最新整理高一数学集合习题及答案详解.doc
- 格式:doc
- 大小:42.50 KB
- 文档页数:2
高一数学集合练习题及答案(新版)一、单选题1.已知集合{}220A x x x =--<,(){}3log 22B x y x ==-,则A B =( )A .{}12x x -<<B .{}12x x <<C .{}12x x ≤<D .{}02x x ≤<2.已知集合{}{(3)0},0,1,2,3A x x x B =-<=,则A B =( ) A .{1,2}B .{0,1,2}C .{1,2,3}D .{0,1,2,3}3.已知集合{}21,A y y x x ==-∈Z ,{}25410B x x x =--≤,则A B =( )A .{}1B .{}0,1C .{}0,1,2D .{}1,3,54.设{}13A x x =-<≤,{}B x x a =>,若A B ⊆,则a 的取值范围是( ) A .{}3a a ≥ B .{}1a a ≤-C .{}3a a >D .{}1a a <-5.设全集U =R ,已知集合2|4A x x x >={},|B x y =={,则()UA B ⋂=( )A .[0,4]B .(,4]-∞C .(,0)-∞D .[0,)+∞6.下列命题说法错误的是( )A .()2()lg 23f x x x =-++在(1,1)-上单调递增B .“1x =”是“2430x x -+=”的充分不必要条件C .若集合{}2440A x kx x =++=恰有两个子集,则1k =D .对于命题:p 存在0R x ∈,使得20010x x ++<,则¬p :任意R x ∈,均有210x x ++≥ 7.已知A B ⊆R ,则( ) A .A B =R B .()A B ⋃=R R C .()()A B ⋂=∅R RD .()AB =RR8.已知集合{}220M x x x =∈-≤Z ,{}N x x a =≥,若M N ⋂有且只有2个元素,则a的取值范围是( ) A .(]0,1B .[]0,1C .(]0,2D .(,1]-∞9.设集合(){}ln 2A x y x ==-,{}13B x x =≤≤,则A B ⋃=( ) A .(]2,3 B .[)1,+∞ C .()2,+∞D .(],3-∞10.已知集合()(){}{}1460,7524||A x x x B x x =+--≤=-≤-≤,则A B ⋃=( )A .1|12x x ⎧⎫⎨⎬⎩⎭≤≤B .{}|26x x -≤≤C .1|52x x ⎧≤≤⎫⎨⎬⎩⎭D .{}|14x x ≤≤11.已知集合{}ln 0A x x =>,{}221x B x -=<,则A B =( )A .{}2x x <B .{}1x x <C .{}02x x <<D .{}12x x <<12.设全集U =R .集合{A x y ==∣,则UA( )A .()(),12,-∞-+∞ B .[]1,2- C .(][),12,-∞-⋃+∞D .()1,2-13.设集合{}*21230,1A x N x x B x Rx ⎧⎫=∈--≤=∈≥⎨⎬⎩⎭∣∣,则A B =( ) A .0,1B .{}1C .(]0,1D .{}0,114.已知集合{}21A x x =-<<,{}lg B x y x ==,则()R A B =( ) A .(),1-∞B .[)1,+∞C .(]2,0-D .()0,115.已知集合{4,3,2,1,0,1,2,3,4}A =----,2{|9}B x x =<,则A B =( ) A .{0,1,2,3,4} B .{3,2,1,0,1,2,3}--- C .{2,1,0,1,2}--D .()3,3-二、填空题16.设集合A 为空间中两条异面直线所成角的取值范围,集合B 为空间中直线与平面所成角的取值范围,集合C 为二面角的平面角的取值范围,则集合A 、B 、C 的真包含关系是___________.17.全集U =R ,集合{}3A x x =≤-,则 UA =______.18.设集合{1,2,3,4,6}M =,12,,,k S S S 都是M 的含有两个元素的子集,则k =______;若满足:对任意的{,}i i i S a b =,{,}j j j S a b ={}(,,1,2,3,,)i j i j k ≠∈都有,i i j j a b a b <<,且ji i ja ab b ≠,则k 的最大值是__________. 19.若集合{}{}220,10M x x x N x ax =+-==+=,且N M ⊆,则实数a 的取值集合为____.20.已知集合{}2,1,2A =-,}1,B a =,且B A ⊆,则实数a 的值是___________.21.集合*83A x NN x ⎧⎫=∈∈⎨⎬-⎩⎭,用列举法可以表示为A =_________. 22.已知T 是方程()22040x px q p q ++=->的解集,1379147{{1}}0A B ==,,,,,,,且T A T B T ⋂=∅⋂=,,则p q +=_____.23.已知集合{}{}214,0,1,2,4A x x B =≤<=,则A B ⋂=___________.24.当x A ∈时,若有1x A -∉且1x A +∉,则称x 是集合A 的一个“孤元”,由A 的所有孤元组成的集合称为A 的“孤星集”,若集合{}1,2,3M =的孤星集是M ',集合{}1,3,4P =的孤星集是P ',则M P ''⋂=______.25.若集合A ={x ∈R|ax 2+ax +1=0}中只有一个元素,则a =________.三、解答题26.已知集合*N M ⊆,且M 中的元素个数n 大于等于5.若集合M 中存在四个不同的元素a ,b ,c ,d ,使得a b c d +=+,则称集合M 是“关联的”,并称集合{,,,}a b c d 是集合M 的“关联子集”;若集合M 不存在“关联子集”,则称集合M 是“独立的”. (1)分别判断集合{2,4,6,8,10}与{1,2,3,5,8}是“关联的”还是“独立的”? (2)写出(1)中“关联的”集合的所有的“关联子集”;(3)已知集合{}12345,,,,M a a a a a =是“关联的”,且任取集合{},i j a a M ⊆,总存在M 的“关联子集”A ,使得{},i j a a A ⊆.若12345a a a a a <<<<,求证:1a ,2a ,3a ,4a ,5a 是等差数列.27.设集合{|16}A x x =-≤≤,{|121}B x m x m =-≤≤+,且B A ⊆. (1)求实数m 的取值范围;(2)当x ∈N 时,求集合A 的子集的个数.28.已知集合{}2320,,A x ax x x R a R =-+=∈∈.(1)若A 是空集,求a 的取值范围;(2)若A 中只有一个元素,求a 的值,并求集合A ; (3)若A 中至少有一个元素,求a 的取值范围.29.用描述法表示下列集合: (1)所有被3整除的整数组成的集合; (2)不等式235x ->的解集;(3)方程210x x ++=的所有实数解组成的集合; (4)抛物线236y x x =-+-上所有点组成的集合; (5)集合{}1,3,5,7,9.30.(1)集合{a, b, c, d }的所有子集的个数是多少? (2)集合{a 1, a 2, …, an }的所有子集的个数是多少?【参考答案】一、单选题 1.B 【解析】 【分析】求解不等式可得集合A ,根据对数函数的定义可得集合B ,进而求解. 【详解】因为220x x --<,所以12x -<<,则{}12A x x =-<<, 因为220x ->,所以1x >,则{}1B x x =>, 所以{}12B x A =<<, 故选:B 2.A 【解析】 【分析】解不等式得A ,由交集的概念运算 【详解】由(3)0x x -<得03x <<,即(0,3)A =,故{1,2}A B =. 故选:A 3.A 【解析】 【分析】首先解一元二次不等式求出集合B ,再根据交集的定义计算可得; 【详解】解:由25410x x --≤,即()()5110x x +-≤,解得115x -≤≤,所以{}215410|15B x x x x x ⎧⎫=--≤=-≤≤⎨⎬⎩⎭,又{}{}21,,3,1,1,3,5,A y y x x Z ==-∈=--,所以{}1A B ⋂=; 故选:A 4.B 【解析】 【分析】根据集合的包含关系,列不等关系,解不等式即可. 【详解】由题:(,)B a =+∞,A B ⊆,则1a ≤-. 故选:B 5.D 【解析】 【分析】化简集合,A B ,先求出A B ,再求出其补集即可得解. 【详解】2|4A x x x >={}{|0x x =<或4}x >,|B x y ={{|4}x x =≤,所以{|0}A B x x =<, 所以()UA B ⋂={|0}x x ≥,即()UA B ⋂[0,)=+∞.故选:D6.C 【解析】 【分析】A.利用复合函数的单调性判断;B.利用充分条件和必要条件的定义判断;C.由方程2440kx x ++=有一根判断;D.由命题p 的否定为全称量词命题判断.【详解】A.令223t x x =-++,由2230x x -++>,解得13x ,由二次函数的性质知:t 在(1,1)-上递增,在(1,3)上递减,又lg y t =在()0,∞+上递增,由复合函数的单调性知:()2lg(23)f x x x =-++在(1,1)-上递增,故正确;B. 当1x =时,2430x x -+=成立,故充分,当2430x x -+=成立时,解得1x =或3x =,故不必要,故正确;C.若集合{}2440A x kx x =++=中只有两个子集,则集合只有一个元素,即方程2440kx x ++=有一根,当0k =时,1x =-,当0k ≠时,16160k ∆=-=,解得1k =,所以0k =或1k =,故错误;D.因为命题:p .存在0R x ∈,使得20010x x ++<是存在量词命题,则其否定为全称量词命题,即:p ⌝任意R x ∈,均有210x x ++≥,故正确;故选:C. 7.B 【解析】 【分析】画出韦恩图,对四个选项一一进行判断. 【详解】画出韦恩图,显然A B ≠R ,A 错误;()A B ⋃=R R ,故B 正确, ()()A B B ⋂=RR R,C 错误;()AB ≠RR ,D 错误.故选:B 8.A 【解析】 【分析】求出集合M ,根据M N ⋂有且只有2个元素即可求出a 的范围. 【详解】{}(){}{}220|200,1,2M x x x x x x =∈-≤=∈-≤=Z Z ,∵M N ⋂有且只有2个元素,∴0<a ≤1. 故选:A. 9.B 【解析】 【分析】根据对数型函数的性质,结合集合并集的定义进行求解即可. 【详解】因为(2,)A =+∞,{}13B x x =≤≤, 所以A B ⋃=[)1,+∞, 故选:B 10.B 【解析】 【分析】化简集合A 和B ,根据集合并集定义,即可求得答案. 【详解】()(){}140|6A x x x =+--≤{}{}2=|310=|(5)(02)0x x x x x x ---+≤≤∴{}|25A x x =-≤≤{}{}|=75241221|B x x x x =-≤-≤-≤-≤-∴1|62x x B ⎧⎫=≤⎨⎩≤⎬⎭∴{}{}1|25|6=|262A B x x x x x x ⎧⎫-≤⎨⎬⋃=≤≤⋃≤-≤⎩≤⎭故选:B. 11.D 【解析】 【分析】解指数和对数不等式可求得集合,A B ,由交集定义可得结果. 【详解】{}{}ln 01A x x x x =>=>,{}{}{}221202x B x x x x x -=<=-<=<,{}12A B x x ∴⋂=<<.故选:D. 12.D 【解析】 【分析】根据二次根式的性质,结合一元二次不等式的解法、补集的定义进行求解即可. 【详解】因为{[2,)(,1]A x y ===+∞-∞-∣, 所以UA()1,2-,故选:D 13.B 【解析】 【分析】先求出结合,A B ,再根据集合的交集运算,即可求出结果. 【详解】因为{}{}{}*2*N 230N 131,2,3A x x x x x =∈--≤=∈-≤≤=∣, {}1101B x x x x ⎧⎫=∈≥=∈<≤⎨⎬⎩⎭R R所以{}1A B =. 故选:B. 14.B 【解析】 【分析】求出定义域得到集合B ,从而求出补集和交集. 【详解】{}()212,1A x x =-<<=-,{}()00,B x x ∞=>=+,所以(][),21,RA =-∞-⋃+∞,所以()[)1,RA B ∞⋂=+.故选:B. 15.C 【解析】 【分析】求得集合{|33}B x x =-<<,结合集合交集的运算,即可求解. 【详解】由题意,集合2{|9}{|33}B x x x x =<=-<<, 又由集合{4,3,2,1,0,1,2,3,4}A =----, 所以A B ={2,1,0,1,2}--. 故选:C.二、填空题16.A B C ##C B A 【解析】 【分析】根据空间中两条异面直线所成角的范围求出A ,根据空间中直线与平面所成角的取值范围求出B ,根据二面角的平面角的取值范围求出C ,根据A 、B 、C 角的范围即可判断它们的包含关系. 【详解】集合A 为空间中两条异面直线所成角的取值范围,π(0,]2A ∴=,集合B 为空间中直线与平面所成角的取值范围,π[0,]2B ∴=,集合C 为直角坐标平面上直线的倾斜角的取值范围,[0,π]C ∴=,∴集合A 、B 、C 的真包含关系为:A B C .故答案为:A B C .17.{}3x x >-【解析】 【分析】直接利用补集的定义求解【详解】因为全集U =R ,集合{}3A x x =≤-, 所以UA ={}3x x >-,故答案为:{}3x x >- 18. 10 6 【解析】 【分析】列举M 的2个元素子集数个数即可;利用,i i j j a b a b << ,再结合ji i ja ab b ≠进行排除其他的即为答案. 【详解】M 的两元素子集有{1,2}{1,3}{1,4}{1,6}{2,3}{2,4}{2,6}{3,4}{3,6}{4,6}、、、、、、、、、,所以共有10个,因此k =10;因为前面的列举方式已经保证,i i j j a b a b <<,只需要再增加条件ji i ja ab b ≠即可,所以{1,2}{2,4}、、{3,6}保留一个,{1,3}{2,6}、保留一个,{2,3}{4,6}、只能保留一个,所以以上10个子集需要删去4个,还剩下6个,所以则k 的最大值是6.故max 6k .故答案为:10;6.19.10,1,2⎧⎫-⎨⎬⎩⎭【解析】 【详解】先求出集合M ,然后分N =∅和N ≠∅两种情况求解 【点睛】由220x x +-=,得(1)(2)0x x -+=,解得1x =或2x =-, 所以{}1,2M =-,当N =∅时,满足N M ⊆,此时0a = 当N ≠∅时,即0a ≠,则1N a ⎧⎫=-⎨⎬⎩⎭,因为N M ⊆,所以1M a-∈,所以11a -=或12a-=-, 解得1a =-或12a =, 综上,12a =,或1a =-,或0a =, 所以实数a 的取值集合为10,1,2⎧⎫-⎨⎬⎩⎭,故答案为:10,1,2⎧⎫-⎨⎬⎩⎭20.1 【解析】 【分析】由子集定义分类讨论即可. 【详解】因为B A ⊆,所以a A ∈1A ∈,当2a =-1无意义,不满足题意;当1a =12=,满足题意;当2a =11=,不满足题意. 综上,实数a 的值1. 故答案为:1 21.{1,2}##{2,1} 【解析】 【分析】根据集合元素属性特征进行求解即可. 【详解】 因为83N x*∈-,所以31,2,4,8-=x ,可得2,1,1,5=--x ,因为x N ∈,所以1,2x =,集合{1,2}A =.故答案为:{1,2}22.26【解析】 【分析】由题知{}4,10T =,再结合韦达定理求解即可. 【详解】解:因为240p q ->,所以方程()22040x px q p q ++=->的解集有两个不相等的实数根,因为1379147{{1}}0A B ==,,,,,,,且T A T B T ⋂=∅⋂=,, 所以{}4,10T =所以由韦达定理得14p =-,40q = 所以26p q += 故答案为:2623.{}1【解析】 【分析】根据集合的交集的定义进行求解即可【详解】当0x =时,不等式214x ≤<不成立,当1x =时,不等式214x ≤<成立,当2x =时,不等式214x ≤<不成立,当4x =时,不等式214x ≤<不成立,所以{}1A B ⋂=,故答案为:{}124.∅【解析】【分析】根据集合的新定义求解出集合M '和P ',再求解交集可得出答案.【详解】根据“孤星集”的定义,1,112,2A A ∈+=∈ 所以1不是集合M '的元素同理2,3也都不是集合M '的元素M ∴'=∅,同理可得 {}1P '=所以M P '⋂'=∅.故答案为:∅.25.4【解析】【分析】集合A 只有一个元素,分别讨论当0a =和0a ≠时对应的等价条件即可【详解】解:2{|10}A x R ax ax =∈++=中只有一个元素,∴若0a =,方程等价为10=,等式不成立,不满足条件.若0a ≠,则方程满足0∆=,即240a a -=,解得4a =或0a =(舍去).故答案为:4三、解答题26.(1){2,4,6,8,10}是“关联的”,{1,2,3,5,8}是“独立的”;(2){2,4,6,8},{2,4,8,10},{4,6,8,10};(3)证明见解析.【解析】【分析】(1)根据给定定义直接判断作答.(2)由(1)及所给定义直接写出“关联子集”作答.(3)写出M 的所有4元素子集,再利用反证法确定“关联子集”,然后推理作答.(1)集合{2,4,6,8,10}中,因2846+=+,所以集合{2,4,6,8,10}是“关联的”,集合{1,2,3,5,8}中,不存在某两个数的和等于另外两个数的和,所以集合{1,2,3,5,8}是“独立的”.(2)由(1)知,有2846+=+,21048+=+,41068+=+,所以{2,4,6,8,10}的“关联子集”有:{2,4,6,8},{2,4,8,10},{4,6,8,10}.(3)集合M 的4元素子集有5个,分别记为:1234521345{,,,},{,,,}A a a a a A a a a a ==, 312454123551234{,,,},{,,,},{,,,}A a a a a A a a a a A a a a a ===,因此,集合M 至多有5个“关联子集”,若21345{,,,}A a a a a =是“关联子集”,则12345{,,,}A a a a a =不是“关联子集”,否则12a a =,矛盾,若21345{,,,}A a a a a =是“关联子集”,同理可得31245{,,,}A a a a a =,41235{,,,}A a a a a =不是“关联子集”,因此,集合M 没有同时含有元素25,a a 的“关联子集”,与已知矛盾,于是得21345{,,,}A a a a a =一定不是“关联子集”,同理41235{,,,}A a a a a =一定不是“关联子集”,即集合M 的“关联子集”至多为12345{,,,}A a a a a =,31245{,,,}A a a a a =,51234{,,,}A a a a a =, 若12345{,,,}A a a a a =不是“关联子集”,则集合M 一定不含有元素35,a a 的“关联子集”,与已知矛盾,若31245{,,,}A a a a a =不是“关联子集”,则集合M 一定不含有元素15,a a 的“关联子集”,与已知矛盾,若51234{,,,}A a a a a =不是“关联子集”,则集合M 一定不含有元素13,a a 的“关联子集”,与已知矛盾,因此,12345{,,,}A a a a a =,31245{,,,}A a a a a =,51234{,,,}A a a a a =都是“关联子集”, 即有25345432a a a a a a a a +=+⇔-=-,15245421a a a a a a a a +=+⇔-=-,14234321a a a a a a a a +=+⇔-=-,从而得54433221a a a a a a a a -=-=-=-,所以1a ,2a ,3a ,4a ,5a 是等差数列.【点睛】关键点睛:涉及集合新定义问题,关键是正确理解给出的定义,然后合理利用定义,结合相关的其它知识,分类讨论,进行推理判断解决.27.(1){|2m m <-或502m ≤≤} (2)128【解析】【分析】(1)按照集合B 是空集和不是空集分类讨论求解;(2)确定集合A 中元素(个数),然后可得子集个数.(1)当121m m ->+即2m <-时,B =∅,符合题意;当B ≠∅时,有12111216m m m m -≤+⎧⎪-≥-⎨⎪+≤⎩,解得502m ≤≤. 综上实数m 的取值范围是{|2m m <-或50}2m ≤≤;(2)当x ∈N 时,{0,1,2,3,4,5,6}A =,所以集合A 的子集个数为72128=个.28.(1)9,8⎛⎫+∞ ⎪⎝⎭ (2)当0a =时集合23A ⎧⎫=⎨⎬⎩⎭,当98a =时集合43A ⎧⎫=⎨⎬⎩⎭; (3)9,8⎛⎤-∞ ⎥⎝⎦ 【解析】【分析】(1)利用A 是空集,则Δ00a <⎧⎨≠⎩即可求出a 的取值范围; (2)对a 分情况讨论,分别求出符合题意的a 的值,及集合A 即可; (3)分A 中只有一个元素和有2个元素两种情况讨论,分别求出参数的取值范围,即可得解.(1)解: A 是空集,0a ∴≠且∆<0,9800a a -<⎧∴⎨≠⎩,解得98a >, a ∴的取值范围为:9,8⎛⎫+∞ ⎪⎝⎭; (2)解:①当0a =时,集合2{|320}3A x x ⎧⎫=-+==⎨⎬⎩⎭, ②当0a ≠时,0∆=,980a ∴-=,解得98a =,此时集合43A ⎧⎫=⎨⎬⎩⎭, 综上所求,当0a =时集合23A ⎧⎫=⎨⎬⎩⎭,当98a =时集合43A ⎧⎫=⎨⎬⎩⎭; (3)解:A 中至少有一个元素,则当A 中只有一个元素时,0a =或98a =;当A 中有2个元素时,则0a ≠且0∆>,即9800a a ->⎧⎨≠⎩,解得98a <且0a ≠; 综上可得98a ≤时A 中至少有一个元素,即9,8a ⎛⎤∈-∞ ⎥⎝⎦ 29.(1){|3,Z}x x k k =∈ (2){}4,R x x x ∈(3)2{|10,R}x x x x ++=∈(4)()2{,|36}x y y x x =-+-(5){|21,15x x n n =-≤≤且*N }n ∈【解析】【分析】根据题设中的集合和集合的表示方法,逐项表示,即可求解.(1)解:所有被3整除的整数组成的集合,用描述法可表示为:{|3,Z}x x k k =∈(2)解:不等式235x ->的解集,用描述法可表示为:{}4,R x x x ∈.(3)解:方程210x x ++=的所有实数解组成的集合,用描述法可表示为:2{|10,R}x x x x ++=∈.(4)解:抛物线236y x x =-+-上所有点组成的集合,用描述法可表示为:()2{,|36}x y y x x =-+-.(5)解:集合{}1,3,5,7,9,用描述法可表示为:{|21,15x x n n =-≤≤且*N }n ∈. 30.(1)16;(2)2n【解析】【分析】设集合A 为集合的子集,利用分步计数原理分析每个元素出现的情况,即得解【详解】(1)由题意,若A 为集合{a, b, c, d }的子集则集合A 中的元素只能从a, b, c, d 中选择,每个元素出现或者不出现有两种可能 故集合A 的不同情形有222216⨯⨯⨯=种情况故集合{a, b, c, d }的所有子集的个数是16(2)由题意,若A 为集合{a 1, a 2, …, an }的子集则集合A 中的元素只能从a 1, a 2, …, an 中选择,每个元素出现或者不出现有两种可能 故集合A 的不同情形有22...22n ⨯⨯⨯=种情况故集合{a 1, a 2, …, an }的所有子集的个数是2n。
高一数学集合练习题及答案(新版)一、单选题1.定义集合,A B 的一种运算:2{|,,}A B x x a b a A b B ⊗==-∈∈,若{}1,0A =-,{}1,2B =,则A B ⊗中的元素个数为( ) A .1B .2C .3D .42.设集合(){}=10,A x x x x -<∈R ,{}2,B x x x =≤∈R ,则()R A B ⋂=( ) A .∅B .[]1,2C .(],0-∞D .(][],01,2-∞3.已知集合{}220A x x x =--<,(){}3log 22B x y x ==-,则A B =( )A .{}12x x -<<B .{}12x x <<C .{}12x x ≤<D .{}02x x ≤<4.设全集U =R ,集合302x A xx ⎧⎫-=≤⎨⎬+⎩⎭,集合{}ln 1B x x =≥,则()UA B =( )A .()e,3B .[]e,3C .[)2,e -D .()2,e -5.已知集合{}{(3)0},0,1,2,3A x x x B =-<=,则A B =( ) A .{1,2}B .{0,1,2}C .{1,2,3}D .{0,1,2,3}6.已知集合2cos ,3n A x x n N π*⎧⎫==∈⎨⎬⎩⎭,{}2230B x x x =--<,则A B =( ) A .{}2,1-- B .{}2,1,1--C .{}1,2D .{}1,1,2-7.集合{}230,{1,0,1,2,3}A xx x B =-<=-∣,则A B =( ) A .(1,2)B .{1,2}C .{0,1,2}D .{0,1,2,3}8.已知集合{}sin ,M y y x x ==∈R ,{}220N x x x =--<,则MN =( )A .(]1,1-B .[)1,2-C .()1,1-D .[)1,1-9.下列命题说法错误的是( )A .()2()lg 23f x x x =-++在(1,1)-上单调递增B .“1x =”是“2430x x -+=”的充分不必要条件C .若集合{}2440A x kx x =++=恰有两个子集,则1k =D .对于命题:p 存在0R x ∈,使得20010x x ++<,则¬p :任意R x ∈,均有210x x ++≥ 10.设集合{}09A x x =∈≤≤N ,{}1,2,3,6,9,10B =-,则()AA B ⋂=( ).A .{}0,1,4,5,7,8B .{}1,4,5,7,8C .{}2,3,6,9D .∅11.已知集合{|12}A x x =-<≤,{}2,1,0,2,4B =--,则()R A B ⋂=( ) A .∅B .{}1,2-C .{}2,4-D .{}2,1,4--12.已知集合2{60}A xx x =--<|,{|231}B x x =+>,则A B ⋃=( ) A .(1,3)- B .(2,)-+∞ C .(2,1)-- D .(,2)-∞-13.如图,已知全集U =R ,集合{}1,2,3,4,5A =,()(){}120B x x x =+->,则图中阴影部分表示的集合中,所包含元素的个数为( )A .1B .2C .3D .4 14.已知集合{}{}|2|21A x x B x x =≥-=-≤≤,,则下列关系正确的是( ) A .A B =B .A B ⊆C .B A ⊆D .A B =∅15.已知集合{}1A x x =≥-,{}12B x x =-<,则A B ⋃=( ) A .{}13x x -<< B .{}1x x >- C .{}13x x -≤<D .{}1x x ≥-二、填空题16.已知全集为{19,}I xx x N =≤≤∈∣,{3,6,9}A =,{2,4,6,8}B =,则A B =_______. 17.记关于x 的不等式220x x a a -+-≤的解集为A ,集合{}12B x x =-≤<,若A B ,则实数a 的取值范围为___________.18.等差数列{}n a 中15141024a a a a ++=+,513a a =. 若集合{}*122nn n N a a a λ∈<+++∣中仅有2个元素,则实数λ的取值范围是______. 19.已知集合{}2,1,2A =-,{}1,B a a =,且B A ⊆,则实数a 的值是___________.20.用符号“∈”和“∉”填空:(1)12______N ; (2)1______Z -; (3)2-______R ; (4)π______Q +; (5)23______N ; (6)0______∅. 21.已知{}12A x x =-<≤,{}20B x x =-≤<,A B =________________.22.已知集合A ={2,log 2m },B ={m ,n }(m ,n ∈R),且{}1A B ⋂=-,则A ∪B =___________.23.(1)已知集合{}2230A x x x =--=,{}20B x ax =-=,且B A ⊆,则实数a 的值为______.(2)若不等式23208kx kx +-<对一切实数x 都成立,则k 的取值范围为______.24.若集合{}1A x x a =-≤,{}2540B x x x =-+>,A B =∅,则实数a 的取值范围是______.25.设P 、Q 为两个非空实数集合,定义集合{},,bP Q z z a a P b Q *==∈∈,若{}1,2P =,{}1,0,1Q =-,则集合P Q *中元素的个数为______个.三、解答题26.已知全集U =R ,集合{}04A x x =≤≤,(){}lg 2B x y x ==-. (1)求()UA B ;(2)若集合()0,C a =,且C A B ⊆,求实数a 的取值范围.27.已知集合{|28}x a A x -=>,2{|20}B x x x =+-<,再从条件① ,条件② ,条件③这三个条件中选择一个作为已知,求实数a 的取值范围. 条件①:A B =∅;条件②:A B A =;条件③:RA B ⊆.28.设:24p x <<,q :实数x 满足()()()300x a x a a +-<>. (1)若1a =,且p ,q 都为真命题,求x 的取值范围; (2)若p 是q 的充分不必要条件,求实数a 的取值范围.29.已知函数()f x A ,不等式1()402x->的解集是集合 B ,求集合 A 和R ()B A ⋂ .30.已知集合{}10A x x =+>,{}2,1,0,1B =--,求()A B R .【参考答案】一、单选题 1.C 【解析】 【分析】根据集合的新定义确定集合中的元素. 【详解】因为2{|,,}A B x x a b a A b B ⊗==-∈∈,{}1,0A =-,{}1,2B =, 所以{0,1,2}A B ⊗=--, 故集合A B ⊗中的元素个数为3, 故选:C. 2.D 【解析】 【分析】根据集合的交集与补集运算法则求解即可. 【详解】由条件,(){}()=10,=0,1A x x x x -<∈R , ∴()(][)R ,01,=-∞⋃+∞A ,又∵{}2,B x x x =≤∈R 因此()(][]R ,01,2B A ⋂=-∞⋃. 故选:D 3.B 【解析】 【分析】求解不等式可得集合A ,根据对数函数的定义可得集合B ,进而求解. 【详解】因为220x x --<,所以12x -<<,则{}12A x x =-<<, 因为220x ->,所以1x >,则{}1B x x =>, 所以{}12B x A =<<, 故选:B 4.D 【解析】 【分析】求出集合A 、B ,利用交集和补集的定义可求得集合()U A B ∩. 【详解】因为{}30232x A xx x x ⎧⎫-=≤=-<≤⎨⎬+⎩⎭,{}{}ln 1e B x x x x =≥=≥, 所以,{}e UB x x =<,因此,()()2,e UA B =-.故选:D. 5.A 【解析】 【分析】解不等式得A ,由交集的概念运算 【详解】由(3)0x x -<得03x <<,即(0,3)A =,故{1,2}A B =. 故选:A 6.C 【解析】 【分析】结合余弦型函数的周期性可得到{}1,1,2,2A =--,再得到2230x x --<的解集,进而求解. 【详解】 因为2cos3y x π=的最小正周期263T ππ==且1cos32π=, 21cos cos cos 3332ππππ⎛⎫=-=-=- ⎪⎝⎭,3cos 13π=-, 41cos cos cos 3332ππππ⎛⎫=+=-=- ⎪⎝⎭,51cos cos 2cos 3332ππππ⎛⎫=-== ⎪⎝⎭, 6cos13π=,71cos cos 2cos 3332ππππ⎛⎫=+== ⎪⎝⎭,,所以{}*|2cos ,1,1,2,23n A x x n N π⎧⎫==∈=--⎨⎬⎩⎭, 又{}{}223013B x x x x x =--<=-<<,所以{}1,2A B =, 故选:C 7.B 【解析】 【分析】求得集合{|03}A x x =<<,根据集合交集的概念及运算,即可求解. 【详解】由题意,集合2|30{|03},{1,0,1,2,3{}}A x x x x x B =-<=<<=-, 根据集合交集的概念及运算,可得{1,2}A B =. 故选:B. 8.A【分析】由正弦函数性质可得集合M ,解一元二次不等式可得集合N ,然后由交集定义可得. 【详解】由正弦函数值域可知{|11}M y y =-≤≤, 由220x x --<解得{|12}N x x =-<< 所以{|11}M N x x =-<≤,即(]1,1-故选:A 9.C 【解析】 【分析】A.利用复合函数的单调性判断;B.利用充分条件和必要条件的定义判断;C.由方程2440kx x ++=有一根判断;D.由命题p 的否定为全称量词命题判断.【详解】A.令223t x x =-++,由2230x x -++>,解得13x ,由二次函数的性质知:t 在(1,1)-上递增,在(1,3)上递减,又lg y t =在()0,∞+上递增,由复合函数的单调性知:()2lg(23)f x x x =-++在(1,1)-上递增,故正确;B. 当1x =时,2430x x -+=成立,故充分,当2430x x -+=成立时,解得1x =或3x =,故不必要,故正确;C.若集合{}2440A x kx x =++=中只有两个子集,则集合只有一个元素,即方程2440kx x ++=有一根,当0k =时,1x =-,当0k ≠时,16160k ∆=-=,解得1k =,所以0k =或1k =,故错误;D.因为命题:p .存在0R x ∈,使得20010x x ++<是存在量词命题,则其否定为全称量词命题,即:p ⌝任意R x ∈,均有210x x ++≥,故正确; 故选:C. 10.A 【解析】 【分析】根据集合的运算直接可得. 【详解】解:依题意{}0123456789A ,,,,,,,,,=,{}1,2,3,6,9,10B =-, 所以{}2,3,6,9A B ⋂=,故(){}0,1,4,5,7,8AA B ⋂=.故选:A . 11.D 【解析】 【分析】 利用补集定义求出A R,利用交集定义能求出()A B R .解:集合{|12}A x x =-<≤,{}2,1,0,2,4B =--, 则R{|1A x x =≤-或2}x >,(){}R 2,1,4A B ∴⋂=--. 故选:D 12.B 【解析】 【分析】先计算出集合,A B ,再计算A B 即可. 【详解】因为{23}A xx =-<<∣,{1}B x x =>-∣,所以(2,)A B ⋃=-+∞. 故选:B. 13.B 【解析】 【分析】求出集合B ,分析可知阴影部分所表示的集合为()U A B ∩,利用交集的定义可求得结果. 【详解】因为()(){}{1201B x x x x x =+->=<-或}2x >,则{}12U B x x =-≤≤, 由题意可知,阴影部分所表示的集合为(){}1,2UA B =.故选:B. 14.C 【解析】 【分析】由子集的定义即可求解. 【详解】解:因为集合{}{}|2|21A x x B x x =≥-=-≤≤,, 所以根据子集的定义可知B A ⊆, 故选:C. 15.D 【解析】 【分析】求出集合B ,利用并集的定义可求得集合A B . 【详解】因为{}{}{}1221213B x x x x x x =-<=-<-<=-<<,因此,{}1A B x x ⋃=≥-. 故选:D.二、填空题16.{}3,9【解析】 【分析】首先求I 和B ,再求A B . 【详解】{}1,2,3,4,5,6,7,8,9I =,{3,6,9}A =,{2,4,6,8}B =, {}1,3,5,7,9B =,所以{}3,9A B =. 故答案为:{}3,917.()1,2-【解析】 【分析】首先将不等式变形,再对a 与1a -分三种情况讨论,分别求出集合A ,根据集合的包含关系得到不等式组,即可求出参数a 的取值范围; 【详解】解:原不等式220x x a a -+-≤可变形为()()10x a x a -+-≤, 当1a a ,即12a =时,12A ⎧⎫=⎨⎬⎩⎭,满足题意; 当1a a <-,即12a <时,{}1A x a x a =≤≤-,所以112a a ≥-⎧⎨-<⎩,解得1a >-,所以112a -<<;当1a a ,即12a >时,{}1A x a x a =-≤≤,所以21112a a a ⎧⎪<⎪-≥-⎨⎪⎪>⎩,解得122a <<.综上可得1a 2-<<,即()1,2a ∈-; 故答案为:()1,2-18.924⎡⎫⎪⎢⎣⎭,【解析】 【分析】设等差数列{}n a 的公差为d ,由题设列出d 与1a 的方程组,解出d 与1a ,从而可得到212322n n n a a a n n ++⋯++=,令23()2n n nf n +=,得出()f n 的单调性,即可求出λ的取值范围. 【详解】解:设等差数列{}n a 的公差为d ,由题设可知:11111141392443a a d a d a d a d a ++++=++⎧⎨+=⎩,解得:14a =,2d =,212(1)4232n n n a a a n n n -+++=+⨯=+, ∴212322n n na a a n n++⋯++=,令23()2n n n f n +=,则22211(1)3(1)34(1)()222n n n n n n n n n f n f n +++++++-+-=-=-, 当2n <时,()()10f n f n +->, 当2n ≥时,()()10f n f n +-<,f ∴(1)f <(2)f >(3)f >(4)>,又f (1)2=,f (2)52=,f (3)94=,f (4)74=, 集合{}*12N |2n n n a a a λ∈<++⋯+中有2个元素,即集合*12N |2n n a a a n λ++⋯+⎧⎫∈<⎨⎬⎩⎭中有2个元素, [2λ∴∈,9)4.故答案为:924⎡⎫⎪⎢⎣⎭,.19.1 【解析】 【分析】由子集定义分类讨论即可. 【详解】因为B A ⊆,所以a A ∈1A ∈, 当2a =-1无意义,不满足题意; 当1a =12=,满足题意; 当2a =11=,不满足题意. 综上,实数a 的值1. 故答案为:120. ∉ ∉ ∈ ∉ ∈ ∉ 【解析】 【分析】根据元素与集合的关系判断. 【详解】由,,,,N Z R Q -+∅所表示的集合,由元素与集合的关系可判断 (1)∉(2)∉(3)∈(4)∉(5)∈(6)∉.故答案为:(1)∉(2)∉(3)∈(4)∉(5)∈(6)∉.21.{}10x x -<<【解析】 【分析】由交集运算求解即可. 【详解】A B ={}{}{}122010x x x x x x -<≤⋂-≤<=-<<故答案为:{}10x x -<< 22.1,1,22⎧⎫-⎨⎬⎩⎭【解析】 【分析】根据条件得到2log 1m =-,解出12m =,进而得到1,1,22A B ⎧⎫=-⎨⎬⎩⎭. 【详解】因为{}1A B ⋂=-,所以1A -∈且1B -∈,所以2log 1m =-,解得:12m =,则1n =-,1,12B ⎧⎫=-⎨⎬⎩⎭,所以1,1,22A B ⎧⎫=-⎨⎬⎩⎭. 故答案为:1,1,22⎧⎫-⎨⎬⎩⎭23. 2a =-或23a =或0 30k -<≤ 【解析】 【分析】(1)分情况讨论,0,a B ==∅满足题意;当0a ≠时,{}220B x ax a ⎧⎫=-==⎨⎬⎩⎭,因为B A ⊆,故得到21a =-或23a=,解出即可;(2)分情况讨论,当0k =时,满足题意;当0k ≠时,只需要满足23Δ808k k k <⎧⎪⎨⎛⎫=-⨯-< ⎪⎪⎝⎭⎩解不等式组即可. 【详解】已知集合{}{}22301,3A x x x =--==-,{}20B x ax =-=当0,a B ==∅,满足B A ⊆; 当0a ≠时,{}220B x ax a ⎧⎫=-==⎨⎬⎩⎭,因为B A ⊆,故得到21a =-或23a=解得2a =-或23a =; 不等式23208kx kx +-<对一切实数x 都成立, 当0k =时,满足题意;当0k ≠时,只需要满足203Δ808k k k <⎧⎪⎨⎛⎫=-⨯-< ⎪⎪⎝⎭⎩解得30k -<<综上结果为:30k -<≤.故答案为:2a =-或23a =或0;30k -<≤ 24.[]2,3【解析】【分析】先根据不等式的解法化简两个集合A 、B ,再根据A B =∅确定a 的取值范围.【详解】 因为{}1{|11}{|11}A x x a x x a x a x a =-≤=-≤-≤=-≤≤+,{}2540{|(4)(1)0}{|4B x x x x x x x x =-+>=-->=>或1}x <, 因为A B =∅,所以1114a a -≥⎧⎨+≤⎩, 解得23a ≤≤,即实数a 的取值范围是[]2,3.故答案为:[]2,3.25.3【解析】【分析】分别对a 、b 进行赋值,求出z 的所有可能取值即可求解.【详解】由题意,得当1a =时,1b z a ==;当2a =且1b =-时,12b z a ==; 当2a =且0b =时,1b z a ==;当2a =且1b =时,2b z a ==;所以P Q *含有的元素有:1、2、12,即P Q *中元素个数为3个.故答案为:3. 三、解答题26.(1)()4,+∞(2)02a <≤【解析】【分析】(1)先求出集合B ,再按照并集和补集计算()U A B 即可;(2)先求出[)0,2A B =,再由C A B ⊆求出a 的取值范围即可.(1){}2B x x =<,{}4A B x x ⋃=≤,()()4,U A B ⋃=+∞;(2) [)0,2A B =,由题得()[)0,0,2a ⊆故02a <≤.27.若选① ,[2-,)∞+.若选② ,(-∞,5]-.若选③ ,[2-,)∞+.【解析】【分析】先将集合A,B 中的不等式求解,根据集合运算的最后结果分析参数a 需要满足的范围即可求解.【详解】{|28}{|3}{|3}x a A x x x a x x a -=>=->=>+,2{|20}{|(2)(1)0}{|21}B x x x x x x x x =+-<=+-<=-<<,若选择条件①:A B =∅,则需31a +,即2a -,所求实数a 的取值范围为[2-,)∞+.若选择条件②:A B A =,即B A ⊆,则需32a +-,即5a -,所求实数a 的取值范围为(-∞,5]-.若选择条件③:R A B ⊆, 因为{|2R B x x =-或1}x , 所以要使R A B ⊆,则需31a +,即2a -,所求实数a 的取值范围为[2-,)∞+.28.(1)23x << (2)43a ≥ 【解析】【分析】(1)求出命题q 为真时x 的取值后可求两者均为真命题时x 的取值范围.(2)根据条件关系可得两个范围之间的包含关系,从而可求实数a 的取值范围.(1)1a =,q :实数x 满足()()()300x a x a a +-<>即为()()130x x +-<, 因为q 为真命题,故13x ,故当p ,q 都为真命题时,23x <<.(2)因为p 是q 的充分不必要条件,故(2,4)为{}|()(3)0x x a x a +-<的真子集,而{}()|()(3)0,3x x a x a a a +-<=- 故2340a a a -≤⎧⎪≥⎨⎪>⎩(等号不同时取),故43a ≥. 29.(,1][4,)A =-∞-⋃+∞; ()][)R 2,14,B A ∞⎡⋂=--⋃+⎣.【解析】【分析】先解出不等式2340x x --≥得到集合A ,再根据指数函数单调性解出集合B ,然后根据补集和交集的定义求得答案.【详解】由题意,()()2340140x x x x --≥⇒+-≥,则(,1][4,)A =-∞-⋃+∞, 又2111()40()222x x -⎛⎫->⇒> ⎪⎝⎭,则(),2B =-∞-,R [2,)B =-+∞, 于是()][)R 2,14,B A ∞⎡⋂=--⋃+⎣.30.{}2,1--【解析】【分析】先解不等式,求出集合A ,进而求出()A B R .【详解】{}1A x x =>-,{}R 1A x x =≤-,所以(){}R 2,1A B =--。
高一数学集合练习题附答案一、单选题1.设集合{}2A x x a =<,{}23B x x a =>+,若A B =R ,则实数a 的取值范围为( ) A .()1,3- B .()(),13,-∞-⋃+∞ C .[]1,3-D .(][),13,-∞-+∞2.已知集合{}220A x x x =--<,(){}3log 22B x y x ==-,则A B =( )A .{}12x x -<<B .{}12x x <<C .{}12x x ≤<D .{}02x x ≤<3.已知集合{}2|4A x x =≤,{}2|log 1B x x =≥,则A B ⋃=( )A .[]22-,B .{}2C .[)2+∞,D .[)2+-∞,4.已知集合{A xy =∣,{}0,1,2,3B =,则A B =( ) A .{3} B .{2,3} C .{1,2,3} D .{0,1,2,3}5.已知集合{}14,Z A x x x =-<<∈,{}110B x x =<<,则集合A B 中元素的个数为( ) A .2B .3C .4D .5 6.已知全集{}1,2,3,4,5U =,集合{}1,2,3A =,{}3,4B =,则集合{}4=( ) A .()UA BB .()()U UA BC .()U A B ⋂D .()U A B7.已知集合2{|13},{|4}A x x B x x =-≤<=≥,则A B =( ) A .[1,2]- B .[1,2]C .[2,3)D .[2,)+∞8.已知集合{}{01}A xx a B x x =<=<≤∣,∣,若A B =∅,则实数a 的取值范围是( ) A .01a <≤B .0a >C .0a ≤D .0a ≤或1a ≥9.已知{}1,2,3,4,5,7,8U =,{}1,2,3,5,8A =,则UA 的子集个数为( )A .2B .3C .4D .510.已知集合[)2,4A =,[]3,5B =,则()R A B =( )A .(]4,5B .[]4,5C .()[),23,-∞⋃+∞D .(][),23,-∞⋃+∞11.如图,已知全集U =R ,集合{}1,2,3,4,5A =,()(){}120B x x x =+->,则图中阴影部分表示的集合中,所包含元素的个数为( )A .1B .2C .3D .4 12.设全集{}0,1,2,3,4U =,集合{}1,2,4A =,{}2,3B =,则()U A B ⋂=( )A .{}2B .{}2,3C .{}0,3D .{}313.已知集合{}13A x x =≤≤,集合{}24B x x =≤≤,则A B =( ) A .{}23x x ≤≤ B .{}34x x <≤C .{}12x x <≤D .{|1x x <或}2x ≥14.设全集2,1,0,1,2U ,{}2,1,2A =--,{}2,1,0,1B =--,则()U A B =( )A .{}2,1-B .{}0,1C .{}1,0,1-D .{}2,1,0,1--15.集合{}{}Z 2,1,0,1|,2,3A x x B =∈<=-,则A B =( ) A .1,0,1,2B .{}1,0,1?-C .{}0,1D .{}1二、填空题16.已知非空集合A ,B 满足:A B =R ,A B =∅,函数()3,,32,x x A f x x x B ⎧∈=⎨-∈⎩对于下列结论:①不存在非空集合对(),A B ,使得()f x 为偶函数; ②存在唯一非空集合对(),A B ,使得()f x 为奇函数; ③存在无穷多非空集合对(),A B ,使得方程()0f x =无解. 其中正确结论的序号为_________. 17.已知集合{}1,2,3,4,A =,{}1,4,7,10,B =,下有命题:①{} 2,3,5,6,8,9,AB =;②若f 表示对二个数乘以3减去2的运算,则对应:f A B →表示一个函数; ③A 、B 两个集合元素个数相等; ④n A ∀∈,22n n ≥. 其中真命题序号是______.18.已知A ={x ∈R|2a ≤x ≤a +3},B ={x ∈R|x <-1或x >4},若A B ⊆,则实数a 的取值范围是________.19.已知集合{}1A x x =>,{}2B x x =<,则集合A B = ________.20.若对任意的x A ∈,有1A x ∈,则称A 是“伙伴关系集合”,则集合11,01,22M ⎧⎫=⎨⎬⎩⎭-,,的所有非空子集中,具有伙伴关系的集合的个数为________. 21.已知集合{}2A x x =<,{}2,0,1,2B =-,则A B =_______.22.{}2|60A x x x =+-=,{}|10B x mx =+=,且A B A ⋃=,则m 的值是__________.23.已知集合{1,2,3}A =,则满足A B A ⋃=的非空集合B 有_________个.24.已知集合{0,1,2,3,4,5}A =,集合{1,3,5,7,9}B =,则Venn 图中阴影部分表示的集合中元素的个数为________.25.满足{,}{,,,,}a b A a b c d e ⊆的集合A 的个数为___________三、解答题26.已知全集U =R ,集合{}04A x x =≤≤,(){}lg 2B x y x ==-. (1)求()UA B ;(2)若集合()0,C a =,且C A B ⊆,求实数a 的取值范围.27.已知集合()(){}{}250121A x x x B x m x m =+-<=+≤≤-,. (1)当3m =时,求集合()A B R ; (2)若A B B =,求实数m 的取值范围.28.在①A B B ⋃=;②“x A ∈”是 “x B ∈”的充分不必要条件;③A B =∅这三个条件中任选一个,补充到本题第(2)问的横线处,求解下列问题:已知集合{}11A x a x a =-≤≤+,{}2230B x x x =--≤(1)当2a =时,求A B ;(2)若______,求实数a 的取值范围.29.已知集合{|23}P x x =-<<,{|0}Q x x a =-≥ (1)若P Q ⊆,求实数a 的取值范围; (2)若P Q =∅,求实数a 的取值范围.30.记E 为平面上所有点组成的集合并且A E ∈,B E ∈,说明下列集合的几何意义: (1){}5P E PA ∈<; (2){}P E PA PB ∈=.【参考答案】一、单选题 1.B 【解析】 【分析】由于A B =R ,所以223a a +<,解不等式即可. 【详解】由题意,223a a +<得1a <-或3a >, 故选:B . 2.B 【解析】 【分析】求解不等式可得集合A ,根据对数函数的定义可得集合B ,进而求解. 【详解】因为220x x --<,所以12x -<<,则{}12A x x =-<<, 因为220x ->,所以1x >,则{}1B x x =>, 所以{}12B x A =<<, 故选:B 3.D 【解析】 【分析】先化简集合A 、B ,再去求A B 【详解】{}{}2|4|22A x x x x =≤=-≤≤,{}{}2|log 1|2B x x x x =≥=≥则{}{}{}|22|2|2x x x B x A x x -≤≤⋃≥==≥-⋃ 故选:D 4.C 【解析】 【分析】先由y =A ,再根据集合交集的原则即可求解. 【详解】对于集合A ,10x -≥,即1≥x ,则{}1A x x =≥, 所以{}1,2,3A B =, 故选:C 5.A 【解析】 【分析】利用集合交运算求A B ,即可确定元素个数. 【详解】由题设,{0,1,2,3}A =,又{|110}B x x =<<, 所以{2,3}A B =,共有2个元素. 故选:A 6.C 【解析】 【分析】利用交集,并集和补集运算法则进行计算,选出正确答案. 【详解】{}1,2,3,4A B =,(){}5UA B ⋃=,A 错误;()(){}{}{}4,51,2,51,2,4,5UUA B ==,B 错误;(){}{}{}4,53,44U A B ⋂==,C 正确; (){}{}{}1,2,51,2,31,2UA B ==,D 错误.故选:C 7.C 【解析】 【分析】先化简集合B ,再与集合A 取交集即可解决. 【详解】{2{|4}|2B x x x x =≥=≥或}2x ≤-则A B {|13}x x =-≤<⋂{|2x x ≥或}2x ≤-{|23}x x =≤< 故选:C8.C 【解析】 【分析】利用交集的定义即得. 【详解】∵集合{}{01}A xx a B x x =<=<≤∣,∣, A B =∅, ∴0a ≤. 故选:C. 9.C 【解析】 【分析】求出补集,再由子集的定义求解. 【详解】 由已知{4,7}UA =,子集有4个.故选:C .10.B 【解析】 【分析】先求出集合A 的补集,再由交集运算可得答案. 【详解】集合[)2,4A =,[]3,5B =,则()()[),24,R A =-∞⋃+∞ 所以()[]4,5R A B ⋂=, 故选:B. 11.B 【解析】 【分析】求出集合B ,分析可知阴影部分所表示的集合为()U A B ∩,利用交集的定义可求得结果. 【详解】因为()(){}{1201B x x x x x =+->=<-或}2x >,则{}12U B x x =-≤≤, 由题意可知,阴影部分所表示的集合为(){}1,2UA B =.故选:B. 12.D 【解析】 【分析】利用补集和交集的定义可求得结果. 【详解】 由已知可得{}0,3UA =,因此,(){}U 3AB ⋂=,故选:D. 13.A 【解析】 【分析】由交集运算直接求出两集合的交集即可. 【详解】由集合{}13A x x =≤≤,集合{}24B x x =≤≤ 则{}|23A B x x =≤≤ 故选:A 14.B 【解析】 【分析】 先求UA ,再求()UA B ⋂即可. 【详解】UA ={0,1},()U A B ={0,1}.故选:B. 15.B 【解析】 【分析】根据集合的交集运算,求得答案. 【详解】由题意{}{}Z 2,1,0,1|,2,3A x x B =∈<=-,因为集合A 中元素为小于2的整数,又{}1,0,1,2,3B =-, 所以{}1,0,1A B =-, 故选:B .二、填空题16.①③ 【解析】 【分析】通过求解332x x =-可以得到在集合A ,B 含有何种元素的时候会取到相同的函数值,因为存在能取到相同函数值的不同元素,所以即使当x 与x -都属于一个集合内时,另一个集合也不会产生空集的情况,之后再根据偶函数的定义判断①是否正确,根据奇函数的定义判断②是否正确,解方程()0f x =判断③是否正确 【详解】①若x A ∈,x A -∈,则3()f x x =,3()f x x -=-,()()f x f x ≠- 若x B ∈,x B -∈,则()32f x x =-,()32f x x -=--,()()f x f x ≠-若x A ∈,x B -∈,则3()f x x =,()32f x x -=--,()()f x f x ≠- 若x B ∈,x A -∈,则()32f x x =-,3()f x x -=-,()()f x f x ≠- 综上不存在非空集合对(),A B ,使得()f x 为偶函数 ②若332x x =-,则1x =或2x =-,当{}1B =,A B =R时,(1)312f =⨯-满足当1x =时31x =,所以()f x 可统一为3()f x x =,此时3()()f x x f x -=-=-为奇函数当{}2B =-,A B =R时,(2)3(2)28f -=⨯--=-满足当2x =-时38x =-,所以()f x 可统一为3()f x x =,此时3()()f x x f x -=-=-为奇函数所以存在非空集合对(),A B ,使得()f x 为奇函数,且不唯一 ③30x =解的0x =,320x -=解的23x =,当非空集合对(,)A B 满足0A ∉且23B ∉,则方程无解,又因为A B =R ,A B =∅,所以存在无穷多非空集合对(),A B ,使得方程()0f x =无解 故答案为:①③ 【点睛】本题主要考查集合间的基本关系与函数的奇偶性,但需要较为缜密的逻辑推理 ①通过对x 所属集合的分情况讨论来判断是否存在特殊的非空集合对(,)A B 使得函数()f x 为偶函数②观察可以发现3x 为已知的奇函数,通过求得不同元素的相同函数值将解析式32x -归并到3x 当中,使得()f x 成为奇函数③通过求解解析式零点,使得可令两个解析式函数值为0的元素均不在所对应集合内即可得到答案 17.①②③ 【解析】 【分析】①由补集定义直接判断;②按照函数定义进行判断;③元素一一对应即可判断;④3n =时,不成立. 【详解】因为{}{}**,32,A n n N B n n k k N =∈==-∈,故②正确,又{ 31AB n n k ==-或}*3,n k k N =∈,故①正确;A 、B 两个集合元素一一对应,元素个数相等,故③正确;当3n =时,3223<,故④错误. 故答案为:①②③. 18.a <-4或a >2 【解析】 【分析】按集合A 为空集和不是空集两种情况去讨论即可求得实数a 的取值范围. 【详解】①当a >3即2a >a +3时,A =∅,满足A B ⊆;.②当a ≤3即2a ≤a +3时,若A B ⊆,则有233124a a a a ≤+⎧⎨+-⎩或,解得a <-4或2<a ≤3综上,实数a 的取值范围是a <-4或a >2. 故答案为:a <-4或a >219.{}12x x <<【解析】 【分析】根据集合的交集运算,即可求出结果. 【详解】因为集合{}1A x x =>,{}2B x x =<, 所以{}{}{}1212x x x x x x A B ><=<<=. 故答案为:{}12x x <<.20.7【解析】 【分析】在集合M 的子集中列举出满足“伙伴关系集合”的集合,从而可得结果. 【详解】因为x A ∈,则1A x ∈,就称A 是伙伴关系集合,集合11,0,,1,22M ⎧⎫=-⎨⎬⎩⎭,所以具有伙伴关系的集合有{}{}{}11111,1,,2,1,1,1,,2,1,,2,1,1,,22222⎧⎫⎧⎫⎧⎫⎧⎫----⎨⎬⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭⎩⎭共7个.故答案为:721.{}0,1【解析】 【分析】先求出集合A ,然后根据交集的定义求得答案. 【详解】由题意,{}22A x x =-<<,所以{}0,1A B =. 故答案为:{}0,1.22.11023-、、 【解析】 【分析】先求出集合A ,再由A B A ⋃=,可得B A ⊆,然后分B =∅和B ≠∅两种情况求解即可 【详解】解:由260x x +-=,得2x =或3x =-,所以{}{}2|603,2A x x x =+-==-,因为A B A ⋃=,所以B A ⊆,当B =∅时,B A ⊆成立,此时方程10+=mx 无解,得0m =; 当B ≠∅时,得0m ≠,则集合{}1|10B x mx m ⎧⎫=+==-⎨⎬⎩⎭,因为B A ⊆,所以13m -=-或12m -=,解得13m =或12m =-, 综上,0m =,13m =或12m =-.故答案为:11023-、、 23.7 【解析】 【分析】由A B A ⋃=可得B A ⊆,所以求出集合B 的所有非空子集即可 【详解】因为A B A ⋃=,所以B A ⊆, 因为{1,2,3}A =,所以非空集合{}1B =,{}2,{}3,{}1,2,{}1,3,{}2,3,{}1,2,3, 所以非空集合B 有7个, 故答案为:7 24.3 【解析】 【分析】由集合定义,及交集补集定义即可求得. 【详解】由Venn 图及集合的运算可知,阴影部分表示的集合为()AAB .又{0,1,2,3,4,5}A =,{1,3,5,7,9}B =,{1,3,5}A B ∴⋂=,(){}0,2,4AA B ∴⋂=即Venn 图中阴影部分表示的集合中元素的个数为3 故答案为:3. 25.7 【解析】 【分析】根据子集的概念,列举出集合A ,可得答案. 【详解】 因为{,}{,,,,}a b A a b c d e ⊆,所以集合A 可能是{}{}{}{}{},,,,,,,,,,,,,,,,a b c a b d a b e a b c d a b c e ,{}{},,,,,,,,a b d e a b c d e 共7个; 故答案为:7三、解答题26.(1)()4,+∞(2)02a <≤【解析】【分析】(1)先求出集合B ,再按照并集和补集计算()U A B 即可;(2)先求出[)0,2A B =,再由C A B ⊆求出a 的取值范围即可.(1){}2B x x =<,{}4A B x x ⋃=≤,()()4,U A B ⋃=+∞;(2) [)0,2A B =,由题得()[)0,0,2a ⊆故02a <≤.27.(1){}()5R A B ⋂=(2){}3|m m <【解析】【分析】(1)由题知{}25A x x =-<<{}|45B x x =≤≤,再根据集合交集,补集运算求解即可; (2)由题知B A ⊆,再分B =∅和B ≠∅两种情况讨论求解即可.(1) 解:集合()(){}{}25025A x x x x x =+-<=-<<,当3m =时,{}|45B x x =≤≤,所以{|2R A x x =≤-或5}x所以{}()5R A B ⋂=.(2)因为A B B =,所以B A ⊆,①当B =∅时,121m m +>-,解得2m < ,此时B A ⊆②当B ≠∅时,应满足12112215m m m m +≤-⎧⎪+>-⎨⎪-<⎩,解得23m ≤<,此时B A ⊆ 综上,m 的取值范围是{}3|m m <28.(1){}|13A B x x ⋃=-≤≤(2)条件选择见解析,()(),24,-∞-+∞【解析】【分析】(1)化简集合A 与B 之后求二者的并集(2)先判断集合A 与B 的关系,再求a 的取值范围(1)当2a =时,集合{}|13A x x =≤≤,{}|13B x x =-≤≤, 所以{}|13A B x x ⋃=-≤≤;(2)若选择①A ∪B =B ,则A B ⊆,因为{}|11A x a x a =-≤≤+,所以A ≠∅,又{}|13B x x =-≤≤,所以1113a a -≥-⎧⎨+≤⎩,解得02a ≤≤, 所以实数a 的取值范围是[]0,2.若选择②,“x A ∈“是“x B ∈”的充分不必要条件,则A B , 因为{}|11A x a x a =-≤≤+,所以A ≠∅, 又{}|13B x x =-≤≤,所以1113a a -≥-⎧⎨+≤⎩,解得02a ≤≤, 所以实数a 的取值范围是[]0,2.若选择③,A B =∅,因为{}|11A x a x a =-≤≤+,{}|13B x x =-≤≤, 所以13a ->或11a +<-,解得4a >或2a <-,所以实数a 的取值范围是()(),24,-∞-+∞.29.(1)(,2]-∞-(2)[3,)+∞【解析】【分析】(1)由已知,P Q ⊆可得集合P 是集合Q 的子集,结合两个集合的范围,可得直接求解出实数a 的取值范围.(2)由已知,P Q =∅可得集合P 和集合Q 没有交集,结合两个集合的范围,可得直接求解出实数a 的取值范围.(1)已知{|23}P x x =-<<,{|}Q x x a =≥,要满足P Q ⊆, 即P 中的任意一个元素都是Q 中的元素,则2a ≤-, 即实数a 的取值范围是:(,2]-∞-(2)当P Q =∅,即P 与Q 没有公共元素,因为P和Q都不可能为空集,a≥,所以要使得两个集合没有公共元素,则3+∞.即实数a的取值范围:[3,)30.(1)以A为圆心,5为半径的圆内部分(2)线段AB的垂直平分线【解析】【分析】(1)由圆的定义可得;(2)由线段垂直平分线的定义可得.(1)表示到A点距离小于5的点组成的集合,即以A为圆心,5为半径的圆内部分;(2)P到,A B距离相等,即线段AB的垂直平分线.。
高一数学集合练习题附答案一、单选题1.设全集{}1,2,3,4U =,{}1,3A =,{}4B =,则()U A B =( ) A .{}2,4B .{}4C .∅D .{}1,3,42.已知集合{}2,0,1M =-,{}220N x x ax =+-=,若N M ⊆,则实数a =( )A .2B .1C .0D .-13.已知全集{}{}1,2,3,,2,3U A U B =⊆=,若A B ⋂≠∅,且A B ⊆/则集合A 有( ) A .1个B .2个C .3个D .4个4.已知复数a 、b 满足0ab ≠,集合{}{}22,,a b a b =,则a b +的值为( )A .2B .1C .0D .-15.设集合{}22M x Z x =∈-<,则集合M 的真子集个数为( ) A .16B .15C .8D .76.设集合1|05x A x x -⎧⎫=>⎨⎬-⎩⎭,{}|13B x x =-≤≤,则()A B =R ( ) A .{}|35x x ≤< B .{}|15x x ≤< C .{}|15x x -≤<D .{}|13x x ≤≤7.设集合{}10M x x =-<,{}12,N y y x x M ==-∈,则M N =( )A .∅B .(,1)-∞-C .(,1)-∞D .(1,1)-8.已知集合{}27120A x x x =-+≤,{}20B x x m =+>,若A B ⊆,则m 的取值范围为( ) A .()6,-+∞B .[)6,-+∞C .(),6-∞-D .(],6∞--9.若集合2{|60}A x x x =--+>,5{|1}3B x x =≤--,则A B 等于( ) A .()3,3-B .[2,3)-C .(2,2)-D .[2,2)-10.设全集U =R ,集合{1,0,1,2,3}M =-,{R |1}N x x =∈>,则下面Venn 图中阴影部分表示的集合是( )A .(,1)-∞B .(,1]-∞C .{1,0}-D .{1,0,1}-11.已知集合{}20A x R x a =∈+>,且2A ∉,则实数a 的取值范围是( )A .{}4a a ≤B .{}4a a ≥C .{}4a a ≤-D .{}4a a ≥-12.已知全集{}U 1,0,1,3,6=-,{}0,6A =,则UA =( )A .{}1,3-B .{}1,1,3-C .{}0,1,3D .{}0,3,613.若集合{}{}22,3,|560,A B x x x ==-+=则A B =( )A .{2,3}B .∅C .2D .2,314.已知集合{}12,12x A y y x -==≤≤,|lg 2Bx y x,则下列结论正确的是( )A .AB ⊆B .[]0,2A B =C .(],2A B ⋃=-∞D .()R B A =⋃R15.已知集合{}220|A x x x =-<,{}|55B x x =-<<,则( )A .AB =∅ B .A B R =C .B A ⊆D .A B ⊆二、填空题16.若{}}{1020x ax x x +=⊆-=,则=a __________. 17.设集合{1,2,}A a =,{2,3}B =.若B A ⊆,则=a _______.18.设集合{}13A x x =<<,{}B x x a =<,若A B ⊆,则a 的取值范围是_________. 19.已知函数()()()2sin 0,0g x x ωϕωϕπ=+><<的部分图象如图所示,将函数()g x 的图象向右平移6π个单位长度,得到函数()f x 的图象,若集合()3512A x y f x f π⎧⎫⎪⎪⎛⎫==-⎨⎬⎪⎝⎭⎪⎪⎩⎭,集合{}0,1,2B =,则A B =______.20.已知集合121{|2}8x A x -=>,{|20}B x x a =-<.若A B A =,则实数a 的取值范围是________. 21.已知函数()94sin3264x x f x π-⋅+=,()21g x ax =-(0a >).若[]130,log 2x ∀∈,[]21,2x ∃∈,()()12f x g x =,则a 的取值范围是___________.22.若{}231,13a a ∈--,则=a ______.23.判断下列命题的真假:(1)集合{}1,2,3是集合{}1,2,3的真子集;( ) (2){}1是集合{}1,2,3的元素;( )(3)2是集合{}1,2,3的子集;( ) (4)满足{}{}00,1,2,3A的集合A 的个数是322-个.( )24.若全集{}0,1,2,3,4U =,{}012M =,,,{}2,3N =,则M N ⋂=______. 25.用符号“∈”或“∉”填空: (1)34______N ;(2)4-______Z ; (3)13______Q ;(4)2π-______R .三、解答题26.已知集合2{|23}A x a x a =≤≤+,{|14}B x x =-≤≤,全集U =R . (1)当1a =时,求U ()A B ;(2)当A =∅时,求实数a 的取值范围;(3)若“x A ∈”是“x B ∈”的充分条件,求实数a 的取值范围.27.已知:20,:40p x q ax ->->其中R a ∈.(1)若p 是q 的充分不必要条件,求实数a 的取值范围; (2)若p 是q 的必要不充分条件,求实数a 的取值范围.28.已知集合P ={x |a +1≤x ≤2a +1},Q ={x |-2≤x ≤5}. (1)若a =3,求()U P Q ⋂;(2)若“x ∈P ”是“x ∈Q ”充分不必要条件,求实数a 的取值范围.29.已知p :|m -1|>a (a >0),q :方程22152x y m m +=--表示双曲线.(1)若q 是真命题,求m 的取值范围;(2)若p 是q 的充分不必要条件,求a 的取值范围30.已知集合{}|13A x x =<<,集合{}|21B x m x m =<<-. (1)当1m =-时,求A B ;(2)若B A ⊆,求实数m 的取值范围;【参考答案】一、单选题 1.A 【解析】 【分析】根据补集的概念求出UA ,再根据并集运算即可求出结果.【详解】 由题意可知{}2,4UA =,又{}4B =,所以(){}2,4U A B =.故选:A. 2.B 【解析】 【分析】对于集合N ,元素x 对应的是一元二次方程的解,根据判别式得出必有两个不相等的实数根,又根据韦达定理以及N M ⊆,可确定出其中的元素,进而求解. 【详解】对于集合N ,因为280a ∆=+>, 所以N 中有两个元素,且乘积为-2, 又因为N M ⊆,所以{}2,1N =-, 所以211a -=-+=-.即a =1. 故选:B. 3.C 【解析】 【分析】根据题意,列举出符合题意的集合.【详解】因为全集{}{}1,2,3,,2,3U A U B =⊆=,若A B ⋂≠∅,且A B ⊆/, 所以{}1,2,3A =或{}1,2A =或{}1,3A =. 故选:C 4.D 【解析】 【分析】 由集合的性质可知a b ,22a a b b ⎧=⎨=⎩或22a b b a ⎧=⎨=⎩,且0ab ≠,进而求解即可. 【详解】由题意,22a a b b ⎧=⎨=⎩或22a b b a ⎧=⎨=⎩, 因为0ab ≠,解得1212a b ⎧=-⎪⎪⎨⎪=-⎪⎩或1212b a ⎧=-⎪⎪⎨⎪=-⎪⎩, 所以1a b +=-, 故选:D. 5.D 【解析】 【分析】求出集合M 中的元素,再由子集的定义求解. 【详解】由题意{|04}{1,2,3}M x Z x =∈<<=, 因此其真子集个数为3217-=. 故选:D . 6.D 【解析】 【分析】求解分式不等式的解集,再由补集的定义求解出A R,再由交集的定义去求解得答案.【详解】1015x x x ->⇒<-或5x >,所以{}15A x x =≤≤R , 所以得(){}13A B x x ⋂=≤≤R . 故选:D 7.D 【解析】 【分析】解一元一次不等式求集合M ,求一次函数值域求集合N ,再应用集合的交运算求M N ⋂. 【详解】由题设,{|1}M x x =<,{|1}N y y =>-, 所以(1,1)M N =-.故选:D 8.A 【解析】 【分析】先解出集合,A B ,再结合A B ⊆得到关于m 的不等式,求解即可. 【详解】因为{}34,,2m A xx B x A B ⎧⎫==>-⊆⎨⎬⎩⎭∣,所以32m -<,解得6m >-. 故选:A. 9.D 【解析】 【分析】解不等式化简集合A ,B ,再利用交集的定义直接求解作答. 【详解】不等式260x x --+>化为:260x x +-<,解得:32x -<<,则(3,2)A =-, 不等式513x ≤--,即203x x +≤-,整理得:(2)(3)030x x x +-≤⎧⎨-≠⎩,解得23x -≤<,则[2,3)B =-, 所以[2,2)A B ⋂=-. 故选:D 10.D 【解析】 【分析】根据Venn 图,明确阴影部分表示的集合的含义,即可求得答案. 【详解】由题意,可知Venn 图中阴影部分表示的集合是(){1,0,1}U M N =- ,故选:D 11.C 【解析】 【分析】结合元素与集合的关系得到220a +≤,解不等式即可求出结果. 【详解】由题意可得220a +≤,解得4a ≤-, 故选:C 12.B【解析】 【分析】根据集合补集的概念及运算,即可求解. 【详解】由题意,全集{}U 1,0,1,3,6=-,且{}0,6A =, 根据集合补集的概念及运算,可得{}U1,1,3A =-.故选:B. 13.A 【解析】 【分析】依据交集定义去求A B 即可. 【详解】{}{}2|560=2,3B x x x =-+=则{}{}{}2,32,32,3A B ⋂=⋂=, 故选:A . 14.C 【解析】 【分析】求函数的值域求得集合A ,求函数的定义域求得集合B ,由此对选项进行分析,从而确定正确答案. 【详解】112,011,122x x x -≤≤≤-≤≤≤,所以[]1,2A =,20,2x x -><,所以(),2B =-∞. ∵2A ∈,2B ∈/,故A 错,B 错; ∵R2A ∈/,2B ∈/,∴()R 2A B ∈/,D 错.(],2A B ⋃=-∞,C 正确.故选:C 15.D 【解析】 【分析】先求出集合{}|02A x x =<<,再按照集合间的基本关系和运算判断即可. 【详解】{}|02A x x =<<,{}|02A B x x ⋂=<<,A 错误;{|A x x B =<,B 错误;A B ⊆,C 错误,D 正确.故选:D.二、填空题16.0或12-##12-或0【解析】 【分析】由题,先求出}{20x x -=所代表集合,再分别讨论{}10x ax +=作为子集的可能情况即可. 【详解】由}{20x x -=得集合为{}2,故{}10x ax +=为空集或{}2,当{}10x ax +=为{}2时,可得12a =-;当{}10x ax +=为空集时,可得0a =, 故答案为:0或12-17.3【解析】 【分析】由题意可知集合B 是集合A 的子集,进而求出答案. 【详解】由B A ⊆知集合B 是集合A 的子集, 所以33A a ∈⇒=, 故答案为:3.18.[)3,+∞【解析】 【分析】根据A B ⊆列出不等式即可求解. 【详解】因为{}13A x x =<<,{}B x x a =<,A B ⊆,故只需3a ≥即可满足题意. 故答案为:[)3,+∞.19.{}0【解析】 【分析】根据图像求出g (x )的解析式,再求出f (x )解析式,求出A 集合,根据集合交集运算法则计算即可. 【详解】由图可知()g x 周期52=1212T πππ⎛⎫=⨯+⎪⎝⎭,∴22T πω==.由212πg ⎛⎫-= ⎪⎝⎭得22122k ππϕπ⎛⎫⨯-+=+ ⎪⎝⎭,∴223k πϕπ=+,k ∈Z ,∵0ϕπ<<,∴k 取0,23ϕπ=, ∴()22sin 23g x x π⎛⎫=+⎪⎝⎭, ∴()22sin 22sin 2633f x x x πππ⎡⎤⎛⎫⎛⎫=-+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, ∴35352sin 22sin 611212363f ππππππ⎛⎫⎛⎫⎛⎫=⨯+=-+=⎪ ⎪⎪⎝⎭⎝⎭⎝⎭. ∴()35150sin 22221232636f x f x k x k πππππππ⎛⎫⎛⎫-≥⇔+≥⇔+≤+≤+⎪ ⎪⎝⎭⎝⎭,k ∈Z , ∴,124A x k x k k ππππ⎧⎫=-≤≤+∈⎨⎬⎩⎭Z ,∴{}0A B ⋂=.故答案为:{}0﹒20.[4,)+∞【解析】 【分析】结合指数不等式化简集合A ,由A B A A B ⋂=⇒⊆,建立不等式即可求解a 的取值范围. 【详解】1212312228x x --->⇒>,即123x ->-,解得2x <,故{}|2A x x =<,|2a B x x ⎧⎫=<⎨⎬⎩⎭,由A B A A B ⋂=⇒⊆,即22a≤,4a ≥. 故答案为:[4,)+∞ 21.35,88⎡⎤⎢⎥⎣⎦【解析】 【分析】由题意,()f x 的值域为()g x 的值域子集,先求得两个函数的值域,再利用包含关系求得a 的取值范围. 【详解】 因为()()294sin32311644x x xf x π-⋅+-+==, 又当[]30,log 2x ∈时,0311x ≤-≤,()f x 的值域为11,42⎡⎤⎢⎥⎣⎦.因为0a >,所以()g x 在[]1,2上单调递增,其值域为[]21,41a a --. 依题意得[]11,21,4142a a ⎡⎤⊆--⎢⎥⎣⎦,则12141412a a ⎧-≤⎪⎪⎨⎪-≥⎪⎩,解得3588a ≤≤.故答案为:35,88⎡⎤⎢⎥⎣⎦22.4-【解析】 【分析】结合元素与集合的关系,利用集合的互异性分类讨论即可求解. 【详解】若13a -=,则4a =,此时,2113a a -=-,不合题意,舍去; 若2133a -=,则4a =-或4a =,因为4a =不合题意,舍去. 故4a =-. 故答案为:4-. 23. 假 假 假 真 【解析】 【分析】(1)利用真子集的定义即可判断. (2)由集合与集合的关系即可判断真假. (3)由元素与集合的关系即可判断真假.(4)由真子集的定义即可找到满足条件集合A 的个数. 【详解】(1)因为{}1,2,3的真子集有{}{}{}{}{}{},1,2,3,1,2,1,3,2,3∅,所以{}1,2,3不是{}1,2,3真子集,命题为假命题.(2){}1是集合,因此不是{}1,2,3的元素,命题为假命题. (3)因为2是元素,因此不是{}1,2,3的子集,命题为假命题. (4)若{}0A ,所以集合A 中至少含有两个元素且其中一个必须为0,又因为{}0,1,2,3A,所以集合A 可以从1,2,3中再选取一个元素、或者两个元素,所以满足条件的集合A 把∅和{}0,1,2,3去掉,所以满足条件集合A 的个数为322-个,命题为真命题.故答案为:假;假;假;真24.{}3【解析】 【分析】由交集、补集的定义计算. 【详解】由题意{4,3}M =,所以M N ⋂={3}. 故答案为:{3}. 25. ∉, ∈, ∈ ∈ 【解析】 【分析】(1)利用元素与集合的关系判断.(2)利用元素与集合的关系判断.(3)利用元素与集合的关系判断.(4)利用元素与集合的关系判断.【详解】 解:34∉N ; 4-∈Z ;13∈Q ; 2π-∈R .故答案为:∉,∈,∈,∈三、解答题26.(1)[)1,1-;(2)()(),13,∞∞--⋃+; (3)()1,3,2∞∞⎛⎤-⋃+ ⎥⎝⎦. 【解析】【分析】(1)根据集合的补运算和交运算,求解即可;(2)根据题意,求解关于a 的一元二次不等式,即可求得范围;(3)根据集合之间的关系,列出不等关系,求解即可.(1)当1a =时,{|15}A x x =≤≤,{|14}B x x =-≤≤,故U ()A B {|1x x =<或{}5}|14{|11}x x x x x >⋂-≤≤=-≤<. 即U ()A B [)1,1=-.(2)若A =∅,则223a a >+,即()()310a a -+>,解得1a <-或3a >,故实数a 的取值范围为:()(),13,∞∞--⋃+.(3)若“x A ∈”是“x B ∈”的充分条件,则A B ⊆,①A =∅时,1a <-或3a >满足题意; ②A ≠∅,则13234a a -≤≤⎧⎨+≤⎩,得1-12a ≤≤ 综上所述,实数a 的取值范围为()1,3,2∞∞⎛⎤-⋃+ ⎥⎝⎦. 27.(1)(2,)+∞(2)[0,2)【解析】【分析】(1)由题意可得A ⫋B ,所以0,42,a a>⎧⎪⎨<⎪⎩从而可求出实数a 的取值范围, (2)由题意可得B ⫋A ,然后分a =0,a >0和a <0三种情况求解即可(1)设命题p :A ={x |x -2>0},即p :A ={x |x >2},命题q :B ={x |ax -4>0},因为p 是q 的充分不必要条件,所以A ⫋B ,. 即0,42,a a>⎧⎪⎨<⎪⎩解得a >2 所以实数a 的取值范围为(2,)+∞(2)由(1)得p :A ={x |x >2},q :B ={x |ax -4>0},因为p 是q 的必要不充分条件,所以B ⫋A ,①当a =0时,B =∅,满足题意;②当a >0时,由B ⫋A ,得4a .>2,即0<a <2;.③当a <0时,显然不满足题意.综合①②③得,实数a 的取值范围为[0,2)28.(1)4{|}2x x -≤<(2)2a ≤【解析】【分析】(1)将a =3代入求出集合P ,Q ,再由补集及交集的意义即可计算得解. (2)由给定条件可得P Q ,再根据集合包含关系列式计算作答.(1)因a =3,则P ={x |4≤x ≤7},则有{|4U P x x =<或7}x >,又Q ={x |-2≤x ≤5}, 所以{|24)}(U P Q x x ⋂=-≤<.(2)“x ∈P ”是“x ∈Q ”充分不必要条件,于是得P Q ,当a +1>2a +1,即a <0时,P =∅,又Q ≠∅,即∅ Q ,满足P Q ,则a <0,当P ≠∅时,则有12112215a a a a +≤+⎧⎪+≥-⎨⎪+<⎩或12112215a a a a +≤+⎧⎪+>-⎨⎪+≤⎩,解得02a ≤<或02a ≤≤,即02a ≤≤,综上得:2a ≤,所以实数a 的取值范围是2a ≤.29.(1)(-∞,2)(5⋃,)∞+;(2)[4,)∞+.【解析】【分析】(1)解不等式(5)(2)0m m --<即得解;(2)由题意可得:1p m a >+或1m a <-+,解不等式组12150a a a -+⎧⎪+⎨⎪>⎩即得解. (1)解:由题意可得(5)(2)0m m --<,解得2m <或5m >.故m 的取值范围为(-∞,2)(5⋃,)∞+.(2)解:由题意可得:1p m a >+或1m a <-+.因为p 是q 的充分不必要条件,所以(-∞,1)(1a a -++⋃,)(+∞-∞,2)(5⋃,)∞+.所以12150a a a -+⎧⎪+⎨⎪>⎩,解得4a . 故a 的取值范围为[4,)∞+.30.(1){}23x x -<< (2)1,3⎡⎫+∞⎪⎢⎣⎭【解析】【分析】(1)先分别求出,A B ,然后根据集合的并集的概念求解出A B 的结果;(2)根据B A ⊆,进而先讨论B =∅的情况,再讨论B ≠∅的情况,进而得答案;(1)解:当1m =-时,{}22B x x =-<<, ∴{}23A B x x ⋃=-<<;(2)解:因为B A ⊆,所以,当B =∅时, 21m m ,解得13m ≥,满足B A ⊆; 当B ≠∅时,若满足B A ⊆,则212113m m m m <-⎧⎪≥⎨⎪-≤⎩,该不等式无解;综上,若B A ⊆,实数m 的取值范围是1,3⎡⎫+∞⎪⎢⎣⎭。
高一数学必修一第一节 集合[知识要点]一、集合的含义及其表示1、一般地,一定范围内某些确定的、不同的对象的全体构成一个集合。
集合中的每一个对象称为该集合的元素。
集合的性质:(1)确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于。
班级中成绩好的同学构成一个集合吗(2)无序性:一个给定集合中的元素是唯一的,不可重复的。
班级位置调换一下,这个集合发生变化了吗(3)互异性:集合中元素的位置是可以改变的,并且改变位置不影响集合。
集合中任意两个元素是不相同的。
如:已知集合A ={1,2,a},则a 应满足什么条件常用数集及记法(1)自然数集:记作N (2)正整数集:记作*N N 或(3)整数集:记作Z (4)有理数集:记作Q 例如根号2(5)实数集:记作R例:下列各种说法中,各自所表述的对象是否确定,为什么(1)我们班的全体学生;(2)我们班的高个子学生;(3)地球上的四大洋;(4)方程x 2-1=0的解;(5)不等式2x -3>0的解;(6)直角三角形;2、集合的表示法(1)列举法:把集合中的元素列举在一个大括号里:{…}(2)描述法:将集合的所有元素都具有的 性质(满足的条件)表示出来,写成{x| P (x )}的形式。
如:{x ︱x 为中国的直辖市}(3)集合的分类:有限集与无限集<1>有限集:含有有限个元素的集合。
<2>无限集:若一个集合不是有限集,就称此集合为无限集。
<3>空集:不含任何元素的集合。
记作Φ,如:二、子集、全集、补集1、子集的定义:如果集合A 的任一个元素都在集合B 中 则称集合A 为集合B 的子集,记作:A ⊆B B A ⊇或特别的:A A A ⊆∅⊆真子集的定义:如果A ⊆B 并且B A ≠,则称集合A 为集合B 的真子集。
2、补集的定义:设A 为S 的子集,由S 中不属于A 的所有元素组成的集合称为S 的子集A 的补集,记作:A C S ={x ∣x ∈S 且x ∉A},如果集合S 包含我们所要研究的各个集合,就把S 称为全集。
高一数学集合练习题含答案一、单选题1.已知{}{||2},0A x Z xB x x N x =∈<=∈>∣∣∣,则A B =( ) A .{1} B .{0,1}C .{0,1,2}D .∅2.已知集合{}24A x N x =∈≤,{}1,B a =,B A ⊆,则实数a 的取值集合为( ) A .{}0,1,2 B .{}1,2 C .{}0,2 D .{}23.已知集合(){}ln 2M x y x ==-,{}e x N y y ==,则M N =( )A .()0,∞+B .()2,+∞C .()0,2D .[)2,+∞ 4.设集合{}1,0,2,3A =-,139x B x ⎧⎫⎪⎪⎛⎫=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则A B =( ) A .{}2,3 B .{}0,2 C .{}0,2,3 D .{}1,0,2,3- 5.已知集合{}15A x N x ∈≤≤,{}05B x x =<<,则A B ⋃=( )A .{}2,3,4B .{}1,2,3,4C .{}15x x ≤≤D .{}05x x <≤6.已知集合{}{}2230,1A x x x B x x =--<=≤,则R ()A B ⋂=( )A .(,1][1,)∞∞--⋃+B .(,1](1,)-∞-⋃+∞C .(]1,1-D .[1,1)-7.设集合{}|3,A x x x R =<∈,{}1,2,3B =,则A B =( )A .{}1B .{}1,2,3C .{}1,2D .{}1,0,1- 8.已知全集{0,1,2,3,4,5}U =,集合{1,2,3}A =,{2,3,4}B =,则()U A B =( ) A .{1} B .{4} C .{0,5} D .{0,1,4,5}9.已知集合{}220A x x x =-≤,{}0,1B =,则A B =( ) A .[]0,1 B .{}0,1 C .[]0,2 D .{}0,1,210.已知集合{}{}22540,7100A x x x B x x x =-+<=-+<,则A B ⋃=( ) A .()1,2 B .()1,5 C .()2,4 D .()4,5 11.设集合{}1,2,3M =,{|21,}.N y y x x M ==-∈下列表示正确是( ) A .{}1,2N ⊆, B .{}2M ⊇ C .M N ⋃ {}1,2,3,5 D .{}1,3M N ⋂= 12.集合M ={x |x =i n +1,n ∈N}(i 为虚数单位)的真子集的个数是( )A .1B .15C .3D .1613.已知集合{}2,3,4,5A =,{}1,B a =,若{}5A B =,则=a ( )A .2B .3C .4D .514.已知集合1144A x x ⎧⎫=-<⎨⎬⎩⎭,12B x a x ⎧⎫=<<⎨⎬⎩⎭,若B A ⊆,则实数a 的取值范围是( )A .10,2⎛⎫ ⎪⎝⎭B .10,2⎛⎤ ⎥⎝⎦C .[)0,∞+D .[)1,+∞15.已知集合{}2230A x x x =--≤,{}22B x x =-≤<,则A B ⋃=( ) A .{}12x x -≤< B .{}12x x -≤≤ C .{}22x x -<< D .{}23x x -≤≤二、填空题16.集合A =[1,6],B ={x |y ,若A ⊆B ,则实数a 的范围是________________.17.将集合{220s t A t s =-≤<且,}s t Z ∈中所有的元素从小到大排列得到的数列记为{}n a ,则50a =___________(填数值).18.若对任意的x A ∈,有1A x ∈,则称A 是“伙伴关系集合”,则集合11,01,22M ⎧⎫=⎨⎬⎩⎭-,,的所有非空子集中,具有伙伴关系的集合的个数为________.19.已知集合{}{}0,1,2,1P Q xx ==∣,则P Q 的非空真子集的个数为__________. 20.已知(],0A =-∞,[),B a =+∞,且A B R =,则实数a 的取值范围为______.21.已知函数()f x 满足()()2f x f x =-,当1≥x 时,()22f x x =-,若不等式()22f x a ->-的解集是集合{}13x x <<的子集,则a 的取值范围是______.22.若集合{}3cos23,x A x x x R π==∈,{}21,B y y y R ==∈,则A B ⋂=_______. 23.已知集合{}2320A xx x =-+=∣,{06,}B x x x N =<<∈∣,则满足条件A ⊂C B ⊆的集合C 的个数为_________个24.若a ∈R ,集合A ={1,a ,a +2},B ={1,3,5},且A =B ,则a =___________.25.已知集合{}{}2560,A x x x B x x x =--<==-,则A B =__________. 三、解答题26.已知集合A ={x |24x >},B ={x ||x -a |<2},其中a >0且a ≠1.(1)当a =2时,求A ∪B 及A ∩B ;(2)若集合C ={x |log ax <0}且C ⊆B ,求a 的取值范围.27.已知{|S x x =是小于9的正整数},{}4,5,6,7A =,{}3,5,7,8B =,求(1)A B(2)A B(3)()S C A B28.设全集U =R ,集合{}14A x x =-<≤,{}2log 1B x x =>(1)求()U A B ;(2)若集合{}123C x a x a =-<<+,满足B C B ⋃=,求实数a 的取值范围.29.已知集合{}|33A x a x a =-≤≤+,{}2|40B x x x =-≥. (1)当2a =时,求A B ,A B ;(2)若0a >,且“x A ∈”是“R x B ∈”的充分不必要条件,求实数a 的取值范围.30.已知集合{|211},{|01}A x a x a B x x =-<<+=≤≤.(1)在①1a =-,②0a =,③1a =这三个条件中选择一个条件,求A B ;(2)若R ()A B A ⋂=,求实数a 的取值范围.【参考答案】一、单选题1.A【解析】【分析】首先列举表示集合A ,再求A B .【详解】由条件可知{}1,0,1A =-,{}0B x x N x =∈>,所以{}1A B ⋂=.故选:A2.C【解析】【分析】化简集合A ,根据B A ⊆求实数a 的可能取值,由此可得结果.【详解】 因为集合{}24A x N x =∈≤化简可得{0,1,2}A = 又{}1,B a =,B A ⊆,所以0a =或2a =,故实数a 的取值集合为{0,2},故选:C.3.B【解析】【分析】首先根据指数函数、对数函数的性质求出集合N 、M ,再根据交集的定义计算可得;【详解】解:因为(){}{}ln 22M x y x x x ==-=>,{}{}e 0x N y y y y ===>, 所以{}|2M N x x ⋂=>;故选:B4.C【解析】【分析】先解指数不等式得集合B ,然后由交集定义可得.【详解】 由2139x x -=⎛⎪3⎫ ⎭<⎝,得12x >-,所以12B x x ⎧⎫=>-⎨⎬⎩⎭,所以{}0,2,3A B =. 故选:C .5.D【解析】【分析】理解集合的含义,由并集的概念运算【详解】{}15A x N x ∈≤≤,{}05B x x =<<,则A B ⋃={}05x x <≤故选:D6.B【解析】【分析】解一元二次不等式求集合A 、解绝对值不等式求集合B ,再应用集合的交补运算求R ()A B .【详解】由题设,{|13},{|11}A x x B x x =-<<=-≤≤,所以1{|1}A B x x =-<≤,则R (){|1A B x x ⋂=≤-或1}x >. 故选:B7.C【解析】【分析】求出集合A 的解集,取交集运算即可.【详解】因为{}|33A x x =-<<,{}1,2,3B =,所以{}1,2A B =.故选:C.8.B【解析】【分析】由补集、交集的概念运算【详解】{0,4,5}U A =,则(){4}U A B ⋂=.故选:B9.B【解析】【分析】先求出集合A ,再根据交集运算求出A B 即可.【详解】 由题意知:{}02A x x =≤≤,又{}0,1B =,故A B ={}0,1.故选:B.10.B【解析】【分析】先求出集合,A B ,再求A B 即可.【详解】{}{}14,25A x x B x x =<<=<<,故A B ⋃=()1,5.故选:B.11.D【解析】【分析】根据题意求得集合N ,结合集合的交运算和并运算,以及集合之间的包含关系,即可判断和选择.【详解】因为{}1,2,3M =,{}{}|21,1,3,5N y y x x M ==-∈=,则{}{}1,3,1,2,3,5M N M N ⋂=⋃=, 对A :因为{}1,2不是N 的子集,故A 错误;对B :因为{}1,2,3不是{}2的子集,故B 错误;对C :{}1,2,3,5M N ⋃=是{}1,2,3,5的非真子集,故C 错误;对D :{}1,3M N ⋂=.故D 正确.故选:D .12.B【解析】【分析】先根据虚数单位i 的性质确定集合M 的元素个数,再由n 元集合的真子集个数为21n -可得.【详解】当n ∈N 时,x =i n +1的值只有i ,-i ,1,-1,故M 中有4个元素,所以M 共有24-1=15个真子集.故选:B13.D【解析】【分析】根据集合的交运算结果,即可求得参数值.【详解】因为{}5A B =,故可得{}51,a ∈,则5a =.故选:D.14.C【解析】【分析】解不等式求得集合A ,对a 进行分类讨论,根据B 是A 的子集列不等式,从而求得a 的取值范围.【详解】1111111,,0,0,4444422x x x A ⎛⎫-<-<-<<<= ⎪⎝⎭, 当12a ≥时,B =∅,满足B A ⊆. 当12a <时,由于B A ⊆,所以102a ≤<. 综上所述,a 的取值范围是[)0,∞+.故选:C15.D【解析】【分析】先解一元二次不等式求出集合A ,再按集合的并集运算即可.【详解】 由题意得{}13A x x =-≤≤,因为{}22B x x =-≤<,所以{}23A B x x ⋃=-≤≤. 故选:D.二、填空题16.(,1]-∞【解析】【分析】先求出集合B ,再由A ⊆B ,可求出实数a 的范围【详解】由0x a -≥,得x a ≥,所以[,)B a =+∞,因为A =[1,6],且A ⊆B ,所以1a ≤,所以实数a 的范围是(,1]-∞,故答案为:(,1]-∞17.992【解析】【分析】列举数列的前几项,观察特征,可得出50a .【详解】由题意得10212032313012345622,22,22,22,22,22,,a a a a a a =-=-=-=-=-=-观察规律可得22s t -中,以2s 为被减数的项共有s 个,因为123945++++=,所以50a 是1022t -中的第5项,所以1055022992a =-=.故答案为:992.18.7【解析】【分析】在集合M 的子集中列举出满足“伙伴关系集合”的集合,从而可得结果.【详解】因为x A ∈,则1A x ∈,就称A 是伙伴关系集合,集合11,0,,1,22M ⎧⎫=-⎨⎬⎩⎭,所以具有伙伴关系的集合有{}{}{}11111,1,,2,1,1,1,,2,1,,2,1,1,,22222⎧⎫⎧⎫⎧⎫⎧⎫----⎨⎬⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭⎩⎭共7个. 故答案为:719.2【解析】【分析】先求P Q 后再计算即可.【详解】{}1,2,P Q P Q ⋂=∴⋂的非空真子集的个数为2222-=.故答案为:220.0a ≤【解析】【分析】根据并集的运算结果列出不等式,即可得解.【详解】解:因为A B R =,所以0a ≤.故答案为:0a ≤.21.24a ≤≤【解析】【分析】先由已知条件判断出函数()f x 的单调性,再把不等式()22f x a ->-转化为整式不等式,再利用子集的要求即可求得a 的取值范围.【详解】由()()2f x f x =-可知,()f x 关于1x =对称,又()22f =-,当1≥x 时,()22f x x =-单调递减,故不等式()22f x a ->-等价于211x a --<,即122a a x <<+, 因为不等式解集是集合{}13x x <<的子集, 所以12132a a ⎧≥⎪⎪⎨⎪+≤⎪⎩,解得24a ≤≤. 故答案为:24a ≤≤22.{}1【解析】【分析】易知{}1,1B =-,分别验证1,1-和集合A 的关系即可得结果.【详解】 因为{}{}21,1,1B y y y R ==∈=-,13cos 23π=,()13cos 23π--≠,即1A ∈,1A -∉,所以{}1A B ⋂=,故答案为:{}1.23.7【解析】【分析】化简集合A ,B ,根据条件A C B ⊂⊆确定集合C 的个数即可.【详解】因为{}2320{1,2}A x x x =-+==∣,{06,}{1,2,3,4,5}B x x x N =<<∈=∣,因为A C B ⊂⊆,所以1,2都是集合C 的元素,集合C 中的元素还可以有3,4,5,且至少有一个,所以集合C 为:{1,2,3},{1,2,4},{1,2,5},{1,2,3,4},{1,2,3,5},{1,2,4,5},{1,2,3,4,5},共7个.故答案为:724.3【解析】【分析】根据集合相等的概念得到方程组,解之即可求出结果.【详解】∵A B =,∴325a a =⎧⎨+=⎩,解得3a =,或523a a =⎧⎨+=⎩,无解所以3a =.故答案为:3.25.{}|10x x -<≤【解析】【分析】求出集合A ,B ,依据交集的定义求出A B .【详解】 集合{}2560{|16}A x x x x x =--<=-<<,{}{}|0B x x x x x ==-=≤,{}|10A B x x ∴=-<≤.故答案为:{}|10x x -<≤.三、解答题26.(1)A ∪B ={x |x >0},A ∩B ={x |2<x <4};(2){a |1<a ≤2},【解析】【分析】(1)化简集合A ,B ,利用并集及交集的概念运算即得; (2)分a >1,0<a <1讨论,利用条件列出不等式即得.(1)∵A ={x |2x >4}={x |x >2},B ={x ||x -a |<2}={x |a -2<x <a +2}, ∴当a =2时,B ={x |0<x <4},所以A ∪B ={x | x >0},A ∩B ={x |2<x <4};(2)当a >1时,C ={x |log ax <0}={x |0<x <1},因为C ⊆B ,所以2021a a -≤⎧⎨+≥⎩,解得-1≤ a ≤2, 因为a >1,此时1<a ≤2,当0<a <1时,C ={x |log ax <0}={x |x >1},此时不满足C ⊆B , 综上,a 的取值范围为{a |1<a ≤2}.27.(1){}5,7A B =(2){}3,4,5,6,7,8A B =(3)(){}1,2,3,5,7,8S C A B =【解析】【分析】(1)根据交集概念求解即可.(2)根据并集概念求解即可.(3)根据补集和并集概念求解即可.(1){}4,5,6,7A =,{}3,5,7,8B =,{}5,7A B =.(2){}4,5,6,7A =,{}3,5,7,8B =,{}3,4,5,6,7,8A B =.(3){}1,2,3,4,5,6,7,8S =,{}1,2,3,8S C A =,{}3,5,7,8B =, (){}1,2,3,5,7,8S C A B =.28.(1)(4,)(,2]+∞-∞;(2)[3,)(,4]+∞-∞-.【解析】【分析】(1)利用对数函数的单调性化简集合B ,根据集合交集和补集的定义进行求解即可; (2)根据集合并集的运算性质进行求解即可.(1) 因为{}{}2log 12B x x x x =>=>,所以(2,4]A B ⋂=,因此()(4,)(,2]U A B =+∞-∞;(2)因为B C B ⋃=,所以C B ⊆,当123a a -≥+时,即4a ≤-时,C =∅,符合C B ⊆; 当123a a -<+时,即4a >-时,要想C B ⊆,只需:123a a -≥⇒≥,因为4a >-,所以3a ≥, 综上所述:实数a 的取值范围为:[3,)(,4]+∞-∞-. 29.(1){|45}A B x x ⋂=,{|0A B x x ⋃=或1}x ;(2)(0,1).【解析】【分析】(1)当2a =时,求出集合A ,B ,由此能求出A B ,A B ; (2)推导出0a >,R A B 是的真子集,求出{|04}R B x x =<<,A ≠∅,列出不等式组,能求出实数a 的取值范围.(1)2{|40}{|0B x x x x x =-=或4}x , 当2a =时,{|15}A x x =,{|45}A B x x ∴⋂=,{|0A B x x ⋃=或1}x ;(2)若0a >,且“x A ∈”是“R x B ∈”的充分不必要条件, 0a ∴>,R A B 是的真子集,{|04}R B x x =<<,A ≠∅,∴3034a a ->⎧⎨+<⎩,解得01a <<. ∴实数a 的取值范围是(0,1).30.(1)答案见解析(2)11a a ≤-≥或【解析】【分析】(1)分别对a 赋值,利用集合的并集进行求解; (2)先根据题意得到R A B ⊆,再利用集合间的包含关系进行求解,要注意A =∅的情形.(1)解:若选择①:当1a =-时,(3,0)A =-, 因为[0,1]B =,所以(]3,1A B ⋃=-. 若选择②:当0a =时,(1,1)A =-, 因为[0,1]B =,所以(1,1]A B ⋃=-. 若选择③:当1a =时,(1,2)A =, 因为[0,1]B =,所以[)0,2A B ⋃=.(2)解:因为[0,1]B =,所以R (,0)(1,)B =-∞+∞.因为R ()A B A ⋂=,所以R A B ⊆, 当A =∅时,2112a a a -≥+≥,即;当A ≠∅时,2210211a a a a <<⎧⎧⎨⎨+≤-≥⎩⎩或, 即112a a ≤-≤<或;综上,11a a ≤-≥或.。
1.已知A={x|3-3x>0},则下列各式正确的是() A.3∈A B.1∈AC.0∈A D.-1∉A【解析】集合A表示不等式3-3x>0的解集.显然3,1不满足不等式,而0,-1满足不等式,故选C.【答案】 C2.下列四个集合中,不同于另外三个的是()A.{y|y=2} B.{x=2}C.{2} D.{x|x2-4x+4=0}【解析】{x=2}表示的是由一个等式组成的集合.故选B.【答案】 B3.下列关系中,正确的个数为________.①12∈R;②2∉Q;③|-3|∉N*;④|-3|∈Q.【解析】本题考查常用数集及元素与集合的关系.显然12∈R,①正确;2∉Q,②正确;|-3|=3∈N*,|-3|=3∉Q,③、④不正确.【答案】 24.已知集合A={1,x,x2-x},B={1,2,x},若集合A与集合B相等,求x的值.同一个集合【解析】因为集合A与集合B相等,两者所含的元素必定完全相同,观察各自的元素,相同的元素有1,x,还剩下集合A的元素“x2-x”与集合B的元素“2”,如果A与B相同,那么“x2-x”与“2”一定相等,所以x2-x=2.∴x=2或x=-1.当x=2时,与集合元素的互异性矛盾.当x=-1时,符合题意.∴x=-1.一、选择题(每小题5分,共20分)1.下列命题中正确的()①0与{0}表示同一个集合;②由1,2,3组成的集合可表示为{1,2,3}或{3,2,1};③方程(x-1)2(x-2)=0的所有解的集合可表示为{1,1,2};④集合{x|4<x<5}可以用列举法表示.A.只有①和④B.只有②和③C.只有②D.以上语句都不对【解析】{0}表示元素为0的集合,而0只表示一个元素,故①错误;②符合集合中元素的无序性,正确;③不符合集合中元素的互异性,错误;④中元素有无穷多个,不能一一列举,故不能用列举法表示.故选C.【答案】 C2.用列举法表示集合{x|x2-2x+1=0}为()A.{1,1} B.{1}C.{x=1} D.{x2-2x+1=0}【解析】集合{x|x2-2x+1=0}实质是方程x2-2x+1=0的解集,此方程有两相等实根,为1,故可表示为{1}.故选B.【答案】 B3.已知集合A={x∈N*|-5≤x≤5},则必有()A.-1∈A B.0∈AC.3∈A D.1∈A【解析】∵x∈N*,-5≤x≤5,∴x=1,2,即A={1,2},∴1∈A.故选D.【答案】 D4.定义集合运算:A*B={z|z=xy,x∈A,y∈B}.设A={1,2},B={0,2},则集合A*B的所有元素之和为()A.0 B.2C.3 D.6【解析】依题意,A*B={0,2,4},其所有元素之和为6,故选D.【答案】 D二、填空题(每小题5分,共10分)5.已知集合A={1,a2},实数a不能取的值的集合是________.【解析】由互异性知a2≠1,即a≠±1,故实数a不能取的值的集合是{1,-1}.【答案】{1,-1}6.已知P={x|2<x<a,x∈N},已知集合P中恰有3个元素,则整数a=________.【解析】用数轴分析可知a=6时,集合P中恰有3个元素3,4,5.【答案】 6三、解答题(每小题10分,共20分)7.选择适当的方法表示下列集合集.(1)由方程x(x2-2x-3)=0的所有实数根组成的集合;(2)大于2且小于6的有理数;(3)由直线y=-x+4上的横坐标和纵坐标都是自然数的点组成的集合.【解析】(1)方程的实数根为-1,0,3,故可以用列举法表示为{-1,0,3},当然也可以用描述法表示为{x|x(x2-2x-3)=0},有限集.(2)由于大于2且小于6的有理数有无数个,故不能用列举法表示该集合,但可以用描述法表示该集合为{x∈Q|2<x<6},无限集.(3)用描述法表示该集合为M={(x,y)|y=-x+4,x∈N,y∈N}或用列举法表示该集合为{(0,4),(1,3),(2,2),(3,1),(4,0)}.8.设A表示集合{a2+2a-3,2,3},B表示集合{2,|a+3|},已知5∈A且5∉B,求a的值.【解析】 因为5∈A ,所以a 2+2a -3=5,解得a =2或a =-4.当a =2时,|a +3|=5,不符合题意,应舍去.当a =-4时,|a +3|=1,符合题意,所以a =-4.9.(10分)已知集合A ={x|ax 2-3x -4=0,x ∈R }.(1)若A 中有两个元素,求实数a 的取值范围;(2)若A 中至多有一个元素,求实数a 的取值范围.【解析】 (1)∵A 中有两个元素,∴方程ax 2-3x -4=0有两个不等的实数根,∴⎩⎪⎨⎪⎧a ≠0,Δ=9+16a >0,即a >-916.∴a >-916,且a ≠0. (2)当a =0时,A ={-43};当a ≠0时,若关于x 的方程ax 2-3x -4=0有两个相等的实数根,Δ=9+16a =0,即a =-916;若关于x 的方程无实数根,则Δ=9+16a <0,即a <-916; 故所求的a 的取值范围是a ≤-916或a =0.1.设集合A ={x|2≤x <4},B ={x|3x -7≥8-2x},则A ∪B 等于( )A .{x|x ≥3}B .{x|x ≥2}C .{x|2≤x <3}D .{x|x ≥4}【解析】 B ={x|x ≥3}.画数轴(如下图所示)可知选B.【答案】 B2.已知集合A ={1,3,5,7,9},B ={0,3,6,9,12},则A ∩B =( )A .{3,5}B .{3,6}C .{3,7}D .{3,9}【解析】 A ={1,3,5,7,9},B ={0,3,6,9,12},A 和B 中有相同的元素3,9,∴A ∩B ={3,9}.故选D.3.50名学生参加甲、乙两项体育活动,每人至少参加了一项,参加甲项的学生有30名,参加乙项的学生有25名,则仅参加了一项活动的学生人数为________.【解析】设两项都参加的有x 人,则只参加甲项的有(30-x)人,只参加乙项的有(25-x)人.(30-x)+x+(25-x)=50,∴x=5. ∴只参加甲项的有25人,只参加乙项的有20人,∴仅参加一项的有45人.【答案】 454.已知集合A ={-4,2a -1,a 2},B ={a -5,1-a,9},若A ∩B ={9},求a 的值.【解析】 ∵A ∩B ={9},∴9∈A ,∴2a -1=9或a 2=9,∴a =5或a =±3.当a =5时,A ={-4,9,25},B ={0,-4,9}.此时A ∩B ={-4,9}≠{9}.故a =5舍去.当a =3时,B ={-2,-2,9},不符合要求,舍去.经检验可知a =-3符合题意.一、选择题(每小题5分,共20分)1.集合A ={0,2,a},B ={1,a 2}.若A ∪B ={0,1,2,4,16},则a 的值为( )A .0B .1C .2D .4【解析】 ∵A ∪B ={0,1,2,a ,a 2},又A ∪B ={0,1,2,4,16},∴{a ,a 2}={4,16},∴a =4,故选D.【答案】 D2.设S ={x|2x +1>0},T ={x|3x -5<0},则S ∩T =( )A .ØB .{x|x<-12} C .{x|x>53} D .{x|-12<x<53} 【解析】 S ={x|2x +1>0}={x|x>-12},T ={x|3x -5<0}={x|x<53},则S ∩T ={x|-12<x<53}.故选D.3.已知集合A={x|x>0},B={x|-1≤x≤2},则A∪B=()A.{x|x≥-1} B.{x|x≤2}C.{x|0<x≤2} D.{x|-1≤x≤2}【解析】集合A、B用数轴表示如图,A∪B={x|x≥-1}.故选A.【答案】 A4.满足M⊆{a1,a2,a3,a4},且M∩{a1,a2,a3}={a1,a2}的集合M的个数是()A.1 B.2C.3 D.4【解析】集合M必须含有元素a1,a2,并且不能含有元素a3,故M={a1,a2}或M={a1,a2,a4}.故选B.【答案】 B二、填空题(每小题5分,共10分)5.已知集合A={x|x≤1},B={x|x≥a},且A∪B=R,则实数a的取值范围是________.【解析】A=(-∞,1],B=[a,+∞),要使A∪B=R,只需a≤1.【答案】a≤16.满足{1,3}∪A={1,3,5}的所有集合A的个数是________.【解析】由于{1,3}∪A={1,3,5},则A⊆{1,3,5},且A中至少有一个元素为5,从而A中其余元素可以是集合{1,3}的子集的元素,而{1,3}有4个子集,因此满足条件的A的个数是4.它们分别是{5},{1,5},{3,5},{1,3,5}.【答案】 4三、解答题(每小题10分,共20分)7.已知集合A={1,3,5},B={1,2,x2-1},若A∪B={1,2,3,5},求x及A∩B.【解析】由A∪B={1,2,3,5},B={1,2,x2-1}得x2-1=3或x2-1=5.若x2-1=3则x=±2;若x2-1=5,则x=±6;综上,x =±2或±6.当x =±2时,B ={1,2,3},此时A ∩B ={1,3};当x =±6时,B ={1,2,5},此时A ∩B ={1,5}.8.已知A ={x|2a ≤x ≤a +3},B ={x|x<-1或x>5},若A ∩B =Ø,求a 的取值范围.【解析】 由A ∩B =Ø,(1)若A =Ø,有2a>a +3,∴a>3.(2)若A ≠Ø,如图:∴ ,解得- ≤a ≤2.综上所述,a 的取值范围是{a|- ≤a ≤2或a>3}.9.(10分)某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组.已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有多少人?【解析】 设单独参加数学的同学为x 人,参加数学化学的为y 人,单独参加化学的为z 人.依题意⎩⎪⎨⎪⎧ x +y +6=26,y +4+z =13,x +y +z =21,解得⎩⎪⎨⎪⎧ x =12,y =8,z =1.∴同时参加数学化学的同学有8人,答:同时参加数学和化学小组的有8人.1.集合{a ,b}的子集有( )A .1个B .2个C .3个D .4个【解析】 集合{a ,b}的子集有Ø,{a},{b},{a ,b}共4个,故选D.【答案】 D2.下列各式中,正确的是( )A .23∈{x|x ≤3}B .23∉{x|x ≤3}C.23⊆{x|x≤3} D.{23≤3}【解析】23表示一个元素,{x|x≤3}表示一个集合,但23不在集合中,故23∉{x|x≤3},A、C 不正确,又集合{23}{x|x≤3},故D不正确.【答案】 B3.集合B={a,b,c},C={a,b,d},集合A满足A⊆B,A⊆C.则集合A的个数是________.【解析】若A=Ø,则满足A⊆B,A⊆C;若A≠Ø,由A⊆B,A⊆C知A是由属于B且属于C的元素构成,此时集合A可能为{a},{b},{a,b}.【答案】 44.已知集合A={x|1≤x<4},B={x|x<a},若A⊆B,求实数a的取值集合.【解析】将数集A表示在数轴上(如图所示),要满足A⊆B,表示数a的点必须在表示4的点处或在表示4的点的右边,所以所求a的集合为{a|a≥4}.一、选择题(每小题5分,共20分)1.集合A={x|0≤x<3且x∈Z}的真子集的个数是()A.5 B.6C.7 D.8【解析】由题意知A={0,1,2},其真子集的个数为23-1=7个,故选C.【答案】 C2.在下列各式中错误的个数是()①1∈{0,1,2};②{1}∈{0,1,2};③{0,1,2}⊆{0,1,2};④{0,1,2}={2,0,1}A.1 B.2C.3 D.4【解析】①正确;②错.因为集合与集合之间是包含关系而非属于关系;③正确;④正确.两个集合的元素完全一样.故选A.3.已知集合A ={x|-1<x<2},B ={x|0<x<1},则( )A .A>B B .C ..A ⊆B【解析】 如图所示,,由图可知,故选C.【答案】 C4.下列说法: ①空集没有子集;②任何集合至少有两个子集;③空集是任何集合的真子集;④若,则A ≠Ø.其中正确的有( )A .0个B .1个C .2个D .3个 【解析】 ①空集是它自身的子集;②当集合为空集时说法错误;③空集不是它自身的真子集;④空集是任何非空集合的真子集.因此,①②③错,④正确.故选B.【答案】 B二、填空题(每小题5分,共10分)5.已知2-x +a =0},则实数a 的取值范围是________. 【解析】 ∵2-x +a =0},∴方程x 2-x +a =0有实根,∴Δ=(-1)2-4a ≥0,a ≤14. 【答案】 a ≤146.已知集合A ={-1,3,2m -1},集合B ={3,m 2},若B ⊆A ,则实数m =________.【解析】 ∵B ⊆A ,∴m 2=2m -1,即(m -1)2=0∴m =1,当m =1时,A ={-1,3,1},B ={3,1}满足B ⊆A.三、解答题(每小题10分,共20分)7.设集合A ={x ,y},B ={0,x 2},若A =B ,求实数x ,y.【解析】 从集合相等的概念入手,寻找元素的关系,必须注意集合中元素的互异性.因为A =B ,则x =0或y =0.(1)当x =0时,x 2=0,则B ={0,0},不满足集合中元素的互异性,故舍去.(2)当y =0时,x =x 2,解得x =0或x =1.由(1)知x =0应舍去.综上知:x =1,y =0.8.若集合M ={x|x 2+x -6=0},N ={x|(x -2)(x -a)=0},且N ⊆M ,求实数a 的值.【解析】 由x 2+x -6=0,得x =2或x =-3.因此,M ={2,-3}.若a =2,则N ={2},此时;若a =-3,则N ={2,-3},此时N =M ;若a ≠2且a ≠-3,则N ={2,a},此时N 不是M 的子集,故所求实数a 的值为2或-3.9.(10分)已知集合M ={x|x =m +16,m ∈Z },N ={x|x =n 2-13,n ∈Z },P ={x|x =p 2+16,p ∈Z },请探求集合M 、N 、P 之间的关系.【解析】 M ={x|x =m +16,m ∈Z } ={x|x =6m +16,m ∈Z }. N ={x|x =n 2-13,n ∈Z }=⎩⎨⎧⎭⎬⎫x|x =3n -26,n ∈Z P ={x|x =p 2+16,p ∈Z }由莲山课件提供/ 资源全部免费由莲山课件提供/ 资源全部免费 ={x|x =3p +16,p ∈Z }.∵3n -2=3(n -1)+1,n ∈Z .∴3n -2,3p +1都是3的整数倍加1, 从而N =P.而6m +1=3×2m +1是3的偶数倍加1, ∴=P .。
高一数学集合练习题及答案(5篇)高一数学练习题及答案篇1一、填空题.(每题有且只有一个正确答案,5分×10=50分)1、已知全集U = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 }, A= {3 ,4 ,5 }, B= {1 ,3 ,6 },那么集合 { 2 ,7 ,8}是 ( )2 . 假如集合A={x|ax2+2x+1=0}中只有一个元素,则a的值是 ( )A.0B.0 或1C.1D.不能确定3. 设集合A={x|1A.{a|a ≥2}B.{a|a≤1}C.{a|a≥1}.D.{a|a≤2}.5. 满意{1,2,3} M {1,2,3,4,5,6}的集合M的个数是 ( )A.8B.7C.6D.56. 集合A={a2,a+1,1},B={2a1,| a2 |, 3a2+4},A∩B={1},则a的值是( )A.1B.0 或1C.2D.07. 已知全集I=N,集合A={x|x=2n,n∈N},B={x|x=4n,n∈N},则 ( )A.I=A∪BB.I=( )∪BC.I=A∪( )D.I=( )∪( )8. 设集合M= ,则 ( )A.M =NB. M NC.M ND. N9 . 集合A={x|x=2n+1,n∈Z},B={y|y=4k±1,k∈Z},则A 与B的关系为 ( )A.A BB.A BC.A=BD.A≠B10.设U={1,2,3,4,5},若A∩B={2},( UA)∩B={4},( UA)∩( UB)={1,5},则以下结论正确的选项是( )A.3 A且3 BB.3 B且3∈AC.3 A且3∈BD.3∈A且3∈B二.填空题(5分×5=25分)11 .某班有同学55人,其中音乐爱好者34人,体育爱好者43人,还有4人既不爱好体育也不爱好音乐,则班级中即爱好体育又爱好音乐的有人.12. 设集合U={(x,y)|y=3x1},A={(x,y)| =3},则 A= .13. 集合M={y∣y= x2 +1,x∈ R},N={y∣ y=5 x2,x∈ R},则M∪N=_ __.14. 集合M={a| ∈N,且a∈Z},用列举法表示集合M=_15、已知集合A={1,1},B={x|mx=1},且A∪B=A,则m的值为三.解答题.10+10+10=3016. 设集合A={x, x2,y21},B={0,|x|,,y}且A=B,求x, y的值17.设集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a21=0} ,A∩B=B,求实数a的值.18. 集合A={x|x2ax+a219=0},B={x|x25x+6=0},C={x|x2+2x8=0}.?(1)若A∩B=A∪B,求a的值;(2)若A∩B,A∩C= ,求a的值.19.(本小题总分10分)已知集合A={x|x23x+2=0},B={x|x2ax+3a5=0}.若A∩B=B,求实数a的取值范围.20、已知A={x|x2+3x+2 ≥0}, B={x|mx24x+m10 ,m∈R}, 若A∩B=φ, 且A∪B=A, 求m的取值范围.21、已知集合,B={x|2参考答案C B AD C D C D C B26 {(1,2)} R {4,3,2,1} 1或1或016、x=1 y=117、解:A={0,4} 又(1)若B= ,则,(2)若B={0},把x=0代入方程得a= 当a=1时,B=(3)若B={4}时,把x=4代入得a=1或a=7.当a=1时,B={0,4}≠{4},∴a≠1.当a=7时,B={4,12}≠{4},∴a≠7.(4)若B={0,4},则a=1 ,当a=1时,B={0,4},∴a=1综上所述:a18、.解:由已知,得B={2,3},C={2,4}.(1)∵A∩B=A∪B,∴A=B于是2,3是一元二次方程x2ax+a219=0的两个根,由韦达定理知:解之得a=5.(2)由A∩B ∩ ,又A∩C= ,得3∈A,2 A,4 A,由3∈A,得323a+a219=0,解得a=5或a=2?当a=5时,A={x|x25x+6=0}={2,3},与2 A冲突;当a=2时,A={x|x2+2x15=0}={3,5},符合题意.∴a=2.19、解:A={x|x23x+2=0}={1,2},由x2ax+3a5=0,知Δ=a24(3a5)=a212a+20=(a2)(a10).(1)当2(2)当a≤2或a≥10时,Δ≥0,则B≠ .若x=1,则1a+3a5=0,得a=2,此时B={x|x22x+1=0}={1} A;若x=2,则42a+3a5=0,得a=1,此时B={2,1} A.综上所述,当2≤a10时,均有A∩B=B.20、解:由已知A={x|x2+3x+2 }得得.(1)∵A非空,∴B= ;(2)∵A={x|x }∴ 另一方面,,于是上面(2)不成立,否则,与题设冲突.由上面分析知,B= .由已知B= 结合B= ,得对一切x 恒成立,于是,有的取值范围是21、∵A={x|(x1)(x+2)≤0}={x|2≤x≤1},B={x|1∵ ,(A∪B)∪C=R,∴全集U=R。
高一数学必修一集合练习题及单元测试(含答案及解析)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高一数学必修一集合练习题及单元测试(含答案及解析))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高一数学必修一集合练习题及单元测试(含答案及解析)的全部内容。
集合练习题1.设集合A={x|2≤x<4},B={x|3x-7≥8-2x},则A∪B等于( )A.{x|x≥3}B.{x|x≥2} C.{x|2≤x<3} D.{x|x≥4}2.已知集合A={1,3,5,7,9},B={0,3,6,9,12},则A∩B=()A.{3,5} B.{3,6} C.{3,7} D.{3,9}3。
已知集合A={x|x〉0},B={x|-1≤x≤2},则A∪B=()A.{x|x≥-1} B.{x|x≤2 } C.{x|0<x≤2} D.{x|-1≤x≤2}4。
满足M⊆{,,,},且M∩{,,}={,}的集合M的个数是( )A.1 B.2 C.3 D.45.集合A={0,2,a},B={1,}.若A∪B={0,1,2,4,16},则a的值为( )A.0 B.1 C.2 D.46.设S={x|2x+1〉0},T={x|3x-5〈0},则S∩T=( )A.Ø B.{x|x<-1/2} C.{x|x〉5/3} D.{x|-1/2<x〈5/3}7.50名学生参加甲、乙两项体育活动,每人至少参加了一项,参加甲项的学生有30名,参加乙项的学生有25名,则仅参加了一项活动的学生人数为________.8.满足{1,3}∪A={1,3,5}的所有集合A的个数是________.9.已知集合A={x|x≤1},B={x|x≥a},且A∪B=R,则实数a的取值范围是________.10.已知集合A={-4,2a-1,},B={a-5,1-a,9},若A∩B={9},求a的值.11.已知集合A={1,3,5},B={1,2,-1},若A∪B={1,2,3,5},求x及A∩B。
高一数学集合练习题及答案-百度文库一、单选题1.设集合{}2|60A x x x x =--<∈Z ,,(){}2|ln 1B y y x x A ==+∈,,则集合B 中元素个数为( ) A .2 B .3 C .4 D .无数个 2.已知集合*{|15,N }A x x x =-<<∈,{|03}B x x =≤≤,则A B =( )A .[0,3]B .[1,5)-C .{1,2,3,4}D .{}1,2,33.已知{}+|17A x N x =∈-≤≤,{}|31,B x x n n N ==+∈,则A B =( ) A .{}1,4B .{}4,7C .{}1,4,7D .{}1,1,4,7-4.已知全集{}{}1,2,3,,2,3U A U B =⊆=,若A B ⋂≠∅,且A B ⊆/则集合A 有( ) A .1个B .2个C .3个D .4个5.已知集合{|1}A x x =≥-,1{|28}4x B x =≤<,则A B =( ) A .[-2,3)B .[-1,3)C .[-2,3]D .[-1,3]6.若全集U =R ,集合{}0,1,2,3,4,5,6A =,{|3}B x x =<,则图中阴影部分表示的集合为( )A .{3,4,5,6}B .{0,1,2}C .{0,1,2,3}D .{4,5,6}7.已知集合{}21A x x =<,{}02B x x =<<,则A B =( )A .1,2B .0,1C .()0,2D .1,28.设集合{}2|230A x x x =+-<,集合{}|B y y x ==,则A B =( )A .()1,1-B .()0,1C .[)0,1D .()1,+∞9.设集合P ,Q 均为全集U 的非空子集,且U ()P Q P =∩,则U ()P Q =∩( ) A .P B .Q C .∅ D .U 10.已知集合2{|30}A x x x =-≥,集合{1234}B =,,,,则A B =( ) A .{01234},,,, B .{123},, C .[0,4] D .[1,3] 11.已知集合2{60}A xx x =--<|,{|231}B x x =+>,则A B ⋃=( ) A .(1,3)- B .(2,)-+∞ C .(2,1)-- D .(,2)-∞- 12.已知集合{|3251}A x x =-<-<,2{|20}B x x x =-->,则A B =( )A .{|23}x x <<B .{|13}x x -<<C .{|2}x x >D .{|1}x x >-13.设全集U =R ,集合(){}ln 1|M x y x ==-,2{|4}N x y x ==-,则下面Venn 图中阴影部分表示的集合是( )A .()1,2B .(]1,2C .(2,)+∞D .[2,)+∞14.已知集合{}0,1,2A =,(){},,,,B x y x A y A x y A x y A =∈∈+∈-∈,则集合B 中元素的个数是( ) A .1B .4C .3D .215.已知集合{}2340A x x x =--<,{}0,1,2,3,4,5B =,则A B =( )A .{}0,1,2B .{}0,1,2,3,4C .{}1,2,3,4D .{}0,1,2,3二、填空题16.集合{}14A x x =-<≤,{}1,1,3B =-,则A B 等于_________.17.已知{}3A x a x a =≤≤+,{}15b x x =-<<,A B =∅,则实数a 的取值范围是______18.集合A =[1,6],B ={x |y x a -,若A ⊆B ,则实数a 的范围是________________. 19.集合{}33A x Z x =∈-<<的子集个数为______.20.{}2|60A x x x =+-=,{}|10B x mx =+=,且A B A ⋃=,则m 的值是__________.21.满足条件:{}a {},,,M a b c d ⊆的集合M 的个数为______.22.已知函数()214f x x -A 为函数()f x 的定义域,集合B 为函数()f x 的值域,若定义{,A B x x A -=∈且}x B ∉,()()⊕=--A B A B B A ,则A B ⊕=___________.23.已知集合2{|2}30A x x x =--<,{|0}B x x a =-<,且B A ⊆,则a 的取值范围为________.24.若21,2x a A x x R x ⎧⎫+==∈⎨⎬-⎩⎭为单元素集,则实数a 的取值的集合为______. 25.若集合{}2A x x =<,101B xx ⎧⎫=>⎨⎬+⎩⎭,则A B =______. 三、解答题26.在①A B A ⋃=;②RB A ⊆;③()R A B =∅这三个条件中任选一个,补充在下面的问题中.若问题中实数a 存在,求a 的取值范围;若问题中的实数a 不存在,请说明理由.已知集合{}14A x x =≤≤,{}11B x a x a =-≤≤+,是否存在实数a ,使得________?27.已知函数()f x =的定义域为集合A ,{|}B x x a =<. (1)求集合A ;(2)若“x ∈A ”是“x ∈B ”的充分条件,求a 的取值范围.28.已知不等式()x a x a <210-++的解集为M . (1)若2∈M ,求实数a 的取值范围; (2)当M 为空集时,求不等式1x a-<2的解集.29.已知集合401x A xx ⎧⎫-=≤⎨⎬-⎩⎭,{}12B x a x a =+≤≤. (1)当2a =时,求A B ; (2)若B A ⋂=∅R,求实数a 的取值范围.30.已知集合{}220A x x x =--=,{}1B x ax ==,若A B A ⋃=,求实数a 的取值集合.【参考答案】一、单选题 1.B 【解析】 【分析】先解出集合A ,再按照对数的运算求出集合B ,即可求解. 【详解】由260x x --<,解得23x -<<,故{}1,0,1,2A =-,()2222ln (1)1ln(11)ln 2,ln 010,ln(21)ln5⎡⎤-+=+=+=+=⎣⎦,故{}ln 2,0,ln5B =,集合B 中元素个数为3. 故选:B. 2.D 【解析】 【分析】根据集合的交集的概念可求出结果. 【详解】 {1,2,3,4}A =, {1,2,3}A B ⋂=.故选:D 3.C 【解析】 【分析】根据集合元素的形式可得关于n 的不等式,从而可求A B . 【详解】令1317n -≤+≤,则223n -≤≤,而n N ∈,故0,1,2n =,故{}1,4,7A B =, 故选:C. 4.C 【解析】 【分析】根据题意,列举出符合题意的集合. 【详解】因为全集{}{}1,2,3,,2,3U A U B =⊆=,若A B ⋂≠∅,且A B ⊆/, 所以{}1,2,3A =或{}1,2A =或{}1,3A =. 故选:C 5.B【分析】先化简集合B ,再利用交集运算求解. 【详解】解:因为集合{|1}A x x =≥-,41|28{|23}xB x x x ⎧⎫=≤<=-≤<⎨⎬⎩⎭,所以{}|13A B x x ⋂=-≤<, 故选:B 6.A 【解析】 【分析】根据图中阴影部分表示()U A B 求解即可.【详解】由题知:图中阴影部分表示()U A B ,{}|3UB x x =≥,则(){}3,4,5,6U B A =.故选:A 7.B 【解析】 【分析】解一元二次不等号求集合A ,再由集合的交运算求A B . 【详解】由题设,{|11}A x x =-<<,又{|02}B x x =<< 所以{|01}A B x x =<<. 故选:B 8.C 【解析】 【分析】化简集合A 、B ,然后利用交集的定义运算即得. 【详解】因为集合{}2|230{|31}A x x x x x =+-<=-<<,集合{[,)|0B y y =+∞=, 所以[0,1)A B =. 故选:C . 9.B 【解析】 【分析】 依题意可得UP Q ⊆,即可得到UQ P ⊆,从而即可判断;解:因为U ()P Q P =∩,所以UP Q ⊆,所以UQ P ⊆,所以U ()P Q Q =∩;故选:B 10.B 【解析】 【分析】先求得{|03}A x x =≤≤,再根据交集的运算可求解. 【详解】由已知{|03}A x x =≤≤,所以{}1,2,3A B =. 故选:B . 11.B 【解析】 【分析】先计算出集合,A B ,再计算A B 即可. 【详解】因为{23}A xx =-<<∣,{1}B x x =>-∣,所以(2,)A B ⋃=-+∞. 故选:B. 12.A 【解析】 【分析】解不等式求出集合,A B ,从而求出交集. 【详解】3251x -<-<,解得:13x <<,故{13}A xx =<<∣,220x x -->,解得:2x >或1x <-,故{2B x x =>或}1x <-,所以{23}A B xx ⋂=<<∣. 故选:A 13.A 【解析】 【分析】由对数函数性质,二次根式定义确定集合,M N ,然后确定Venn 图中阴影部分表示的集合并计算. 【详解】由题意{|10}{|1}M x x x x =->=>,2{|4}{|2N x x x x =≥=≤-或2}x ≥,{|22}UN x x =-<<,Venn 图中阴影部分为(){|12}U M N x x =<<.故选:A . 14.B 【解析】 【分析】根据所给定义求出集合B ,即可判断; 【详解】解:因为{}0,1,2A =,(){},,,,B x y x A y A x y A x y A =∈∈+∈-∈,所以()()()(){}0,0,1,0,2,0,1,1B =,即集合B 中的元素有()0,0,()1,0,()2,0,()1,1共4个,故选:B . 15.D 【解析】 【分析】求解一元二次不等式解得集合A ,再求集合的交运算即可. 【详解】因为2340x x --<,即()()410x x -+<,故14x -<<,则{|14}A x x =-<<, 故{}0,1,2,3A B ⋂=. 故选:D.二、填空题16.{}1,3【解析】 【分析】由交集定义直接得到结果. 【详解】由交集定义知:{}1,3A B =. 故答案为:{}1,3 17.4a ≤-或5a ≥ 【解析】 【分析】由3a a <+可得A ≠∅,根据题意可得到端点的大小关系,得到不等式,从而可得答案. 【详解】由题意 3a a <+,则A ≠∅要使得A B =∅,则31a +≤-或5a ≥ 解得4a ≤-或5a ≥ 故答案为:4a ≤-或5a ≥18.(,1]-∞【解析】 【分析】先求出集合B ,再由A ⊆B ,可求出实数a 的范围 【详解】由0x a -≥,得x a ≥,所以[,)B a =+∞, 因为A =[1,6],且A ⊆B , 所以1a ≤,所以实数a 的范围是(,1]-∞, 故答案为:(,1]-∞ 19.32 【解析】 【分析】由n 个元素组成的集合,集合的子集个数为2n 个. 【详解】解:由题意得{}2,1,0,1,2A =--,则A 的子集个数为5232=. 故答案为:32.20.11023-、、 【解析】 【分析】先求出集合A ,再由A B A ⋃=,可得B A ⊆,然后分B =∅和B ≠∅两种情况求解即可 【详解】解:由260x x +-=,得2x =或3x =-,所以{}{}2|603,2A x x x =+-==-,因为A B A ⋃=,所以B A ⊆,当B =∅时,B A ⊆成立,此时方程10+=mx 无解,得0m =; 当B ≠∅时,得0m ≠,则集合{}1|10B x mx m ⎧⎫=+==-⎨⎬⎩⎭,因为B A ⊆,所以13m -=-或12m -=,解得13m =或12m =-, 综上,0m =,13m =或12m =-.故答案为:11023-、、 21.7 【解析】 【分析】根据{}a {},,,M a b c d ⊆可知,M 中的元素应该是多于一个不多于{},,,a b c d 中的元素个数,由此可求得答案. 【详解】由{}a {},,,M a b c d ⊆可知,M 中的元素个数多于{}a 中的元素个数,不多于{},,,a b c d 中的元素个数 因此M 中的元素来自于b ,c,d 中,即在b ,c,d 中取1元素时,M 有3个;取2个元素时,有3个;取3个元素时,有1个, 故足条件:{}a {},,,M a b c d ⊆的集合M 的个数有7个, 故答案为:7. 22.11,0,122⎡⎫⎛⎤-⎪ ⎢⎥⎣⎭⎝⎦【解析】 【分析】根据()f x =. 【详解】要使函数()f x =2140-≥x ,解得1122x -≤≤,所以11,22A ⎡⎤=-⎢⎥⎣⎦,函数()f x =[]0,1B =,{,A B x x A -=∈且}x B ∉102x x ⎧⎫=-≤<⎨⎬⎩⎭,{,B A x x B -=∈且}x A ∉112x x ⎧⎫=<≤⎨⎬⎩⎭.()()⊕=--A B A B B A 102x x ⎧⎫=-≤<⎨⎬⎩⎭112x x ⎧⎫⋃<≤=⎨⎬⎩⎭11,0,122⎡⎫⎛⎤-⎪ ⎢⎥⎣⎭⎝⎦. 故答案为:11,0,122⎡⎫⎛⎤-⎪ ⎢⎥⎣⎭⎝⎦.23.1a ≤【解析】 【分析】解一元二次不等式得集合A ,化简集合B ,再借助集合的包含关系即可求解作答. 【详解】解2320x x --<,即2320x x -+>,解得1x <或2x >,则{|1A x x =<或2}x >,{|}B x x a =<,而B A ⊆,于是得1a ≤,所以a 的取值范围是:1a ≤. 故答案为:1a ≤24.9,4⎧-⎨⎩【解析】 【分析】 由方程212x ax +=-只有一解可得,注意方程增根情形. 【详解】 由题意方程212x ax +=-只有一解或两个相等的实根, 220x x a ---=(*),14(2)0a ∆=++=,94a =-,此时,方程的解为1212x x ==,满足题意,1{}2A =;若方程(*)有一个根是x1x =a ={1A =; 若方程(*)有一个根是x =1x =a ={1A =+. 综上,a的取值集合为9{,4-.故答案为:9{,4-.25.{}12x x -<<## ()1,2- 【解析】 【分析】求解绝对值不等式解得集合A ,求解分式不等式求得集合B ,再求交集即可. 【详解】因为{}2A x x =<{|22}x x =-<<,101B xx ⎧⎫=>⎨⎬+⎩⎭{}1x x =-, 故可得A B ={|12}x x -<<. 故答案为:{}12x x -<<.三、解答题26.选①:(],0-∞;选②:(),0∞-;选③:(],0-∞. 【解析】 【分析】假设存在实数a ,选择条件后可得集合,A B 关系,分别在B =∅和B ≠∅的情况下构造不等式组求解即可. 【详解】假设存在实数a ,满足条件. 若选①:A B A =,B A ∴⊆.当B =∅时,11a a ->+,解得:0a <,满足题意;当B ≠∅时,结合B A ⊆可得:111114a aa a -≤+⎧⎪-≥⎨⎪+≤⎩,解得:0a =;综上所述:a 的取值范围为(],0-∞; 若选②:RB A ⊆,B A ∴=∅.当B =∅时,11a a ->+,解得:0a <,满足题意;当B ≠∅时,结合B A ⋂=∅得:1111a a a -≤+⎧⎨+<⎩或1114a aa -≤+⎧⎨->⎩,不等式组无解;综上所述:a 的取值范围为(),0∞-; 若选③:()RA B =∅,B A ∴⊆;当B =∅时,11a a ->+,解得:0a <,满足题意;当B ≠∅时,结合B A ⊆可得:111114a a a a -≤+⎧⎪-≥⎨⎪+≤⎩,解得:0a =; 综上所述:a 的取值范围为(],0-∞.27.(1)A ={x |-2<x ≤3};(2)3a >.【解析】【分析】(1)由算术平方根的被开方数大于等于0,分式的分母不等于0可求得集合A ; (2)由已知得A ⊆B ,由此可得a 的取值范围.(1)解:函数()f x =3020x x -≥⎧⎨+>⎩, 解得23x -<≤,即A ={x |-2<x ≤3}.(2)解:因为A ={x |-2<x ≤3},B ={x |x <a },且“x ∈A ”是“x ∈B ”的充分条件,所以A ⊆B , 所以3a >.28.(1)a >2(2)(-∞,1)∪3,2⎛⎫+∞ ⎪⎝⎭【解析】【分析】(1)由已知2∈M 可得,2满足已知不等式,代入即可求解;(2)由M 为空集,可求得a ,然后代入解分式不等式即可求解.(1)由已知2∈M 可得,4-2(a +1)+a <0,解得a >2,所以实数a 的取值范围为()2,+∞;(2)当M 为空集,则()a a -∆=≤2410+,即()a -≤210;所以10a -=,即1a = ∴1x a -<2,即11x -<2, ∴231x x -->0,解得x >32或x <1. ∴此不等式的解集为(-∞,1)∪3,2⎛⎫+∞ ⎪⎝⎭. 29.(1){}|14x x <≤; (2){}2a a ≤.【解析】【分析】(1)求出集合A 和B ,根据并集的计算方法计算即可;(2)求出A R ,分B 为空集和不为空集讨论即可. (1) {}14A x x =<≤,当2a =时,{}|34B x x =≤≤,∴{}|14A B x x ⋃=<≤;(2)A =R {|1x x ≤或x >4},当B =∅时,B A ⋂=∅R ,12a a >+,解得a <1;当B ≠∅时,若B A ⋂=∅R ,则241121a a a a ≤⎧⎪⎨⎪≥⎩,+>,+,解得12a ≤≤. 综上,实数a 的取值范围为{}2a a ≤.30.10,1,2⎧⎫-⎨⎬⎩⎭【解析】【分析】由A B A ⋃=,得B A ⊆,然后分B =∅和B ≠∅的两种情况求解【详解】{}{}2201,2A x x x =--==-, 由A B A ⋃=,得B A ⊆,当B =∅时,满足B A ⊆,此时0a =, 当B ≠∅时,由B A ⊆,可得1B -∈或2B ∈, 所以1a -=或21a =,得1a =-或12a =, 综上实数a 的取值集合为10,1,2⎧⎫-⎨⎬⎩⎭。
高一数学集合练习题含答案一、单选题1.已知集合{}1,4,M x x =,{}21,N x =,若N M ⊆,则实数x 组成的集合为( )A .{}0B .{}2,2-C .2,0,2D .2,0,1,22.已知集合U =R ,{}2230A x x x =--<,则UA( )A .{}13x x -<<B .{}13x x -≤≤C .{1x x ≤-或3}x ≥D .{1x x <-或3}x >3.已知集合{|A x y ==,{}0B x x =>,则A B ⋃=( ) A .{|3}x x ≤B .{|1}x x ≥-C .{}|3x x >D .{}|0x x >4.设集合{}0,2,4,6,8A =,{}1212B x x =-≤<,则A B =( ) A .{}2,4,6B .{}0,2,4,6,8C .{}0,2,4D .{}4,6,85.已知集合{A x y ==,{}0,1,2,3B =,则A B =( ) A .{}3B .{}2,3C .{}1,2,3D .{}0,1,2,36.已知集合{}1|32|22xA x xB x ⎧⎫⎪⎪⎛⎫=-<<=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,,则A B =( )A .{}|22x x -<<B .{} |12x x -<<C .{}|32x x -<<-D .{} |31x x -<<-7.已知集合{}22A x x =-≤,{}1,2,3,4,5B =,则A B =( ) A .{}1,2,3,4B .{}2,3,4,5C .{}1,2,3D .{}2,3,48.已知集合{}21A x x =≤,{}01B x x =<<,则A B =( )A .()1,1-B .[)1,1-C .[]1,1-D .()0,19.下列命题说法错误的是( )A .()2()lg 23f x x x =-++在(1,1)-上单调递增B .“1x =”是“2430x x -+=”的充分不必要条件C .若集合{}2440A x kx x =++=恰有两个子集,则1k =D .对于命题:p 存在0R x ∈,使得20010x x ++<,则¬p :任意R x ∈,均有210x x ++≥ 10.正确表示图中阴影部分的是( )A .R M ∪NB .R M ∩NC .R(M ∪N )D .R(M ∩N )11.已知函数()2ln 3y x x =-的定义域为A ,集合{}14B x x =≤≤,则()A B =R ( )A .{0,1,2,3,4}B .{1,2,3}C .[0,4]D .[1,3]12.已知集合*1|2cos ,,|2232x n A x x n B x π⎧⎫⎧==∈=≤≤⎨⎬⎨⎩⎭⎩N ,则A B =( ) A .{}1,1- B .{}0,1,2 C .{}1,1,2-D .1,0,1,213.设集合A 实数 ,{}B =纯虚数,{}C =复数,若全集SC ,则下列结论正确的是( ) A .A B C = B .A B = C .()S A B ⋂=∅ D .SSABC14.记2{|log (1)3}A x x =-<,N A B =,则B 的元素个数为( ) A .6B .7C .8D .915.已知集合{}{24},3A xx B x y x =<==-∣∣,则A B ⋃=( ) A .[)2,+∞ B .[)3,4 C .[]3,4 D .[)3,+∞二、填空题16.设()1,2,3i a i =均为实数,若集合{}123,,a a a 的所有非空真子集的元素之和为12,则123a a a ++=__________17.设集合{}{}23,650A x x B x x x =≤=-+≤,则A B =________.18.设全集{}0,1,2U =,集合{}0,1A =,在UA______19.方程组13x y x y -=⎧⎨+=⎩的解集..为_____. 20.设集合(){},A x y y x ==,()3,1x B x y y x +⎧⎫==⎨⎬-⎩⎭,则A B =______.21.已知集合{}4194,A x x n n *==-+∈N ,{}6206,B y y n n *==-+∈N ,将A B 中的所有元素按从大到小的顺序排列构成一个数列{}n a ,则数列{}n a 的前n 项和的最大值为___________.22.已知函数1()51f x a x=-+-的定义域为M ,集合{}9N x x =≥,若M N ⋂=∅,则实数a 的取值范围是_________. 23.若集合(){},|1M x y y x ==-,(){},|1N x y x ==,则MN =______.24.如图所示,U 为全集,A U ⊆,B U ⊆,用A 、B 表示图中的阴影部分的集合是______.25.对于数集M 、N ,定义{},,M N x x a b a M b N +==+∈∈,,,aM N x x a M b N b ⎧⎫÷==∈∈⎨⎬⎩⎭,若集合{}1,2P =,则集合()P P P +÷中所有元素之和为___________.三、解答题26.已知集合{}|123A x a x a =-≤≤+,{}|14B x x =-≤≤,全集U =R . (1)当1a =时,求()U C A B ⋂;(2)若“x B ∈”是“x A ∈”的必要条件,求实数a 的取值范围.27.不等式5212xx ->+的解集是A ,关于x 的不等式22450x mx m --≤的解集是B . (1)若1m =,求A B ;(2)若A B B ⋃=,求实数m 的取值范围.(3)设:p 实数x 满足22430x ax a -+<,其中>0a ,命题:q 实数x 满足2260280x x x x ⎧--≤⎨+->⎩.若p 是q 的必要不充分条件,求实数a 的取值范围.28.已知{}{15},1,R A x x B x a x a a =-<<=-<<∈ (1)若2,B ∈求实数a 的取值范围 (2)若B A ⊆,求实数a 的取值范围29.已知集合{}12,,,n A a a a =⋅⋅⋅(120n a a a ≤<<⋅⋅⋅<,*n ∈N ,3n ≥)具有性质P :对任意,i j (1i j m ≤≤≤),i j a a +与j i a a -至少一个属于A .(1)分别判断集合{}0,2,4M =,与{}1,2,3N =是否具有性质P ,并说明理由; (2){}123,,A a a a =具有性质P ,当24a =时,求集合A ; (3)①求证:0A ∈;②求证:1232n n n a a a a a +++⋅⋅⋅+=.30.已知集合A ={x |1<x <3},集合B ={x |2m <x <1-m }. (1)若A ⊆B ,求实数m 的取值范围; (2)若A ∩B =∅,求实数m 的取值范围.【参考答案】一、单选题 1.C 【解析】 【分析】若N M ⊆,所以2x x =或24x =,解出x 的值,将x 的值代入集合,检验集合的元素满足互异性. 【详解】因为N M ⊆,所以2x x =,解得0x =,1x =或24x =,解得2x =±, 当0x =时,{}1,4,0M =,{}1,0N =,N M ⊆,满足题意. 当1x =时,{}1,4,1M =,不满足集合的互异性. 当2x =时,{}1,4,2M =,1,4N ,若N M ⊆,满足题意. 当2x =-时,{}1,4,2M =-,1,4N,若N M ⊆,满足题意.2.C 【解析】 【分析】根据补集的定义,结合一元二次不等式的解法进行求解即可. 【详解】因为集合{}2230{|13}A x x x x x =--<=-<<,所以UA{1x x ≤-∣或3}x ≥.故选:C. 3.B【解析】 【分析】由分式不等式求得集合A ,再根据并集的原则求解即可. 【详解】对于集合A ,满足1033xx x +⎧≥⎪-⎨⎪≠⎩,即()()3103x x x ⎧-+≤⎨≠⎩,解得13x -≤<,即{}13A x x =-≤<, 又{}0B x x =>,所以{}1A B x x ⋃=≥-, 故选:B 4.C 【解析】 【分析】根据不等式的性质,结合集合交集的定义进行求解即可. 【详解】因为162B x x ⎧⎫=-≤<⎨⎬⎩⎭,{}0,2,4,6,8A =,所以A B ={}0,2,4, 故选:C 5.C 【解析】 【分析】根据定义域的求法解出集合A ,然后根据交集的运算法则求解. 【详解】 解:由题意得:{{}|1A x y x x ===≥ {}1,2,3A B ∴⋂=6.B 【解析】 【分析】先由指数函数的性质求得集合B ,再根据集合的交集运算可求得答案. 【详解】解:因为}{}1{|32,|()212x A x x B x x x ⎧⎫=-<<=<=-⎨⎬⎩⎭,所以A B ={}|12x x -<<, 故选:B. 7.A 【解析】 【分析】首先解绝对值不等式求出集合A ,再根据交集的定义计算可得; 【详解】解:由22x -≤,即222x -≤-≤,解得04x ≤≤,所以{}[]220,4A x x =-≤=, 又{}1,2,3,4,5B =,所以{}1,2,3,4A B =. 故选:A 8.D 【解析】 【分析】根据一元二次不等式解法求出集合A ,再根据交集的定义即可求解. 【详解】解:因为集合{}{}2111A x x x x =≤=-≤≤,{}01B x x =<<,所以()0,1A B =, 故选:D. 9.C 【解析】 【分析】A.利用复合函数的单调性判断;B.利用充分条件和必要条件的定义判断;C.由方程2440kx x ++=有一根判断;D.由命题p 的否定为全称量词命题判断.【详解】A.令223t x x =-++,由2230x x -++>,解得13x ,由二次函数的性质知:t 在(1,1)-上递增,在(1,3)上递减,又lg y t =在()0,∞+上递增,由复合函数的单调性知:()2lg(23)f x x x =-++在(1,1)-上递增,故正确;B. 当1x =时,2430x x -+=成立,故充分,当2430x x -+=成立时,解得1x =或3x =,故不必要,故正确;C.若集合{}2440A x kx x =++=中只有两个子集,则集合只有一个元素,即方程2440kx x ++=有一根,当0k =时,1x =-,当0k ≠时,16160k ∆=-=,解得1k =,所以0k =或1k =,故错误;D.因为命题:p .存在0R x ∈,使得20010x x ++<是存在量词命题,则其否定为全称量词命题,即:p ⌝任意R x ∈,均有210x x ++≥,故正确; 故选:C. 10.B 【解析】 【分析】根据韦恩图直接分析即可 【详解】图中阴影部分为M 的补集与集合N 相交的部分,即 R M N ⋂, 故选:B. 【点睛】本题主要考查了韦恩图分析交并补集的问题,属于基础题 11.D 【解析】 【分析】根据对数函数的性质,可知230x x ->,由此即可求出集合A ,进而求出A R,再根据交集运算即可求出结果. 【详解】由题意可知,230x x ->,所以0x <或3x >, 所以{}{}03A x x x x =<>,故{}03A x x =≤≤R,所以()[]1,3R A B =. 故选:D. 12.C 【解析】 【分析】首先根据余弦函数的性质求出集合A ,再根据指数函数的性质求出集合B ,最后根据交集的定义计算可得; 【详解】 解:因为2cos3y x π=的最小正周期263T ππ==且1cos32π=, 21cos cos cos 3332ππππ⎛⎫=-=-=- ⎪⎝⎭,3cos 13π=-, 41coscos cos 3332ππππ⎛⎫=+=-=- ⎪⎝⎭,51cos cos 2cos 3332ππππ⎛⎫=-== ⎪⎝⎭,6cos13π=,71cos cos 2cos 3332ππππ⎛⎫=+== ⎪⎝⎭,,所以{}*|2cos ,1,1,2,23n A x x n π⎧⎫==∈=--⎨⎬⎩⎭N , 由12422x ≤≤,即512222x -≤≤,所以512x -≤≤, 所以15|242|122xB x x x ⎧⎫⎧⎫=≤≤=-≤≤⎨⎬⎨⎬⎩⎭⎩⎭,所以{}1,1,2A B =-; 故选:C 13.D 【解析】 【分析】根据集合A ,B ,C 的关系求解即可. 【详解】集合A ,B ,C 的关系如下图,由图可知只有SSABC 正确.故选:D. 14.B 【解析】 【分析】解对数不等式化简A ,求出B 可得答案. 【详解】由()22log 1log 8x -<,得19x <<,即{|19}A x x =<<, 所以N B A ={2,3,4,5,6,7,8}=, 则B 中元素的个数为7. 故选:B 15.A 【解析】 【分析】求出集合A 、B ,利用交集的定义可求得集合A B . 【详解】 解:{}[)2424A x x =≤<=,,{}[)33,B x y x ∞==-=+,因此,[)2,A B =+∞. 故选:A.二、填空题 16.4【解析】 【分析】列举出集合{}123,,a a a 的所有非空真子集,根据题意可求得123a a a ++的值. 【详解】集合{}123,,a a a 的所有非空真子集为:{}1a 、{}2a 、{}3a 、{}12,a a 、{}13,a a 、{}23,a a , 由题意可得()123312a a a ++=,解得1234a a a ++=. 故答案为:4.17.[1,3]【解析】 【分析】根据交集的定义求解即可. 【详解】解不等式2650x x -+≤ ,得()()150x x --≤ ,解得15x ≤≤ , 即[]1,5B = ,[]1,3A B ∴= ; 故答案为:[]1,3 .18.{2}【解析】 【分析】利用集合的补运算求UA 即可.【详解】由{}0,1,2U =,{}0,1A =,则{2}UA =.故答案为:{2}.19.{(2,1)}【解析】 【分析】利用加减消元法求得方程组的解集. 【详解】依题意13x y x y -=⎧⎨+=⎩,两式相加得24,21x x y ==⇒=, 所以方程组的解集为{(2,1)}. 故答案为:{(2,1)}20.()(){}1,1,3,3--【解析】 【分析】联立方程组,求出交点坐标,即可得到答案. 【详解】解方程组31y xx y x =⎧⎪+⎨=⎪-⎩,得11x y =-⎧⎨=-⎩或33x y =⎧⎨=⎩. 故答案为:()(){}1,1,3,3--.21.1472【解析】 【分析】由题意设4194n b n =-+,6206m c m =-+,根据n m b c =可得326m n -=,从而312194n n a b n ==-+,即可得出答案.【详解】设4194n b n =-+,由41940n b n =-+>,得48n ≤ 6206m c m =-+,由62060m c m =-+>,得34m ≤A B 中的元素满足n m b c =,即41946206n m -+=-+,可得326m n -=所以223m n =+,由,*m n N ∈,所以3,*n k k N =∈ 所以312194n n a b n ==-+,要使得数列{}n a 的前n 项和的最大值,即求出数列{}n a 中所以满足0n a ≥的项的和即可. 即121940n a n =-+≥,得16n ≤,则116182,2a a == 所以数列{}n a 的前n 项和的最大值为121618221614722a a a ++++=⨯= 故答案为:147222.(,8]-∞【解析】 【分析】根据集合交集的性质,结合子集的性质进行求解即可. 【详解】∵{}9,N x x M N =≥⋂=∅,∵{}9M x x ⊆<,∵{}1M x x a =<+,∴19a +≤,解得8a ≤,∴实数a 的取值范围是(,8]-∞. 故答案为:(,8]-∞23.(){}1,0【解析】 【分析】根据交运算的含义,求解方程组,即可求得结果.【详解】根据题意M N ⋂中的元素是方程组1y x ⎧=⎪⎨=⎪⎩求解方程组可得:1,0x y ==,故MN =(){}1,0.故答案为:(){}1,0.24.A B ⋂##B A ⋂【解析】【分析】根据集合的运算法则求解.【详解】 阴影部分是集合A 与集合B 的补集的公共部分,因此表示为:A B ⋂. 故答案为:A B ⋂.25.232##11.5 【解析】【分析】根据定义分别求出()P P P +÷中对应的集合的元素即可得到结论.【详解】{1P =,2},{|P P x x a b ∴+==+,a P ,}{2b P ∈=,3,4},(){|2P P P x x ∴+÷==,3,4,1,3}2, ∴元素之和为323234122++++=, 故答案为:232. 三、解答题26.(1){}()10U C A B x x ⋂=-≤<(2)4a 或102a ≤≤【解析】【分析】(1)根据补集与交集的运算性质运算即可得出答案.(2)若“x B ∈”是“x A ∈”的必要条件等价于A B ⊆.讨论A 是否为空集,即可求出实数a 的取值范围.(1)当1a =时,集合{}|05A x x =≤≤,{|0U C A x x =<或}5x >,{}()|10U C A B x x ⋂=-≤<.(2)若“x B ∈”是“x A ∈”的必要条件,则A B ⊆,①当A =∅时,123,4a a a ->+<-∴;②A ≠∅,则4a ≥-且11,234a a -≥-+≤,102a ∴≤≤. 综上所述,4a 或102a ≤≤. 27.(1){}|11A B x x ⋂=-≤<;(2)(][),12,-∞-⋃+∞(3)(]1,2【解析】【分析】(1)分别解出解出集合A ,B ,再求A B ;(2)由A B B ⋃=得到A B ⊆.对m 分类讨论,分0m >, 0m =和0m <三种情况,分别求出m 的范围,即可得到答案;(3)用集合法列不等式组,求出a 的范围.(1) 由5212x x ->+的解集是A ,解得:{}|21A x x =-<<. 当m =1时,22450x mx m --≤可化为2450x x --≤,解得{}|15B x x =-≤≤. 所以{}|11A B x x ⋂=-≤<.(2)因为A B B ⋃=,所以A B ⊆.由(1)得:{}|21A x x =-<<.当0m >时,由22450x mx m --≤可解得{}|5B x m x m =-≤≤.要使A B ⊆,只需512m m ≥⎧⎨-≤-⎩,解得:2m ≥;当0m =时,由22450x mx m --≤可解得{}0B =.不符合A B ⊆,舍去;当0m <时,由22450x mx m --≤可解得{}|5B x m x m =≤≤-.要使A B ⊆,只需152m m -≥⎧⎨≤-⎩,解得:1m ≤-;所以,1m ≤-或2m ≥.所以实数m 的取值范围为:(][),12,-∞-⋃+∞.(3)设关于x 的不等式22430x ax a -+<(其中>0a )的解集为M ,则(),3M a a =;不等式组2260280x x x x ⎧--≤⎨+->⎩的解集为N ,则(]2,3N =;要使p 是q 的必要不充分条件,只需N M ,即233a a ≤⎧⎨>⎩,解得:12a <≤. 即实数a 的取值范围(]1,2.28.(1)23a <<;(2)05a ≤≤.【解析】【分析】(1)由题可得12a a -<<,即得;(2)根据B A ⊆,结合集合的包含关系,即可求得a 的取值范围.(1)∵2,B ∈{}1B x a x a =-<<,∴12a a -<<,即23a <<,∴实数a 的取值范围为23a <<;(2)∵B A ⊆,{}{15},1,R A x x B x a x a a =-<<=-<<∈,∴115a a -≥-⎧⎨≤⎩,解得05a ≤≤, 故实数a 的取值范围为05a ≤≤.29.(1)集合M 具有,集合N 不具有,理由见详解(2)A {0,4,8}=(3)证明见详解【解析】【分析】(1)利用性质P 的定义判断即可;(2)利用33a a A +∉,330a A a -=∈可得10a =,又23a a A +∉,32a a A -∈,分析可得322a a a -=,即得解;(3)① 由 n n a a A +∉,0n n a A a -=∈,可证明;② 由110n n n n n a a a a a a -≤<<⋅⋅⋅<---,以及n n i a a A -+∉,n n i a a A --∈可得121321,,,...,n n n n n n n n a a a a a a a a a a a a --=-=-=-=-,将等式左右两边相加可证明.(1)集合{}0,2,4M =具有性质P ,集合{}1,2,3N =不具有性质P理由如下:对集合{}0,2,4M =,由于202,422,404,000,220,440M -=-=-=-=-=-=∈ 所以集合M 具有性质P ;对集合{}1,2,3N =,由于224N +=∉,故集合N 不具有性质P .(2)由于33333A a a a a a +>∴+∉,故330a A a -=∈10a ∴=又23323,a a a A a a +>∴+∉,故32a a A -∈又3230<a a a -<,故322a a a -=322=8a a =∴因此集合A {0,4,8}=(3)①由于n n n n n A a a a a a +>∴+∉,故0n n a A a -=∈10a ∴=0A ∴∈,故得证②由于120n a a a ≤<<⋅⋅⋅<故110n n n n n a a a a a a -≤<<⋅⋅⋅<---又(1,2,...,1)n n i n n n i a a a i n a a A --+>=-∴+∉n n i a a A -∴-∈121321,,,...,n n n n n n n n a a a a a a a a a a a a --∴=-=-=-=- 将各个式子左右两边相加可得:1232n n n a a a a a +++⋅⋅⋅+=故得证30.(1)(],2-∞-(2)[)0,∞+【解析】【分析】 (1)根据集合包含关系列出不等式组,求出实数m 的取值范围;(2)分B =∅与B ≠∅进行讨论,列出不等关系,求出实数m 的取值范围.(1)由题意得:2113m m ≤⎧⎨-≥⎩,解得:2m ≤-,所以实数m 的取值范围是(],2-∞-; (2)当B =∅时,21m m ,解得:13m ≥; 当B ≠∅时,需要满足2111m m m <-⎧⎨-≤⎩或2123m m m <-⎧⎨≥⎩,解得:103m ≤<或∅,即103m ≤<; 综上:实数m 的取值范围是[)0,∞+.。
高一数学集合练习题及答案(新版)一、单选题1.设集合{|,log (1)}xa A a x R a x a =∃∈=>,{|0,B y x xy =∀≥≥,下列说法正确的是( ) A .A B ⊆B .B A ⊆C .B A ⋂=∅D .BA ≠∅2.已知集合{}1,2,3,4A =,{}25B x x =<,则A B =( ) A .{}1B .{}1,2C .{}1,2,3D .{}1,2,3,43.集合{}230,{1,0,1,2,3}A xx x B =-<=-∣,则A B =( ) A .(1,2)B .{1,2}C .{0,1,2}D .{0,1,2,3}4.已知全集{}{}1,2,3,,2,3U A U B =⊆=,若A B ⋂≠∅,且A B ⊆/则集合A 有( ) A .1个B .2个C .3个D .4个5.设集合{}2{|1N 9|}A x x B x x =>=∈<, ,则A B = ( )A .(13),B .(31)(13)--⋃,,C .{2}D .{-2,2}6.已知集合{}2cos ,A y y x x R ==∈,满足BA 的集合B 可以是( )A .[]22-,B .[]2,3-C .[]1,1-D .R7.已知集合{}{}234014P x x x Q x N x =--<=∈≤≤,,则=P Q ( )A .{1,2,3,4}B .{1,2,3}C .{1,2}D .{2,3,4}8.下列命题说法错误的是( )A .()2()lg 23f x x x =-++在(1,1)-上单调递增B .“1x =”是“2430x x -+=”的充分不必要条件C .若集合{}2440A x kx x =++=恰有两个子集,则1k =D .对于命题:p 存在0R x ∈,使得20010x x ++<,则¬p :任意R x ∈,均有210x x ++≥ 9.已知集合{}21A x x =-≤,2024x B xx ⎧⎫+=≤⎨⎬-⎩⎭.则A B =( ) A .[6,2]- B .(,1][2,)-∞⋃+∞ C .[1,2] D .[1,2)10.已知函数()2log f x x =,()2g x a x =-,若存在[]12,1,2x x ∈,使得()()12f x g x =,则实数a 的取值范围是( ) A .()(),25,-∞⋃+∞ B .(][),25,-∞⋃+∞ C .()2,5D .[]2,511.集合N A x x ⎧⎫=∈⎨⎬⎭⎩31,()}{N log B x x =∈+≤211,S A ⊆,S B ⋂≠∅,则集合S 的个数为( ) A .0B .2C .4D .812.设集合{}123A =,,,{}2|0B x R x x =∈-=,则A B ⋃=( )A .{}1B .{}01,C .{}123,,D .{}0123,,,13.已知集合{}2280,Z A x x x x =--<∈,则A 的非空子集的个数为( )A .32B .31C .16D .1514.已知集合{}ln ,1A y y x x ==>,1,12xB y y x ⎧⎫⎪⎪⎛⎫==>⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则A B =( )A .102y y ⎧⎫<<⎨⎬⎩⎭B .{}01y y <<C .112y y ⎧⎫<<⎨⎬⎩⎭D .∅15.下面给出的四类对象中,构成集合的是( ) A .某班视力较好的同学 B .长寿的人C .π的近似值D .倒数等于它本身的数二、填空题16.如图,四个棱长为1的正方体排成一个正四棱柱,AB 是一条侧棱,()1,2,,8i P i =是上底面上其余的八个点,()1,2,,8i i x AB AP i =⋅=则用集合列举法表示i x 组成的集合______.17.如图,设集合,A B 为全集U 的两个子集,则A B =____________.18.已知集合A ={x |(x -3)(x +1)<0},B ={x |x -1>0},则A ∪B =___________. 19.设非空数集M 同时满足条件:①M 中不含元素1,0,1-;②若a M ∈,则11aM a+∈-,则下列结论不正确的个数是__________个. (1)集合M 中至多有2个元素; (2)集合M 中至少有4个元素; (3)集合M 中有且仅有4个元素; (4)集合M 中至多有4个元素.20.集合A ={2|x x -ax +2=0}的子集有两个,则实数a =______. 21.已知集合{}1,2,3,4,A =,{}1,4,7,10,B =,下有命题:①{} 2,3,5,6,8,9,AB =;②若f 表示对二个数乘以3减去2的运算,则对应:f A B →表示一个函数; ③A 、B 两个集合元素个数相等; ④n A ∀∈,22n n ≥. 其中真命题序号是______.22.设集合1,2x A y y x ⎧⎫⎪⎪⎛⎫==∈⎨⎬ ⎪⎝⎭⎪⎪⎩⎭R ,集合12,0B y y x x ⎧⎫⎪⎪==≥⎨⎬⎪⎪⎩⎭,则A B =________.23.已知函数()94sin3264x x f x π-⋅+=,()21g x ax =-(0a >).若[]130,log 2x ∀∈,[]21,2x ∃∈,()()12f x g x =,则a 的取值范围是___________.24.若{}231,13a a ∈--,则=a ______.25.已知集合{}2|1A x x ==,{}|10B x ax =-=,若B A ⊆,则实数=a ______.三、解答题26.已知函数()0)>f x a 的定义域为M . (1)若M R =,求实数a 的取值范围; (2)求{}x x a M ≥⋂.27.已知函数()f x =A,函数()g x 的定义域为集合B ,(1)当0a =时,求A B ;(2)设命题:p x A ∈,命题:q x B ∈,p q 是的充分不必要条件,求实数a 的取值范围.28.已知函数()f x A ,不等式1()402x->的解集是集合 B ,求集合 A 和R ()B A ⋂ .29.已知集合1282xA x ⎧⎫=≤≤⎨⎬⎩⎭,()(){}210B x x a x a =---≤.(1)当2a =时,求A B ;(2)设命题:p x A ∈,命题:q x B ∈,若p 是q 的充分不必要条件,求实数a 的取值范围.30.(1)已知全集U =R ,集合{}2A x x =≤,{}2|60B x x x =--<,求()U A B ⋂. (2)已知0a >,0b >,且21a b +=,若不等式21m a b+≥恒成立,求实数m 的最大值.【参考答案】一、单选题 1.D 【解析】 【分析】利用因为x y a =与log a y x =互为反函数,所以,互相关于y x =对称,得到x a x ≤,进而得出集合A 的范围;对于集合B ,化简得y ≥()g x =()g x 的最值,得出集合B 的范围,即可求解 【详解】对于集合{},log (1)xa A a x R a x a =∃∈=,因为x y a =与log a y x =互为反函数,所以,互相关于y x =对称,而,log x a x R a x ∃∈=,所以,只需要x a x ≤即可,因为1a >,所以, ln ln x a x ≤,得ln ln x a x ≤,设ln ()xf x x=,得21ln ()x f x x -'=,所以, (0,)x e ∈,()0f x '>,()f x 单调递增;(,)x e ∈+∞,()0f x '<,()f x 单调递减,所以,1()()Maxf x f e e ==,得到11e a e <≤,所以,11,e A e ⎛⎤= ⎥⎝⎦;对于集合{|0,B y x xy=∀≥≥,化简得y≥()g x=()g x'20x>,可设()h x=,()h x'=<,()h x∴单调递减,又(0)0h=,所以,当0x>时,()0h x'<,()0h x<,()0g x∴'<,()g x单调递减,利用洛必达法则,x→时,000x x x→→→===所以,()y g x=≥)B=+∞;由于1(1,)Ae=,)B=+∞,所以,D正确故选:D2.B【解析】【分析】求出集合B,根据集合的交集运算求得答案.【详解】因为{}5252B x x x x⎧⎫=<=<⎨⎬⎩⎭,所以{}1,2A B=,故选:B3.B【解析】【分析】求得集合{|03}A x x=<<,根据集合交集的概念及运算,即可求解.【详解】由题意,集合2|30{|03},{1,0,1,2,3{}}A x x x x x B=-<=<<=-,根据集合交集的概念及运算,可得{1,2}A B=.故选:B.4.C【解析】【分析】根据题意,列举出符合题意的集合.【详解】因为全集{}{}1,2,3,,2,3U A U B=⊆=,若A B⋂≠∅,且A B⊆/,所以{}1,2,3A =或{}1,2A =或{}1,3A =. 故选:C 5.C 【解析】 【分析】解一元二次不等式,求出集合B ,解得集合A ,根据集合的交集运算求得答案. 【详解】由题意解29x <得:33x -<< ,故2N 9{|}{0,1,2}B x x =∈=<,{}||11{A x x x x ==>>或1}x <- , 所以{2}A B =, 故选:C 6.C 【解析】 【分析】先求出集合A ,再根据B A 求解即可.【详解】由题意知:{}22A y y =-≤≤,要满足B A 即[]22B-,,结合选项可知:[]1,1B =-.故选:C. 7.B 【解析】 【分析】解不等式得到14{|}P x x =-<<,根据题意得到{1,2,3,4}Q =,再由集合交集的概念得到结果. 【详解】由集合{}234|0P x x x =--<,解不等式得到:14{|}P x x =-<<,又因为{1,2,3,4}Q =,根据集合交集的概念得到:{}1,2,3P Q ⋂=. 故选:B. 8.C 【解析】 【分析】A.利用复合函数的单调性判断;B.利用充分条件和必要条件的定义判断;C.由方程2440kx x ++=有一根判断;D.由命题p 的否定为全称量词命题判断.【详解】A.令223t x x =-++,由2230x x -++>,解得13x ,由二次函数的性质知:t 在(1,1)-上递增,在(1,3)上递减,又lg y t =在()0,∞+上递增,由复合函数的单调性知:()2lg(23)f x x x =-++在(1,1)-上递增,故正确;B. 当1x =时,2430x x -+=成立,故充分,当2430x x -+=成立时,解得1x =或3x =,故不必要,故正确;C.若集合{}2440A x kx x =++=中只有两个子集,则集合只有一个元素,即方程2440kx x ++=有一根,当0k =时,1x =-,当0k ≠时,16160k ∆=-=,解得1k =,所以0k =或1k =,故错误;D.因为命题:p .存在0R x ∈,使得20010x x ++<是存在量词命题,则其否定为全称量词命题,即:p ⌝任意R x ∈,均有210x x ++≥,故正确; 故选:C. 9.D 【解析】 【分析】 解不等式后求交集 【详解】|2|1x -≤,解得13x ≤≤,故[1,3]A =,2024x x +≤-,解得22x -≤<,故[2,2)B =-, [1,2)A B ⋂=故选:D 10.D 【解析】 【分析】根据条件求出两个函数在[1,2]上的值域,结合若存在[]12,1,2x x ∈,使得12()()f x g x =,等价为两个集合有公共元素,然后根据集合关系进行求解即可. 【详解】当12x ≤≤时,22log 1()log 2f x ≤≤,即0()1f x ≤≤,则()f x 的值域为[0,1], 当12x ≤≤时,4()2a g x a -≤≤-,则()g x 的值域为[4,2]a a --, 因为存在[]12,1,2x x ∈,使得12()()f x g x =, 则[4,2][0,1]a a --≠∅ 若[4,2][0,1]a a --=∅, 则14a <-或02a >-, 得5a >或2a <,则当[4,2][0,1]a a --≠∅时,25a ≤≤, 即实数a 的取值范围是[2,5],A ,B ,C 错,D 对. 故选:D . 11.C 【解析】 【分析】根据分式不等式和对数不等式求出集合A 和B ,利用交集的定义 和集合的包含关系即可求解.由x31,得03x <≤, 所以}{N,,A x x ⎧⎫=∈=⎨⎬⎭⎩31123. 由()log x +≤211,得11x -<≤. 所以()}{}{N log ,B x x =∈+≤=21101.由S A ⊆,S B ⋂≠∅,知S 中必含有元素1,可以有元素2,3.所以S 只有{}1,{}12,,{}13,,{}123,,,即集合S 的个数共4个. 故选:C. 12.D 【解析】 【分析】先求出集合B ,再由并集运算得出答案. 【详解】由{}2|0B x R x x =∈-=可得{}0,1B =则{}0,1,2,3A B ⋃= 故选:D 13.B 【解析】 【分析】求出集合A ,利用集合的非空子集个数公式可求得结果. 【详解】{}{}{}2280,Z 24,Z 1,0,1,2,3A x x x x x x x =--<∈=-<<∈=-,即集合A 含有5个元素,则A 的非空子集有52131-=(个). 故选:B. 14.A 【解析】 【分析】根据题意求出,A B 后运算 【详解】由题意,A B 为对应函数的值域,(0,)A =+∞,1(0,)2B =故1(0,)2A B =故选:A 15.D 【解析】根据集合的定义分析判断即可. 【详解】对于A ,视力较好不是一个明确的定义,故不能构成集合; 对于B ,长寿也不是一个明确的定义,故不能构成集合; 对于C ,π 的近似值没有明确近似到小数点后面几位, 不是明确的定义,故不能构成集合;对于D ,倒数等于自身的数很明确,只有1和-1,故可以构成集合; 故选:D.二、填空题 16.{}1【解析】 【分析】由空间向量的加法得:i i AP AB BP =+,根据向量的垂直和数量积得221AB AB ==,0i AB BP ⋅=计算即可.【详解】由题意得,()2i i i i x AB AP AB AB BP AB AB BP =⋅=⋅+=+⋅又AB ⊥平面286BP P P ,i AB BP ∴⊥,则0i AB BP ⋅=,所以221i i x AB AB BP AB =+⋅==, 则()1,2,,81i i x AB AP i =⋅==,故答案为:{}117.{}1,2,3,4,5【解析】 【分析】由题知{}{}1,2,3,4,3,4,5A B ==,进而求并集即可. 【详解】解:由题知{}{}1,2,3,4,3,4,5A B ==, 所以{}1,2,3,4,5A B =. 故答案为:{}1,2,3,4,5 18.{x |x >-1} 【解析】 【分析】利用集合的并集运算求解.解:因为集合A ={x |(x -3)(x +1)<0}={x |-1<x <3},B ={x |x >1}, 所以A ∪B ={x |x >-1}. {x |x >-1} 19.3 【解析】 【分析】 由题意可求出11,,11,1a a a a a a -+--+都在M 中,然后计算这些元素是否相等,继而判断M 的元素个数的特点. 【详解】因为若a M ∈,则11aM a +∈-,所以1111111a a M a a a ++-=-∈+--,111111a a M a a--=∈++, 则11211211a a a a M a a -++==∈--+; 当1,0,1a ≠-时,4个元素11,,11,1a a a a a a -+--+中,任意两个元素都不相等, 所以集合M 中至少有4个元素.故可判断出(1)错误,(2)正确,(3)错误,(4)错误, 故答案为:3.20.±【解析】 【分析】根据题意可得集合A 中仅有一个元素,则方程220x ax -+=只有一个解,从而有0∆=,即可得出答案. 【详解】解:因为A ={2|x x -ax +2=0}的子集有两个, 所以集合A 中仅有一个元素, 所以方程220x ax -+=只有一个解, 所以280a ∆=-=,解得a =±故答案为:± 21.①②③ 【解析】 【分析】①由补集定义直接判断;②按照函数定义进行判断;③元素一一对应即可判断;④3n =时,不成立. 【详解】因为{}{}**,32,A n n N B n n k k N =∈==-∈,故②正确,又{ 31A B n n k ==-或}*3,n k k N =∈,故①正确;A 、B 两个集合元素一一对应,元素个数相等,故③正确;当3n =时,3223<,故④错误. 故答案为:①②③.22.{}0y y >##()0,∞+【解析】【分析】根据指数函数与幂函数的性质,先求出集合A 、B ,然后根据交集的定义即可求解.【详解】解:因为集合{}1,02x A y y x y y ⎧⎫⎪⎪⎛⎫==∈=>⎨⎬ ⎪⎝⎭⎪⎪⎩⎭R ,{}12,00B y y x x y y ⎧⎫⎪⎪==≥=≥⎨⎬⎪⎪⎩⎭, 所以{}{}{}000A B y y y y y y ⋂=>⋂≥=>,故答案为:{}0y y >.23.35,88⎡⎤⎢⎥⎣⎦ 【解析】【分析】由题意,()f x 的值域为()g x 的值域子集,先求得两个函数的值域,再利用包含关系求得a 的取值范围. 【详解】因为()()294sin 32311644x x x f x π-⋅+-+==, 又当[]30,log 2x ∈时,0311x ≤-≤,()f x 的值域为11,42⎡⎤⎢⎥⎣⎦. 因为0a >,所以()g x 在[]1,2上单调递增,其值域为[]21,41a a --.依题意得[]11,21,4142a a ⎡⎤⊆--⎢⎥⎣⎦,则12141412a a ⎧-≤⎪⎪⎨⎪-≥⎪⎩,解得3588a ≤≤. 故答案为:35,88⎡⎤⎢⎥⎣⎦ 24.4-【解析】【分析】结合元素与集合的关系,利用集合的互异性分类讨论即可求解.【详解】若13a -=,则4a =,此时,2113a a -=-,不合题意,舍去;若2133a -=,则4a =-或4a =,因为4a =不合题意,舍去.故4a =-.故答案为:4-.25.0,1或1-【解析】【分析】根据集合间的关系,运用分类讨论的方法求解参数的值即可.【详解】根据题意知,{}1,1A =-B A ⊆B ∴=∅①时,0a =;B ≠∅② 时,1B a ⎧⎫=⎨⎬⎩⎭,此时, 11a =或11a =-,解得 1a =或1a =- 故答案为:01,或-1.三、解答题26.(1)405a <≤; (2)答案见解析.【解析】【分析】(1)根据绝对值的性质,结合二次根式的性质进行求解即可;(2)根据绝对值的性质、交集的定义, 结合42,3a a -之间的大小关系分类讨论进行求解即可.(1) 32,,2222,2232,2a x a x a x x a a x x x a x ⎧+-≥⎪⎪⎪++-=+--<<⎨⎪-+-≤-⎪⎪⎩所以|2||2|++-x x a 的最小值为32222⨯+-=+a a a ,因此232+≥a a , 所以405a <≤; (2)因为0a >,所以当x a ≥时,|2||2|32++-=-+x x a x a ,4232303a x a a x --+-≥⇒≥; 当2a ≥时,423a a -≥,此时{}42,3a x x a M ∞-⎡⎫≥⋂=+⎪⎢⎣⎭;②当02a <<时,423a a -<,此时{}[),x x a M a ∞≥⋂=+. 27.(1)1{|03A B x x ⋂=-<≤或1}x =; (2)1a ≥或43a ≤-. 【解析】【分析】(1)求解分式不等式和一元二次不等式,解得集合,A B ,再求交集即可; (2)根据p q 是的充分不必要条件可知A 是B 的真子集,列不等式求a 的取值范围即可.(1)要使得()f x 有意义,则1031x x -≥+,得(1)(31)0310x x x -+≥⎧⎨+≠⎩,解得:113x ≤-<, 所以1|13A x x ⎧⎫=-<≤⎨⎬⎩⎭;当0a =时,()g x =()g x 有意义,则20x x -≥,解得:1x ≥或0x ≤, 所以{|1B x x =≥或0}x ≤, 故1{|03A B x x ⋂=-<≤或1}x =. (2)以为22(21)0x a x a a -+++≥,即[]()(1)0x a x a --+≥,解得:1x a ≥+或x a ≤, 所以{|1B x x a =≥+或}x a ≤,由题意可知A 是B 的真子集,所以1a ≥或113a +≤-(等号不同时成立), 得1a ≥或43a ≤-. 28.(,1][4,)A =-∞-⋃+∞; ()][)R 2,14,B A ∞⎡⋂=--⋃+⎣.【解析】【分析】先解出不等式2340x x --≥得到集合A ,再根据指数函数单调性解出集合B ,然后根据补集和交集的定义求得答案.【详解】由题意,()()2340140x x x x --≥⇒+-≥,则(,1][4,)A =-∞-⋃+∞, 又2111()40()222x x -⎛⎫->⇒> ⎪⎝⎭,则(),2B =-∞-,R [2,)B =-+∞, 于是()][)R 2,14,B A ∞⎡⋂=--⋃+⎣.29.(1){}23A B x x ⋂=≤≤(2)a ≤【解析】【分析】(1)首先解指数不等式得到{}13A x x =-≤≤,再求A B 即可.(2)首先根据题意得到{}21B x a x a =≤≤+,再根据充分不必要条件求解即可. (1),2a =时,{}25B x x =≤≤,{}23A B x x ⋂=≤≤(2){}2221310124a a a B x a x a ⎛⎫+-=-+>⇒=≤≤+ ⎪⎝⎭, p 是q 的充分不必要条件,则且A B ≠, 所以2a ≤-30.(1)()2,3U A B ⋂=;(2)9.【解析】【分析】 (1)先求不等式解集,再利用集合的补集、交集运算即可(2)转化为最值问题,由基本不等式求解【详解】(1)由已知{}()2602,3B x x x =--<=- ()2,U A =+∞,所以()()2,3U A B ⋂=,(2)()2121222225259b a b a a b a b a b a b a b⎛⎫+=+⋅+=++≥⋅= ⎪⎝⎭, 且仅当13a b ==时取等号, 不等式21m a b +≥恒成立,则9m ≤,故m 的最大值为9.。
高一数学集合练习题含答案一、单选题1.设集合104x A xx ⎧⎫+=≤⎨⎬-⎩⎭,{}1e ,R x B y y x ==-∈,R 为实数集,则()RA B ⋃=( )A .{1x x <-或}1x ≥B .{1x x ≤-或}1x >C .{}4x x ≥D .{}4x x >2.设集合(){}0.5log 10A x x =->,{}24xB x =<,则( )A .A =B B .A B ⊇C .A B B =D .A B B ⋃=3.设实数集为R ,集合{}1,0,1,2A =-,{}230B x x x =-≥,则()R A B ⋂=( )A .{}1,0-B .{}1,2C .{}1,0,1-D .{}0,1,24.集合{|13}A x x =-<<,集合{}24B xx =<∣,则A B =( ) A .(-2,2) B .(-1,2)C .(-2,3)D .(-1,3)5.已知集合{1,0,1}A =-,{|3lg 10}x B x =≥,则A B =( )A .{0}B .{0,1}C .{0,1}-D .{1,0,1}-6.如图,已知集合{A =1-,0,1,2},{|128}xB x N +=∈<≤,则图中的阴影部分表示的集合为( )A .{1,2}B .{1-,0,3}C .{1-,3}D .{0,1,2}7.已知集合{}1A x x =>,()(){}150B x x x =+-≤,则A B =( ) A .(]1,5-B .(]1,5C .[]1,5-D .[]1,58.已知全集{0,1,2,3,4,5}U =,集合{1,2,3}A =,{2,3,4}B =,则()U A B =( ) A .{1}B .{4}C .{0,5}D .{0,1,4,5}9.已知集合{}27120A x x x =-+≤,{}20B x x m =+>,若A B ⊆,则m 的取值范围为( ) A .()6,-+∞ B .[)6,-+∞C .(),6-∞-D .(],6∞--10.已知集合{22},{13}A xx B x N x =-<<=∈-<∣∣,则A B =( ) A .{}0,1 B .1,0,1,2C .[)1,2-D .()2,3-11.如图,已知集合A={-8,1},B={-8,-5,0,1,3},则Venn 图中阴影部分表示的集合为( )A .{-5,0,3}B .{-5,1,3}C .{0,3}D .{1,3}12.已知集合[)2,4A =,[]3,5B =,则()R A B =( ) A .(]4,5B .[]4,5C .()[),23,-∞⋃+∞D .(][),23,-∞⋃+∞13.设(){}2log 1A x y x ==+,{}24B x x =≥,则()RAB =( )A .()1,2-B .[)1,2-C .()2,+∞D .()1,-+∞14.已知集合{}31,A a a n n ==-∈Z ,{}31,B b b n n ==+∈Z ,全集U =Z ,则()U A B ⋂=( )A .AB .BC .∅D .Z15.已知全集{}0,1,2,3,4,5U =,集合{}3A x N x =∈<,集合{}0,3,4,5B =,则()UA B ⋂=( )A .{}4,5B .{}3,4,5C .{}0,4,5D .{}0,3,4,5二、填空题16.已知集合{}37A x x =≤<,{}C x x a =>,若A C ⊆,求实数a 的取值范围_______. 17.记关于x 的不等式220x x a a -+-≤的解集为A ,集合{}12B x x =-≤<,若A B ,则实数a 的取值范围为___________.18.集合A ={2|x x -ax +2=0}的子集有两个,则实数a =______. 19.已知集合{}2,1,0,1A =--,{}|3B x N x =∈<,则A B =_____.20.设全集{1U =,2,3,4,5,6,7,8},集合{1S =,3,5},集合{3T =,6},则ST =__.21.若集合{}3cos23,xA x x x R π==∈,{}21,B y y y R ==∈,则A B ⋂=_______.22.已知函数()94sin3264x x f x π-⋅+=,()21g x ax =-(0a >).若[]130,log 2x ∀∈,[]21,2x ∃∈,()()12f x g x =,则a 的取值范围是___________.23.若全集{}22,4,1U a a =-+,且{}1,2A a =+,7A =,则实数=a ______.24.在下面的写法中:①∅ {}0;②{}{}00,1∈;③0∈∅;④{}{}0,11,0⊆;⑤{}0∅∈,错误..的写法的序号是______. 25.若全集{}0,1,2,3,4U =,{}012M =,,,{}2,3N =,则M N ⋂=______. 三、解答题26.已知集合______,集合{}22,B x m x m m R =<<∈.从下列三个条件中任选一个,补充在上面横线中.①301x A xx ⎧⎫-=<⎨⎬+⎩⎭;②{}12A x x =-<;③{}2230A x x x =--<. (1)当1m =-时,求()RA B ⋂;(2)若A B A ⋃=,求实数m 的取值范围.27.设集合{}4U x x =≤,{}12A x x =-<≤,{}13B x x =≤≤.求: (1)A B ; (2)()U A B ; (3)()()U U A B ⋂.28.已知集合{}1A x a x a =≤≤+,{}2280B x x x =--≤.(1)若A B B ⋃=,求a 的取值范围; (2)若A B =∅,求a 的取值范围.29.已知集合{}13A x x =<≤,{}3e e B y y =≤≤,{}21C x m x m =<<-.(1)求A B .(2)若A C ⋂=∅,求m 的取值范围.30.已知集合{}250A x x x a =-+≤,B =[3,6].(1)若a = 0,求A B ;(2)x ∈B 是 x ∈ A 的充分条件,求实数a 的取值范围.【参考答案】一、单选题 1.C 【解析】 【分析】先求出集合A ,B ,再求两集合的并集,然后再求其补集 【详解】 由104x x +≤-,得(1)(4)040x x x +-≤⎧⎨-≠⎩,解得14x -≤<,所以{}14A x x =-≤<,因为当R x ∈时,e 0x >,所以1e 1x -<, 所以{}1B y y =<, 所以{}4A B x x ⋃=<, 所以(){}R4A B x x ⋃=≥,故选:C 2.D 【解析】 【分析】化简集合,A B ,再判断各选项的对错. 【详解】因为0.5{|log (1)0}{|12}A x x x x =->=<<,{}24={|2}xB x x x =<<,所以A B ⊆且A B ≠,所以A 错,B 错,{|12}A B x x A =<<=,C 错, {|2}A B x x B =<=,D 对,故选:D. 3.B【分析】解出B 集合,得到B 的补集的范围,再与A 取交集. 【详解】解得{|30}B x x x =≥≤或,()R 03B =(,),()R {12}A B ⋂=,故选:B. 4.B 【解析】 【分析】先求集合B ,进一步求出答案. 【详解】集合{}24B xx =<∣{22}x x =-<<∣,{13}A x x =-<<∣, ∴{12}A B xx ⋂=-<<∣. 故选:B. 5.B 【解析】 【分析】由对数的运算性质,并解指数不等式可得31{|log }2B x x =≥,再由集合的交运算求A B . 【详解】由31{|log }2B x x =≥,而311log 02-<<, 所以{0,1}A B =. 故选:B 6.B 【解析】 【分析】由题知{}1,2,3B =,进而得{}1,2A B =,再求阴影部分表示的集合即可. 【详解】解:解不等式128x <≤得03x <≤,所以{}1,2,3B =, 因为{A =1-,0,1,2}, 所以{}1,2A B =所以,图中的阴影部分表示的集合为{}1,0,3-. 故选:B 7.B 【解析】 【分析】化简集合B ,然后利用交集的定义运算即得.∵集合()(){}{}15015B x x x x x =+-≤=-≤≤,{}1A x x =>, ∴(]1,5A B ⋂=. 故选:B. 8.B 【解析】 【分析】由补集、交集的概念运算 【详解】{0,4,5}UA =,则(){4}U AB ⋂=.故选:B 9.A 【解析】 【分析】先解出集合,A B ,再结合A B ⊆得到关于m 的不等式,求解即可. 【详解】因为{}34,,2m A xx B x A B ⎧⎫==>-⊆⎨⎬⎩⎭∣,所以32m -<,解得6m >-. 故选:A. 10.A 【解析】 【分析】 由交集定义计算. 【详解】{}{12}0,1.A B x x ⋂=∈-<=N ∣故选:A . 11.A 【解析】 【分析】由已知,结合给出的Venn 图可判断阴影部分为∁BA , 根据给到的集合A 和集合B ,可直接进行求解. 【详解】因为集合A={-8,1},B={-8,-5,0,1,3}, Venn 图中阴影部分表示的集合为∁BA={-5,0,3}. 故选:A. 12.B 【解析】 【分析】先求出集合A 的补集,再由交集运算可得答案. 【详解】集合[)2,4A =,[]3,5B =,则()()[),24,R A =-∞⋃+∞ 所以()[]4,5R A B ⋂=, 故选:B. 13.A 【解析】 【分析】根据函数定义域的求解,以及简单二次不等式的求解,解得集合,A B ,再根据集合的补运算和交运算,即可求得结果. 【详解】因为(){}2log 1A x y x ==+{}{}|101x x x x =+>=-,{}24B x x =≥{|2x x =≤-或2}x ≥,故B R{|22}x x =-<<,则()RAB ={}()|121,2x x -<<=-.故选:A. 14.A 【解析】 【分析】根据集合的描述判断集合,A B 的关系,进而判断,U A B 的包含关系,即可得答案. 【详解】由题设,{...,4,1,2,5,8,...}A =--,{...,5,2,1,4,7,...}B =--, 所以A B =∅,而{...,4,3,1,0,2,3,5,6,8,...}UB =---,则U A B ≠⊂, 所以()UA B A =.故选:A15.B 【解析】 【分析】利用集合间的基本运算,即可得到答案; 【详解】{}3,4,5UA =,则(){}U 3,4,5AB ⋂=.故选:B.二、填空题16.(),3-∞【解析】 【分析】根据集合的包含关系画出数轴即可计算. 【详解】 ∵A C ⊆, ∴A 和C 如图:∴a <3.故答案为:(),3-∞.17.()1,2-【解析】 【分析】首先将不等式变形,再对a 与1a -分三种情况讨论,分别求出集合A ,根据集合的包含关系得到不等式组,即可求出参数a 的取值范围; 【详解】解:原不等式220x x a a -+-≤可变形为()()10x a x a -+-≤, 当1a a ,即12a =时,12A ⎧⎫=⎨⎬⎩⎭,满足题意; 当1a a <-,即12a <时,{}1A x a x a =≤≤-,所以112a a ≥-⎧⎨-<⎩,解得1a >-,所以112a -<<;当1a a ,即12a >时,{}1A x a x a =-≤≤,所以21112a a a ⎧⎪<⎪-≥-⎨⎪⎪>⎩,解得122a <<.综上可得1a 2-<<,即()1,2a ∈-; 故答案为:()1,2-18.22±【解析】 【分析】根据题意可得集合A 中仅有一个元素,则方程220x ax -+=只有一个解,从而有0∆=,即可得出答案. 【详解】解:因为A ={2|x x -ax +2=0}的子集有两个, 所以集合A 中仅有一个元素, 所以方程220x ax -+=只有一个解,所以280a ∆=-=,解得a =±故答案为:±19.{}0,1【解析】 【分析】由题知{}0,1,2B =,再根基集合交集运算求解即可. 【详解】解:因为{}{}|30,1,2B x N x =∈<=,{}2,1,0,1A =-- 所以A B ={}0,1 故答案为:{}0,120.{}2,4,7,8【解析】 【分析】由已知得可以求得S 和T ,再由交集运算即可解决. 【详解】∵全集{1U =,2,3,4,5,6,7,8},集合{1S =,3,5},集合{3T =,6}, ∴{}=2,4,6,7,8S ,{}=1,2,4,5,7,8T , ∴{}2,4,7,8S T =. 故答案为:{}2,4,7,8.21.{}1【解析】 【分析】易知{}1,1B =-,分别验证1,1-和集合A 的关系即可得结果. 【详解】因为{}{}21,1,1B y y y R ==∈=-,13cos 23π=,()13cos 23π--≠,即1A ∈,1A -∉,所以{}1A B ⋂=, 故答案为:{}1. 22.35,88⎡⎤⎢⎥⎣⎦【解析】 【分析】由题意,()f x 的值域为()g x 的值域子集,先求得两个函数的值域,再利用包含关系求得a 的取值范围. 【详解】因为()()294sin32311644x x x f x π-⋅+-+==, 又当[]30,log 2x ∈时,0311x ≤-≤,()f x 的值域为11,42⎡⎤⎢⎥⎣⎦.因为0a >,所以()g x 在[]1,2上单调递增,其值域为[]21,41a a --. 依题意得[]11,21,4142a a ⎡⎤⊆--⎢⎥⎣⎦,则12141412a a ⎧-≤⎪⎪⎨⎪-≥⎪⎩,解得3588a ≤≤. 故答案为:35,88⎡⎤⎢⎥⎣⎦23.3 【解析】 【分析】根据题意21a a -+7=,结合7A =,即可求得a . 【详解】因为{}22,4,1U a a =-+,且{}1,2A a =+,7A =,故可得217a a -+=,即()()320a a -+=,解得3a =或2a =-. 当2a =-时,{}2,4,7U =,{}1,2A =-,不合题意,故舍去. 当3a =时,满足题意. 故答案为:3. 24.②③⑤ 【解析】 【分析】根据集合与集合的关系,元素与集合的关系确定正确答案. 【详解】①,空集是任何非空集合的真子集,①正确.②,集合与集合间是包含关系,不是“属于”,元素与集合之间是属于关系,②错误. ③,空集没有任何元素,③错误. ④,根据集合元素的无序性可知④正确.⑤,集合与集合间是包含关系,不是“属于”,元素与集合之间是属于关系,⑤错误. 故答案为:②③⑤25.{}3【解析】 【分析】由交集、补集的定义计算. 【详解】由题意{4,3}M =,所以M N ⋂={3}.故答案为:{3}.三、解答题26.(1)(){}1,1R A B x x x ⋂=≤-≥ (2)122m -≤≤ 【解析】【分析】(1)首先分别求两个集合,再求集合的运算;(2)由条件可知B A ⊆,分B =∅和B ≠∅两种情况,求实数m 的取值范围.(1)若选①301x x -<+,则13x ,所以{}13A x x =-<<, 若选②12212x x -<⇔-<-<,得13x ,若选③()()2230130x x x x --<⇔+-<,得13x ,1m =-时,{}21B x x =-<<,{}11A B x x ⋂=-<<(){}1,1R A B x x x ⋂=≤-≥; (2)B A ⊆当B =∅,22m m ≥,得02m ≤≤当B ≠∅,22221,3m m m m ⎧<⎪≥-⎨⎪≤⎩得102m -≤< ∴122m -≤≤. 27.(1){}12x x ≤≤; (2){1x x ≤-或}14x ≤≤; (3){1x x ≤-或}34x <≤.【解析】【分析】(1)(2)(3)根据集合交并补计算方法计算即可.(1){}12A B x x ⋂=≤≤;(2)U A ={x |1x ≤-或24x <≤},()U A B ∴⋃={x |1x ≤-或14x ≤≤};(3)U A ={x |1x ≤-或24x <≤},U B ={x |x <1或3<x ≤4},()()U U A B ∴={x |1x ≤-或34x <≤}.28.(1)[2,3]-(2)(,3)(4,)∞∞--⋃+【解析】【分析】(1)首先解一元二次不等式,求出集合B ,由A B B ⋃=,得A B ⊆,即可得到不等式组,解得即可;(2)由A B =∅,则4a >或12a +<-,解得即可;(1)解:由2280x x --≤,即()()420x x -+≤,解得24x -≤≤,所以{}{}228024B x x x x x =--≤=-≤≤,因为A B B ⋃=,得A B ⊆,则214a a ≥-⎧⎨+≤⎩, 即23a -≤≤,所以a 的取值范围是[2,3]-. (2)解:由A B =∅,则4a >或12a +<-,即4a >或3a <-,所以a 的取值范围是()(),34,-∞-⋃+∞.29.(1){}e 3A B x x ⋂=≤≤(2)[0,)+∞【解析】【分析】(1)根据交集的定义直解,(2)分C =∅和C ≠∅两种情况求解(1) 因为{}13A x x =<≤,{}3e e B y y =≤≤, 所以{}e 3A B x x ⋂=≤≤(2)当C =∅时,满足A C ⋂=∅,则21m m ,得13m ≥, 当C ≠∅时,因为A C ⋂=∅,所以2111m m m <-⎧⎨-≤⎩,或2123m m m <-⎧⎨≥⎩, 解得103m ≤<或m ∈∅, 所以103m ≤<, 综上,0m ≥,即m 的取值范围为[0,)+∞30.(1)[3,5](2)(,6]-∞-【解析】【分析】(1)先化简集合A ,再去求A B ;(2)结合函数25y x x a =-+的图象,可以简单快捷地得到关于实数a 的不等式组,即可求得实数a 的取值范围.(1)当0a =时,{}250[0,5]A x x x =-≤=,又[3,6]B =, 故[0,5][3,6][3,5]A B ==.(2)由x B ∈是x A ∈的充分条件,得B A ⊆,即任意x B ∈,有250x x a -+≤成立函数25y x x a =-+的图象是开口向上的抛物线,故2235306560a a ⎧-⨯+≤⎨-⨯+≤⎩,解得6a ≤-,所以a 的取值范围为(,6]-∞-.。
集合练习题1.设集合 A={x|2 ≤x< 4} , B={x|3x- 7≥8- 2x} ,则 A∪B 等于( )A. {x|x ≥3} B. {x|x≥2} C.{x|2 ≤x<3} D. {x|x≥4}2.已知集合 A={1,3,5,7,9}, B={0,3,6,9,12},则 A∩B= ( )A. {3,5} B . {3,6} C. {3,7} D . {3,9}3. 已知集合 A={x|x>0} , B={x| - 1≤x≤2} ,则 A∪B= ( )A. {x|x ≥- 1} B . {x|x≤2 } C . {x|0<x≤2} D. {x| -1≤x≤2}4. 满足 M?{ ,,,} ,且 M∩{,,} = {,} 的集合 M的个数是 ()A.1B.2C.3 D . 45.集合 A= {0,2 , a} , B= {1 ,} .若 A∪B= {0,1,2,4,16} ,则 a 的值为 ( )A.0 B .1 C .2 D .46.设S= {x|2x + 1>0} , T={x|3x- 5<0} ,则 S∩T= ( )A. ? B . {x|x< -1/2} C. {x|x>5/3}D .{x| -1/2<x<5/3}7. 50名学生参加甲、乙两项体育活动,每人至少参加了一项,参加甲项的学生有30 名,参加乙项的学生有25 名,则仅参加了一项活动的学生人数为________.8.满足 {1,3} ∪A={1,3,5} 的所有集合 A 的个数是 ________.9.已知集合 A= {x|x ≤1} ,B= {x|x ≥a} ,且 A∪B=R,则实数 a 的取值范围是 ________ .10. 已知集合A= { -4,2a - 1,} , B= {a - 5,1 - a,9} ,若 A∩B={9} ,求 a 的值...11.已知集合 A= {1,3,5} , B= {1,2 ,- 1} ,若 A∪B={1,2,3,5} ,求 x 及 A∩B.12.已知 A= {x|2a ≤x≤a+ 3} , B={x|x< - 1 或 x>5} ,若 A∩B= ? ,求 a 的取值范围.13. (10 分 ) 某班有 36 名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组.已知参加数学、物理、化学小组的人数分别为26,15,13 ,同时参加数学和物理小组的有 6 人,同时参加物理和化学小组的有 4 人,则同时参加数学和化学小组的有多少人?集合测试一、选择题:本大题共10 小题,每小题 5 分,共 50 分。
例用符号∈或填空1
1________N, 0________N, -3________N,
0.5NN,;2
1________Z, 0________Z, -3________Z,
0.5ZZ,;2
1________Q, 0________Q, -3________Q,
0.5QQ,;2
1________R, 0________R, -3________R,
0.5RR,;2
分析元素在集合内用符号∈,而元素不在集合内时用符号.
解∈,∈,-,,; 1N0N3N0.5NN
2
1Z0Z3Z0.5ZZ1Q0Q3Q∈,∈,-∈,
,;∈,∈,-∈,2
0.5QQ1R0R3R0.5RR∈,;∈,∈,-∈,∈,;22
说明:要注意符号的规范书写.
例2 (1)用列举法表示不超过10的非负偶数的集合,并用另一种方法表示出
来;
(2)设集合A={(x,y)|x+y=6,x∈N,y∈N},试用列举法表示集合A;
分析 (1)中集合含的元素为0、2、4、6、8、10;(2)中集合所含的元素是点
(0,6),(1,5),(2,4),(3,3),(4,2),(5,1),(6,0).
解 (1){0,2,4,6,8,10};用描述法表示为{不超过10的非负偶数},或
|x|x=2n,n∈N,n<6}.
(2)A={(0,6),(1,5),(2,4),(3,3),(4,2),(5,1),(6,0)}.
说明:注意(2)中集合A的元素是点的坐标.
例由实数,-,,及-所组成的集合,最多含有3 xx|x|xx
23
3
[ ]
A.2个元素 B.3个
元素
C.4个元素 D.5个
元素
分析 当x等于零时只有一个元素,当x不等于零时有两个元素.
答 A.
说明:问题转化为对具有相同结果的不同表达式的识别.
例4 试用适当的方式表示:被3整除余1的自然数集合.
分析 被3整除余1的自然数可以表示为3n+1(n为自然数).
解 集合可以表示为{x|x=3n+1,n∈N}.
说明:虽然这一集合是无限集,但也可以用列举法来表示:{1,4,7,…,3n
+1,…}.
例5 下列四个集合中,表示空集的是
[ ]
A.{0}
B.{(x,y)|y2=-x2,x∈R,y∈R}
C{x||x|5xZxN}.=,∈,
D.{x|2x2+3x-2=0,x∈N}
分析 {0}是含有元素0蹬集合.{(x,y)|y2=-x2,x∈R,y
∈含有元素,.=,∈,含有元素-.虽然方R}(00){x||x|5xZxN}5
程2x2+3x-2=0的解是0.5和-2,但都不是自然数.
答 选D.
说明:注意集合元素的限制条件.
例试用适当的符号把-++和+,∈连结6 {|ab6abR|}2323
起来.
分析 这是元素与集合的关系问题,它们之间有从属或不从属的关系.注意到:
(2323)(2)(2)2(2362-++
=-+++-+=,3323)()
根据所给集合的元素特征,该元素属于集合.
解-++∈+,∈. 23{|ab6abR|}23
说明:元素是否在集合内,有时需要仔细变形、验证.
例年全国理改编题设,都是非零实数,=++7 (1990)aby
aabbab
ab||||||
可能取的值组成的集合是
[ ]
A.{3}
B.{3,2,1}
C.{3,1,-1} D.{3,-1}
分析 根据两个字母的符号分类讨论.
答 选D.
说明:本题考查的是实数的符号运算、绝对值等