二次函数测试卷一(含答案)
- 格式:doc
- 大小:398.50 KB
- 文档页数:21
二次函数单元测试题及答案一、选择题(每题3分,共30分)1. 若二次函数y=ax^2+bx+c的图像开口向上,则a的取值范围是()A. a > 0B. a < 0C. a = 0D. a ≠ 0答案:A2. 二次函数y=-3x^2+6x-2的对称轴是()A. x = -1B. x = 1C. x = 2D. x = 0答案:B3. 二次函数y=x^2-4x+c的顶点坐标是()A. (2, c-4)B. (2, c+4)C. (-2, c-4)D. (-2, c+4)答案:A4. 若二次函数y=x^2-6x+c的图像与x轴有两个交点,则c的取值范围是()A. c > 9B. c < 9C. c = 9D. c ≠ 9答案:B5. 二次函数y=2x^2-4x+3的最小值是()A. 1B. 2C. 3D. 4答案:C6. 二次函数y=-2x^2+4x+1的图像与y轴的交点坐标是()A. (0, -1)B. (0, 1)C. (0, 3)D. (0, 5)答案:B7. 若二次函数y=ax^2+bx+c的图像与x轴没有交点,则a和b的取值关系是()A. a > 0, b^2 > 4acB. a < 0, b^2 > 4acC. a > 0, b^2 < 4acD. a < 0, b^2 < 4ac8. 二次函数y=x^2-2x+1的图像的顶点坐标是()A. (1, 0)B. (1, 1)C. (0, 1)D. (2, 1)答案:B9. 二次函数y=x^2-6x+5的图像开口方向是()A. 向上B. 向下C. 向左D. 向右答案:A10. 若二次函数y=2x^2-4x+1的图像与x轴有一个交点,则该交点的坐标是()A. (1, 0)B. (2, 0)C. (-1, 0)D. (0, 0)答案:A二、填空题(每题3分,共15分)1. 二次函数y=x^2-2x+1的对称轴方程是______。
二次函数的应用测试题(含答案)一.选择题(共8小题)1.一个小球被抛出后,如果距离地面的高度h(米)和运行时间t(秒)的函数解析式为h=﹣5t2+10t+1,那么小球到达最高点时距离地面的高度是()A.1米B.3米C.5米D.6米2.某公司在甲、乙两地同时销售某种品牌的汽车.已知在甲、乙两地的销售利润y(单位:万元)与销售量x(单位:辆)之间分别满足:y1=﹣x2 +10x,y2=2x,若该公司在甲,乙两地共销售15辆该品牌的汽车,则能获得的最大利润为()A.30万元B.40万元C.45万元D.46万元3.向上发射一枚炮弹,经x秒后的高度为y公尺,且时间与高度关系为y=ax2+bx.若此炮弹在第7秒与第14秒时的高度相等,则在下列哪一个时间的高度是最高的()A.第9.5秒B.第10秒C.第10.5秒D.第11秒4.如图是一副眼镜镜片下半部分轮廓对应的两条抛物线关于y轴对称.AB∥x 轴,AB=4cm,最低点C在x轴上,高CH=1cm,BD=2cm.则右轮廓线DFE所在抛物线的函数解析式为()A.y= (x+3)2B.y= (x+3)2C.y= (x﹣3)2D.y= (x﹣3)25.烟花厂为国庆观礼特别设计制作一种新型礼炮,这种礼炮的升空高度h(m)与飞行时间t(s)的关系式是,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为()A.2sB.4sC.6sD.8s6一小球被抛出后,距离地面的高度h(米)和飞行时间t(秒)满足下面函数关系式:h=﹣5t2+20t﹣14,则小球距离地面的最大高度是()A.2米B.5米C.6米D.14米7.烟花厂为成都春节特别设计制作一种新型礼炮,这种礼炮的升空高度h(m)与飞行时间t(s)的关系式是,若这种礼炮在点火升空到最高点引爆,则从点火升空到引爆需要的时间为()A.3sB.4sC.5sD.6s8.某车的刹车距离y(m)与开始刹车时的速度x(m/s)之间满足二次函数y= (x>0),若该车某次的刹车距离为5m,则开始刹车时的速度为()A.40 m/sB.20 m/sC.10 m/sD.5 m/s二.填空题(共6小题)9.如图是一个横断面为抛物线形状的拱桥,当水面宽4米时,拱顶(拱桥洞的最高点)离水面2米,水面下降1米时,水面的宽度为_________米.10.如图的一座拱桥,当水面宽AB为12m时,桥洞顶部离水面4m,已知桥洞的拱形是抛物线,以水平方向为x轴,建立平面直角坐标系,若选取点A为坐标原点时的抛物线解析式是y=﹣(x﹣6)2+4,则选取点B为坐标原点时的抛物线解析式是_________.11.某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x 为整数)出售,可卖出(30﹣x)件.若使利润最大,每件的售价应为_________元.12.在平面直角坐标系中,点A、B、C的坐标分别为(0,1)、(4,2)、(2,6).如果P(x,y)是△ABC围成的区域(含边界)上的点,那么当w=xy取得最大值时,点P 的坐标是_________.13.如图,小李推铅球,如果铅球运行时离地面的高度y(米)关于水平距离x(米)的函数解析式,那么铅球运动过程中最高点离地面的距离为_________米.14.某种工艺品利润为60元/件,现降价销售,该种工艺品销售总利润w(元)与降价x(元)的函数关系如图.这种工艺品的销售量为_________件(用含x的代数式表示).三.解答题(共8小题)15.某机械公司经销一种零件,已知这种零件的成本为每件20元,调查发现当销售价为24元时,平均每天能售出32件,而当销售价每上涨2元,平均每天就少售出4件.(1)若公司每天的现售价为x元时则每天销售量为多少?(2)如果物价部门规定这种零件的销售价不得高于每件28元,该公司想要每天获得150元的销售利润,销售价应当为多少元?16.在2014年巴西世界杯足球赛前夕,某体育用品店购进一批单价为40元的球服,如果按单价60元销售,那么一个月内可售出240套.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套.设销售单价为x(x≥60)元,销售量为y套.(1)求出y与x的函数关系式.(2)当销售单价为多少元时,月销售额为14000元;(3)当销售单价为多少元时,才能在一个月内获得最大利润?最大利润是多少?[参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是].17.某经销商销售一种产品,这种产品的成本价为10元/千克,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18元/千克,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)之间的函数关系如图所示:(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/千克)之间的函数关系式.当销售价为多少时,每天的销售利润最大?最大利润是多少?(3)该经销商想要每天获得150元的销售利润,销售价应定为多少?18.某研究所将某种材料加热到1000℃时停止加热,并立即将材料分为A、B两组,采用不同工艺做降温对比实验,设降温开始后经过x min时,A、B两组材料的温度分别为yA℃、yB℃,yA、yB与x的函数关系式分别为yA=kx+b,yB= (x﹣60)2+m(部分图象如图所示),当x=40时,两组材料的温度相同.(1)分别求yA、yB关于x的函数关系式;(2)当A组材料的温度降至120℃时,B组材料的温度是多少?(3)在0<x<40的什么时刻,两组材料温差最大?19.“丹棱冻粑”是眉山著名特色小吃,产品畅销省内外,现有一个产品销售点在经销时发现:如果每箱产品盈利10元,每天可售出50箱;若每箱产品涨价1元,日销售量将减少2箱.(1)现该销售点每天盈利600元,同时又要顾客得到实惠,那么每箱产品应涨价多少元?(2)若该销售点单纯从经济角度考虑,每箱产品应涨价多少元才能获利最高?20.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)21.某体育用品商店试销一款成本为50元的排球,规定试销期间单价不低于成本价,且获利不得高于40%.经试销发现,销售量y(个)与销售单价x(元)之间满足如图所示的一次函数关系.(1)试确定y与x之间的函数关系式;(2)若该体育用品商店试销的这款排球所获得的利润Q元,试写出利润Q(元)与销售单价x(元)之间的函数关系式;当试销单价定为多少元时,该商店可获最大利润?最大利润是多少元?(3)若该商店试销这款排球所获得的利润不低于600元,请确定销售单价x的取值范围.22.某种商品每天的销售利润y(元)与销售单价x(元)之间满足关系:y=ax2+bx ﹣75.其图象如图所示.(1)销售单价为多少元时,该种商品每天的销售利润最大?最大利润为多少元?(2)销售单价在什么范围时,该种商品每天的销售利润不低于16元?26.3.3二次函数的应用参考答案与试题解析一.选择题(共8小题)1.一个小球被抛出后,如果距离地面的高度h(米)和运行时间t(秒)的函数解析式为h=﹣5t2+10t+1,那么小球到达最高点时距离地面的高度是()A. 1米B.3米C.5米D. 6米考点:二次函数的应用.分析:直接利用配方法求出二次函数最值进而求出答案.解答:解:h=﹣5t2+10t+1=﹣5(t2﹣2t)+1=﹣5(t﹣1)2+6,故小球到达最高点时距离地面的高度是:6m.故选:D.点评:此题主要考查了二次函数的应用,正确利用配方法求出是解题关键.2.某公司在甲、乙两地同时销售某种品牌的汽车.已知在甲、乙两地的销售利润y(单位:万元)与销售量x(单位:辆)之间分别满足:y1=﹣x2+10x,y2=2x,若该公司在甲,乙两地共销售15辆该品牌的汽车,则能获得的最大利润为()A. 30万元B.40万元C.45万元D. 46万元考点:二次函数的应用.分析:首先根据题意得出总利润与x之间的函数关系式,进而求出最值即可.解答:解:设在甲地销售x辆,则在乙地销售(15﹣x)量,根据题意得出:W=y1+y2=﹣x2+10x+2(15﹣x)=﹣x2+8x+30,∴最大利润为:= =46(万元),故选:D.点评:此题主要考查了二次函数的应用,得出函数关系式进而利用最值公式求出是解题关键.3.向上发射一枚炮弹,经x秒后的高度为y公尺,且时间与高度关系为y=ax2+bx.若此炮弹在第7秒与第14秒时的高度相等,则在下列哪一个时间的高度是最高的()A.第9.5秒B.第10秒C.第10.5秒D.第11秒考点:二次函数的应用.分析:根据题意,x=7时和x=14时y值相等,因此得到关于a,b的关系式,代入到x=﹣中求x的值.解答:解:当x=7时,y=49a+7b;当x=14时,y=196a+14b.根据题意得49a+7b=196a+14b,∴b=﹣21a,根据二次函数的对称性及抛物线的开口向下,当x=﹣=10.5时,y最大即高度最高.因为10最接近10.5.故选:C.点评:此题主要考查了二次函数的应用,根据对称性看备选项中哪个与之最近得出结论是解题关键.4.如图是一副眼镜镜片下半部分轮廓对应的两条抛物线关于y轴对称.AB∥x 轴,AB=4cm,最低点C在x轴上,高CH=1cm,BD=2cm.则右轮廓线DFE所在抛物线的函数解析式为()A. y= (x+3)2B.y= (x+3)2C.y= (x﹣3)2D. y= (x﹣3)2考点:二次函数的应用.专题:应用题.分析:利用B、D关于y轴对称,CH=1cm,BD=2cm可得到D点坐标为(1,1),由AB=4cm,最低点C在x轴上,则AB关于直线CH对称,可得到左边抛物线的顶点C的坐标为(﹣3,0),于是得到右边抛物线的顶点C的坐标为(3,0),然后设顶点式利用待定系数法求抛物线的解析式.解答:解:∵高CH=1cm,BD=2cm,而B、D关于y轴对称,∴D点坐标为(1,1),∵AB∥x轴,AB=4cm,最低点C在x轴上,∴AB关于直线CH对称,∴左边抛物线的顶点C的坐标为(﹣3,0),∴右边抛物线的顶点C的坐标为(3,0),设右边抛物线的解析式为y=a(x﹣3)2,把D(1,1)代入得1=a×(1﹣3)2,解得a= ,故右边抛物线的解析式为y= (x﹣3)2.故选C.点评:本题考查了二次函数的应用:利用实际问题中的数量关系与直角坐标系中线段对应起来,再确定某些点的坐标,然后利用待定系数法确定抛物线的解析式,再利用抛物线的性质解决问题.5.烟花厂为国庆观礼特别设计制作一种新型礼炮,这种礼炮的升空高度h(m)与飞行时间t(s)的关系式是,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为()A. 2sB.4sC.6sD. 8s考点:二次函数的应用.分析:礼炮在点火升空到最高点处引爆,故求h的最大值.解答:解:由题意知礼炮的升空高度h(m)与飞行时间t(s)的关系式是:,∵<0∴当t=4s时,h最大为40m,故选B.点评:本题考查二次函数的实际应用,借助二次函数解决实际问题.6.一小球被抛出后,距离地面的高度h(米)和飞行时间t(秒)满足下面函数关系式:h=﹣5t2+20t﹣14,则小球距离地面的最大高度是()A. 2米B.5米C.6米D. 14米考点:二次函数的应用.分析:把二次函数的解析式化成顶点式,即可得出小球距离地面的最大高度.解答:解:h=﹣5t2+20t﹣14=﹣5(t2﹣4t)﹣14=﹣5(t2﹣4t+4)+20﹣14=﹣5(t﹣2)2+6,﹣5<0,则抛物线的开口向下,有最大值,当t=2时,h有最大值是6米.故选:C.点评:本题考查了二次函数的应用以及配方法求二次函数最值,把函数式化成顶点式是解题关键.7.烟花厂为成都春节特别设计制作一种新型礼炮,这种礼炮的升空高度h(m)与飞行时间t(s)的关系式是,若这种礼炮在点火升空到最高点引爆,则从点火升空到引爆需要的时间为()A. 3sB.4sC.5sD. 6s考点:二次函数的应用.专题:计算题;应用题.分析:到最高点爆炸,那么所需时间为﹣.解答:解:∵礼炮在点火升空到最高点引爆,∴t=﹣=﹣=4s.故选B.点评:考查二次函数的应用;判断出所求时间为二次函数的顶点坐标的横坐标的值是解决本题的关键.8.某车的刹车距离y(m)与开始刹车时的速度x(m/s)之间满足二次函数y= (x>0),若该车某次的刹车距离为5m,则开始刹车时的速度为()A. 40 m/sB.20 m/sC.10 m/sD. 5 m/s考点:二次函数的应用.专题:应用题.分析:本题实际是告知函数值求自变量的值,代入求解即可,另外实际问题中,负值舍去.解答:解:当刹车距离为5m时,即可得y=5,代入二次函数解析式得:5= x2.解得x=±10,(x=﹣10舍),故开始刹车时的速度为10m/s.故选C.点评:本题考查了二次函数的应用,明确x、y代表的实际意义,刹车距离为5m,即是y=5,难度一般.二.填空题(共6小题)9.如图是一个横断面为抛物线形状的拱桥,当水面宽4米时,拱顶(拱桥洞的最高点)离水面2米,水面下降1米时,水面的宽度为米.考点:二次函数的应用.专题:函数思想.分析:根据已知得出直角坐标系,进而求出二次函数解析式,再通过把y=﹣1代入抛物线解析式得出水面宽度,即可得出答案.解答:解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),通过以上条件可设顶点式y=ax2+2,其中a可通过代入A点坐标(﹣2,0),到抛物线解析式得出:a=﹣0.5,所以抛物线解析式为y=﹣0.5x2+2,当水面下降1米,通过抛物线在图上的观察可转化为:当y=﹣1时,对应的抛物线上两点之间的距离,也就是直线y=﹣1与抛物线相交的两点之间的距离,可以通过把y=﹣1代入抛物线解析式得出:﹣1=﹣0.5x2+2,解得:x= ,所以水面宽度增加到米,故答案为:米.点评:此题主要考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题的关键.10.如图的一座拱桥,当水面宽AB为12m时,桥洞顶部离水面4m,已知桥洞的拱形是抛物线,以水平方向为x轴,建立平面直角坐标系,若选取点A为坐标原点时的抛物线解析式是y=﹣(x﹣6)2+4,则选取点B为坐标原点时的抛物线解析式是y=﹣(x+6)2+4.考点:二次函数的应用.专题:数形结合.分析:根据题意得出A点坐标,进而利用顶点式求出函数解析式即可.解答:解:由题意可得出:y=a(x+6)2+4,将(﹣12,0)代入得出,0=a(﹣12+6)2+4,解得:a=﹣,∴选取点B为坐标原点时的抛物线解析式是:y=﹣(x+6)2+4.故答案为:y=﹣(x+6)2+4.点评:此题主要考查了二次函数的应用,利用顶点式求出函数解析式是解题关键.11.某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x 为整数)出售,可卖出(30﹣x)件.若使利润最大,每件的售价应为25元.考点:二次函数的应用.专题:销售问题.分析:本题是营销问题,基本等量关系:利润=每件利润×销售量,每件利润=每件售价﹣每件进价.再根据所列二次函数求最大值.解答:解:设最大利润为w元,则w=(x﹣20)(30﹣x)=﹣(x﹣25)2+25,∵20≤x≤30,∴当x=25时,二次函数有最大值25,故答案是:25.点评:本题考查了把实际问题转化为二次函数,再利用二次函数的性质进行实际应用.此题为数学建模题,借助二次函数解决实际问题.12.在平面直角坐标系中,点A、B、C的坐标分别为(0,1)、(4,2)、(2,6).如果P(x,y)是△ABC围成的区域(含边界)上的点,那么当w=xy取得最大值时,点P 的坐标是(,5).考点:二次函数的应用.专题:压轴题.分析:分别求得线段AB、线段AC、线段BC的解析式,分析每一条线段上横、纵坐标的乘积的最大值,再进一步比较.解答:解:线段AB的解析式是y= x+1(0≤x≤4),此时w=x(x+1)= +x,则x=4时,w最大=8;线段AC的解析式是y= x+1(0≤x≤2),此时w=x(x+1)= +x,此时x=2时,w最大=12;线段BC的解析式是y=﹣2x+10(2≤x≤4),此时w=x(﹣2x+10 )=﹣2x2+10x,此时x= 时,w最大=12.5 .综上所述,当w=xy取得最大值时,点P的坐标是(,5).点评:此题综合考查了二次函数的一次函数,能够熟练分析二次函数的最值.13.如图,小李推铅球,如果铅球运行时离地面的高度y(米)关于水平距离x(米)的函数解析式,那么铅球运动过程中最高点离地面的距离为2米.考点:二次函数的应用.分析:直接利用公式法求出函数的最值即可得出最高点离地面的距离.解答:解:∵函数解析式为:,∴y最值= = =2.故答案为:2.点评:此题主要考查了二次函数的应用,正确记忆最值公式是解题关键.14.某种工艺品利润为60元/件,现降价销售,该种工艺品销售总利润w(元)与降价x(元)的函数关系如图.这种工艺品的销售量为(60+x)件(用含x的代数式表示).考点:二次函数的应用.分析:由函数的图象可知点(30,2700)和点(60,0)满足解析式w=mx2+n,设销售量为a,代入函数的解析式,即可得到a和x的关系.解答:解:由函数的图象可知点(30,2700)和点(60,0)满足解析式w=mx2+n,∴,解得:,∴w=﹣x2+3600,设销售量为a,则a(60﹣x)=w,即a(60﹣x)=﹣x2+3600,解得:a=(60+x ),故答案为:(60+x).点评:本题考查点的坐标的求法及二次函数的实际应用.此题为数学建模题,借助二次函数解决实际问题,用的知识点为:因式分解,题目设计比较新颖,同时也考查了学生的逆向思维思考问题.三.解答题(共8小题)15.某机械公司经销一种零件,已知这种零件的成本为每件20元,调查发现当销售价为24元时,平均每天能售出32件,而当销售价每上涨2元,平均每天就少售出4件.(1)若公司每天的现售价为x元时则每天销售量为多少?(2)如果物价部门规定这种零件的销售价不得高于每件28元,该公司想要每天获得150元的销售利润,销售价应当为多少元?考点:二次函数的应用.分析:(1)由原来的销量﹣每天减少的销量就可以得出现在每天的销量而得出结论; (2)由每件的利润×数量=总利润建立方程求出其解即可.解答:解:(1)由题意,得32﹣×4=80﹣2x.答:每天的现售价为x元时则每天销售量为(80﹣2x)件;(2)由题意,得(x﹣20)(80﹣2x)=150,解得:x1=25,x2=35.∵x≤28,∴x=25.答:想要每天获得150元的销售利润,销售价应当为25元.点评:本题考查了销售问题的数量关系每件的利润×数量=总利润的运用,列一元二次方程解实际问题的运用,一元二次方程的解法的运用,解答时根据销售问题的等量关系建立方程是关键.16.在2014年巴西世界杯足球赛前夕,某体育用品店购进一批单价为40元的球服,如果按单价60元销售,那么一个月内可售出240套.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套.设销售单价为x(x≥60)元,销售量为y套.(1)求出y与x的函数关系式.(2)当销售单价为多少元时,月销售额为14000元;(3)当销售单价为多少元时,才能在一个月内获得最大利润?最大利润是多少?[参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是].考点:二次函数的应用;一元二次方程的应用.专题:销售问题.分析:(1)根据销售量=240﹣(销售单价每提高5元,销售量相应减少20套)列函数关系即可;(2)根据月销售额=月销售量×销售单价=14000,列方程即可求出销售单价;(3)设一个月内获得的利润为w元,根据利润=1套球服所获得的利润×销售量列式整理,再根据二次函数的最值问题解答.解答:解:(1),∴y=﹣4x+480(x≥60);(2)根据题意可得,x(﹣4x+480)=14000,解得,x1=70,x2=50(不合题意舍去),∴当销售价为70元时,月销售额为14000元.(3)设一个月内获得的利润为w元,根据题意,得w=(x﹣40)(﹣4x+480),=﹣4x2+640x﹣19200,=﹣4(x﹣80)2+6400,当x=80时,w的最大值为6400∴当销售单价为80元时,才能在一个月内获得最大利润,最大利润是6400元.点评:本题考查了二次函数的应用以及一元二次方程的应用,并涉及到了根据二次函数的最值公式,熟练记忆公式是解题关键.17.某经销商销售一种产品,这种产品的成本价为10元/千克,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18元/千克,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)之间的函数关系如图所示:(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/千克)之间的函数关系式.当销售价为多少时,每天的销售利润最大?最大利润是多少?(3)该经销商想要每天获得150元的销售利润,销售价应定为多少?考点:二次函数的应用.专题:销售问题.分析:(1)设函数关系式y=kx+b,把(10,40),(18,24)代入求出k和b即可,由成本价为10元/千克,销售价不高于18元/千克,得出自变量x的取值范围;(2)根据销售利润=销售量×每一件的销售利润得到w和x的关系,利用二次函数的性质得最值即可;(3)先把y=150代入(2)的函数关系式中,解一元二次方程求出x,再根据x的取值范围即可确定x的值.解答:解:(1)设y与x之间的函数关系式y=kx+b,把(10,40),(18,24)代入得,解得,∴y与x之间的函数关系式y=﹣2x+60(10≤x≤18);(2)W=(x﹣10)(﹣2x+60)=﹣2x2+80x﹣600,对称轴x=20,在对称轴的左侧y随着x的增大而增大,∵10≤x≤18,∴当x=18时,W最大,最大为192.即当销售价为18元时,每天的销售利润最大,最大利润是19 2元.(3)由150=﹣2x2+80x﹣600,解得x1=15,x2=25(不合题意,舍去)答:该经销商想要每天获得150元的销售利润,销售价应定为15元.点评:本题考查了二次函数的应用,得到每天的销售利润的关系式是解决本题的关键,结合实际情况利用二次函数的性质解决问题.18.某研究所将某种材料加热到1000℃时停止加热,并立即将材料分为A、B 两组,采用不同工艺做降温对比实验,设降温开始后经过x min时,A、B两组材料的温度分别为yA℃、yB℃,yA、yB与x的函数关系式分别为yA=kx+b,yB= (x﹣60)2+m(部分图象如图所示),当x=40时,两组材料的温度相同.(1)分别求yA、yB关于x的函数关系式;(2)当A组材料的温度降至120℃时,B组材料的温度是多少?(3)在0<x<40的什么时刻,两组材料温差最大?考点:二次函数的应用.专题:应用题;数形结合.分析:(1)首先求出yB函数关系式,进而得出交点坐标,即可得出yA函数关系式;(2)首先将y=120代入求出x的值,进而代入yB求出答案;(3)得出yA﹣yB的函数关系式,进而求出最值即可.解答:解:(1)由题意可得出:yB= (x﹣60)2+m经过(0,1000),则1000= (0﹣60)2+m,解得:m=100,∴yB= (x﹣60)2+100,当x=40时,yB= ×(40﹣60)2+100,解得:yB=200,yA=kx+b,经过(0,1000),(40,200),则,解得:,∴yA=﹣20x+1000;(2)当A组材料的温度降至120℃时,120=﹣20x+1000,解得:x=44,当x=44,yB= (44﹣60)2+100=164(℃),∴B组材料的温度是164℃;(3)当0<x<40时,yA﹣yB=﹣20x+1000﹣(x﹣60)2﹣100=﹣x2+10x=﹣(x﹣20) 2+100,∴当x=20时,两组材料温差最大为100℃.点评:此题主要考查了二次函数的应用以及待定系数法求一次函数解析式以及二次函数最值求法等知识,得出两种材料的函数关系式是解题关键.19.“丹棱冻粑”是眉山著名特色小吃,产品畅销省内外,现有一个产品销售点在经销时发现:如果每箱产品盈利10元,每天可售出50箱;若每箱产品涨价1元,日销售量将减少2箱.(1)现该销售点每天盈利600元,同时又要顾客得到实惠,那么每箱产品应涨价多少元?(2)若该销售点单纯从经济角度考虑,每箱产品应涨价多少元才能获利最高?考点:二次函数的应用;一元二次方程的应用.专题:销售问题.分析:(1)设每箱应涨价x元,得出日销售量将减少2x箱,再由盈利额=每箱盈利×日销售量,依题意得方程求解即可;(2)设每箱应涨价x元,得出日销售量将减少2x箱,再由盈利额=每箱盈利×日销售量,依题意得函数关系式,进而求出最值.解答:解:(1)设每箱应涨价x元,则每天可售出(50﹣2x)箱,每箱盈利(10+x)元,依题意得方程:(50﹣2x)(10+x)=600,整理,得x2﹣15x+50=0,解这个方程,得x1=5,x2=10,∵要使顾客得到实惠,∴应取x=5,答:每箱产品应涨价5元.(2)设利润为y元,则y=(50﹣2x)(10+x),整理得:y=﹣2x2+30x+500,配方得:y=﹣2(x﹣7.5)2+612.5,当x=7.5元,y可以取得最大值,∴每箱产品应涨价7.5元才能获利最高.点评:此题考查了一元二次方程的应用以及二次函数应用,解答此题的关键是熟知等量关系是:盈利额=每箱盈利×日销售量.20.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)考点:二次函数的应用.专题:销售问题.分析:(1)根据“利润=(售价﹣成本)×销售量”列出方程;。
九年级数学 二次函数 单元试卷(一)时间90分钟 满分:100分一、选择题(本大题共10小题,每小题3分,共30分) 1.下列函数不属于二次函数的是( )A.y=(x -1)(x+2)B.y=21(x+1)2C. y=1-3x 2D. y=2(x+3)2-2x 22. 函数y=-x 2-4x+3图象顶点坐标是( )A.(2,-1)B.(-2,1)C.(-2,-1)D.(2, 1)3. 抛物线()12212++=x y 的顶点坐标是( ) A .(2,1) B .(-2,1) C .(2,-1) D .(-2,-1)4. y=(x -1)2+2的对称轴是直线( ) A .x=-1 B .x=1 C .y=-1 D .y=15.已知二次函数)2(2-++=m m x mx y 的图象经过原点,则m 的值为 ( ) A . 0或2 B . 0 C . 2 D .无法确定6. 二次函数y =x 2的图象向右平移3个单位,得到新的图象的函数表达式是( )A. y =x 2+3B. y =x 2-3C. y =(x +3)2D. y =(x -3)27.函数y=2x 2-3x+4经过的象限是( )A.一、二、三象限B.一、二象限C.三、四象限D.一、二、四象限 8.下列说法错误的是( )A .二次函数y=3x 2中,当x>0时,y 随x 的增大而增大B .二次函数y=-6x 2中,当x=0时,y 有最大值0 C .a 越大图象开口越小,a 越小图象开口越大D .不论a 是正数还是负数,抛物线y=ax 2(a ≠0)的顶点一定是坐标原点9.如图,小芳在某次投篮中,球的运动路线是抛物线y =-15x 2+3.5的一部分,若命中篮圈中心,则他与篮底的距离l 是( )A .3.5mB .4mC .4.5mD .4.6m10.二次函数y=ax 2+bx +c 的图象如图所示,下列结论错误的是( ) A .a >0. B .b >0. C .c <0. D .abc >0.(第9题) (第10题)3.05m yx y o二、填空题(本大题共4小题,每小题3分,共12分)11.一个正方形的面积为16cm 2,当把边长增加x cm 时,正方形面积为y cm 2,则y 关于x 的函数为 。
二次函数测试题及答案一、选择题(每题3分,共30分)1. 以下哪个选项是二次函数的一般形式?A. y = 2x + 1B. y = x^2 + 3x + 2C. y = 3x^3 - 5D. y = 4/x答案:B2. 二次函数y = ax^2 + bx + c的顶点坐标为(h, k),那么h的值为:A. -b/2aB. -b/aC. b/2aD. b/a答案:C3. 二次函数y = 2x^2 - 4x + 3的对称轴方程是:A. x = 1B. x = -1C. x = 2D. x = -2答案:A4. 如果二次函数y = ax^2 + bx + c的图象开口向上,那么a的值:A. 大于0B. 小于0C. 等于0D. 可以是任意实数答案:A5. 二次函数y = -x^2 + 4x - 3的顶点坐标是:A. (1, 2)B. (2, 1)C. (3, 0)D. (3, 4)答案:C6. 二次函数y = 3x^2 - 6x + 5的图象与x轴的交点个数是:A. 0个B. 1个C. 2个D. 3个答案:C7. 二次函数y = x^2 - 4x + 4的最小值是:A. 0B. 4C. -4D. 1答案:A8. 二次函数y = 2x^2 - 4x + 3的图象开口方向是:A. 向上B. 向下C. 向左D. 向右答案:A9. 二次函数y = -x^2 + 2x + 3的图象与y轴的交点坐标是:A. (0, 3)B. (0, -3)C. (0, 5)D. (0, -5)答案:A10. 二次函数y = 5x^2 - 10x + 8的图象与x轴的交点坐标是:A. (2, 0)B. (-2, 0)C. (1, 0)D. (-1, 0)答案:A二、填空题(每题4分,共20分)1. 二次函数y = ax^2 + bx + c的图象开口向上,且经过点(2, 0),则a的值至少为______。
答案:02. 二次函数y = 2x^2 - 4x + 3的顶点坐标是(______, ______)。
第26章二次函数达标测试卷一、选择题(每题3分,共24分)1.下列函数中,是二次函数的是()A.y=5x2B.y=22-2x C.y=2x2-3x3+1 D.y=1 x22.抛物线y=3(x-1)2+8的顶点坐标为()A.(1,8) B.(-1,8) C.(-1,-8) D.(1,-8) 3.某商场第1年销售计算机5 000台,设平均每年的销售量增长率为x,第3年的销售量为y台,则y关于x的函数表达式为()A y=5 000(1+2x)B y=5 000(1+x)2C y=5 000(1-2x)D y=5 000(1-x)2 4.在平面直角坐标系中,抛物线y=2x2保持不动,将x轴向上平移1个单位(y轴不动),则在新坐标系下抛物线的表达式是()A.y=2x2+1 B.y=2x2-1 C.y=2(x-1)2D.y=2(x+1)2 5.已知点A(2,y1)、B(3,y2)、C(-1,y3)均在抛物线y=ax2-4ax+c(a >0)上,则y1、y2、y3的大小关系为()A.y1<y2<y3B.y1<y3<y2 C.y2<y1<y3D.y2<y3<y1 6.二次函数y=ax2与一次函数y=ax+a在同一坐标系中的大致图象为()7.若二次函数y=-x2+mx在-2≤x≤1时的最大值为5,则m的值是()A.-2 5或6 B.2 5或6 C.-92或6 D.-92或-2 5 8.如图,在平面直角坐标系中,抛物线y=13x2经过平移得到抛物线y=ax2+bx,其对称轴与两段抛物线所围成的阴影部分的面积为83,则a,b的值分别为()A.13,43 B.13,-23 C.13,-43D.-13,43(第8题) (第13题) (第14题)二、填空题(每题3分,共18分)9.已知点P⎝ ⎛⎭⎪⎫a,12在抛物线y=2x2上,则a等于________.10.抛物线y=x2+6x+c与x轴有且只有1个公共点,则c=________.11.某小型无人机着陆后滑行的距离s(米)关于滑行的时间t(秒)的函数表达式是s=-0.25t2+10t,那么无人机着陆后滑行__ _秒才能停下来.12.已知二次函数y=ax2+bx+c,x与y的部分对应值如下表:则不等式ax2+bx+c>-3的解集为________.13.如图,过点A(0,4)作平行于x轴的直线AC,分别交抛物线y1=x2(x≥0)与y2=14x2(x≥0)于点B、C,则BC的长是________.14.二次函数y=ax2+bx+c的图象如图所示,则下列结论:①ac<0;②a+b=0;③a+b+c>0;④b2-4ac<0.其中正确的是___(填序号)三、解答题(第15,16题每题5分,第17~19题每题6分,第20,21题每题8分,第22题10分,其余每题12分,共78分)15.一抛物线以(-1,9)为顶点,且经过x轴上一点(-4,0),求该抛物线的表达式及抛物线与y轴的交点坐标.16.如图,二次函数y=-x2+bx+c的图象经过坐标原点,且与x轴交于点A(-2,0).(1)求此二次函数的表达式;(2)结合图象,直接写出满足y>0的x的取值范围.(第16题)17.一名男生推铅球,铅球行进高度y(m)与水平距离x(m)之间满足关系式y=-112x2+23x+53.(1)求铅球离手时的高度;(2)求铅球推出的最大距离.18.在平面直角坐标系中,二次函数y=-2x2+bx+c的图象经过点A(-2,4)和点B(1,-2).(1)求这个二次函数的表达式及其图象的顶点坐标;(2)平移该二次函数的图象,使其顶点恰好落在原点的位置上,请直接写出平移方法.19.某网店正在热销一款电子产品,其成本为每件10元,销售过程中发现,该商品每天的销量y(件)与销售单价x(元)之间存在如图所示的函数关系.(1)求y与x之间的函数关系式;(2)该款电子产品的销售单价为多少时,每天的销售利润最大?最大利润是多少?(第19题)20.如图,已知抛物线y=ax2+(a-1)x+3(a≠0)与x轴交于A、B(1,0)两点,与y轴交于点C.(1)点C的坐标为________;(2)将抛物线y=ax2+(a-1)x+3平移,使平移后的抛物线仍经过点B,与x轴的另一个交点为B′,且点B′的坐标为(3,0),求平移后的抛物线的表达式.(第20题) 21.现有一面12米长的墙,某农户计划用28米长的篱笆靠墙围成一个如图所示的矩形养鸡场ABCD.(1)若矩形养鸡场的面积为90平方米,求所用的墙长AD;(2)求矩形养鸡场的最大面积.(第21题)22.如图,矩形OABC的顶点A、C的坐标为A(2 3,0)、C(0,2),抛物线y=-x2+bx+c经过点B、C.(1)求该抛物线的表达式;(2)将矩形OABC绕原点O顺时针旋转一个角度α(0°<α<90°),在旋转过程中,当矩形的顶点A的对应点A′落在抛物线的对称轴上时,求此时点A′的坐标.(第22题)23.某班数学兴趣小组对函数y =x 2-2|x |的图象和性质进行了探究,探究过程如下,请补充完整.(1)自变量x 的取值范围是全体实数,x 与y 的几组对应值如下表:其中m =__________;(2)根据表中数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分;(3)(3)观察函数图象,写出两条函数的性质;(4)进一步探究函数图象发现:①函数图象与x 轴有__________个交点,对应的方程x 2-2|x |=0有__________个实数根;②方程x 2-2|x |=2有__________个实数根;③关于x 的方程x 2-2|x |=a 有4个实数根时,a 的取值范围是__________.(第23题)答案一、1.A 2.A 3.B 4.B5.A 【点拨】∵y =ax 2-4ax +c ,且a >0, ∴图象开口向上,对称轴是直线x =--4a2a =2, ∴x ≥2时,y 随x 的增大而增大,∵C (-1,y 3)关于直线x =2的对称点是(5,y 3),2<3<5,∴y 1<y 2<y 3. 6.C7.C 【点拨】∵y =-x 2+mx ,∴图象开口向下,对称轴为直线x =-m 2×(-1)=m2.①当m 2≤-2,即m ≤-4时,函数在x =-2时取得最大值5,∴-4-2m =5,解得m =-92;②当m2≥1,即m ≥2时,函数在x =1时取得最大值5, ∴-1+m =5,解得m =6.③当-2<m 2<1,即-4<m <2时,函数在x =m 2时取得最大值5,∴-m 24+m 22=5,解得m =2 5(舍去)或m =-2 5(舍去).综上所述,m 的值为-92或6.8.C 【点拨】如图,设平移后所得新抛物线的对称轴和两抛物线分别相交于点A 和点B ,连结OA 、OB ,(第8题)∴S 阴影=S △OAB .由题意得a =13,∴y =ax 2+bx =13x 2+bx =13⎝ ⎛⎭⎪⎫x +3b 22-3b 24,∴点A 的坐标为⎝ ⎛⎭⎪⎫-3b 2,-3b 24,∴点B 的坐标为 ⎝ ⎛⎭⎪⎫-3b 2,3b 24,∴AB =3b 22,点O 到AB 的距离为-3b2,∴S △AOB =12×3b 22×⎝ ⎛⎭⎪⎫-3b 2=83,解得b =-43.二、9.12或-12 10.9 11.2012.0<x <2 13.2 14.①②③三、15.解:设抛物线的表达式为y =a (x +1)2+9,将(-4,0)代入y =a (x +1)2+9, 得0=9a +9,解得a =-1, ∴抛物线的表达式为y =-(x +1)2+9.令x =0,则y =8,∴抛物线与y 轴的交点坐标为(0,8).16.解:(1)把(0,0)和(-2,0)分别代入y =-x 2+bx +c ,得⎩⎨⎧c =0,-4-2b +c =0,解得⎩⎨⎧b =-2,c =0,∴二次函数的表达式为y =-x 2-2x . (2)-2<x <0.17.解:(1)令x =0,则y =53.∴铅球离手时的高度为53 m.(2)当y =0时,-112x 2+23x +53=0, 解得x 1=10,x 2=-2(不合题意,舍去), ∴铅球推出的最大距离是10 m.18.解:(1)∵二次函数y =-2x 2+bx +c 的图象经过点A (-2,4)和点B (1,-2).∴⎩⎨⎧-2×4-2b +c =4,-2×1+b +c =-2,解得⎩⎨⎧b =-4,c =4, ∴这个二次函数的表达式为y =-2x 2-4x +4. ∵y =-2x 2-4x +4=-2(x +1)2+6, ∴顶点坐标为(-1,6).(2)(答案不唯一)将该二次函数图象先向右平移1个单位,再向下平移6个单位. 19.解:(1)设y 与x 之间的函数关系式为y =kx +b ,将(20,100),(25,50)代入,得 ⎩⎨⎧20k +b =100,25k +b =50,解得⎩⎨⎧k =-10,b =300, ∴y 与x 之间的函数关系式为y =-10x +300. (2)设该款电子产品的销售利润为w 元,根据题意得w =(x -10)(-10x +300)=-10x 2+400x -3 000=-10(x -20)2+1 000, ∵-10<0,∴x =20时,w 最大,为1 000.答:该款电子产品的销售单价为20元时,每天销售利润最大,最大利润是1 000元. 20.解:(1)(0,3)(2)∵抛物线y =ax 2+(a -1)x +3与x 轴交于点B (1,0),∴a +a -1+3=0,∴a =-1,∴y =-x 2-2x +3.设平移后的抛物线表达式为y =-(x +h )2+k , ∵平移后的抛物线经过点B (1,0)和点B ′(3,0), ∴⎩⎨⎧-(1+h )2+k =0,-(3+h )2+k =0,解得⎩⎨⎧h =-2,k =1, ∴平移后的抛物线表达式为y =-(x -2)2+1.21.解:(1)设所用的墙长AD 为x 米,则AB 的长为28-x2米,由题意可得x ·28-x2=90,解得x 1=18(舍去),x 2=10.答:所用的墙长AD 为10米. (2)设AB 为a 米,面积为S 平方米, 则S =a (28-2a )=-2(a -7)2+98, ∵0<28-2a ≤12,∴8≤a <14,∴当a =8时,S 取得最大值,此时S =96, 答:矩形养鸡场的最大面积是96平方米.22.解:(1)∵A (2 3,0),C (0,2),∴易得B (2 3,2). 把点C 和点B 的坐标代入y =-x 2+bx +c , 得⎩⎨⎧c =2,-12+2 3b +c =2,解得⎩⎨⎧b =2 3,c =2, ∴该抛物线的表达式为y =-x 2+2 3x +2. (2)设对称轴与x 轴交于点D ,∴易得OD =3, 又∵OA ′=OA =2 3,∴A ′D =(2 3)2-(3)2=3,∴A ′(3,-3). 23.解:(1)0 (2)如图.(3)①函数y =x 2-2|x |的图象关于y 轴对称;②当x >1时,y 随x 的增大而增大. (4)①3;3 ②2 ③-1<a <0(第23题)【点拨】(3)题答案不唯一.24. 解:(1)由题意得⎩⎨⎧a -b +c =0,16a +4b +c =0c =3,,解得⎩⎪⎨⎪⎧a =-34,b =94,c =3,∴抛物线对应的函数表达式为y =-34x 2+94x +3.(2)设直线BC 对应的函数表达式为y =kx +d ,则⎩⎨⎧4k +d =0,d =3,解得⎩⎪⎨⎪⎧k =-34,d =3,∴y =-34x +3.设D (m ,-34m 2+94m +3)(0<m <4).过点D 作DM ⊥x 轴交BC 于点M ,则M ⎝ ⎛⎭⎪⎫m ,-34m +3,DM ∥OC ,∴DM =⎝ ⎛⎭⎪⎫-34m 2+94m +3-⎝ ⎛⎭⎪⎫-34m +3=-34m 2+3m ,∠DME =∠OCB ,又∵∠DEM =∠BOC =90°,∴△DEM ∽△BOC , ∴DE OB =DMBC .∵OB =4,OC =3,∴BC =5,∴DE =45DM ,∴DE =-35m 2+125m =-35(m -2)2+125(0<m <4).当m =2时,DE 取得最大值,最大值是125. (3)存在.∵F 为AB 的中点, ∴OF =32,∴tan ∠CFO =OCOF =2.如图,过点B 作BG ⊥BC ,交CD 的延长线于点G ,过点G 作GH ⊥x 轴,垂足为H .(第24题)①若∠DCE =∠CFO ,则tan ∠DCE =GBBC =2, ∴BG =10.易得△GBH ∽△BCO ,∴GH BO =HB OC =GBBC ,∴GH =8,BH =6,∴G (10,8). 设直线CG 对应的函数表达式为y =px +n ,11∴⎩⎨⎧n =3,10p +n =8,解得⎩⎪⎨⎪⎧p =12,n =3,∴直线CG 对应的函数表达式为y =12x +3,令12x +3=-34x 2+94x +3,解得x =73或x =0(舍去). ②若∠CDE =∠CFO ,同理可得BG =52,GH =2,BH =32,∴G ⎝ ⎛⎭⎪⎫112,2.易得直线CG 对应的函数表达式为y =-211x +3,令-211x +3=-34x 2+94x +3,解得x =10733或x =0(舍去).综上所述,点D 的横坐标为73或10733.12。
九年级数学下册第一章《二次函数》单元测试题-湘教版(含答案)一、单选题1.二次函数y=(x-3)2+1的最小值是( )A .3B .-3C .1D .-12.将二次函数 2(1)y x =- 的图象向左平移1个单位长度, 再向上平移2个单位后, 所得图象 的函数解析式是( )A .2(2)2y x =-+B .2(2)2y x =--C .22y x =-D .22y x =+3.抛物线y=2(x-1)2-2的对称轴是( ) A .直线 1x =- B .直线 1x = C .直线 2x = D .直线 2x =- 4.已知二次函数 223y x x =-++ ,当x≥2时,y 的取值范围是( )A .y≥3B .y≤3C .y >3D .y <35.如果抛物线 ()22y a x =+ 开口向下,那么 a 的取值范围为( )A .2a >B .2a <C .2a >-D .2a <-6.二次函数y=x 2-2x+2的图象顶点在第( )象限.A .一B .二C .三D .四7.在下列函数中,其图象与x 轴没有交点的是( )A .y=2xB .y=﹣3x+1C .y=x 2D .y= 1x8.如图,已知抛物线2y ax bx c =++的对称轴在y 轴右侧,抛物线与x 轴交于点()20A -,和点B ,与y 轴的负半轴交于点C ,且2OB OC =,则下列结论:①0a b c->;②241b ac -=;③14a =;④21cb =-.其中正确的有( )A .1个B .2个C .3个D .4个9.函数 2y ax 3ax 1(a 0)=++> 的图象上有三个点分别为 ()1A 3y -, , ()2B 1y -, ,31C y 2⎛⎫ ⎪⎝⎭, ,则 1y , 2y , 3y 的大小关系为( ) A .123y y y <<B .213y y y <<C .321y y y <<D .1y , 2y , 3y 的大小不确定10.已知a ,b 是抛物线y =(x ﹣c )(x ﹣c ﹣d )﹣3与x 轴交点的横坐标,a <b ,则|a ﹣c|+|c ﹣b|化简的结果是( )A .b ﹣aB .a ﹣bC .a+b ﹣2cD .2c ﹣a ﹣b二、填空题11.二次函数 ()2223y x =-+- 的对称轴是直线 .12.教练对小明推铅球的录像进行技术分析,发现铅球行进高度 ()m y 与水平距离 ()m x 之间的关系为 ()215312y x =--+ ,由此可知铅球推出的距离是 m . 13.二次函数()223y mx mx m =+--的图象如图所示,则m 的取值范围是 .14.如图,在△ABC 中,AB=AC=10,点D 是边BC 上一动点(不与B ,C 重合),△ADE=△B=α,DE 交AC 于点E ,且cosα= 45.下列结论: ①△ADE△△ACD ; ②当BD=6时,△ABD 与△DCE 全等;③△DCE 为直角三角形时,BD 为8; ④0<CE≤6.4.其中正确的结论是 .(把你认为正确结论的序号都填上)三、解答题15.如图,在△ABC 中,△B=90°,AB=12,BC=24,动点P 从点A 开始沿边AB 向终点B 以每秒2个单位长度的速度移动,动点Q 从点B 开始沿边BC 以每秒4个单位长度的速度向终点C 移动,如果点P 、Q 分别从点A 、B 同时出发,那么△PBQ 的面积S 随出发时间t (s )如何变化?写出函数关系式及t 的取值范围.16.在一块等腰直角三角形铁皮上截一块矩形铁皮,如图,已有的铁皮是等腰直角三角形ABC,它的底边AB长20厘米.要截得的矩形EFGD的边FG在AB上,顶点E、D分别在边CA、CB上,设EF的长为x厘米,矩形EFGD的面积为y平方厘米,试写出y关于x的函数解析式及定义域,并求当EF的长为4厘米时所截得的矩形的面积,17.在平面直角坐标系中,二次函数的图象经过A(-2,0),B(4,0),C(1,3)三点.求这个二次函数的解析式.18.如图所示,已知边长为4的正方形钢板有一个角锈蚀,其中AF=2,BF=1。
- 1 - 2016学年第一学期 数学 单元检测卷——九年级 上 第一章 二次函数(B卷) 姓名:_______________班级:_______________学号:_______________ (总分:100分 考试时间:60分钟 考试难度:0.60) 一、填空题(每空3分,共15分)
1、二次函数的最小值是 . 2、如图为长方形时钟钟面示意图,时钟的中心在长方形对角线的交点上,长方形的宽为20厘米,钟面数字2在长方形的顶点处,则长方形的长为_________厘米。
(第2题图) (第5题图) 3、将抛物线向右平移1个单位,再向上平移3个单位,则所得抛物线的表达式为 。
4、自由下落物体的高度(米)与下落的时间(秒)的关系为.现有一铁球从离地面米高的建
筑物的顶部作自由下落,到达地面需要的时间是 秒.
5、已知二次函数()与一次函数的图象相交于点A(-2,4),B (8,2)(如图所示),则能使成立的的取值范围是 . 二、选择题(每题3分,共30分) 6、正比例函数的图像经过二、四象限,则抛物线的大致图像是( ) - 2 -
7、函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确的个数为( )
A.1 B.2 C.3 D.4
(第7题图) (第8题图) 8、如图所示,二次函数的图像经过点(-1,2),且与轴交点的横坐标分别为,
,其中,,下列结论:①; ②; ③; ④.其中正确的有( )
A.1个 B.2个 C.3个 D.4个 9、已知关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=a,x2=b(a<b),则二次函数y=x2+mx+n中,当y<0时,x的取值范围是( )
A.x<a B.x>b C.a<x<b D.x<a或x>b 10、某公园草坪的防护栏是由100段形状相同的抛物线形组成的.为了牢固起见,每段护栏需要间距0.4 m加
二次函数经典测试题附答案二次函数经典测试题附答案一、选择题1.小明从如图所示的二次函数 $y=ax^2+bx+c$ 的图像中,观察得出了下面五条信息:①$c0$,③$a-b+c>0$,④$b^2>4ac$,⑤$2a=-2b$,其中正确结论是().A。
①②④B。
②③④C。
③④⑤D。
①③⑤解析】本题考查了二次函数图像与系数关系,观察图像判断图像开口方向、对称轴所在位置、与 $x$ 轴交点个数即可得出二次函数系数满足条件。
由抛物线的开口方向判断 $a$ 的符号,由抛物线与 $y$ 轴的交点判断 $c$ 的符号,然后根据对称轴及抛物线与 $x$ 轴交点情况进行推理,进而对所得结论进行判断。
详解】①由抛物线交 $y$ 轴于负半轴,则 $c0$;由对称轴在 $y$ 轴右侧,对称轴为 $x=-\frac{b}{2a}$,又 $a>0$,故$b0$,故②错误;③结合图像得出 $x=-1$ 时,对应 $y$ 的值在 $x$ 轴上方,故 $y>0$,即 $a-b+c>0$,故③正确;④由抛物线与 $x$ 轴有两个交点可以推出 $b^2-4ac>0$,故④正确;⑤由图像可知:对称轴为 $x=-\frac{b}{2a}$,则 $2a=-2b$,故⑤正确;故正确的有:③④⑤。
故选:C。
点睛】本题考查了二次函数图像与系数关系,观察图像判断图像开口方向、对称轴所在位置、与 $x$ 轴交点个数即可得出二次函数系数满足条件。
2.二次函数 $y=ax^2+bx+c$($a\neq0$)图像如图所示,下列结论:①$abc>0$;②$2a+b^2=2$;③当 $m\neq1$ 时,$a+b>am^2+bm$;④$a-b+c>0$;⑤若$ax_1+bx_1=ax_2+bx_2$,且 $x_1\neq x_2$,则 $x_1+x_2=2$。
其中正确的有()A。
①②③B。
②④C。
②⑤D。
二次函数的应用测试题(含答案)一.选择题(共8小题)1.一个小球被抛出后,如果距离地面的高度h(米)和运行时间t(秒)的函数解析式为h=﹣5t2+10t+1,那么小球到达最高点时距离地面的高度是()A.1米 B.3米 C.5米 D.6米2.某公司在甲、乙两地同时销售某种品牌的汽车.已知在甲、乙两地的销售利润y(单位:万元)与销售量x(单位:辆)之间分别满足:y1=﹣x2 +10x,y2=2x,若该公司在甲,乙两地共销售15辆该品牌的汽车,则能获得的最大利润为()A.30万元 B.40万元 C.45万元 D.46万元3.向上发射一枚炮弹,经x秒后的高度为y公尺,且时间与高度关系为y=ax2+bx.若此炮弹在第7秒与第14秒时的高度相等,则在下列哪一个时间的高度是最高的()A.第9.5秒 B.第10秒 C.第10.5秒 D.第11秒4.如图是一副眼镜镜片下半部分轮廓对应的两条抛物线关于y轴对称.AB∥x轴,AB=4cm,最低点C在x轴上,高CH=1cm,BD=2cm.则右轮廓线DFE所在抛物线的函数解析式为()A.y= (x+3)2 B.y= (x+3)2 C.y= (x﹣3)2 D.y= (x﹣3)25.烟花厂为国庆观礼特别设计制作一种新型礼炮,这种礼炮的升空高度h(m)与飞行时间t(s)的关系式是,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为()A.2s B.4s C.6s D.8s6一小球被抛出后,距离地面的高度h(米)和飞行时间t(秒)满足下面函数关系式:h=﹣5t2+20t﹣14,则小球距离地面的最大高度是()A.2米 B.5米 C.6米 D.14米7.烟花厂为成都春节特别设计制作一种新型礼炮,这种礼炮的升空高度h(m)与飞行时间t(s)的关系式是,若这种礼炮在点火升空到最高点引爆,则从点火升空到引爆需要的时间为()A.3s B.4s C.5s D.6s8.某车的刹车距离y(m)与开始刹车时的速度x(m/s)之间满足二次函数y= (x>0),若该车某次的刹车距离为5m,则开始刹车时的速度为()A.40 m/s B.20 m/s C.10 m/s D.5 m/s二.填空题(共6小题)9.如图是一个横断面为抛物线形状的拱桥,当水面宽4米时,拱顶(拱桥洞的最高点)离水面2米,水面下降1米时,水面的宽度为_________米.10.如图的一座拱桥,当水面宽AB为12m时,桥洞顶部离水面4m,已知桥洞的拱形是抛物线,以水平方向为x轴,建立平面直角坐标系,若选取点A为坐标原点时的抛物线解析式是y=﹣(x﹣6)2+4,则选取点B为坐标原点时的抛物线解析式是_________.11.某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x 为整数)出售,可卖出(30﹣x)件.若使利润最大,每件的售价应为_________元.12.在平面直角坐标系中,点A、B、C的坐标分别为(0,1)、(4,2)、(2,6).如果P(x,y)是△ABC围成的区域(含边界)上的点,那么当w=xy取得最大值时,点P 的坐标是_________.13.如图,小李推铅球,如果铅球运行时离地面的高度y(米)关于水平距离x(米)的函数解析式,那么铅球运动过程中最高点离地面的距离为_________米.14.某种工艺品利润为60元/件,现降价销售,该种工艺品销售总利润w(元)与降价x(元)的函数关系如图.这种工艺品的销售量为_________件(用含x的代数式表示).三.解答题(共8小题)15.某机械公司经销一种零件,已知这种零件的成本为每件20元,调查发现当销售价为24元时,平均每天能售出32件,而当销售价每上涨2元,平均每天就少售出4件.(1)若公司每天的现售价为x元时则每天销售量为多少?(2)如果物价部门规定这种零件的销售价不得高于每件28元,该公司想要每天获得150元的销售利润,销售价应当为多少元?16.在2014年巴西世界杯足球赛前夕,某体育用品店购进一批单价为40元的球服,如果按单价60元销售,那么一个月内可售出240套.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套.设销售单价为x(x≥60)元,销售量为y套.(1)求出y与x的函数关系式.(2)当销售单价为多少元时,月销售额为14000元;(3)当销售单价为多少元时,才能在一个月内获得最大利润?最大利润是多少?[参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是].17.某经销商销售一种产品,这种产品的成本价为10元/千克,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18元/千克,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)之间的函数关系如图所示:(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/千克)之间的函数关系式.当销售价为多少时,每天的销售利润最大?最大利润是多少?(3)该经销商想要每天获得150元的销售利润,销售价应定为多少?18.某研究所将某种材料加热到1000℃时停止加热,并立即将材料分为A、B两组,采用不同工艺做降温对比实验,设降温开始后经过x min时,A、B两组材料的温度分别为yA℃、yB℃,yA、yB与x的函数关系式分别为yA=kx+b,yB= (x﹣60)2+m(部分图象如图所示),当x=40时,两组材料的温度相同.(1)分别求yA、yB关于x的函数关系式;(2)当A组材料的温度降至120℃时,B组材料的温度是多少?(3)在0<x<40的什么时刻,两组材料温差最大?19.“丹棱冻粑”是眉山著名特色小吃,产品畅销省内外,现有一个产品销售点在经销时发现:如果每箱产品盈利10元,每天可售出50箱;若每箱产品涨价1元,日销售量将减少2箱.(1)现该销售点每天盈利600元,同时又要顾客得到实惠,那么每箱产品应涨价多少元?(2)若该销售点单纯从经济角度考虑,每箱产品应涨价多少元才能获利最高?20.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)21.某体育用品商店试销一款成本为50元的排球,规定试销期间单价不低于成本价,且获利不得高于40%.经试销发现,销售量y(个)与销售单价x(元)之间满足如图所示的一次函数关系.(1)试确定y与x之间的函数关系式;(2)若该体育用品商店试销的这款排球所获得的利润Q元,试写出利润Q(元)与销售单价x(元)之间的函数关系式;当试销单价定为多少元时,该商店可获最大利润?最大利润是多少元?(3)若该商店试销这款排球所获得的利润不低于600元,请确定销售单价x的取值范围.22.某种商品每天的销售利润y(元)与销售单价x(元)之间满足关系:y=ax2+bx﹣75.其图象如图所示.(1)销售单价为多少元时,该种商品每天的销售利润最大?最大利润为多少元?(2)销售单价在什么范围时,该种商品每天的销售利润不低于16元?26.3.3二次函数的应用参考答案与试题解析一.选择题(共8小题)1.一个小球被抛出后,如果距离地面的高度h(米)和运行时间t(秒)的函数解析式为h=﹣5t2+10t+1,那么小球到达最高点时距离地面的高度是()A. 1米 B.3米 C.5米 D. 6米考点:二次函数的应用.分析:直接利用配方法求出二次函数最值进而求出答案.解答:解:h=﹣5t2+10t+1=﹣5(t2﹣2t)+1=﹣5(t﹣1)2+6,故小球到达最高点时距离地面的高度是:6m.故选:D.点评:此题主要考查了二次函数的应用,正确利用配方法求出是解题关键.2.某公司在甲、乙两地同时销售某种品牌的汽车.已知在甲、乙两地的销售利润y(单位:万元)与销售量x(单位:辆)之间分别满足:y1=﹣x2+10x,y2=2x,若该公司在甲,乙两地共销售15辆该品牌的汽车,则能获得的最大利润为()A. 30万元 B.40万元 C.45万元 D. 46万元考点:二次函数的应用.分析:首先根据题意得出总利润与x之间的函数关系式,进而求出最值即可.解答:解:设在甲地销售x辆,则在乙地销售(15﹣x)量,根据题意得出:W=y1+y2=﹣x2+10x+2(15﹣x)=﹣x2+8x+30,∴最大利润为:= =46(万元),故选:D.点评:此题主要考查了二次函数的应用,得出函数关系式进而利用最值公式求出是解题关键.3.向上发射一枚炮弹,经x秒后的高度为y公尺,且时间与高度关系为y=ax2+bx.若此炮弹在第7秒与第14秒时的高度相等,则在下列哪一个时间的高度是最高的()A.第9.5秒 B.第10秒 C.第10.5秒 D.第11秒考点:二次函数的应用.分析:根据题意,x=7时和x=14时y值相等,因此得到关于a,b的关系式,代入到x=﹣中求x的值.解答:解:当x=7时,y=49a+7b;当x=14时,y=196a+14b.根据题意得49a+7b=196a+14b,∴b=﹣21a,根据二次函数的对称性及抛物线的开口向下,当x=﹣=10.5时,y最大即高度最高.因为10最接近10.5.故选:C.点评:此题主要考查了二次函数的应用,根据对称性看备选项中哪个与之最近得出结论是解题关键.4.如图是一副眼镜镜片下半部分轮廓对应的两条抛物线关于y轴对称.AB∥x轴,AB=4cm,最低点C在x轴上,高CH=1cm,BD=2cm.则右轮廓线DFE所在抛物线的函数解析式为()A. y= (x+3)2 B.y= (x+3)2 C.y= (x﹣3)2 D. y= (x﹣3)2考点:二次函数的应用.专题:应用题.分析:利用B、D关于y轴对称,CH=1cm,BD=2cm可得到D点坐标为(1,1),由AB=4cm,最低点C在x轴上,则AB关于直线CH对称,可得到左边抛物线的顶点C的坐标为(﹣3,0),于是得到右边抛物线的顶点C的坐标为(3,0),然后设顶点式利用待定系数法求抛物线的解析式.解答:解:∵高CH=1cm,BD=2cm,而B、D关于y轴对称,∴D点坐标为(1,1),∵AB∥x轴,AB=4cm,最低点C在x轴上,∴AB关于直线CH对称,∴左边抛物线的顶点C的坐标为(﹣3,0),∴右边抛物线的顶点C的坐标为(3,0),设右边抛物线的解析式为y=a(x﹣3)2,把D(1,1)代入得1=a×(1﹣3)2,解得a= ,故右边抛物线的解析式为y= (x﹣3)2.故选C.点评:本题考查了二次函数的应用:利用实际问题中的数量关系与直角坐标系中线段对应起来,再确定某些点的坐标,然后利用待定系数法确定抛物线的解析式,再利用抛物线的性质解决问题.5.烟花厂为国庆观礼特别设计制作一种新型礼炮,这种礼炮的升空高度h(m)与飞行时间t(s)的关系式是,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为()A. 2s B.4s C.6s D. 8s考点:二次函数的应用.分析:礼炮在点火升空到最高点处引爆,故求h的最大值.解答:解:由题意知礼炮的升空高度h(m)与飞行时间t(s)的关系式是:,∵<0∴当t=4s时,h最大为40m,故选B.点评:本题考查二次函数的实际应用,借助二次函数解决实际问题.6.一小球被抛出后,距离地面的高度h(米)和飞行时间t(秒)满足下面函数关系式:h=﹣5t2+20t﹣14,则小球距离地面的最大高度是()A. 2米 B.5米 C.6米 D. 14米考点:二次函数的应用.分析:把二次函数的解析式化成顶点式,即可得出小球距离地面的最大高度.解答:解:h=﹣5t2+20t﹣14=﹣5(t2﹣4t)﹣14=﹣5(t2﹣4t+4)+20﹣14=﹣5(t﹣2)2+6,﹣5<0,则抛物线的开口向下,有最大值,当t=2时,h有最大值是6米.故选:C.点评:本题考查了二次函数的应用以及配方法求二次函数最值,把函数式化成顶点式是解题关键.7.烟花厂为成都春节特别设计制作一种新型礼炮,这种礼炮的升空高度h(m)与飞行时间t(s)的关系式是,若这种礼炮在点火升空到最高点引爆,则从点火升空到引爆需要的时间为()A. 3s B.4s C.5s D. 6s考点:二次函数的应用.专题:计算题;应用题.分析:到最高点爆炸,那么所需时间为﹣.解答:解:∵礼炮在点火升空到最高点引爆,∴t=﹣=﹣=4s.故选B.点评:考查二次函数的应用;判断出所求时间为二次函数的顶点坐标的横坐标的值是解决本题的关键.8.某车的刹车距离y(m)与开始刹车时的速度x(m/s)之间满足二次函数y= (x>0),若该车某次的刹车距离为5m,则开始刹车时的速度为()A. 40 m/s B.20 m/s C.10 m/s D. 5 m/s考点:二次函数的应用.专题:应用题.分析:本题实际是告知函数值求自变量的值,代入求解即可,另外实际问题中,负值舍去.解答:解:当刹车距离为5m时,即可得y=5,代入二次函数解析式得:5= x2.解得x=±10,(x=﹣10舍),故开始刹车时的速度为10m/s.故选C.点评:本题考查了二次函数的应用,明确x、y代表的实际意义,刹车距离为5m,即是y=5,难度一般.二.填空题(共6小题)9.如图是一个横断面为抛物线形状的拱桥,当水面宽4米时,拱顶(拱桥洞的最高点)离水面2米,水面下降1米时,水面的宽度为米.考点:二次函数的应用.专题:函数思想.分析:根据已知得出直角坐标系,进而求出二次函数解析式,再通过把y=﹣1代入抛物线解析式得出水面宽度,即可得出答案.解答:解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),通过以上条件可设顶点式y=ax2+2,其中a可通过代入A点坐标(﹣2,0),到抛物线解析式得出:a=﹣0.5,所以抛物线解析式为y=﹣0.5x2+2,当水面下降1米,通过抛物线在图上的观察可转化为:当y=﹣1时,对应的抛物线上两点之间的距离,也就是直线y=﹣1与抛物线相交的两点之间的距离,可以通过把y=﹣1代入抛物线解析式得出:﹣1=﹣0.5x2+2,解得:x= ,所以水面宽度增加到米,故答案为:米.点评:此题主要考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题的关键.10.如图的一座拱桥,当水面宽AB为12m时,桥洞顶部离水面4m,已知桥洞的拱形是抛物线,以水平方向为x轴,建立平面直角坐标系,若选取点A为坐标原点时的抛物线解析式是y=﹣(x﹣6)2+4,则选取点B为坐标原点时的抛物线解析式是y=﹣(x+6)2+4.考点:二次函数的应用.专题:数形结合.分析:根据题意得出A点坐标,进而利用顶点式求出函数解析式即可.解答:解:由题意可得出:y=a(x+6)2+4,将(﹣12,0)代入得出,0=a(﹣12+6)2+4,解得:a=﹣,∴选取点B为坐标原点时的抛物线解析式是:y=﹣(x+6)2+4.故答案为:y=﹣(x+6)2+4.点评:此题主要考查了二次函数的应用,利用顶点式求出函数解析式是解题关键.11.某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x 为整数)出售,可卖出(30﹣x)件.若使利润最大,每件的售价应为25元.考点:二次函数的应用.专题:销售问题.分析:本题是营销问题,基本等量关系:利润=每件利润×销售量,每件利润=每件售价﹣每件进价.再根据所列二次函数求最大值.解答:解:设最大利润为w元,则w=(x﹣20)(30﹣x)=﹣(x﹣25)2+25,∵20≤x≤30,∴当x=25时,二次函数有最大值25,故答案是:25.点评:本题考查了把实际问题转化为二次函数,再利用二次函数的性质进行实际应用.此题为数学建模题,借助二次函数解决实际问题.12.在平面直角坐标系中,点A、B、C的坐标分别为(0,1)、(4,2)、(2,6).如果P(x,y)是△ABC围成的区域(含边界)上的点,那么当w=xy取得最大值时,点P 的坐标是(,5).考点:二次函数的应用.专题:压轴题.分析:分别求得线段AB、线段AC、线段BC的解析式,分析每一条线段上横、纵坐标的乘积的最大值,再进一步比较.解答:解:线段AB的解析式是y= x+1(0≤x≤4),此时w=x(x+1)= +x,则x=4时,w最大=8;线段AC的解析式是y= x+1(0≤x≤2),此时w=x(x+1)= +x,此时x=2时,w最大=12;线段BC的解析式是y=﹣2x+10(2≤x≤4),此时w=x(﹣2x+10 )=﹣2x2+10x,此时x= 时,w最大=12.5 .综上所述,当w=xy取得最大值时,点P的坐标是(,5).点评:此题综合考查了二次函数的一次函数,能够熟练分析二次函数的最值.13.如图,小李推铅球,如果铅球运行时离地面的高度y(米)关于水平距离x(米)的函数解析式,那么铅球运动过程中最高点离地面的距离为2米.考点:二次函数的应用.分析:直接利用公式法求出函数的最值即可得出最高点离地面的距离.解答:解:∵函数解析式为:,∴y最值= = =2.故答案为:2.点评:此题主要考查了二次函数的应用,正确记忆最值公式是解题关键.14.某种工艺品利润为60元/件,现降价销售,该种工艺品销售总利润w(元)与降价x(元)的函数关系如图.这种工艺品的销售量为(60+x)件(用含x的代数式表示).考点:二次函数的应用.分析:由函数的图象可知点(30,2700)和点(60,0)满足解析式w=mx2+n,设销售量为a,代入函数的解析式,即可得到a和x的关系.解答:解:由函数的图象可知点(30,2700)和点(60,0)满足解析式w=mx2+n,∴,解得:,∴w=﹣x2+3600,设销售量为a,则a(60﹣x)=w,即a(60﹣x)=﹣x2+3600,解得:a=(60+x ),故答案为:(60+x).点评:本题考查点的坐标的求法及二次函数的实际应用.此题为数学建模题,借助二次函数解决实际问题,用的知识点为:因式分解,题目设计比较新颖,同时也考查了学生的逆向思维思考问题.三.解答题(共8小题)15.某机械公司经销一种零件,已知这种零件的成本为每件20元,调查发现当销售价为24元时,平均每天能售出32件,而当销售价每上涨2元,平均每天就少售出4件.(1)若公司每天的现售价为x元时则每天销售量为多少?(2)如果物价部门规定这种零件的销售价不得高于每件28元,该公司想要每天获得150元的销售利润,销售价应当为多少元?考点:二次函数的应用.分析:(1)由原来的销量﹣每天减少的销量就可以得出现在每天的销量而得出结论;(2)由每件的利润×数量=总利润建立方程求出其解即可.解答:解:(1)由题意,得32﹣×4=80﹣2x.答:每天的现售价为x元时则每天销售量为(80﹣2x)件;(2)由题意,得(x﹣20)(80﹣2x)=150,解得:x1=25,x2=35.∵x≤28,∴x=25.答:想要每天获得150元的销售利润,销售价应当为25元.点评:本题考查了销售问题的数量关系每件的利润×数量=总利润的运用,列一元二次方程解实际问题的运用,一元二次方程的解法的运用,解答时根据销售问题的等量关系建立方程是关键.16.在2014年巴西世界杯足球赛前夕,某体育用品店购进一批单价为40元的球服,如果按单价60元销售,那么一个月内可售出240套.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套.设销售单价为x(x≥60)元,销售量为y套.(1)求出y与x的函数关系式.(2)当销售单价为多少元时,月销售额为14000元;(3)当销售单价为多少元时,才能在一个月内获得最大利润?最大利润是多少?[参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是].考点:二次函数的应用;一元二次方程的应用.专题:销售问题.分析:(1)根据销售量=240﹣(销售单价每提高5元,销售量相应减少20套)列函数关系即可;(2)根据月销售额=月销售量×销售单价=14000,列方程即可求出销售单价;(3)设一个月内获得的利润为w元,根据利润=1套球服所获得的利润×销售量列式整理,再根据二次函数的最值问题解答.解答:解:(1),∴y=﹣4x+480(x≥60);(2)根据题意可得,x(﹣4x+480)=14000,解得,x1=70,x2=50(不合题意舍去),∴当销售价为70元时,月销售额为14000元.(3)设一个月内获得的利润为w元,根据题意,得w=(x﹣40)(﹣4x+480),=﹣4x2+640x﹣19200,=﹣4(x﹣80)2+6400,当x=80时,w的最大值为6400∴当销售单价为80元时,才能在一个月内获得最大利润,最大利润是6400元.点评:本题考查了二次函数的应用以及一元二次方程的应用,并涉及到了根据二次函数的最值公式,熟练记忆公式是解题关键.17.某经销商销售一种产品,这种产品的成本价为10元/千克,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18元/千克,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)之间的函数关系如图所示:(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/千克)之间的函数关系式.当销售价为多少时,每天的销售利润最大?最大利润是多少?(3)该经销商想要每天获得150元的销售利润,销售价应定为多少?考点:二次函数的应用.专题:销售问题.分析:(1)设函数关系式y=kx+b,把(10,40),(18,24)代入求出k和b即可,由成本价为10元/千克,销售价不高于18元/千克,得出自变量x的取值范围;(2)根据销售利润=销售量×每一件的销售利润得到w和x的关系,利用二次函数的性质得最值即可;(3)先把y=150代入(2)的函数关系式中,解一元二次方程求出x,再根据x的取值范围即可确定x的值.解答:解:(1)设y与x之间的函数关系式y=kx+b,把(10,40),(18,24)代入得,解得,∴y与x之间的函数关系式y=﹣2x+60(10≤x≤18);(2)W=(x﹣10)(﹣2x+60)=﹣2x2+80x﹣600,对称轴x=20,在对称轴的左侧y随着x的增大而增大,∵10≤x≤18,∴当x=18时,W最大,最大为192.即当销售价为18元时,每天的销售利润最大,最大利润是19 2元.(3)由150=﹣2x2+80x﹣600,解得x1=15,x2=25(不合题意,舍去)答:该经销商想要每天获得150元的销售利润,销售价应定为15元.点评:本题考查了二次函数的应用,得到每天的销售利润的关系式是解决本题的关键,结合实际情况利用二次函数的性质解决问题.18.某研究所将某种材料加热到1000℃时停止加热,并立即将材料分为A、B两组,采用不同工艺做降温对比实验,设降温开始后经过x min时,A、B两组材料的温度分别为yA℃、yB℃,yA、yB与x的函数关系式分别为yA=kx+b,yB= (x﹣60)2+m(部分图象如图所示),当x=40时,两组材料的温度相同.(1)分别求yA、yB关于x的函数关系式;(2)当A组材料的温度降至120℃时,B组材料的温度是多少?(3)在0<x<40的什么时刻,两组材料温差最大?考点:二次函数的应用.专题:应用题;数形结合.分析:(1)首先求出yB函数关系式,进而得出交点坐标,即可得出yA函数关系式;(2)首先将y=120代入求出x的值,进而代入yB求出答案;(3)得出yA﹣yB的函数关系式,进而求出最值即可.解答:解:(1)由题意可得出:yB= (x﹣60)2+m经过(0,1000),则1000= (0﹣60)2+m,解得:m=100,∴yB= (x﹣60)2+100,当x=40时,yB= ×(40﹣60)2+100,解得:yB=200,yA=kx+b,经过(0,1000),(40,200),则,解得:,∴yA=﹣20x+1000;(2)当A组材料的温度降至120℃时,120=﹣20x+1000,解得:x=44,当x=44,yB= (44﹣60)2+100=164(℃),∴B组材料的温度是164℃;(3)当0<x<40时,yA﹣yB=﹣20x+1000﹣(x﹣60)2﹣100=﹣x2+10x=﹣(x﹣20)2+100,∴当x=20时,两组材料温差最大为100℃.点评:此题主要考查了二次函数的应用以及待定系数法求一次函数解析式以及二次函数最值求法等知识,得出两种材料的函数关系式是解题关键.19.“丹棱冻粑”是眉山著名特色小吃,产品畅销省内外,现有一个产品销售点在经销时发现:如果每箱产品盈利10元,每天可售出50箱;若每箱产品涨价1元,日销售量将减少2箱.(1)现该销售点每天盈利600元,同时又要顾客得到实惠,那么每箱产品应涨价多少元?(2)若该销售点单纯从经济角度考虑,每箱产品应涨价多少元才能获利最高?考点:二次函数的应用;一元二次方程的应用.专题:销售问题.分析:(1)设每箱应涨价x元,得出日销售量将减少2x箱,再由盈利额=每箱盈利×日销售量,依题意得方程求解即可;(2)设每箱应涨价x元,得出日销售量将减少2x箱,再由盈利额=每箱盈利×日销售量,依题意得函数关系式,进而求出最值.解答:解:(1)设每箱应涨价x元,则每天可售出(50﹣2x)箱,每箱盈利(10+x)元,依题意得方程:(50﹣2x)(10+x)=600,整理,得x2﹣15x+50=0,解这个方程,得x1=5,x2=10,∵要使顾客得到实惠,∴应取x=5,答:每箱产品应涨价5元.(2)设利润为y元,则y=(50﹣2x)(10+x),整理得:y=﹣2x2+30x+500,配方得:y=﹣2(x﹣7.5)2+612.5,当x=7.5元,y可以取得最大值,∴每箱产品应涨价7.5元才能获利最高.点评:此题考查了一元二次方程的应用以及二次函数应用,解答此题的关键是熟知等量关系是:盈利额=每箱盈利×日销售量.20.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)考点:二次函数的应用.专题:销售问题.分析:(1)根据“利润=(售价﹣成本)×销售量”列出方程;(2)把(1)中的二次函数解析式转化为顶点式方程,利用二次函数图象的性质进行解答;(3)把y=4000代入函数解析式,求得相应的x值;然后由“每天的总成本不超过7000元”列出关于x的不等式50(﹣5x+550)≤7000,通过解不等式来求x的取值范围.解答:解:(1)y=(x﹣50)[50+5(100﹣x)]=(x﹣50)(﹣5x+550)=﹣5x2+800x﹣27500∴y=﹣5x2+800x﹣27500(50≤x≤100);(2)y=﹣5x2+800x﹣27500=﹣5(x﹣80)2+4500∵a=﹣5<0,∴抛物线开口向下.∵50≤x≤100,对称轴是直线x=80,∴当x=80时,y最大值=4500;(3)当y=4000时,﹣5(x﹣80)2+4500=4000,解得x1=70,x2=90.∴当70≤x≤90时,每天的销售利润不低于4000元.由每天的总成本不超过7000元,得50(﹣5x+550)≤7000,解得x≥82.∴82≤x≤90,∵50≤x≤100,∴销售单价应该控制在82元至90元之间.点评:本题考查二次函数的实际应用.此题为数学建模题,借助二次函数解决实际问题.21.某体育用品商店试销一款成本为50元的排球,规定试销期间单价不低于成本价,且获利不得高于40%.经试销发现,销售量y(个)与销售单价x(元)之间满足如图所示的一次函数关系.(1)试确定y与x之间的函数关系式;(2)若该体育用品商店试销的这款排球所获得的利润Q元,试写出利润Q(元)与销售单价x(元)之间的函数关系式;当试销单价定为多少元时,该商店可获最大利润?最大利润是多少元?(3)若该商店试销这款排球所获得的利润不低于600元,请确定销售单价x的取值范围.。
二次函数综合测试卷一、填空:(30分)1.二次函数的图象经过三个定点(2,0),(3,0),(•0,-•1),则它的解析式为________,该图象的顶点坐标为__________.2.当k=________时,直线x+2y+k+1=0和2x+y+2k=0的交点在抛物线y=-x2上.3.已知二次函数y=x2-2(k+1)x+k2+2的图象与x轴交点的横坐标分别为x1,x2,且(x1+1)(x2+1)=8,则k的值为__________.4.如果y与x2成正比例,并且它的图象上一点P的横坐标a和纵坐标b分别是方程x2-x-6=0的两根,那么这个函数的解析式为_________.5.抛物线y=x2-4x+11的对称轴是直线________,顶点坐标为________.6.如果抛物线y=-23x2+(m+2)x+27m的对称轴为直线x=32,则m的值为_________.7.把函数y=5x2+10mx+n的图象向左平移2个单位,向上平移3个单位,•所得图象的函数解析式为y=5x2+30x+44,则m=_______,n=_______.8.二次函数y=a x2+bx+c中的a、b、c满足条件________时,•它的图象经过坐标系中的四个象限.9.开口向下的抛物线y=a(x+1)(x-4)与x轴交于A、B两点,与y•轴交于点C.•若∠ACB=90°,则a的值为________.10.如图,二次函数y=x2-ax+a-5的图象交x轴于点A和B,交y轴于点C,当线段AB•的长度最短时,点C的坐标为________.二、选择题:(20分)11.在同一直角坐标系内,二次函数y1=ax2+bx+c与y2=cx2+bx+a的图象大致为()12.在同一直角坐标系内,函数y=ax2+bx与y=bx(b≠0)的图象大致为()13.给出下列四个函数:y=-2x,y=2x-1,y=3x(x>0),y=-x2+3(x>0),其中y随x•的增大而减小的函数有()A.3个 B.2个 C.1个 D.0个14.当m取任何实数时,抛物线y=-2(x-m)2-m的顶点所在的直线为()A.x轴 B.y轴 C.y=x D.y=-x15.当m取任何实数时,抛物线y=-2(x+m)2-m2的顶点所在的曲线为()A.y=x2 B.y=-x2 C.y=x2(x>0) D.y=-x2(x>0)16.已知抛物线y=ax2+bx+c(a≠0)与抛物线y=x2-4x+3关于x轴对称,则a、b、c•的值分别是() A.-1,4,-3 B.-1,-4,-3 C.-1,4,3 D.-1,-4,317.已知抛物线y=a x2+bx+c(a≠0)与抛物线y=x2-4x+3关于y轴对称,则函数y=ax2+bx+c的解析式为()A.y=x2+4x+3 B.y=x2-4x-3 C.y=x2+4x-3 D.y=-x2-4x+318.从一张矩形纸片ABCD的较短边AD上找一点E,过这点剪下两个半圆,它们的直径分别是AE、DE,要使剪下的两个半圆的面积和最小,点E应选在()A.边AD的中点外 B.边AD的13处 C.边AD的14处 D.边AD的15处19.对某条路线的长度进行n次测量,得到n个结果x1,x2,…,x n,如果用x作为这条路线长度的近似值,当x=p时,(x-x1)2+(x-x2)2+…+(x-x n)2最小,则p的值为()A.1n(x1+x2+…+x n) B.1n(x1-x2-…-x n)C.1nn+(x1+x2+…+x n) D.1nn+(x1+x2+…+x n)20.已知函数y=-(x-1)2-(x-3)2-(x-5)2-(x-7)2,当x=p时,函数y取得最大值,则p•的值为()A.4 B.8 C.10 D.16三、解答题:(90分)1.如图,△OAB是边长为2的等边三角形,直线x=t•截这个三角形所得位于直线左方的图形面积为y.(1)写出以自变量为t的函数y的解析式;(2)画出(1)中函数y的图象.2.如图,AB是半径为R的圆的直径,C为直径AB上的一点,•过点C•剪下两个正方形ADCE和BFCG,它们的对角线分别是AC、CB.要使剪下的两个正方形的面积和最小,•点C应选在何处?3.已知一个二次函数的图象过点A(-1,10),B(1,4),C(2,7),点D和B•关于抛物线的对称轴对称,问是否存在与抛物线只有一个公共点D的直线?如果存在,求出符合条件的直线;如不存在,请说明理由.4.如图,在直角坐标系xOy中,A、B是x轴上的两点,以AB为直径的圆交y轴于C,设过A、B、C三点的抛物线的解析式为y=x2-mx+n,方程x2-mx+n=0的两根倒数和为-2.(1)求n的值;(2)求此抛物线的解析式;(3)设平行于x轴的直线交此抛物线于E、F两点,问是否存在此线段EF•为直径的圆恰好与x轴相切,若存在,求出此圆的半径;若不存在,说明理由.5.某电厂规定,该厂家属区的每户居民如果一个月的用电量不超过x度,•那么这个月这户居民只交10元用电费.如果超过x度,这个月除了要交10元用电费外,超过部分按每度元交费.(1)该厂某户居民1月份用电90度,超过了x度的规定,试用x的代数式表示超过部分应交的电费(元);(2)下表是这户居民2月、3月的用电情况和交费情况,请根据表中的数据,•求出电厂规定的这个标准x度.月份用电量(度)交电费总数(元)2月 80 253月 45 106.如图(1),平面直角坐标系中有一张矩形纸片OABC,O为坐标原点,A•点坐标为(10,0),C点坐标为(0,6).D是BC边上的动点(与点B、C不重合),现将△COD沿OD翻折,得到△FOD;再在AB边上选取适当的点E,使△BDE沿DE翻折,得到△GDE,并使直线DG,DF重合.(1)如图②,若翻折后点F落在OA边上,求直线DE的函数关系式;(2)设D(a,6),E(10,b),求b关于a的函数关系式,并求b的最小值;(3)一般地,请你猜想直线DE与抛物线y=-124x2+6的公共点的个数,•在图②的情形中通过计算验证你的猜想;如果直线DE与抛物线y=-124x2+6始终有公共点,请在图①中作出这样的公共点.附加题:(10分)当抛物线的解析式中含有字母系数时,随着系数中字母取值的不同,抛物线的顶点坐标也将发生变化.例如:由抛物线y=x 2-2mx+m 2+3m-2. ① 得y=(x-m )2+3m-2 ②抛物线的顶点坐标为(m ,3m-2),即32x my m =⎧⎨=-⎩ 当m 的值变化时,x ,y 的值也随之变化,•因而y 值也随x 值的变化而变化.将③代入④,得y=3x-2 ⑤可见不论m 取任何实数抛物线顶点的纵坐标y 和横坐标x 都满足关系式y=3x-2,即抛物线①的顶点总在直线y=3x-2上.在上述过程中,由①到②所用的数学方法是__________;由③、④到⑤所用的数学方法是________.请解答:求出抛物线y=x 2-4mx+4m 2-2m•的顶点的纵坐标y 和横坐标x 之间的关系式.答案:一、填空: 1.y=-16x 2+56x-1 (52,124)2.13±63 3.14.y=-29x 2和y=34x 25.x=2 (2,7) 6.0 7.1 18.a 、c 异号,b 为任何实数 9.-10.(0,-3)(设A (x 1,0),B (x 2,0).(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=a 2-4a+20=(a-2)2+16.当a=2时,•线段AB 的长度最短为4,此时y=x 2-2x-3,点C 的坐标为(0,-3) 二、选择题:11.D 12.D 13.A 14.D 15.B 16.A 17.A 18.A 19.A 20.A 三、解答题:1.(1)y=223(01)23(2)3(2)2t t t t ⎧≤≤⎪⎪⎨⎪--+≤≤⎪⎩(2)如第1题图.2.设AC 长为x ,BC 长为2R-x ,S 正方形ADCE =12x 2,S 正方形BFCG =12(2R-x )2. 两个正方形面积之和为y=12x 2+12(2R-x )2=x 2-2Rx+2R 2=(x-R )2+R 2, 当x=R 时,两个正方形面积之和有最小值R 2,此时点C 应选在AB•的中点处,即圆心.3.过点A 、B 、C 的抛物线的解析式为y=2x 2-3x+5,其对称轴为直线x=34. 因D 和B 关于直线x=34对称,所以D 点坐标为(12,4). 与抛物线只有一个公共点D 的直线有两条:(1)平行于y 轴,即直线x=12. (2)不平行于y 轴,设直线为y=kx+b ,因为过D 点,所以4=12k+b . 即k=8-2b ,(8-2b )x+b=2x 2-3x+5.2x 2+(2b-11)x+5-b=0.方程有两个相等的实数根,△=(2b-11)2-8(5-b )=0,解得b=92,k=-1.所以y=-x+92.符合条件的直线为y=-x+92和x=12. 4.(1)设A (x 1,0),B (x 2,0),则OA=-x 1,OB=x 2.因为AB 是直径,OC ⊥AB ,所以CO 2=OA·OB ,•即n 2=-x 1x 2. 又x 1x 2=n ,所以n 2=-n ,n=-1,n=0(舍去). (2)11x +21x =1212x x x x +=-2,又x 1+x 2=m ,x 1x 2=-1,1m -=-2,m=2, 所求的抛物线的解析式为y=x 2-2x-1.(3)由(2)得抛物线的对称轴为x=1.设满足条件的圆的半径为│a │, 则点F•的坐标为(1+│a │,a ),点F 在抛物线上,a=(1+│a │)2-2(1+│a │)-1,即a 2-a-2=0,a 1=2,a 2=-1, 所求的圆的半径为1或2,故存在以EF 为直径的圆,恰好与x 轴相切. 5.(1)100x(90-x )元 (2)表格中的数据告诉我们,这户居民2月份用电超标,3•月份用电不超标, 可见45≤x<80,列出方程10+100x(80-x )=25,即x 2-80x+150=0,解得x 1=30,x 2=50. 因45≤x<80,所以x=30,电厂规定的标准是30度.6.(1)解:根据题意,可知D (6,6),E (10,2),直线DE 的函数关系式为y=-x+12. (2)解:根据题意,可知∠CDO=∠ODF ,∠BDE=∠GDE .∠CDO+∠ODF+∠BDE+∠GDE=180°,•∠CDO+∠BDE=90°,∠COD+∠CDO=90°,∠COD=∠BDE .又∠COD=∠DBE=90°,△COD ≌△BDE .CE COBE BD=. 根据题意,可知BE=6-b ,BD=10-a ,6610a b a =--,b+16a 2-53a+6=16(a-5)2+116. 当a=5时,b 最小值=116.(3)猜想:直线DE 与抛物线y=-124x 2+6只有1个公共点. 证明:由(1)可知,DE 所在直线为y=-124x+12. 代入抛物线y=-x 2+6,消去y ,得-124x 2+6=-x+12.化简,得x 2-24x+144=0,△=0. 直线DE 与抛物线y=-124x 2+6只有1个公共点. 作法一:延长OF 交DE 于点H ,作法二:在DB 上取点M ,使DM=CD ,过M 作MH ⊥BC ,交DE 于点H . 附加题:配方法; 消元法; y=-4x.。
第1章二次函数数学九年级下册-单元测试卷-湘教版(含答案)一、单选题(共15题,共计45分)1、已知二次函数y=ax2+b x+c(a≠0)的图象如图,则下列结论中正确的是()A.ac>0B.当x>1时,y随x的增大而增大 C.2a+b=1 D.方程a x2+bx+c=0有一个根是x=32、抛物线y=ax2+bx+c经过点A(3,0),对称轴是直线x=1,则a+b+c的值为()A. B.1 C.0 D.3、二次函数y=(x﹣a)(x﹣b)﹣2,(a<b)的图象与x轴交点的横坐标为m,n,且m <n,则a,b,m,n的大小关系是()A.a<m<n<bB.a<m<b<nC.m<a<b<nD.m<a<n<b4、如图,若a<0,b>0,c<0,则抛物线y=ax2+bx+c的大致图象为()A. B. C. D.5、如图是二次函数y=ax2+bx+c的图象的一部分,对称轴是直线x=1.①b2>4ac;②b<0;③y随x的增大而减小;④若(﹣2,y1),(5,y2)是抛物线上的两点,则y1<y2,上述4个判断中,正确的是()A.①②④B.①④C.①③④D.②③④6、将抛物线y=2x2的图象先向右平移2个单位,再向上平移3个单位后,得到的抛物线的解析式是()A.y=2(x﹣2)2﹣3B.y=2(x﹣2)2+3C.y=2(x+2)2﹣3 D.y=2(x+2)2+37、将函数y=﹣x2+2的图象向右平移3个单位后再向上平移1个单位,得到的图象的函数表达式是()A.y=﹣(x﹣3)2+3B.y=﹣(x+3)2+3C.y=﹣(x+3)2+1 D.y=﹣(x﹣3)2+18、若,,为二次函数的图象上的三点,则,,的大小关系是.A. B. C. D.9、把抛物线y=-2x2先向右平移1个单位长度,再向上平移2个单位长度后,所得函数的表达式为()A.y=-2(x+1)2+2B.y=-2(x+1)2-2C.y=-2(x-1)2+2 D.y=-2(x-1)2-210、下列图形中,阴影部分的面积为2的有()个A.4个B.3个C.2个D.1个11、二次函数y=(x﹣4)2+3 的最小值是()A.2B.3C.4D.512、已知函数y=x2-2x-2的图象如图所示,根据其中提供的信息,可求得使y≥1成立的x 的取值范围是()A.-1≤x≤3B.-3≤x≤1C.x≥-3D.x≤-1或x≥313、在同一坐标系中,一次函数y=ax+b与二次函数y=ax2﹣b的图象可能是()A. B. C. D.14、描点法画函数图象是研究陌生函数的基本方法.对于函数,下列说法:①图象经过;②当时,有最小值;③随的增大而增大;④该函数图象关于直线对称;正确的是()A.①②B.①②④C.①②③④D.②③④15、将抛物线y=x2﹣4x+3向上平移至顶点落在x轴上,如图所示,则两条抛物线、对称轴和y轴围成的图形的面积S(图中阴影部分)是()A.1B.2C.3D.4二、填空题(共10题,共计30分)16、设函数的图象与轴有个交点,函数的图象与轴有个交点,则所有可能的数对是________.17、如图,直线y= x+4 与x轴、y轴分别交于A、B两点,∠ABC=60°,BC与x 轴交于点C.动点P从A点出发沿AC向点C运动(不与A、C重合),同时动点Q从C点出发沿C-B-A向点A运动(不与C、A重合) ,动点P的运动速度是每秒1个单位长度,动点Q的运动速度是每秒2个单位长度.若当△APQ的面积最大时,y轴上有一点M,第二象限内存在一点N,使以A、Q、M、N为顶点的四边形为菱形, 则点N的坐标为________18、将抛物线图象向右平移2个单位再向下平移3个单位,所得图象的解析式为________.19、把抛物线向左平移1个单位,然后向下平移3个单位,则平移后抛物线的解析式为________ .20、当m=________时,函数是二次函数.21、把抛物线先向左平移1个单位,再向下平移2个单位,平移后抛物线的表达式是________.22、函数y=ax2+bx+c的三项系数分别为a、b、c,则定义[a,b,c]为该函数的“特征数”.如:函数y=x2+3x﹣2的“特征数”是[1,3,﹣2],函数y=﹣x+4的“特征数”是[0,﹣1,4].如果将“特征数”是[2,0,4]的函数图象向左平移3个单位,得到一个新的函数图象,那么这个新图象相应的函数表达式是________ .23、抛物线上有两点,,若, 则与的大小关系是________.24、二次函数y=x2+4x+5(﹣3≤x≤0)的最小值是________.25、抛物线过点,且,则抛物线的对称轴是________.三、解答题(共5题,共计25分)26、将抛物线y=x2﹣4x+4沿y轴向下平移9个单位,所得新抛物线与x轴正半轴交于点B,与y轴交于点C,顶点为D.求:(1)点B、C、D坐标;(2)△BCD的面积.27、已知如图,矩形OABC的长OA=,宽OC=1,将△AOC沿AC翻折得△APC.(1)求∠PCB的度数(2)若P,A两点在抛物线y=x2+bx+c上,求b,c的值,并说明点C在此抛物线上;(3)(2)中的抛物线与矩形OABC边CB相交于点D,与x轴相交于另外一点E,若点M是x轴上的点,N是y轴上的点,以点E、M、D、N为顶点的四边形是平行四边形,试求点M、N的坐标.28、已知:二次函数y=(n﹣1)x2+2mx+1图象的顶点在x轴上.(1)请写出m与n的关系式,并判断已知中函数图象的开口方向;(2)是否存在整数m,n的值,使函数图象的对称轴与x轴的交点横坐标为整数?若存在,请求出m,n的值;若不存在,请说明理由;(3)若y关于x的函数关系式为y=nx2﹣m2x﹣2n﹣2①当n≠0时,求该函数必过的定点坐标;②探索这个函数图象与坐标轴有两个交点时n的值.29、如图,正方形ABCD中,AB=12,AE=AB,点P在BC上运动(不与B,C重合),过点P作PQ⊥EP,交CD于点Q,求在点P运动的过程中,BP多长时,CQ有最大值,并求出最大值.30、已知二次函数的顶点坐标为(1,4),且其图象经过点(-2,-5),求此二次函数的解析式。
中考数学复习《实际问题与二次函数》专项测试卷(含参考答案)学校:___________班级:___________姓名:___________考号:___________一、中考再现,品味真题1. (2023年·武汉中考)某课外科技活动小组研制了一种航模飞机.通过实验,收集了飞机相对于出发点的飞行水平距离x (单位:m )以 飞行高度y (单位:m )随飞行时间t (单位:s )变化的数据如下表.探究发现:x 与t ,y 与t 之间的数量关系可以用我们已学过的函数来描述.直接写出x 关于t 的函数解析式和y 关于t 的函数解析式(不要求写出自变量的取值范围).问题解决:如图,活动小组在水平安全线上A 处设置一个高度可以变化的发射平台试飞该航模飞机.根据上面的探究发现解决下列问题.(1)若发射平台相对于安全线的高度为0m ,求飞机落到安全线时飞行的水平距离(2)在安全线上设置回收区域,125m,5m ==MN AM MN .若飞机落到MN 内(不包括端点,M N ),求发射平台相对于安全线的高度的变化范围.2. (2022年·武汉中考)在一条笔直的滑道上有黑白两个小球同向运动,黑球在A处开始减速,此时白球在黑球前面70cm处.小聪测量黑球减速后的运动速度v(单位:cm/s)运动距离y(单位:cm)随运动时间t(单位:s)变化的数据,整理得下表.小聪探究发现,黑球的运动速度v与运动时间t之间成一次函数关系,运动距离y与运动时间t之间成二次函数关系.(1)直接写出v关于t的函数解析式和y关于t的函数解析式(不要求写出自变量的取值范围)(2)当黑球减速后运动距离为64cm时,求它此时的运动速度(3)若白球一直..以2cm/s的速度匀速运动,问黑球在运动过程中会不会碰到白球?请说明理由.3.(2021年·武汉中考)在“乡村振兴”行动中某村办企业以A,B两种农作物为原料开发了一种有机产品,A原料的单价是B原料单价的1.5倍,若用900元收购A原料会比用900元收购B原料少100kg.生产该产品每盒需要A原料2kg和B原料4kg,每盒还需其他成本9元.市场调查发现:该产品每盒的售价是60元时,每天可以销售500盒每涨价1元,每天少销售10盒.(1)求每盒产品的成本(成本=原料费+其他成本)(2)设每盒产品的售价是x元(x是整数),每天的利润是w元,求w关于x的函数解析式(不需要写出自变量的取值范围)(3)若每盒产品的售价不超过a元(a是大于60的常数,且是整数),直接写出每天的最大利润.4.(2020年·武汉中考)某公司分别在A,B两城生产同种产品,共100件.A城生产品的总成本y(万元)与产品数量x(件)之间具有函数关系y=ax2+bx+c,当x=10时,y=400当x=20时,y=1000.B城生产产品的每件成本为70万元.(1)求a,b的值(2)当A,B两城生产这批产品的总成本的和最少时,求A,B两城各生产多少件?(3)从A城把该产品运往C,D两地的费用分别为m万元/件和3万元/件从B城把该产品运往C,D两地的费用分别为1万元/件和2万元/件,C地需要90件,D地需要10件,在(2)的条件下,直接写出A,B两城总运费的和的最小值(用含有m的式子表示).二、模拟训练,冲刺中考1.某“精准扶贫”农平台为安康村农户销售苹果,平台的苹果销售运营成本为每千克3元,除去运营成本余下的收入都归农户所有,在销售过程中要求农户的保底收入为3元/千克,且售价不超过15元/千克.市场调查发现,每周的苹果销售量y(千克)与售价x(元/千克)(x为正整数)之间满足某种函数关系,如表记录的是某三周的销售数据:(1)请直接写出y与x之间符合哪种函数关系:,请在横线上写出y与x之间的函数关系式,并在括号中注明x的取值范围:,().(2)若某一周苹果的销售量不少于6000千克,求本周安康村农户获得的最大收入和苹果售价分别为多少元?(3)该平台制定新政策:每销售一千克苹果便向村福利院捐款a元.实施新政策后发现,农户每周的收入依然随售价的增大而增大.请直接写出a的最小值是元.2.某风景区商店销售一种纪念品,这种商品的成本价为10元/件,销售单价不低于15元/件.市场调查发现,该商品每天的销售量不少于10件,且销售量y(件)与销售单价x(元/件)之间的函数关系如图所示.(1)求y与x之间的函数关系式(2)若某天的销售利润为144元,求销售单价(3)求这种纪念品每天销售的最低利润是多少元?3.一次足球训练中小华从球门正前方11m的A处射门,足球射向球门的运行路线呈抛物线.当球飞行的水平距离为6m时,球达到最高点,此时球离地面3m.已知球门高OB为2.44m,现以O为原点建立如图所示直角坐标系.(1)求抛物线的函数解析式(2)若防守队员小明正在抛物线对称轴的左侧加强防守,他的最大起跳高度是2.25m ,小明需要站在离球门距离多远的地方才可能防守住这次射门?(3)在射门路线的形状 最大高度均保持不变情况下,适当靠近球门进球的把握会更大,小华决定将足球向球门方向移动一定距离后再射门,他最多可以向球门移动__________.①2.3m ①2.4m ①2.5m .(填序号即可√6.72≈2.5922).4.某一抛物线形隧道,一侧建有垂直于地面的隔离墙,其横截面如图所示,并建立平面直角坐标系.已知抛物线经过(0,3) (1,143) (7,23)三点.(1)求抛物线的解析式(不考虑自变量的取值范围)(2)有一辆高5m 顶部宽4m 的工程车要通过该隧道 该车能否正常通过?并说明理由(3)现准备在隧道上A 处安装一个直角形钢架BAC 对隧道进行维修.B C 两点分别在隔离墙和地面上 且AB 与隔离墙垂直 AC 与地面垂直 求钢架BAC 的最大长度.5.冻雨是湖北不常见的天气情况 一旦遇上会对工作和生活带来不便甚至灾害.武汉市在二月份下了多次冻雨 许多树木因为冻雨结冰发生折断 我们对一无冰..树枝置于武汉的2024年2月3日15点开始的冻雨下进行观察 发现一段含冰树枝的重量y (千克)和时间x (小时)(0≤x ≤10)近似满足二次函数关系:y=−1x2+bx+c当x=2时该含冰树枝重9.75千克当x=6时该含冰树枝增重到15.75千克.16(1)求二次函数的解析式.(2)由经验可知当冻雨下含冰树枝的重量是未结冰时....的3.5倍时树枝会发生折断请问树枝会折断吗?如果会何时断裂如果不会说明理由.(3)在(2)的树枝折发生折断的经验下从2月3日15时观察同一段树枝经过10小时后冻雨雨量开始增大平均每小时的重量额外增加n千克发现该段树枝在次日凌晨2:00到2:30之间折断请直接写出n的范围__________.6.某市新建了一座室内滑雪场该滑雪场地面积雪厚达40cm整个赛道长150m全天共可容纳约3300人滑雪嬉戏.小明和小华相约去体验滑雪小明从赛道顶端A处下滑测得小明离A处的距离s(单位:m)随运动时间x(单位:s)变化的数据整理得下表.经验证小明离A处的距离s与运动时间x之间是二次函数关系.小明出发的同时小华在距赛道终点30m的B处操控一个无人机沿着赛道方向以2m/s的速度飞向小明无人机离A处的距离y(单位:m)与运动时间x(单位:s)之间是一次函数关系.(1)直接写出s关于x的函数解析式和y关于x的函数解析式(不要求写出自变量的取值范围)(2)小明滑完整个赛道需要耗时多久?(3)小明出发多久后与无人机相遇?7.根据市场调查某公司计划投资销售A B两种商品.信息一:销售A商品x(吨)所获利润y A(万元)之间存在某种关系的部分对应值如下表:信息二:销售B商品x(吨)所获利润y B(万元)之间存在二次函数关系:y B=ax2+bx且销售2吨时获利润20万元销售4吨时可获利润32万元.(1)直接写出y A与x之间的关系式为______ 并求出y B与x的函数关系式(2)如果企业同时对A B两种产品共购进并销售10吨每吨产品购进成本为4万元请设计能获得最大利润的采购方案并求出最大利润(3)假设购买A商品的成本为3万元/吨购买B商品的成本为5万元/吨某公司准备投资44万元购进A B 两种商品并销售完毕要求A商品的数量不超过B商品数量的2倍且销售总利润不低于53万元直接写出B商品的销售数量x的取值范围是______.8.问题背景:为美化校园某学校计划在如图所示的正方形ABCD花坛内种植红蓝黄三种颜色的花卉在四个全等三角形(阴影部分)内种植红色花卉正方形IJKL内种植蓝色花卉剩下四个全等三角形内种植黄色花卉.AB的长为8m AE=LI.红蓝黄三种花卉的单价分别为40元/m2100元/m260元/m2.建立模型:设AE的长为xm购买花卉的总费用为W元.(1)用含x的式子分别写出红蓝黄三种颜色花卉的种植面积(2)求W与x之间的函数表达式方案决策:(3)当购买花卉的总费用最少时求EI的长.9.某宾馆有100个房间供游客居住当每个房间每天的定价是200元时房间会全部住满当每个房间每天的定价每增加5元时就会有一个房间空闲空闲的房间可以出租储存货物每个空闲房间每天储存货物可获得50元的利润如果游客居住房间宾馆需对每个房间每天额外支出40元的各种费用储存货物不需要额外支出费用设空闲房间有x间.(1)用含x的式子表示下列各量.①供游客居住的房间数是______间①每个房间每天的定价是______元①该宾馆每天的总利润w是______元(2)若游客居住每天带来的总利润不低于21600元时求空闲房间每天储存货物获得的最大总利润是多少元?(3)该宾馆计划接受130吨的货物存储每个房间最多可以存储3吨当每间房价定价为多少元时宾馆每天的总利润w最大最大利润是多少元?10.如图灌溉车为绿化带浇水喷水口H离地竖高度OH为1.2m.可以把灌溉车喷出水的上下边缘抽象为平面直角坐标系中两条抛物线的部分图象把绿化带横截面抽象为矩形DEFG其水平宽度DE=2.5m竖直高度EF=0.7m H点是下边缘抛物线的最高点下边缘喷水的最大射程OB=2m上边缘抛物线最高点A离喷水口的水平距离为2m高出喷水口0.4m灌溉车到绿化带的距离OD为d(单位:m).(1)直接写出上下边缘抛物线的函数解析式(不写自变量的取值范围)(2)此时距喷水口水平距离为6.5米的地方正好有一个行人经过试判断该行人是否会被洒水车淋到水?并写出你的判断过程(3)要使灌溉车行驶时喷出的水能浇灌到整个绿化带直接写出d(米)的取值范围.11.某食品公司通过网络平台直播对其代理的某品牌瓜子进行促销该公司每天拿出2000元现金作为红包发给购买者.已知该瓜子的成本价格为6元/kg每日销售y/(kg)与销售单价x(元/kg)满足关系式:y=kx+b部分数据如表:经销售发现销售单价不低于成本价格且不高于30元/kg设该食品公司销售这种瓜子的日获利为w(元).(1)求y与x的函数关系式w与x的函数关系式.(2)当销售单价定为多少时销售这种瓜子日获利最大?最大利润为多少元?(3)网络平台将向食品公司可收取a元/kg(a<4)的相关费用若此时日获利的最大值为42100元直接写出a的值.m铅球运12.一名男生推铅球铅球在空中运行的路径可以看作是一条抛物线若铅球出手时的高度为53行时在4m处达到最大高度3m 建立如图所示的平面直角坐标系.(1)求铅球运行路径所对应的抛物线的解析式(2)求该男生推铅球的距离(3)若该男生向前进0.5m同时铅球的出手高度增加ℎm铅球运行的路线与(1)中抛物线形状相同最后)m则ℎ的值是______________.推铅球的距离增加了(2√10−11213.某商店销售一种水产品市场调查得数据如下表:通过分析发现该水产品每千克的销售成本是一个常数月销售量y(单位:千克)与销售价格x(单位:元/千克)满足一次函数关系.(1)直接写出该产品每千克的销售成本并直接写出月销售量y与销售价格x之间的函数关系式(不要求写自变量取值范围)(2)要确保该产品月销售利润达到8000元并控制月销售成本不超过12000元销售价格应定为多少元/千克?(3)当该产品销售价格为多少元/千克时月销售利润最大?最大月销售利润是多少元?14.某俱乐部购进一台如图1的篮球发球机用于球员篮球训练.该发球机可以以不同力度发射出篮球篮球运行的路线都是抛物线.出球口离地面高1米以出球口为原点平行于地面的直线为x轴垂直于地面的直线为y轴建立平面直角坐标系.力度变化时抛物线的顶点在直线y=kx上移动从而产生一组不同的抛物线y=ax2+bx(如图2).(1)若k=1.①发球机发射出的篮球运行到距发球机水平距离为6m时离地面的高度为1m.请直接写出该球在运行过程中离地面的最大高度①若发球机发射出的篮球在运行过程中离地面的最大高度为3m 求该球运行路线的解析式及此球落地点离发球机的水平距离(2)球员小刚训练时发现:当篮球运行到离地面高度为1m至2.2m之间(包含端点)是最佳接球区间若k=12直接写出当a满足什么条件时距发球机水平距离12m的小刚在前后不挪动位置的前提下能在最佳区间接到球.15.在投掷实心球的运动中实心球出手时水平向前的速度为a(单位:m/s)垂直向上的速度为b(单位:m/s)实心球在空中运动时其水平距离x(单位:m)与时间t的关系为x=at高度y(单位:m)与时间t的关系为y=−5t2+bt+2.(1)在小伟同学的一次投掷中测得a=6m/s b=3m/s①写出x与t的函数关系式为y与t的函数关系式为根据以上关系可得y与x的函数关系式为(不用写出x的取值范围)①求出本次实心球的投掷距离.(2)研究表明:在投掷力度一定时水平速度与垂直向上的速度越接近则实心球的投掷距离越远改进投掷方法后小伟投出了8m的最佳成绩若本次投掷中求实心球在投掷过程中的最大高度.16.如图1 一钢球P从斜面顶端A静止滚下斜面与水平面的夹角∠ABD为30°斜面顶端到水平线的距离AD为10dm.钢球P在斜面上滚动的路程S1是滚动时间t的二次函数部分对应值如下表钢球P在斜面上滚动的速度v(dm s⁄)是时间t(s)的正比例函数函数图像如图2所示.(1)求S1关于t的函数解析式(2)求钢球P滚至底端B的速度(3)钢球P滚动至有阻力的水平线BC上时滚动路程S(dm)与时间T(s)的关系式为S=−2T2+V0TV0(dm s⁄)指的是钢球P在点B的速度大小T指的是从B开始滚动的时间.若在水平线BC上的点M处(M 在B左侧)有另一钢球Q当钢球P从A出发时钢球Q同时从M开始向右滚动已知MB=92dm且钢球Q滚动的平均速度为16dm/s请直接写出两球出发后______秒相撞.(忽略两球半径大小)17.小红和小琪在玩沙包游戏某同学借此情境编制了一道数学题请解答这道题.如图在平面直角坐标系中一个单位长度代表1m.小红站在点D(6,0)处在点A(6,1.5)处将沙包(看作点)抛出其运动的路线为抛物线C1:y=a(x−3)2+2.5(a为常数a≠0)的一部分小琪恰在点B(0,c)处接住沙包然后跳起在点C处将沙包回传其运动的路线为抛物线C2:y=−18x2+n8x+c+1(n为常数)的一部分.(1)求a c的值(2)若小红在与点A的竖直距离不超过12m的范围内可以直接接到回传的沙包当n=3时小红能否接住沙包?请说明理由.(3)若小红可以接到回传的沙包的范围为与AD的水平距离不超过1m与点A的竖直距离不超过12m的矩形请直接写出n的取值范围.18.有一款自动热水壶其工作方式是:常规模式下热水壶自动加热到100°C时自动停止加热随后转入冷却阶段当水温降至60°C时热水壶又自动加热______ 重复上述过程若在冷却过程中按下“再沸腾”键则马上开始加热加热到100°C后又重复上述程序.如图是常规模式下冷却加热过程中水温y(°C)与时间x(min)之间的函数图象其中AB段是抛物线的一部分(B是该抛物线的顶点)表示冷却过程线段BC表示加热过程.(1)直接写出抛物线AB段线段BC分别对应的函数解析式(2)从100°C开始冷却其间按下“再沸腾”键马上加热到100°C.①若按下“再沸腾”键时水温是82.5°C求该冷却加热过程一共所用时间①若该冷却加热过程一共所用时间比常规模式缩短了22min 直接写出按下“再沸腾”键时的水温.19.某商品的进价为每件40元当售价为每件50元每月可卖出200件如果售价每上涨1元则每月少卖10件(每件售价不能高于65元)如果售价每下降1元则每月多卖12件(每件售价不低于48元).设每件商品的售价为x元(x为正整数)每月的销售量为y件.(1)①当售价上涨时y与x的函数关系为______ 自变量x的取值范围是______①当售价下降时y与x的函数关系为______ 自变量x的取值范围是______(2)每件商品的售价x定为多少元时每月可获得最大利润?最大的月利润是多少元?(3)商家发现:在售价上涨的情况下每件商品还有a(a>0)元的其他费用需要扣除当售价每件不低于60元时每月的利润随x的增大而减小请直接写出a的取值范围______.20.如图某公园的一组同步喷泉由间隔等距的若干个一样的喷泉组成呈抛物线形的水流从垂直于地面且高出湖面1m的喷头中向同一侧喷出每个喷头喷出的水流可看作同样的抛物线.若记水柱上某一位置与喷头的水平距离为xm喷出水流与湖面的垂直高度为ym.下表中记录了一个喷头喷出水柱时xm与ym的几组数据:(1)如图以喷泉与湖面的交点为原点建立如图平面直角坐标系求此抛物线的解析式(2)现有一个顶棚为矩形的单人皮划艇顶棚每一处离湖面的距离为1.75m.顶棚刚好接触到水柱求该皮划艇顶棚的宽度.(3)现公园管理方准备通过只调节喷头露出湖面的高度使得游船能从抛物线形水柱下方通过为避免游客被喷泉淋湿 要求游船从抛物线形水柱下方中间通过时 顶棚上任意一点到水柱的竖直距离均不小于0.5m 已知游船顶棚宽度为2m 顶棚到湖面的高度为1.5m 那么公园应将喷头(喷头忽略不计)至少向上移动多少m 才能符合要求?(直接写出结果)参考答案与解析5. (2023年·武汉中考)某课外科技活动小组研制了一种航模飞机.通过实验 收集了飞机相对于出发点的飞行水平距离x (单位:m )以 飞行高度y (单位:m )随飞行时间t (单位:s )变化的数据如下表.探究发现:x 与t y 与t 之间的数量关系可以用我们已学过的函数来描述.直接写出x 关于t 的函数解析式和y 关于t 的函数解析式(不要求写出自变量的取值范围).问题解决:如图 活动小组在水平安全线上A 处设置一个高度可以变化的发射平台试飞该航模飞机.根据上面的探究发现解决下列问题.(1)若发射平台相对于安全线的高度为0m 求飞机落到安全线时飞行的水平距离(2)在安全线上设置回收区域,125m,5m ==MN AM MN .若飞机落到MN 内(不包括端点,M N ) 求发射平台相对于安全线的高度的变化范围.【解析】探究发现:x 与t 是一次函数关系 y 与t 是二次函数关系 设x kt = 2y ax bx =+由题意得:102k = 422216440a b a b +=⎧⎨+=⎩解得:15122k a b ==-=,, ∴215122x t y t t ==-+,.问题解决(1) 解:依题总 得211202-+=t t .解得 10t =(舍) 224t =当24t =时 120x =.答:飞机落到安全线时飞行的水平距离为120m .(2)解:设发射平台相对于安全线的高度为m n 飞机相对于安全线的飞行高度21122'=-++y t t n .125130x << 1255130t ∴<< 2526t ∴<<在21122'=++y t t n 中 当25,0'==t y 时 12.5n =当26,0'==t y 时 26n =.12.526∴<<n .答:发射平台相对于安全线的高度的变化范围是大于12.5m 且小于26m .6.(2022年·武汉中考)在一条笔直的滑道上有黑白两个小球同向运动黑球在A处开始减速此时白球在黑球前面70cm处.小聪测量黑球减速后的运动速度v(单位:cm/s)运动距离y(单位:cm)随运动时间t(单位:s)变化的数据整理得下表.小聪探究发现黑球的运动速度v与运动时间t之间成一次函数关系运动距离y与运动时间t之间成二次函数关系.(1)直接写出v关于t的函数解析式和y关于t的函数解析式(不要求写出自变量的取值范围)(2)当黑球减速后运动距离为64cm时求它此时的运动速度(3)若白球一直..以2cm/s的速度匀速运动问黑球在运动过程中会不会碰到白球?请说明理由.【分析】(1)根据黑球的运动速度v与运动时间t之间成一次函数关系设表达式为v=kt+b代入两组数值求解即可根据运动距离y与运动时间t之间成二次函数关系设表达式为y=at2+bt+c代入三组数值求解即可(2)当黑球减速后运动距离为64cm时代入(1)式中y关于t的函数解析式求出时间t再将tt2−代入v关于t的函数解析式求得速度v即可(3)设黑白两球的距离为w cm得到w=70+2t−y=148t+70化简即可求出最小值于是得到结论.【详解】(1)根据黑球的运动速度v与运动时间t之间成一次函数关系设表达式为v=kt+b代入(0 10)(1 9.5)得{10=b 9.5=k +b 解得{k =−12b =10①v =−12t +10根据运动距离y 与运动时间t 之间成二次函数关系 设表达式为y =at 2+bt +c 代入(0 0) (1 9.75) (2 19)得{0=c 9.75=a +b 19=4a +2b 解得{a =−14b =10c =0①y =−14t 2+10t ;(2)依题意 得−14t 2+10t =64 ①t 2−40t +256=0 解得 t 1=8 t 2=32当t 1=8时 v =6 当t 2=32时 v =−6(舍) 答:黑球减速后运动64cm 时的速度为6cm/s . (3)设黑白两球的距离为w cmw =70+2t −y =14t 2−8t +70=14(t −16)2+6 ①14>0 ①当t =16时 w 的值最小为6①黑 白两球的最小距离为6cm 大于0 黑球不会碰到白球.【点睛】本题考查一次函数和二次函数的实际应用 待定系数法求解析式 解决本题的关键是明确题意求出函数表达式.7.(2021年·武汉中考)在“乡村振兴”行动中某村办企业以A B两种农作物为原料开发了一种有机产品A原料的单价是B原料单价的1.5倍若用900元收购A原料会比用900元收购B原料少100kg.生产该产品每盒需要A原料2kg和B原料4kg每盒还需其他成本9元.市场调查发现:该产品每盒的售价是60元时每天可以销售500盒每涨价1元每天少销售10盒.(1)求每盒产品的成本(成本=原料费+其他成本)(2)设每盒产品的售价是x元(x是整数)每天的利润是w元求w关于x的函数解析式(不需要写出自变量的取值范围)(3)若每盒产品的售价不超过a元(a是大于60的常数且是整数)直接写出每天的最大利润.【详解】解:(1)设B原料单价为m元则A原料单价为1.5m元.依题意得900m −9001.5m=100.解得m=3 1.5m=4.5.经检验m=3是原方程的根.①每盒产品的成本为:4.5×2+4×3+9=30(元).答:每盒产品的成本为30元.(2)w=(x−30)[500−10(x−60)]=−10x2+1400x−33000(3)①抛物线w=−10x2+1400x−33000的对称轴为x=70 开口向下①当a≥70时a=70时有最大利润此时w=16000 即每天的最大利润为16000元当60<a<70时每天的最大利润为(−10a2+1400a−33000)元.【点睛】本题主要考查了分式方程的应用二次函数的应用等知识点正确理解题意列出分式方程和函数解析式成为解答本题的关键.8.(2020年·武汉中考)某公司分别在A B两城生产同种产品共100件.A城生产品的总成本y(万元)与产品数量x(件)之间具有函数关系y=ax2+bx+c当x=10时y=400当x=20时y=1000.B城生产产品的每件成本为70万元.(1)求a b的值(2)当A B两城生产这批产品的总成本的和最少时求A B两城各生产多少件?(3)从A城把该产品运往C D两地的费用分别为m万元/件和3万元/件从B城把该产品运往C D两地的费用分别为1万元/件和2万元/件C地需要90件D地需要10件在(2)的条件下直接写出A B两城总运费的和的最小值(用含有m的式子表示).【分析】(1)先根据题意得出产品数量为0时总成本y也为0 再利用待定系数法即可求出a b的值(2)先根据(1)的结论得出y与x的函数关系式从而可得出A B两城生产这批产品的总成本的和再根据二次函数的性质即可得(3)设从A城运往C地的产品数量为n件A B两城总运费的和为P先列出从A城运往D地的产品数量从B城运往C地的产品数量从B城运往D地的产品数量再求出n的取值范围然后根据题干运费信息列出P与n的函数关系式最后根据一次函数的性质求解即可得.【详解】(1)由题意得:当产品数量为0时总成本也为0 即x=0时则{c=0100a+10b+c=400400a+20b+c=1000解得{a=1b=30c=0故a=1b=30(2)由(1)得:y=x2+30x设A B两城生产这批产品的总成本的和为W则W=x2+30x+70(100−x)=x2−40x+7000。
二次函数测试题及答案一、选择题1. 已知二次函数\(y=ax^2+bx+c\)的图象开口向上,且经过点(1,0),则下列说法正确的是:A. \(a<0\)且\(b^2-4ac>0\)B. \(a>0\)且\(b^2-4ac>0\)C. \(a>0\)且\(b^2-4ac<0\)D. \(a<0\)且\(b^2-4ac<0\)答案:B2. 若二次函数\(y=x^2-2x+m\)的最小值为1,则\(m\)的值为:A. 2B. 1C. 0D. -1答案:A二、填空题1. 二次函数\(y=-2x^2+4x-1\)的顶点坐标为\(\boxed{(1,1)}\)。
2. 若抛物线\(y=x^2+2x-3\)与x轴有两个交点,则这两个交点的坐标为\(\boxed{(-3,0),(1,0)}\)。
三、解答题1. 已知二次函数\(y=x^2-4x+c\)的图象与x轴有两个交点,求\(c\)的取值范围。
解:由于二次函数的图象与x轴有两个交点,根据判别式的性质,有\(b^2-4ac>0\)。
将\(a=1, b=-4\)代入,得到\((-4)^2-4\times1\times c>0\),即\(16-4c>0\),解得\(c<4\)。
2. 已知抛物线\(y=x^2+bx+c\)经过点(0,2)和(1,1),求该抛物线的解析式。
解:将点(0,2)和(1,1)代入抛物线方程,得到两个方程:\(2=0^2+b\times0+c\),即\(c=2\);\(1=1^2+b\times1+c\),即\(1=1+b+2\),解得\(b=-2\)。
因此,抛物线的解析式为\(y=x^2-2x+2\)。
北师版九下数学第二章二次函数单元测试1. 如图,关于抛物线,下列说法错误的是A.顶点坐标为B.对称轴是直线C.开口方向向上D.当时,随的增大而减小2. 在平面直角坐标系中,二次函数的图象如图所示,则下列说法正确的是A.,B.,C.,D.,3. 在平面直角坐标系中,将抛物线绕着它与轴的交点旋转,所得抛物线的解析式是A.B.C.D.4. 如图所示的二次函数的图象中,刘星同学观察得出了下面四条信息:(1);(2);(3);(4).你认为其中错误的有A.个B.个C.个D.个5. 已知抛物线(,,为常数,)经过点,,其对称轴在轴右侧.有下列结论:①抛物线经过点;②方程有两个不相等的实数根;③.其中,正确结论的个数为A.B.C.D.6. 抛物线开口向下,且经过原点,则.7. 如图,已知二次函数的图象经过点,,当随的增大而增大时,的取值范围是.8. 已知二次函数的图象与轴的负半轴和正半轴分别交于,两点,与轴交于点,它的顶点为,直线与过点且垂直于轴的直线交于点,且.(1) 求,两点的坐标;(2) 若,求这个二次函数的关系式.9. 某景区商店销售一种纪念品,每件的进货价为元.经市场调研,当该纪念品每件的销售价为元时,每天可销售件;当每件的销售价每增加元,每天的销售数量将减少件.(1) 当每件的销售价为元时,该纪念品每天的销售数量为件;(2) 当每件的销售价为多少时,销售该纪念品每天获得的利润最大?并求出最大利润.10. 如图,已知抛物线与轴交于点,,与直线交轴于点,点是抛物线的顶点,且横坐标为.(1) 求出抛物线的解析式;(2) 判断的形状,并说明理由.11. 已知函数(为常数).(1) 该函数的图象与轴的公共点的个数是.A.B.C.D.或(2) 求证:不论为何值,该函数的图象的顶点都在函数的图象上.12. 如图,抛物线经过点,与轴相交于,两点.(1) 求抛物线的函数表达式;(2) 点在抛物线的对称轴上,且位于轴的上方,将沿直线翻折得到,若点恰好落在抛物线的对称轴上,求点和点的坐标.答案1. 【答案】D2. 【答案】B3. 【答案】B4. 【答案】D5. 【答案】C6. 【答案】7. 【答案】8. 【答案】(1) 过点作轴于点,因为,所以该二次函数的对称轴为:,所以,因为,所以,所以,所以,所以,所以.因为与关于直线对称,所以.(2) 过点作于点,交于点,令代入,所以,令代入,所以,所以,因为,所以.所以,因为,所以,所以,所以,所以,所以,把代入,所以解得:,所以该二次函数解析式为:.9. 【答案】(1)(2) 由题意得:每件销售价为元时,获得最大利润;最大利润为元.10. 【答案】(1) 由直线,可得,,抛物线与轴交于点,,抛物线的顶点的横坐标为,.设.在抛物线上.,.抛物线的解析式为.(2) 是直角三角形,理由如下:,顶点的坐标是.,,,,,,是直角三角形,.11. 【答案】(1) D(2) 因为,所以该函数的图象的顶点坐标为.把代入,得.因此,不论为何值,该函数的图象的顶点都在函数的图象上.12. 【答案】(1) 由题意,得解得抛物线的函数表达式为.(2) 抛物线与轴的交点为,,,抛物线的对称轴为直线.如图,设抛物线的对称轴与轴交于点,则点的坐标为,,由翻折得,在中,由勾股定理,得,点的坐标为,..由翻折得,在中,,点的坐标为.。
二次函数单元测试卷(答案)1.已知函数y=2x^2+3x-1的自变量x取值范围为[-2,1],则在该范围内,该函数的最大值为_____,最小值为_____。
答案:最大值为3,最小值为-1.2.已知二次函数y=ax^2+bx+c的图象经过点(1,2)和点(3,4),则a+b+c的值为_____。
答案:a+b+c的值为6.3.抛物线y=-x^2+2x+3的顶点坐标为_____。
答案:(1,4)。
4.已知函数y=x^2-4x+5,则将其表示成y=a(x-h)^2+k的形式为_____。
答案:y=(x-2)^2+1.5.抛物线y=ax^2+bx+c的对称轴方程为x=2,且经过点(0,1),则a+b+c的值为_____。
答案:a+b+c的值为1.6.已知二次函数y=ax^2+bx+c的图象与x轴交于点(1,0)和点(3,0),则a的值为_____。
答案:a的值为-1/4.7.抛物线y=2x^2-4x+1的最小值为_____。
答案:最小值为-3.8.已知二次函数y=ax^2+bx+c的图象经过点(1,1),且在x=2处取得最大值,最大值为2,则a、b、c的值分别为_____。
答案:a=1,b=-6,c=7.11.二次函数 $y=(x-2)^2+3$ 的一般形式为 $y=ax^2+bx+c$,其中 $a=1$,$b=-4$,$c=7$。
12.一个开口向上,顶点坐标是 $(-2,1)$ 的函数解析式为$y=a(x+2)^2+1$,其中 $a>0$。
13.由于该二次函数的顶点坐标为 $(2,4)$,因此解析式为$y=a(x-2)^2+4$,其中 $a>0$。
又因为该函数的形状与抛物线$y=4x^2$ 相同,所以 $a=4$,最终得到 $y=4(x-2)^2+4$。
14.将原点代入抛物线方程 $y=x^2+kx+(k+3)$,得到$k=0$。
15.由于抛物线 $y=-2x^2-8x+m$ 经过点 $(-1,y_1)$,$(-2,y_2)$,$(-4,y_3)$,因此可以列出以下方程组:begin{cases}-2(-1)^2-8(-1)+m=y_1 \\ -2(-2)^2-8(-2)+m=y_2 \\ -2(-4)^2-8(-4)+m=y_3\end{cases}$$解得 $m=-6$,$y_1=-2$,$y_2=2$,$y_3=10$,因此$y_3>y_2>y_1$。
二次函数单元测试题及答案一、选择题(每题3分,共30分)1. 二次函数y=ax^2+bx+c(a≠0)的图象开口向上,则a的取值范围是()。
A. a>0B. a<0C. a=0D. a≠0答案:A2. 抛物线y=x^2-4x+3的顶点坐标是()。
A. (1,0)B. (2,1)C. (2,-1)D. (4,3)答案:C3. 若抛物线y=-2x^2+4x-1与x轴有两个交点,则这两个交点的坐标是()。
A. (1/2,0) 和 (3/2,0)B. (1,0) 和 (3,0)C. (1,0) 和 (-3,0)D. (-1,0) 和 (3,0)答案:B4. 二次函数y=ax^2+bx+c(a≠0)的对称轴是直线x=1,则b的值是()。
A. -2aB. 2aC. -aD. a答案:B5. 抛物线y=x^2-6x+8与x轴的交点个数是()。
A. 0B. 1C. 2D. 3答案:C6. 二次函数y=-x^2+2x+3的图象与y轴的交点坐标是()。
A. (0,3)B. (0,-3)C. (0,2)D. (0,-2)答案:A7. 二次函数y=x^2-2x-3与x轴的交点个数是()。
A. 0B. 1C. 2D. 3答案:C8. 抛物线y=-2x^2+4x+1的顶点坐标是()。
A. (1,3)B. (2,5)C. (-1,3)D. (-2,5)答案:A9. 二次函数y=x^2-4x+c的图象经过点(2,0),则c的值是()。
A. 0B. 4C. 8D. 16答案:C10. 抛物线y=x^2-6x+8与直线y=2x-4的交点坐标是()。
A. (2,0) 和 (4,4)B. (2,0) 和 (4,0)C. (2,4) 和 (4,0)D. (0,2) 和 (4,4)答案:A二、填空题(每题3分,共15分)11. 二次函数y=2x^2-4x+1的顶点坐标是()。
答案:(1,-1)12. 二次函数y=-3x^2+6x-3与x轴的交点坐标是()。
二次函数测试题及答案一、选择题(每小题 3 分,共 30 分)1、二次函数 y = x²+ 2x 3 的图象的顶点坐标是()A (-1,-4)B (1,-4)C (-1,4)D (1,4)答案:A解析:对于二次函数 y = ax²+ bx + c 的顶点坐标公式为(b/2a, (4ac b²)/4a),在函数 y = x²+ 2x 3 中,a = 1,b = 2,c =-3,所以顶点横坐标为 b/2a =-2/(2×1) =-1,纵坐标为(4ac b²)/4a = 4×1×(-3) 2²/(4×1) =(-12 4)/4 =-16/4 =-4,所以顶点坐标为(-1,-4)。
2、抛物线 y =-2(x 1)²+ 3 的开口方向、对称轴和顶点坐标分别是()A 开口向下,对称轴为 x =-1,顶点坐标为(1,3)B 开口向下,对称轴为 x = 1,顶点坐标为(1,3)C 开口向上,对称轴为 x =-1,顶点坐标为(-1,3)D 开口向上,对称轴为 x = 1,顶点坐标为(-1,3)答案:B解析:在抛物线 y = a(x h)²+ k 中,当 a < 0 时,开口向下,对称轴为 x = h,顶点坐标为(h,k)。
在抛物线 y =-2(x 1)²+ 3 中,a =-2 < 0,所以开口向下,对称轴为 x = 1,顶点坐标为(1,3)。
3、把抛物线 y = x²向左平移 1 个单位,然后向上平移 3 个单位,则平移后抛物线的解析式为()A y =(x 1)²+ 3B y =(x + 1)²+ 3C y =(x 1)² 3D y =(x + 1)² 3答案:B解析:抛物线平移遵循“上加下减,左加右减”的原则。
抛物线 y =x²向左平移 1 个单位得到 y =(x + 1)²,然后向上平移 3 个单位得到y =(x + 1)²+ 3。
二次函数2013年单元检测训练卷B
一、选择题(每题3分,共24分) .
C .
6.(3分)发射一枚炮弹,经x s 后的高度为y m ,且高度y 与时间x 的函数关系式为y=ax
+bx ,若此炮弹在第6s 之间的函数关系的图象为下列选项中的( )
.
C
D .
8.(3分)(2006•岳阳)小明从如图的二次函数y=ax +bx+c 图象中,观察得出了下面的五条信息:①a <0
;②c=0;③函数的最小值为﹣3;④当x <0时,y >0;⑤当0<x 1<x 2<2时,y 1>y 2.你认为其中正确的有多少个( )
9.(3分)抛物线y=ax经过点(3,5),则a=_________.
10.(3分)(2006•衡阳)抛物线y=(x﹣1)2+3的顶点坐标为_________.
11.(3分)抛物线y=(m﹣2)x2+2x+(m2﹣4)的图象经过原点,则m=_________.
12.(3分)已知抛物线y=x2+b2经过点(a,4)和(﹣a,y),则y的值是_________.
13.(3分)已知抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),则代数式m2﹣m+2009的值为_________.14.(3分)(2007•南宁)已知二次函数y=ax2+bx+c的图象如图所示,则点P(a,bc)在第_________象限.
15.(3分)(2003•大连)已知抛物线y=x2﹣2x﹣3的图象与x轴交于A,B两点,在x轴上方的抛物线上有一点C,使△ABC的面积为10,则C点坐标为_________.
16.(3分)老师给出一个二次函数,甲,乙,丙三位同学各指出这个函数的一个性质:
甲:函数的图象经过第一、二、四象限;
乙:当x<2时,y随x的增大而减小.
丙:函数的图象与坐标轴只有两个交点.
已知这三位同学叙述都正确,请构造出满足上述所有性质的一个函数_________.
三、解答题(17题、18题、每题7分,19题、20题每题8分,21题10分,22题12分,共52分)
17.(7分)已知二次函数y=x2+4x,用配方法把该函数化为y=a(x+h)2+k(其中a,h,k都是常数,且a≠0)的形式,并指出抛物线的对称轴和顶点坐标.
18.(7分)(2010•淮北模拟)如图,直线y=x+m和抛物线y=x2+bx+c都经过点A(1,0),B(3,2).
(1)求m的值和抛物线的解析式;
(2)求不等式x2+bx+c>x+m的解集.(直接写出答案)
19.(8分)(2009•河北)已知抛物线y=ax2+bx经过点A(﹣3,﹣3)和点P(t,0),且t≠0.
(1)若该抛物线的对称轴经过点A,如图,请通过观察图象,指出此时y的最小值,并写出t的值;
(2)若t=﹣4,求a、b的值,并指出此时抛物线的开口方向;
(3)直接写出使该抛物线开口向下的t的一个值.
20.(8分)(2009•贵阳)如图,有长为30m的篱笆,一面利用墙(墙的最大可用长度为10m),围成中间隔有一道篱笆(平行于AB)的矩形花圃.设花圃的一边AB为xm,面积为ym2.
(1)求y与x的函数关系式;
(2)如果要围成面积为63m2的花圃,AB的长是多少?
(3)能围成比63m2更大的花圃吗?如果能,请求出最大面积;如果不能,请说明理由.
21.(10分)(2006•南安市质检)如图所示,在直角坐标系中,矩形ABCD的边AD在x轴上,点A在原点,AB=3,AD=5.若矩形以每秒2个单位长度沿x轴正方向作匀速运动.同时点P从A点出发以每秒1个单位长度沿A﹣B ﹣C﹣D的路线作匀速运动.当P点运动到D点时停止运动,矩形ABCD也随之停止运动.
(1)求P点从A点运动到D点所需的时间;
(2)设P点运动时间为t(秒).
①当t=5时,求出点P的坐标;
②若△OAP的面积为s,试求出s与t之间的函数关系式(并写出相应的自变量t的取值范围).
22.(12分)(2014•徐州模拟)如图,已知抛物线y=﹣x2+2x+1﹣m与x轴相交于A、B两点,与y轴相交于点C,其中点C的坐标是(0,3),顶点为点D,连接CD,抛物线的对称轴与x轴相交于点E.
(1)求m的值;
(2)求∠CDE的度数;
(3)在抛物线对称轴的右侧部分上是否存在一点P,使得△PDC是等腰三角形?如果存在,求出符合条件的点P的坐标;如果不存在,请说明理由.
新人教版九年级上册《第26章二次函数》2013年单元检测训练卷B(一)
参考答案与试题解析
,
﹣
x=6+
=
S=
.
,得:
.
﹣
m m
s=
s=
s=
x=
x=
点坐标()
坐标为(,
新人教版九年级上册《第26章二次函数》2013年单元检测训练卷B(一)
参考答案与试题解析
一、选择题(每题3分,共24分)
.C.
2
2
,
4.(3分)二次函数y=ax2+bx+c的图象如图所示,则下列结论正确的是()
,根据﹣
﹣
5.(3分)一台机器原价60万元,如果每年的折旧率为x,两年后这台机器的价位为y万元,则y关于x的函数关
6.(3分)发射一枚炮弹,经x s后的高度为y m,且高度y与时间x的函数关系式为y=ax2+bx,若此炮弹在第6s
x=6+
x=6+
7.(3分)如图,Rt △AOB 中,AB ⊥OB ,且AB=OB=3,设直线x=t 截此三角形所得阴影部分的面积为S ,则S 与t 之间的函数关系的图象为下列选项中的(
) .
C D .
=
S=8.(3分)(2006•岳阳)小明从如图的二次函数y=ax 2
+bx+c 图象中,观察得出了下面的五条信息:①a <0;②c=0;③函数的最小值为﹣3;④当x <0时,y >0;⑤当0<x 1<x 2<2时,y 1>y 2.你认为其中正确的有多少个( )
二、填空题(每题3分.共24分)
9.(3分)抛物线y=ax2经过点(3,5),则a=.
.
10.(3分)(2006•衡阳)抛物线y=(x﹣1)2+3的顶点坐标为(1,3).
11.(3分)抛物线y=(m﹣2)x2+2x+(m2﹣4)的图象经过原点,则m=﹣2.
12.(3分)已知抛物线y=x2+b2经过点(a,4)和(﹣a,y),则y的值是4.
13.(3分)已知抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),则代数式m2﹣m+2009的值为2010.
14.(3分)(2007•南宁)已知二次函数y=ax2+bx+c的图象如图所示,则点P(a,bc)在第三象限.
15.(3分)(2003•大连)已知抛物线y=x2﹣2x﹣3的图象与x轴交于A,B两点,在x轴上方的抛物线上有一点C,使△ABC的面积为10,则C点坐标为(4,5)或(﹣2,5).
16.(3分)老师给出一个二次函数,甲,乙,丙三位同学各指出这个函数的一个性质:
甲:函数的图象经过第一、二、四象限;
乙:当x<2时,y随x的增大而减小.
丙:函数的图象与坐标轴只有两个交点.
已知这三位同学叙述都正确,请构造出满足上述所有性质的一个函数y=(x﹣2)2.
三、解答题(17题、18题、每题7分,19题、20题每题8分,21题10分,22题12分,共52分)
17.(7分)已知二次函数y=x2+4x,用配方法把该函数化为y=a(x+h)2+k(其中a,h,k都是常数,且a≠0)的形式,并指出抛物线的对称轴和顶点坐标.
18.(7分)(2010•淮北模拟)如图,直线y=x+m和抛物线y=x2+bx+c都经过点A(1,0),B(3,2).
(1)求m的值和抛物线的解析式;
(2)求不等式x2+bx+c>x+m的解集.(直接写出答案)
19.(8分)(2009•河北)已知抛物线y=ax2+bx经过点A(﹣3,﹣3)和点P(t,0),且t≠0.
(1)若该抛物线的对称轴经过点A,如图,请通过观察图象,指出此时y的最小值,并写出t的值;(2)若t=﹣4,求a、b的值,并指出此时抛物线的开口方向;
(3)直接写出使该抛物线开口向下的t的一个值.
,得:
.
﹣
20.(8分)(2009•贵阳)如图,有长为30m的篱笆,一面利用墙(墙的最大可用长度为10m),围成中间隔有一道篱笆(平行于AB)的矩形花圃.设花圃的一边AB为xm,面积为ym2.
(1)求y与x的函数关系式;
(2)如果要围成面积为63m2的花圃,AB的长是多少?
(3)能围成比63m2更大的花圃吗?如果能,请求出最大面积;如果不能,请说明理由.
m m
21.(10分)(2006•南安市质检)如图所示,在直角坐标系中,矩形ABCD的边AD在x轴上,点A在原点,AB=3,AD=5.若矩形以每秒2个单位长度沿x轴正方向作匀速运动.同时点P从A点出发以每秒1个单位长度沿A﹣B ﹣C﹣D的路线作匀速运动.当P点运动到D点时停止运动,矩形ABCD也随之停止运动.
(1)求P点从A点运动到D点所需的时间;
(2)设P点运动时间为t(秒).
①当t=5时,求出点P的坐标;
②若△OAP的面积为s,试求出s与t之间的函数关系式(并写出相应的自变量t的取值范围).
s=
s=
s=
22.(12分)(2014•徐州模拟)如图,已知抛物线y=﹣x2+2x+1﹣m与x轴相交于A、B两点,与y轴相交于点C,其中点C的坐标是(0,3),顶点为点D,连接CD,抛物线的对称轴与x轴相交于点E.
(1)求m的值;
(2)求∠CDE的度数;
(3)在抛物线对称轴的右侧部分上是否存在一点P,使得△PDC是等腰三角形?如果存在,求出符合条件的点P的坐标;如果不存在,请说明理由.
x=
x=
点坐标()
坐标为(,
21。