• 根据Bartlett的理论:k~N(0,1/19)
因此任一rk(k>0)的95%的置信区间都将是 [ Z 0 . 0 • 2 , Z 0 . 0 5 • ] 2 [ 1 . 9 5 1 / 1 , 1 6 . 9 1 9 / 1 ] 6 [ 0 . 4 9 , 0 . 4 4 ]
在现实经济生活中:
情况往往是实际的时间序列数据是非平稳的,而 且主要的经济变量如消费、收入、价格往往表现为 一致的上升或下降。这样,仍然通过经典的因果关 系模型进行分析,一般不会得到有意义的结果。
时间序列分析模型方法就是在这样的情况下, 以通过揭示时间序列自身的变化规律为主线而发 展起来的全新的计量经济学方法论。
Randomቤተ መጻሕፍቲ ባይዱ 自相关系数
Q LB
Q LB
rk (k=0,1,…17)
rk (k=0,1,…17)
1 -0.031 2 0.188 3 0.108 4 -0.455 5 -0.426 6 0.387 7 -0.156 8 0.204 9 -0.340 10 0.157 11 0.228 12 -0.315 13 -0.377 14 -0.056 15 0.478 16 0.244 17 -0.215 18 0.141 19 0.236
n
P lim x i2/n Q
▲如果X是非平稳数据(如表现出向上的趋势), 则(2)不成立,回归估计量不满足“一致性”,基 于大样本的统计推断也就遇到麻烦。
⒊ 数据非平稳,往往导致出现“虚假回归” 问题
表现在:两个本来没有任何因果关系的变量,却 有很高的相关性(有较高的R2):
例如:如果有两列时间序列数据表现出一致的变 化趋势(非平稳的),即使它们没有任何有意义的 关系,但进行回归也可表现出较高的可决系数。