脱硫脱硝装置外排水氨氮超标原因分析
- 格式:ppt
- 大小:484.00 KB
- 文档页数:22
污水处理中氨氮超标问题频发如何解决随着工业化进程的加快和城市人口的不断增长,污水处理问题日益凸显,其中氨氮超标成为一个突出的问题。
高浓度的氨氮不仅对水生态环境造成严重危害,也对人类的健康构成威胁。
本文将探讨污水处理中氨氮超标问题的原因,并提出解决方案。
一、氨氮超标问题的原因分析1. 工业废水的排放工业废水中含有大量的氨氮物质,包括生物质的降解产物、化肥的排放以及石油、化工等工业的废水。
这些废水没有经过有效的处理就直接排放到水体中,导致水中氨氮含量超标。
2. 农业活动的影响农业中广泛使用的化肥和农药,通过农田的渗漏、径流等途径进入水体,使水体中的氨氮超标。
此外,养殖业的污水也是造成氨氮超标的重要原因之一。
3. 市区污水处理不完善在城市环境中,污水处理厂由于设备老化、运行不当等原因,不能有效去除污水中的氨氮物质,导致处理后的排放水体氨氮超标。
二、解决氨氮超标问题的对策1. 强化工业废水处理对于工业废水的处理,应建立起完善的治理机制。
制定相关法规和政策,强制工业企业进行废水的预处理并达到相关标准。
对于高浓度氨氮的废水,可以采用生物膜法、活性炭吸附等技术进行处理,以有效去除氨氮物质。
2. 提倡绿色农业为了减少农业对水环境的污染,政府应当推广有机农业和生态农业的发展,减少化肥和农药的使用。
并对农民进行相关的培训,提高他们对环境保护的意识。
3. 加强污水处理厂的管理与改造为了确保污水处理厂的正常运行,需要加强对处理厂的管理与监督。
及时维护和更换处理设备,确保设备的高效运作。
此外,可以引入先进的污水处理工艺,如生物膜法、活性炭吸附等技术,以更好地去除污水中的氨氮物质。
4. 推动科学研究与创新政府应加大对相关科学研究的支持力度,鼓励科研机构和企业加大在污水处理领域的创新力度。
研究新的处理技术和设备,提出更加高效、环保的氨氮处理方法。
5. 宣传教育与公众参与加强对公众的环保知识宣传,增强公众对水污染和氨氮超标问题的认识。
氨氮超标的原因及处理方法氨氮超标的原因及处理方法如下:一、有机物导致的氨氮超标CN比小于3的高氨氮污水,因脱氮工艺要求CN比在4—6,所以需要投加碳源来提高反硝化的完全性。
当时投加的碳源是甲醇,因为某些原因甲醇储罐出口阀门脱落,大量甲醇进入A池,导致曝气池泡沫很多,出水COD,氨氮飙升,系统崩溃。
分析:大量碳源进入A池,反硝化利用不了,进入曝气池,因为底物充足,异养菌有氧代谢,大量消耗氧气和微量元素,因为硝化细菌是自养菌,代谢能力差,氧气被争夺,形成不了优势菌种,所以硝化反应受限制,氨氮升高。
解决办法:1、立即停止进水进行悶爆、内外回流连续开启;2、停止压泥保证污泥浓度;3、如果有机物已经引起非丝状菌膨胀可以投加PAC来增加污泥絮;性、投加消泡剂来消除冲击泡沫。
二、内回流导致的氨氮超标内回流导致的氨氮超标有两方面原因:内回流泵有电气故障(现场跳停扔有运行信号)、机械故障(叶轮脱落)和人为原因(内回流泵未试正反转,现场为反转状态)。
分析:内回流导致的氨氮超标也可以归到有机物冲击中,因为没有硝化液的回流,导致A池中只有少量外回流携带的硝态氮,总体成厌氧环境,碳源只会水解酸化而不会完全代谢成二氧化碳逸出。
所以大量有机物进入曝气池,导致了氨氮的升高。
解决办法:内回流的问题很好发现,可以通过数据及趋势来判断是否是内回流导致的问题:初期O池出口硝态氮升高,A池硝态氮降低直至0,PH降低等,所以解决办法分三种情况:1、及时发现问题,检修内回流泵就可以了;2、内回流已经导致氨氮升高,检修内回流泵,停止或者减少进水进行悶爆;3、硝化系统已经崩溃,停止进水悶爆,如果有条件、情况比较紧迫可以投加相似脱氮系统的生化污泥,加快系统恢复。
三、PH过低导致的氨氮超标PH过低导致的氨氮超标有三种情况:1.内回流太大或者内回流处曝气开太大,导致携带大量的氧进入A池,破坏缺氧环境,反硝化细菌有氧代谢,部分有机物被有氧代谢掉,严重影响了反硝化的完整性,因为反硝化可以补偿硝化反应代谢掉碱度的一半,所以因为缺氧环境的破坏导致碱度产生减少,PH降低,低于硝化细菌适宜的PH之后硝化反应受抑制,氨氮升高。
脱氮除磷工艺越来越多的应用到污水处理当中,但是在实际运行过程中,出水氮磷含量超标的情况常常困扰着水厂的工作人员。
因此,理清脱氮除磷工艺的重要参数并加以控制,能够很好的保证系统的正常运行,出水氮磷含量达标。
一、氨氮超标原因及控制1、污泥负荷与污泥龄生物硝化属低负荷工艺,F/M一般在0.05~0.15kgBOD/ kgMLVSS•d。
负荷越低,硝化进行得越充分,NH-N向NO--N转化的效率就越高。
与低负荷相对应,生物硝化系统的SRT般较长,因为硝化细菌世代周期较长,若生物系统的污泥停留时间过短,污泥浓度较低时,硝化细菌就培养不起来,也就得不到硝化效果。
SRT控制在多少,取决于温度等因素。
对于以脱氮为主要目的生物系统,通常SRT可取11~23d。
2、回流比与水力停留时间生物硝化系统的回流比一般较传统活性污泥工艺大,主要是因为生物硝化系统的活性污泥混合液中已含有大量的硝酸盐,若回流比太小,活性污泥在二沉池的停留时间就较长,容易产生反硝化,导致污泥上浮。
通常回流比控制在50~100%。
生物硝化曝气池的水力停留时间也较活性污泥工艺长,至少应在8h以上。
这主要是因为硝化速率较有机污染物的去除率低得多,因而需要更长的反应时间。
3、BOD5/TKNBOD5/TKN越大,活性污泥中硝化细菌所占的比例越小,硝化速率就越小,在同样运行条件下硝化效率就越低;反之,BOD5/TKN越小,硝化效率越高。
很多城市污水处理厂的运行实践发现,BOD5/ TKN值最佳范围为2~3左右。
4、溶解氧硝化细菌为专性好氧菌,无氧时即停止生命活动,且硝化细菌的摄氧速率较分解有机物的细菌低得多,如果不保持充足的氧量,硝化细菌将“争夺”不到所需要的氧。
因此,需保持生物池好氧区的溶解氧在2mg/L以上,特殊情况下溶解氧含量还需提高。
5、温度与pH硝化细菌对温度的变化也很敏感,当污水温度低于15℃时,硝化速率会明显下降,当污水温度低于5℃时,其生理活动会完全停止。
《氨氮超标分析》一、基本情况介绍处理工艺采用a2o生物脱氮除磷工艺,工艺为。
原水与从沉淀池回流的污泥首先进入厌氧池,在此污泥中的聚磷菌利用原污水中的溶解态有机物进行厌氧释磷;然后与好氧末端回流的混合液一起进入缺氧池,在此污泥中的反硝化菌利用剩余的有机物和回流的硝酸盐进行反硝化作用脱氮;脱氮反应完成后,进入好氧池,在此污泥中的硝化菌进行硝化作用将废水中的氨氮转化为硝酸盐同时聚磷菌进行好氧吸磷,剩余的有机物也在此被好氧细菌氧化,最后经沉淀池进行泥水分离,沉淀的污泥部分返回厌氧池,部分剩余污泥排出。
二、氨氮指标超标原因分析由于蒸氨系统波动较大,导致焦化厂酚氰废水处理站进水氨氮指标波动较大,远超过设计进水指标,为降低进水氨氮指标,xx年6月底导热油蒸氨系统停用整改,采用原蒸氨系统,进水氨氮指标得以恢复,但酚氰废水处理站出水指标中氨氮指标一直超过标准值,且废水处理系统存在处理后出水氨氮指标超过进水指标现象,针对此问题,经与焦化厂联系分析得出以下结论:硝化细菌活性降低,导致硝化反应减弱长时间系统进水指标氨氮超标导致部分硝化细菌死亡,硝化细菌活性降低。
废水进入好氧池,在氨化细菌作用下,将进水中有机氮转化为氨氮,但由于硝化细菌活性降低,难以将废水中氨氮转化为硝酸盐,因此氨氮积聚在水中,导致出水氨氮指标超过进水氨氮指标。
三、解决措施针对以上分析,采取以下措施:1、控制调节硝化反应条件,提高硝化反应强度1)tkn/mlss负荷率应ub,且ua-ub的值需大于20mv⑶.仪器读取是十个连续的测量电位值,其之间电位偏移需1000,l1=20ma原因。
校正不正常。
请手动重新校正。
然后按校正失败的方法处理。
②测量值值不在允许的误差范围。
检查ua,ub和srel的范围,注意srel越靠近值1其值测量越准确。
1和10mg/l的标液,ua=-13±7mv,ub=-73±7mv,srel=0.95~1.02 5和50mg/l的标液,ua=-75±25mv,ub=-135±25mv,srel=0.95~1.02若其值偏差较大,先检查标液的准确性。
浅析出水氨氮超标的原因及处置摘要:在污水处理设施运行过程中经常会出现出水氨氮在线数据超标的情况,引起出水氨氮在线数据超标的原因有很多种,我们需认真分析异常的缘由,然后针对性的进行处置,方可确保出水氨氮在线数据稳定达标。
关键词:出水氨氮在线数据超标原因处置一、出水氨氮在线监测超标现象概述我们在生产中经常遇到在线监测仪器与中控室数据显示出水氨氮超标或不一致的现象。
不一致的情况比较简单,比较容易解决,在线监测仪器显示未超标、中控室数据显示超标时,以在线监测仪器为准,只需要检查传输系统是否有故障或自控量程是否被修改,并排除故障即可。
另一种情况是在线监测仪器显示出水氨氮超标,经过取样进行手工化验,化验结果显示出水氨氮超标,氨氮超标的原因比较复杂,需要进一步分析具体原因,同时启动出水水质超标应急处置预案。
本文侧重从氨氮超标的原因及技术处置的角度来分析研究这一问题。
二、造成氨氮超标可能的原因及处置方法(一)工艺参数原因1、SRT(泥龄)控制不佳。
因为硝化细菌世代周期较长,生物硝化系统反应所需的SRT一般较长。
若生物系统的污泥停留时间过短,即SRT过短,硝化反应历时不够,也就得不到期望的硝化效果。
所以要解决这一因素导致的氨氮升高,须控制好适宜的SRT,SRT控制在多少还取决于水温等因素。
对于以脱氮为主要目标的生物系统,通常SRT可取11~23d。
2、PH(碱度)控制不佳。
在硝化反应中,每氧化1g氨氮需要7.14g碱度(以碳酸钙计),如果不适时适当补充碱度,就会导致PH值下降。
硝化反应的最佳PH值范围为7.5~8.5,硝化菌对PH值的变化反应十分敏感,当PH值低于7或高于9时,硝化速率明显降低,低于6和高于10.6时,硝化反应几乎停止。
因此在工艺调控过程中结合PH值,补充控制好碱度有利于氨氮去除率的提高。
3、DO控制不佳。
硝化反应必须在好氧条件下进行,所以溶解氧的浓度会明显影响硝化反应的速率,DO过低则甚至会抑制硝化反应进行,造成氨氮升高直至超标。
SCR脱硝技术氨逃逸率高的原因及治理1概述潮州发电厂2号锅炉型号HG-1900/25.4-YM4,是哈尔滨锅炉厂有限责任公司引进三井巴布科克能源公司(MB)的锅炉技术,进行设计、制造的。
锅炉为一次中间再热、超临界压力变压运行带内置式再循环泵启动系统的本生(Benson)直流锅炉,单炉膛、平衡通风、固态排渣、全钢架、全悬吊结构、π型布置。
锅炉为露天布置。
锅炉设计煤种为神府东胜烟煤,校核煤种为山西晋北烟煤。
锅炉燃烧器采用30只低氮氧化物轴向旋流燃烧器(LNASB)前后墙布置、对冲燃烧,配有6台HP963中速磨直吹式制粉系统,B-MCR工况下5台运行,一台备用。
锅炉以最大连续负荷(即BMCR工况)为设计参数,在机组电负荷为661.9MW时锅炉的最大连续蒸发量为1900t/h。
#2锅炉脱硝SCR采用垂直烟道三层设计,脱硝SCR前的取样测点安装在省煤器后喷氨格栅前的垂直烟道,烟道截面积14500*3000mm,水平安装单点氮氧化物、O2测量取样探头;脱硝SCR后的取样测点安装在SCR反应区后空预器前水平烟道,烟道截面积为12550*3500mm,垂直安装单点氮氧化物、O2测量取样探头,单路烟气取样探头直接插入烟道内长度1500mm。
2氨逃逸率高的危害在SCR烟气脱硝工艺中,氨逃逸率的控制至关重要。
因为如果控制不好,不仅使脱硝成本增加,而且机组安全运行也受到威胁。
其危害性主要表现在以下几方面:(1)锅炉尾部烟道及空气预热器换热面腐蚀积灰堵塞。
(2)由于两台空预器堵塞后阻力不同,造成低负荷、低烟气量时引风机发生抢风现象,造成炉膛负压大幅波动,危机机组安全运行;同时由于空预器的堵塞不均匀,引起一、二次风压和炉膛负压周期性波动严重时可能由于空预器堵塞机组被迫停运检修。
(3)催化剂中毒。
在SCR脱硝工艺中,尽管二氧化硫氧化成三氧化硫的转化率较低,二氧化硫在SCR催化剂表面还是有可能氧化成三氧化硫,在较低温度下三氧化硫与氨气结合成的硫酸氢铵或硫酸铵附着在催化剂表面,催化剂反应性能下降。