人教版高二数学选修2-1椭圆专项基础测试卷
- 格式:doc
- 大小:188.50 KB
- 文档页数:3
高中数学学习材料金戈铁骑整理制作青岛一中2010学年第一学期高二椭圆专题检测一、 选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中有只有一项是符合题目要求的.) 1.椭圆63222=+y x 的焦距是( )A .2B .)23(2-C .52D .)23(2+2.F 1、F 2是定点,|F 1F 2|=6,动点M 满足|MF 1|+|MF 2|=6,则点M 的轨迹是 ( ) A .椭圆 B .直线 C .线段 D .圆3.若椭圆的两焦点为(-2,0)和(2,0),且椭圆过点)23,25(-,则椭圆方程是 ( )A .14822=+x yB .161022=+x yC .18422=+x yD .161022=+y x4.方程222=+ky x 表示焦点在y 轴上的椭圆,则k 的取值范围是 ( )A .),0(+∞B .(0,2)C .(1,+∞)D .(0,1)5. 过椭圆12422=+y x 的一个焦点1F 的直线与椭圆交于A 、B 两点,则A 、B 与椭圆的另一焦点2F 构成2ABF ∆,那么2ABF ∆的周长是( )A. 22B. 2C. 2D. 16.若椭圆两准线间的距离等于焦距的4倍,则这个椭圆的离心率为( )A .41 B .22 C .42 D .21 7. 已知k <4,则曲线14922=+y x 和14922=-+-ky k x 有( ) A. 相同的准线 B. 相同的焦点 C. 相同的离心率 D. 相同的长轴8.已知P 是椭圆13610022=+y x 上的一点,若P 到椭圆右准线的距离是217,则点P 到左焦点的距离是( )A .516B .566C .875D .8779.若点P 在椭圆1222=+y x 上,1F 、2F 分别是椭圆的两焦点,且 9021=∠PF F ,则21PF F ∆的面积是( )A. 2B. 1C.23D. 2110.椭圆1449422=+y x 内有一点P (3,2)过点P 的弦恰好以P 为中点,那么这弦所在直线的方程为( )A .01223=-+y xB .01232=-+y xC .014494=-+y xD . 014449=-+y x11.椭圆141622=+y x 上的点到直线022=-+y x 的最大距离是 ( )A .3B .11C .22D .1012.在椭圆13422=+y x 内有一点P (1,-1),F 为椭圆右焦点,在椭圆上有一点M ,使|MP|+2|MF|的值最小,则这一最小值是( )A .25 B .27 C .3D .4二、 填空题:(本大题共4小题,每小题4分,共16分,把答案填在题中横线上.)13.椭圆2214x y m+=的离心率为12,则m = 。
河南省安阳市二中2013届高二年级数学椭圆单元测试卷班级 姓名一.选择题1.离心率为32,长轴长为6的椭圆的标准方程是() A .15922=+y x B .15922=+y x 或19522=+y x C .1203622=+y x D .1203622=+y x 或1362022=+y x 2.平面内有定点A 、B 及动点P ,设命题甲是“|PA|+|PB|是定值”,命题乙是“点P 的轨迹是以A 、B 为焦点的椭圆”,那么甲是乙的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.已知ABC ∆的周长是16,)0,3(-A ,B )0,3(则动点的轨迹方程是()A .1162522=+y xB .)0(1162522≠=+y y xC .1251622=+y xD .)0(1251622≠=+y y x 4.若椭圆19922=++m y x 的离心率是21,则m 的值等于() A .49-B .41C .49-或3D .41或3 5.已知椭圆的对称轴是坐标轴,一个焦点是(0,-7),一个顶点是(9,0),则该椭圆的方程是 []A +y =1B +x =1C +y =1D +x =12222....x y x y 22228132813213081130816.椭圆192522=+y x 上有一点P ,它到左准线的距离是25,则点P 到右焦点是距离是() A .8B .825C .29D .815 7.短轴长为5,离心率为32,两个焦点分别为1F 、2F 的椭圆,过1F 作直线交椭圆于A 、B 两点,则2ABF ∆的周长为()A .24B .12C .6D .38.椭圆12222=+b y a x 和12222=-+-λλb y a x )0(22>>>λb a 的关系是() A .有相同的长、短轴B .有相同的离心率C .有相同的准线D .有相同的焦点9.直线)(1R k kx y ∈+=与椭圆1522=+my x 恒有公共点,则m 的取值范围是() A .5>m B .50<<m C .1>m D .1≥m10.以椭圆上一点和两个焦点为顶点的三角形的最大面积为1,则长轴长的最小值为()A .1B .2C .2D .2211.设P 为椭圆12222=+by a x )0(>>b a 上一点,F 1、F 2为焦点,如果ο7521=∠F PF ,ο1512=∠F PF ,则椭圆的离心率为()A .22B .23C .32D .36 12.椭圆12222=+by a x )0(>>b a 与圆222)2(c b y x +=+(c 为椭圆半焦距)有四个不同交点,则椭圆离心率e 的取值范围是()A .5355<<e B .153<<e C .155<<e D .530<<e 二.填空题 13.过椭圆2222=+y x 的焦点引一条倾斜角为ο45的直线与椭圆交于A 、B 两点,椭圆的中心为O ,则AOB ∆的面积为14.椭圆的长轴的一个顶点与短轴的两个端点构成等边三角形,则此椭圆的离心率等于15.椭圆1422=+y m x 的焦距是2,则m 的值为 16.到椭圆192522=+y x 右焦点的距离与到直线6=x 的距离相等的轨迹方程是 三.解答题17.求以直线01243=-+y x 和两坐标轴的交点为顶点和焦点的椭圆的标准方程。
练习三 一、选择题 1.平面上到点A (-5,0)、B (5,0)距离之和为10的点的轨迹是( )A .椭圆B .圆C .线段D .轨迹不存在2.已知椭圆x 216+y 29=1的左、右焦点分别为F 1、F 2,点P 在椭圆上.若P 、F 1、F 2是一个直角三角形的三个顶点,则点P 到x 轴的距离为( )A.95 B .3 C.977 D.943.椭圆x 212+y 23=1的一个焦点为F 1,点P 在椭圆上,如果线段PF 1的中点M 在y 轴上,那么点P 的纵坐标是( )A .±34B .±22C .±32D .±344.椭圆x 24+y 2=1的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则|PF 2|=( )A.32B.3C.72 D .45.过椭圆4x 2+y 2=1的一个焦点F 1的直线与椭圆交于A 、B 两点,则A 、B 与椭圆的另一个焦点F 2构成△ABF 2的周长是( )A .2B .4 C.2 D .2 2 6.已知椭圆的方程为x 216+y 2m 2=1,焦点在x 轴上,则m 的取值范围是( )A .-4≤m ≤4B .-4<m <4且m ≠0C .m >4或m <-4D .0<m <4 二填空题7.F 1,F 2分别为椭圆x 2a 2+y 2b 2=1的左、右焦点,点P 在椭圆上,△POF 2是面积为3的正三角形,则b 2=______.8. 已知A(-12,0),B是圆F:(x-12)2+y2=4(F为圆心)上一动点,线段AB的垂直平分线交BF于P,则动点P的轨迹方程为____________.三解答题9.求适合下列条件的椭圆的标准方程:(1)焦点在y轴上,且经过两个点(0,2)和(1,0).(2)坐标轴为对称轴,并且经过两点A(0,2),B(12,3)10.在面积为1的△PMN中,tan M=12,tan N=-2,建立适当的坐标系,求以M、N为焦点且过点P(x0,y0)(y0>0)的椭圆方程.练习三1.C ;2.D ;3.C ;4.C ;5.B ;6.B ;7. 23;8. x 2+43y 2=1;9.[解析] (1)由于椭圆的焦点在y 轴上,所以设它的标准方程为y 2a 2+x 2b 2=1(a >b >0) 由于椭圆经过点(0,2)和(1,0),∴⎩⎪⎨⎪⎧ 4a 2+0b 2=1,0a 2+1b 2=1.⇒⎩⎨⎧a 2=4,b 2=1 故所求椭圆的方程为y 24+x 2=1.(2)设所求椭圆的方程为x 2m +y 2n =1(m >0,n >0).∵椭圆过A (0,2),B (12,3),∴⎩⎪⎨⎪⎧ 0m +4n =1,14m +3n =1,解得⎩⎨⎧m =1,n =4. ∴所求椭圆方程为x 2+y 24=1. 10.[解析] 以线段MN 的中点为原点,MN 所在直线为x 轴,建立坐标系.设M (-c,0),N (c,0),c >0,又P (x 0,y 0),y 0>0.由⎩⎪⎨⎪⎧ y 0x 0-c =-2,y 0x 0+c =12,cy 0=1⇒⎩⎪⎨⎪⎧ x 0=53c ,y 0=43c ,⇒P (523,23). 设椭圆方程为x 2b 2+34+y 2b 2=1,又P 在椭圆上,故b 2(523)2+(b 2+34)(23)2=b 2(b 2+34),整理得3b4-8b2-3=0⇒b2=3.所以所求椭圆方程为x2154+y23=1.。
椭圆及其标准方程基础卷一、选择题:1、椭圆2211625x y +=的焦点坐标为( ) (A )(0, ±3) (B )(±3, 0) (C )(0, ±5) (D )(±4, 0)2、在方程22110064x y +=中,下列a , b , c 全部正确的一项是( ) (A )a =100, b =64, c =36 (B )a =10, b =6, c =8 (C )a =10, b =8, c =6 (D )a =100, c =64, b =36 3、已知a =4, b =1,焦点在x 轴上的椭圆方程是( )(A )2214x y += (B )2214y x += (C )22116x y += (D )22116y x += 4、已知焦点坐标为(0, -4), (0, 4),且a =6的椭圆方程是( )(A )2213620x y += (B )2212036x y += (C )2213616x y += (D )2211636x y += 5、若椭圆22110036x y +=上一点P 到焦点F 1的距离等于6,则点P 到另一个焦点F 2的距离是( ) (A )4 (B )194 (C )94 (D )146、已知F 1, F 2是定点,| F 1 F 2|=8, 动点M 满足|M F 1|+|M F 2|=8,则点M 的轨迹是( ) (A )椭圆 (B )直线 (C )圆 (D )线段 二、填空题:7、若y 2-lga ·x 2=31-a 表示焦点在x 轴上的椭圆,则a 的取值范围是 . 8、当a +b =10, c =25时的椭圆的标准方程是 .9、已知一个圆的圆心为坐标原点,半径为2,从这个圆上任意一点P 向x 轴作垂线段PP ’,则线段PP ’的中点M 的轨迹方程为 .10、经过点M (3, -2), N (-23, 1)的椭圆的标准方程是 .11、椭圆的两焦点为F 1(-4, 0), F 2(4, 0),点P 在椭圆上,已知△PF 1F 2的面积的最大值为12,求此椭圆的方程。
椭圆一、以考查知识为主试题 【容易题】1.椭圆22194x y k+=+的离心率为45,则k 的值为( ) (A )-21 (B )21 (C )1925-或21 (D )1925或21【答案】C2.焦点在x 轴上,长、短半轴长之和为10,焦距为45,则椭圆的方程为( )A.x236+y216=1 B.x216+y236=1 C.x26+y24=1 D.y26+x24=1 【答案】A3. 若焦点在x 轴上的椭圆x22+y2m =1的离心率为12,则m 等于( )A.3 B.32 C.83 D.23【答案】B4. 已知1F 、2F 分别为椭圆C 的两个焦点,点B 为其短轴的一个端点,若12BF F ∆为等边三角形,则该椭圆的离心率为( )AB .12C .2D 【答案】B5. 若以椭圆上一点和两个焦点为顶点的三角形的最大面积为1,则长轴长的最小值为 ( )A.1B.2C.2D.22【答案】D6. 椭圆221123x y +=的一个焦点为1F ,点P 在椭圆上且线段1PF 的中点M 在y 轴上,则点M 的纵坐标为 ( ) A.3± B.3± C.2± D.34±【答案】A7.过椭圆左焦点F 且斜率为3的直线交椭圆于A 、B 两点,若|FA|=2|FB|,则椭圆的离心e=__ 【答案】328.椭圆 )0(12222>>=+b a by a x 的左、右顶点分别是A,B,左、右焦点分别是F 1,F 2。
若1AF ,21F F ,B F 1 成等比数列,则此椭圆的离心率为_____________.【答案】559.设F1,F2分别是椭圆22x y 12516+=的左、右焦点,P 为椭圆上一点,M 是F1P 的中点,|OM|=3,则P 点到椭圆左焦点距离为_________. 【答案】410.已知椭圆22195x y +=的右焦点为F , P 是椭圆上一点,点(0,A ,当点P 在椭圆上运动时, APF ∆的周长的最大值为____________ . 【答案】1411.若椭圆上一点到两个焦点的距离之和为 ,则此椭圆的离心率为__________.【答案】312.设 , 为椭圆 :的焦点,过 所在的直线交椭圆于 , 两点,且 ,则椭圆 的离心率为__________.13.已知椭圆的左、右焦点分别为 、 ,且 ,点 在椭圆上,, ,则椭圆的离心率 等于__________.二、以考查技能为主试题 【中等题】14. 椭圆2222:1(0)x y C a b a b+=>>的左右焦点分别为12,F F ,若椭圆C 上恰好有6个不同的点P ,使得△F1F2P 为等腰三角形,则椭圆C 的离心率的取值范围是_________ 【答案】111(,)(,1)32215.已知椭圆方程,椭圆上点M 到该椭圆一个焦点F 1的距离是2,N 是MF 1的中点,O 是椭圆的中心,那么线段ON 的长是________ 【答案】416.已知椭圆2222:1(0)x y C a b a b+=>>的左焦点为,F C 与过原点的直线相交于,A B 两点,连接,AF BF ,若410,6,cos ABF 5AB AF ==∠=,则C 的离心率e =______. 【答案】5717.如果椭圆的对称轴为坐标轴,短轴的一个端点与两焦点组成一正三角形,焦点在x 轴上,且a c - =3, 那么椭圆的方程是 .【答案】191222=+y x18.如图,椭圆C :(Ⅰ)求椭圆C 的方程;(Ⅱ)设n 是过原点的直线,l 是与n 垂直相交于P 点、与椭圆相交于A,B 两点的直线,是否存在上述直线l 使成立?若存在,求出直线l 的方程;若不存在,请说明理由。
人教版高二数学选修2-1椭圆专项基础测试卷
1 / 1 椭圆同步测试3
1.已知椭圆116
252
2=+y x 上的一点P ,到椭圆一个焦点的距离为3,则P 到另一焦点距离为_______
2.中心在原点,焦点在横轴上,长轴长为4,短轴长为2,则椭圆方程是_____
3.与椭圆9x 2+4y 2=36有相同焦点,且短轴长为45的椭圆方程是_____
4.椭圆
2255x ky -=的一个焦点是(0,2),那么k 等于_____
5.若椭圆短轴上的两顶点与一焦点的连线互相垂直,则离心率等于_____
6.椭圆两焦点为 1(4,0)F -,2(4,0)F ,P 在椭圆上,若 △12PF F 的面积的最大值为12,则椭圆方程为______
7.椭圆的两个焦点是F 1(-1, 0), F 2(1, 0),P 为椭圆上一点,且|F 1F 2|是|PF 1|与|PF 2|
的等差中项,则该椭圆方程是(_______)。
8.椭圆22
1259
x y +=上的点M 到焦点F 1的距离是2,N 是MF 1的中点,则|ON |为____
9.已知△ABC 的顶点B 、C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另
外一个焦点在BC 边上,则△ABC 的周长是 ______
10.设(5,0)M -,(5,0)N ,△MNP 的周长是36,则MNP ∆的顶点P 的轨迹______。
椭圆基础训练一、选择题1.()已知椭圆1162522=+y x 上的一点P 到椭圆一个焦点的距离为3,则P 到另一焦点距离为 A .2B .3C .5D .7D 点P 到椭圆的两个焦点的距离之和为210,1037a =-= 2.()若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,焦距为6,则椭圆的方程为A .116922=+y x B .1162522=+y x C .1162522=+y x 或1251622=+y x D .以上都不对 C 2222218,9,26,3,9,1a b a b c c c a b a b +=+====-=-=得5,4a b ==,2212516x y ∴+=或1251622=+y x 3.()如果222=+ky x 表示焦点在y 轴上的椭圆,那么实数k 的取值范围是A .()+∞,0B .()2,0C .()+∞,1D .()1,0D 焦点在y 轴上,则2221,20122y x k k k +=>⇒<< 4.()21,F F 是椭圆17922=+y x 的两个焦点,A 为椭圆上一点,且∠02145=F AF ,则 Δ12AF F 的面积为A .7B .47C .27D .257C 1212216,6F F AF AF AF AF =+==- 222022112112112cos 4548AF AF F F AF F F AF AF =+-⋅=-+2211117(6)48,,2AF AF AF AF -=-+=177222S =⨯⨯= 5.()椭圆1244922=+y x 上一点P 与椭圆的两个焦点1F 、2F 的连线互相垂直,则△21F PF 的面积为A .20B .22C .28D .24D 222212121214,()196,(2)100PF PF PF PF PF PF c +=+=+==,相减得12121296,242PF PF S PF PF ⋅==⋅= 二、填空题6.椭圆22189x y k +=+的离心率为12,则k 的值为______________。
椭圆及其标准方程基础卷1.椭圆2211625x y +=的焦点坐标为(A )(0, ±3) (B )(±3, 0) (C )(0, ±5) (D )(±4, 0)2.在方程22110064x y +=中,下列a , b , c 全部正确的一项是 (A )a =100, b =64, c =36 (B )a =10, b =6, c =8 (C )a =10, b =8, c =6 (D )a =100, c =64, b =36 3.已知a =4, b =1,焦点在x 轴上的椭圆方程是(A )2214x y += (B )2214y x += (C )22116x y += (D )22116y x += 4.已知焦点坐标为(0, -4), (0, 4),且a =6的椭圆方程是(A )2213620x y += (B )2212036x y += (C )2213616x y += (D )2211636x y += 5.若椭圆22110036x y +=上一点P 到焦点F 1的距离等于6,则点P 到另一个焦点F 2的距离是 (A )4 (B )194 (C )94 (D )146.已知F 1, F 2是定点,| F 1 F 2|=8, 动点M 满足|M F 1|+|M F 2|=8,则点M 的轨迹是 (A )椭圆 (B )直线 (C )圆 (D )线段 7.若y 2-lga ·x 2=31-a 表示焦点在x 轴上的椭圆,则a 的取值范围是 . 8.当a +b =10, c =25时的椭圆的标准方程是 .9.已知一个圆的圆心为坐标原点,半径为2,从这个圆上任意一点P 向x 轴作垂线段PP ’,则线段PP ’的中点M 的轨迹方程为 .10.经过点M (3, -2), N (-23, 1)的椭圆的标准方程是 .11.椭圆的两焦点为F 1(-4, 0), F 2(4, 0),点P 在椭圆上,已知△PF 1F 2的面积的最大值为12,求此椭圆的方程。
高中数学选修2-1《圆锥曲线》2.2—2.3阶段训练(椭圆) 时间120分钟 总分150分一、选择题(本大题共10小题,每小题5分,共50分) 1.已知椭圆2222:1(0)x y C a b ab+=>>的离心率为32,过右焦点F 且斜率为(0)k k >的直线与C 相交于A B 、两点.若3AF FB =,则k =A 1B 2C 3 D2 【答案】B 2.已知椭圆C :22221x y ab+=(a>b>0)的离心率为32,过右焦点F 且斜率为k (k>0)的直线于C 相交于A 、B 两点,若3AF FB =。
则k =A1 B 2 C 3 D2 【答案】B3.到两互相垂直的异面直线的距离相等的点,在过其中一条直线且平行于另一条直线的平面内的轨迹是A. 直线B. 椭圆C. 抛物线D. 双曲线 【答案】 D解析:排除法 轨迹是轴对称图形,排除A 、C ,轨迹与已知直线不能有交点,排除B 4.椭圆22221()x y a b ab+=>>0的右焦点F ,其右准线与x 轴的交点为A ,在椭圆上存在点P 满足线段AP 的垂直平分线过点F ,则椭圆离心率的取值范围是A 20,2⎛⎤⎥ ⎝⎦B 10,2⎛⎤ ⎥⎝⎦C)21,1⎡-⎣ D 1,12⎡⎫⎪⎢⎣⎭【答案】D5.若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是 A.54 B.53 C.52 D.51【答案】B6.若点O 和点F 分别为椭圆22143xy+=的中心和左焦点,点P 为椭圆上的任意一点,则O P FP的最大值为A .2B .3C .6D .8【答案】C 7.椭圆()222210x y a ab+=>b >的右焦点为F ,其右准线与x 轴的交点为A .在椭圆上存在点P 满足线段AP 的垂直平分线过点F ,则椭圆离心率的取值范围是 A (0,22] B (0,12] C[21-,1) D[12,1)【答案】D 8.椭圆141622=+yx上的点到直线022=-+y x 的最大距离是( )A .3B .11C .22D .10【答案】D 9.在椭圆13422=+yx内有一点P (1,-1),F 为椭圆右焦点,在椭圆上有一点M ,使|MP|+2|MF|的值最小,则这一最小值是( )A .25 B .27C .3D .4【答案】C10.过点M (-2,0)的直线m 与椭圆1222=+yx交于P 1,P 2,线段P 1P 2的中点为P ,设直线m 的斜率为k 1(01≠k ),直线OP 的斜率为k 2,则k 1k 2的值为 ( )A .2B .-2C .21 D .-21【答案】D二、填空题(本大题共5小题,每小题5分,共25分) 11.离心率21=e ,一个焦点是()3,0-F 的椭圆标准方程为 ___________ .【答案】1273622=+xy12.与椭圆4 x 2 + 9 y 2 = 36 有相同的焦点,且过点(-3,2)的椭圆方程为_______________. 【答案】1101522=+yx13.已知()y x P ,是椭圆12514422=+yx上的点,则y x +的取值范围是________________ .【答案】]13,13[-14.已知椭圆E的短轴长为6,焦点F到长轴的一个端点的距离等于9,则椭圆E的离心率等于__________________. 【答案】5415.已知椭圆的对称轴为坐标轴,离心率32=e ,短轴长为58,求椭圆的方程____________. 【答案】18014422=+yx或18014422=+xy.三、解答题(本大题共6题,16—18每小题12分,19—21题每小题13分,共75分) 16.已知A 、B 为椭圆22ax +22925ay =1上两点,F 2为椭圆的右焦点,若|AF 2|+|BF 2|=58a ,AB中点到椭圆左准线的距离为23,求该椭圆方程.【答案】设A(x 1,y 1),B(x 2,y 2),,54=e 由焦半径公式有a -ex 1+a -ex 2=a58,∴x 1+x 2=a21,即AB 中点横坐标为a41,又左准线方程为ax 45-=,∴234541=+a a ,即a =1,∴椭圆方程为x 2+925y 2=1.17.过椭圆4:),(148:220022=+=+yx O y x P yxC 向圆上一点引两条切线PA 、PB 、A 、B 为切点,如直线AB 与x 轴、y 轴交于M 、N 两点. (1)若0=⋅PB PA ,求P 点坐标; (2)求直线AB 的方程(用00,y x 表示); (3)求△MON 面积的最小值.(O 为原点) 【答案】(1)PBPA PB PA ⊥∴=⋅0∴OAPB 的正方形由843214882020202020==⇒⎪⎩⎪⎨⎧=+=+x y x y x 220±=∴x ∴P 点坐标为(0,22±)(2)设A (x1,y1),B (x2,y2)则PA 、PB 的方程分别为4,42211=+=+y y x x y y x x ,而PA 、PB 交于P (x0,y0) 即x1x0+y1y0=4,x2x0+y2y0=4,∴AB 的直线方程为:x0x+y0y=4(3)由)0,4(4000x M y y x x 得=+、)4,0(0y N||18|4||4|21||||21000y x y x ON OM S MON ⋅=⋅=⋅=∆22)48(22|222|24||20200000=+≤⋅=y x y x y x 22228||800=≥=∴∆y x S MON当且仅当22,|2||22|m in00==∆MONS y x 时.18.椭圆12222=+by ax (a>b >)0与直线1=+y x 交于P 、Q 两点,且OQ OP ⊥,其中O为坐标原点. (1)求2211ba+的值;(2)若椭圆的离心率e 满足33≤e ≤22,求椭圆长轴的取值范围.【答案】设),(),,(2211y x P y x P ,由OP ⊥ OQ ⇔ x 1 x 2 + y 1 y 2 = 0 ① 01)(2,1,121212211=++--=-=x x x x x y x y 代入上式得: 又将代入x y-=112222=+by ax 0)1(2)(222222=-+-+⇒b a x a x b a ,,2,022221ba ax x +=+∴>∆222221)1(ba b a x x +-=代入①化简得21122=+ba.(2) ,3221211311222222222≤≤⇒≤-≤∴-==ab ab ab ac e又由(1)知12222-=a ab26252345321212122≤≤⇒≤≤⇒≤-≤∴a aa,∴长轴 2a ∈ [6,5].19.一条变动的直线L 与椭圆42x+2y2=1交于P 、Q 两点,M 是L 上的动点,满足关系|MP|·|MQ|=2.若直线L 在变动过程中始终保持其斜率等于1.求动点M 的轨迹方程,并说明曲线的形状.【答案】设动点M(x ,y),动直线L :y=x +m ,并设P(x 1,y 1),Q(x 2,y 2)是方程组⎩⎨⎧=-++=042,22y x m x y的解,消去y ,得3x 2+4m x +2m 2-4=0,其中Δ=16m 2-12(2m 2-4)>0,∴-6<m<6,且x 1+x 2=-3m 4,x 1x 2=34m22-,又∵|MP|=2|x -x 1|,|MQ|=2|x -x 2|.由|MP||MQ|=2,得|x-x 1||x -x 2|=1,也即 |x 2-(x 1+x 2)x +x 1x 2|=1,于是有.13423422=-++mmx x∵m=y -x ,∴|x2+2y 2-4|=3.由x 2+2y 2-4=3,得椭圆172722=+x x夹在直线6±=x y 间两段弧,且不包含端点.由x 2+2y 2-4=-3,得椭圆x 2+2y 2=1.20.椭圆的中心是原点O ,它的短轴长为22,相应于焦点F (c ,0)(0>c )的准线l 与x轴相交于点A ,|OF|=2|FA|,过点A 的直线与椭圆相交于P 、Q 两点 .(1)求椭圆的方程及离心率;(2)若0=⋅OQ OP ,求直线PQ 的方程;(3)设AQ AP λ=(1>λ),过点P 且平行于准线l 的直线与椭圆相交于另一点M ,证明FQ FM λ-=.(14分) 【答案】(1)由题意,可设椭圆的方程为)2(12222>=+a yax .由已知得⎪⎩⎪⎨⎧-==-).(2,2222c c ac c a 解得2,6==c a,所以椭圆的方程为12622=+yx,离心率36=e .(2)解:由(1)可得A (3,0) .设直线PQ的方程为)3(-=x k y .由方程组⎪⎩⎪⎨⎧-==+)3(,12622x k y yx 得062718)13(2222=-+-+k x k x k ,依题意0)32(122>-=∆k ,得3636<<-k .设),(),,(2211y x Q y x P ,则13182221+=+kk x x , ①136272221+-=kk x x . ②,由直线PQ 的方程得)3(),3(2211-=-=x k y x k y .于是]9)(3[)3)(3(2121221221++-=--=x x x x k x x k y y. ③∵0=⋅OQOP ,∴02121=+y y x x. ④,由①②③④得152=k ,从而)36,36(55-∈±=k.所以直线PQ 的方程为035=--y x 或035=-+y x .(2)证明:),3(),,3(2211y x AQ y x AP-=-=.由已知得方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=-=-.126,126,),3(3222221212121y x y x y y x x λλ注意1>λ,解得λλ2152-=x ,因),(),0,2(11y x M F -,故 ),1)3((),2(1211y x y x FM -+-=--=λ),21(),21(21y y λλλλ--=--= .而),21(),2(222y y x FQ λλ-=-=,所以FQ FM λ-=.21.在平面直角坐标系xoy中,如图,已知椭圆15922=+yx的左、右顶点为A 、B ,右焦点为F 。
(选修2-1)模块测试试题命题人:铁一中 周粉粉(本试题满分150分,用时100分钟)一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.命题“若a b >,则88a b ->-”的逆否命题是 ( )A.若a b <,则88a b -<-B.若88a b ->-,则a b >C.若a ≤b ,则88a b -≤-D.若88a b -≤-,则a ≤b2.如果方程x 2+k y 2=2表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( ) A .(0, +∞)B .(0, 2)C .(0, 1)D . (1, +∞)3.P:12≥-x ,Q:0232≥+-x x ,则“非P ”是“非Q ”的( )A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件4.双曲线221169x y -=的左、右焦点分别为F 1,F 2,在左支上过点F 1的弦AB 的长为5,那么△ABF 2的周长是( )A 、24B 、25C 、26D 、 285.若焦点在x 轴上的椭圆1222=+m y x 的离心率为21,则m=( ) A.3 B.23 C.38 D.32 6.在同一坐标系中,方程)0(0122222>>=+=+b a by ax by a x 与的曲线大致是( )7.椭圆221259x y +=的两个焦点分别为F 1、F 2,P 为椭圆上的一点,已知PF 1⊥PF 2,则∆PF 1F 2的面积为( )A.9B.12C.10D.8 8.正方体1111ABCD A B C D -的棱长为1,E 是11A B 的中点,则E 到平面11ABC D 的距离是( ) A.32B.22C.12D.339.若向量a 与b 的夹角为60°,4=b ,(2)(3)72a b a b +-=-,则a =( ) A.2 B.4C.6D.1210.方程22111x y k k表示双曲线,则k 的取值范围是( )A .11<<-kB .0>kC .0≥kD .1>k 或1-<k11.方程12222=+kb y ka x (a >b >0,k >0且k ≠1),与方程12222=+by a x (a >b >0)表示的椭圆( ) (A )有等长的短轴、长轴 (B )有共同的焦点(C )有公共的准线 (D )有相同的离心率 12.如图1,梯形ABCD 中,AB CD ∥,且AB ⊥平面α,224AB BC CD ===,点P 为α内一动点,且APB DPC ∠=∠,则P 点的轨迹为( ) A.直线 B.圆 C.椭圆 D.双曲线二、填空题:(本大题共5小题,每小题6分,共30分.将正确答案填在答题卷上对应题号的横线上.)13.设甲、乙、丙是三个命题,如果甲是乙的必要条件,丙是乙的充分条件,但不是乙的必要条件,那么丙是甲的 (①.充分而不必要条件,②.必要而不充分条件 ,③.充要条件) 14.在棱长为a 的正方体1111ABCD A B C D -中,向量1BA 与向量AC 所成的角为 . 15.已知向量)0,3,2(-=a ,)3,0,(k b =,若b a ,成1200的角,则k= .16.抛物线的的方程为22x y =,则抛物线的焦点坐标为____________17.以下三个关于圆锥曲线的命题中:①设A 、B 为两个定点,K 为非零常数,若|PA |-|PB |=K ,则动点P 的轨迹是双曲线。