二次函数关系,图像形状是抛物线,在实验数据处理时,可以分别让横坐标表示t 2,纵坐标表示t x 和V 2,画出X-t 2图像、t x -t 图像、V 2-x 图像,将图像形状转化为直线,图像则斜率分别为21a, 21a,2a例题4、图6是“研究匀变速直线运动”实验中获得的一条纸带,O 、A 、B 、C 、D 和E 为纸带上六个计数点,加速度大小用a 表示.图6 图7(1)OD 间的距离为________ cm.(2)图7是根据实验数据绘出的x -t 2图线(x 为各计数点至同一起点的距离),斜率表示__________,其大小为________ m/s 2(保留三位有效数字).解析 (1)1 cm +1 mm ×2.0=1.20 cm.(2)加速度的一半,12a =(2.8-0)×10-20.06-0m/s 2=0.467 m/s 2,所以加速度大小a ≈0.933 m/s 2.答案 (1)1.20 (2)加速度的一半 0.933例题5、(2011全国卷理综)5.利用图1所示的装置可测量滑块在斜面上运动的加速度。
逐差法求加速度的推导逐差法求加速度的推导1. 引言逐差法是一种经典的物理实验方法,用于求解物体的加速度。
在本文中,我们将通过对逐差法的推导和解释,来深入理解这一方法的原理和应用。
2. 原理解释逐差法的基本原理是通过对物体在两个不同时间点的速度进行测量,并计算其速度变化的差值来推导加速度。
具体而言,我们可以使用以下公式来表达逐差法的原理:a = (v_f - v_i) / t其中,a表示物体的加速度,v_f表示物体在时间t后的最终速度,v_i 表示物体在时间0时的初始速度。
3. 实验步骤为了使用逐差法求解加速度,我们需要进行以下步骤:- 确保测量所需的物体具备较为稳定的速度变化。
可以通过将物体放置在平稳的斜面上,利用重力使其产生加速度。
- 接下来,我们选择两个时间点,并分别测量物体在这两个时间点的速度。
速度的测量可以通过使用速度计或其他合适的测量设备来完成。
- 记录下物体在两个时间点的速度值,并计算其速度变化的差值。
- 根据逐差法的原理公式,计算物体的加速度值。
4. 示例计算为了更好地理解逐差法的运用,我们假设物体在时间t=0和t=5s时的速度分别为v_0 = 1m/s和v_5 = 6m/s。
我们可以进行如下计算:a = (v_5 - v_0) / t= (6m/s - 1m/s) / 5s= 1m/s²根据逐差法的计算结果,该物体的加速度为1m/s²。
5. 个人观点和理解逐差法是物理学中一种经典且实用的方法,用于求解物体的加速度。
通过测量两个时间点的速度,并计算速度变化的差值,我们可以得到物体的加速度。
这种方法的优点在于简单明了,不需要复杂的实验设备,适用于多种情况。
然而,需要注意的是,在实际应用中,我们需要尽量减小测量误差,以提高计算结果的准确性。
6. 总结逐差法是一种用于求解物体加速度的实用方法。
通过测量物体在两个不同时间点的速度,并计算速度变化的差值,我们可以准确地推导出加速度的值。
求加速度逐差法公式加速度是物理学中一个非常重要的概念,而求加速度的方法有很多,其中逐差法就是一种较为常用且有效的方法。
逐差法的公式是:$a = \frac{(x_{4} + x_{5} + x_{6}) - (x_{1} + x_{2} + x_{3})}{9T^2}$ 。
这里的 $x$ 代表的是在相等时间间隔内物体的位移,$T$ 是每个时间间隔的时长。
那为啥要用逐差法来求加速度呢?咱就拿一次物理实验来说吧。
记得有一次在学校实验室里,老师让我们分组做一个测量小车加速度的实验。
我们小组那叫一个紧张又兴奋,都想着能得出准确的结果。
我们小心翼翼地组装好实验器材,让小车在斜面上跑起来。
每经过一个固定的点,就赶紧记录下车的位置。
这过程可不轻松,眼睛得紧紧盯着,手还得又快又准地记录。
实验做完,拿着一堆数据,我们有点傻眼了。
这可咋算加速度呢?这时候,老师就给我们讲了逐差法。
咱就说,如果不用逐差法,只用相邻两段位移来算加速度,那误差可就大了去了。
因为实验中难免有各种小的干扰和误差。
而逐差法呢,它巧妙地把多组数据都用上了。
就像把一颗颗散落的珍珠串成了一条漂亮的项链,让数据变得更有价值,更能准确地反映出加速度的真实情况。
比如说,如果我们有六组位移数据,$x_1$ 到 $x_6$ ,那按照逐差法的公式,就把前面三组和后面三组分别相加,然后做差,再除以$9T^2$ 。
这样一来,就把实验中的偶然误差尽量减小了,得到的加速度也就更可靠。
在实际的物理学习和研究中,逐差法的应用可广泛啦。
像研究自由落体运动、平抛运动等等,都可能会用到它。
所以啊,掌握好逐差法这个工具,对于我们理解物体的运动规律,解决各种物理问题,那可真是太有帮助啦!它就像是一把神奇的钥匙,能帮我们打开物理世界的神秘大门,让我们更清楚地看到物体运动的本质。
总之,逐差法在求加速度时是个很实用的方法,大家可得好好掌握,多做练习,这样在面对各种物理问题时就能游刃有余啦!。
逐差法求加速度一、用逐差法求加速度的原因:如果物体做匀变速直线运动,S1,S2……Sn为其在连续相等时间T内的位移,a为其加速度,T 为相等时间间隔值,则有假如用相邻的距离之差ΔS1,ΔS2……ΔSn-1分别除以T的平方,再取其平均值,有从上式中可以看成,在取算术平均值的过程中,中间各数值S2,S3,S4……Sn-1都被消去,只剩下首尾两个数值S1、Sn起作用,因而不能起到利用多个数据减少偶然误差的作用。
二、逐差法(1)偶数段逐差法是把连续的数据(必须是偶数个)S1,S2,S3……Sn从中间对半分成两组,每组有m=n /2个数据,前一半为S1,S2,S3……Sm,后一半为Sm+1,Sm+2……Sn,将后一半的第一个数据减去前一半的第一个数据得,后一半的第二个数据减去前一半的第二个数据,则由这些差值求得的加速度分为:。
取这样得到的加速度的平均值从上式可以看出,所有的数据S1,S2……Sn都用到了,因而减少了偶然误差。
例:以下纸带记录了某匀变速运动物体的位移,每段位移时间间隔均为T 。
如果计算该物体的加速度,可以将这四段位移分成两大段:S OB 和S BD ,每段的时间均为2T ,所以加速度为212342)2()()()2(T S S S S T S S a OB BD +-+=-=(2)奇数段如果连续的数据是奇数个S1,S2,S3……Sn ,则舍去最中间的数据,其余分成两组,每组有m =(n-1)/2个数据,前一半为S1,S2,S3……Sm ,后一半为Sm+2,Sm+3……Sn ,将后一半的第一个数据减去前一半的第一个数据得2121)1(aT m S S S m +=-=∆+,后一半的第二个数据减去前一半的第二个数2232)1(aT m S S S m +=-=∆+,第n 个数据减去前一半最后一个数据2)1(aT m S S S m n m +=-=∆,则由这些差值求得的加速度分为:2222211)1(,)1(,)1(T m s a T m s a T m s a m m +∆=+∆=+∆=。