材料性能答案
- 格式:doc
- 大小:57.00 KB
- 文档页数:9
1.下列3组试验中,每组第一个测试方法测试的韧脆转化温度较低的是(C )。
A.拉伸和扭转B.缺口静弯曲和缺口扭转弯曲C,光滑试样拉伸和缺口试样拉伸2.渗氮层应该选择何种硬度方法测试硬度(A )A.显微维氏硬度;B.洛氏硬度;C.布氏硬度;D.肖氏硬度3.下列不属于解理断裂的基本微观特征的是(A )A.韧窝B.解理台阶C.河流花样D.舌状花样4.空间飞行器用的材料,要保证结构的刚度又要求有较轻的重量,一般情况下衡量此种材料弹性性能的指标是(D )A.杨氏模数B.切边模数C.弹性比功D.比弹性模数5.Ki表示I型裂纹,I型裂纹指的是(A)A.张开型B.滑开型C.撕开型D.混合型6.韧度是衡量材料韧性大小的力学指标,韧性是指材料断裂前吸收(A )的能力。
A.塑性变形功和断裂功B.弹性变形功和断裂功C.弹性变形功和塑性变形功D.塑性变形功12.顺磁矩来源于(B )。
A.电子受外加磁场产生的抗磁矩B.原子的固有磁矩C.原子自旋磁矩;15.下列因素中对材料弹性模数影响最小的是(C )。
A.键合方式和原子结构;B.晶体结构;C.微观组织2.下列对于真应力、真应变说法正确的是(B )A.真应力V工程应力;B.真应力〉工程应力;C.真应变 > 工程应变;3.下列因素对弹性模量E影响最大的是(D )A.碳钢加入合金元素B.细化晶粒C.钢进行淬火处理D.升高温度5.中、低碳钢光滑试样静拉伸断裂开始于(A)A.表面B.表层一定深度C.心部D.以上都有可能6.在用压入法时,哪种情况会造成硬度值偏大(A )。
A.过于接近试样端面B.过于接近其它测量点C.淬火钢试样底面氧化皮未清除7.热膨胀与其他性能关系错误的是(C )。
A.材料热容增大热膨胀系数增大;B.结合能大的材料热膨胀系数小;C.熔点高的材料热膨胀系数高14 .下列说法错误的是(C )A.金属材料电阻率随温度升高而增大。
B.大多数金属熔化为液态时电阻会降低C.冷塑性变形使金属的电阻增大。
一、名词解释低温脆性:材料随着温度下降,脆性增加,当其低于某一温度时,材料由韧性状态变为脆性状态,这种现象为低温脆性。
疲劳条带:每个应力周期内疲劳裂纹扩展过程中在疲劳断口上留下相互平行的沟槽状花样。
韧性:材料断裂前吸收塑性变形功和断裂功的能力。
缺口强化:缺口的存在使得其呈现屈服应力比单向拉伸时高的现象。
50%FATT:冲击试验中采用结晶区面积占整个断口面积 50%时所应的温度表征的韧脆转变温度。
破损安全:构件内部即使存在裂纹也不导致断裂的情况。
应力疲劳:疲劳寿命N>105 的高周疲劳称为低应力疲劳,又称应力疲劳。
韧脆转化温度:在一定的加载方式下,当温度冷却到某一温度或温度范围时,出现韧性断裂向脆性断裂的转变,该温度称为韧脆转化温度。
应力状态软性系数:在各种加载条件下最大切应力与最大当量正应力的比值,通常用α表示。
疲劳强度:通常指规定的应力循环周次下试件不发生疲劳破坏所承受的上限应力值。
内耗:材料在弹性范围内加载时由于一部分变形功被材料吸收,则这部份能量称为内耗。
滞弹性: 在快速加载、卸载后,随着时间的延长产生附加弹性应变的现象。
缺口敏感度:常用缺口试样的抗拉强度与等截面尺寸的光滑试样的抗拉强度的比值表征材料缺口敏感性的指标,往往又称为缺口强度比。
断裂功:裂纹产生、扩展所消耗的能量。
比强度::按单位质量计算的材料的强度,其值等于材料强度与其密度之比,是衡量材料轻质高强性能的重要指标。
.缺口效应:构件由于存在缺口(广义缺口)引起外形突变处应力急剧上升,应力分布和塑性变形行为出现变化的现象。
解理断裂:材料在拉应力的作用下原于间结合破坏,沿一定的结晶学平面(即所谓“解理面”)劈开的断裂过程。
应力集中系数:构件中最大应力与名义应力(或者平均应力)的比值,写为KT。
高周疲劳:在较低的应力水平下经过很高的循环次数后(通常N>105)试件发生的疲劳现象。
弹性比功:又称弹性应变能密度,指金属吸收变形功不发生永久变形的能力,是开始塑性变形前单位体积金属所能吸收的最大弹性变形功。
付华_材料性能学_部分习题答案解析第⼀章材料的弹性变形⼀、填空题:1.⾦属材料的⼒学性能是指在载荷作⽤下其抵抗变形或断裂的能⼒。
2. 低碳钢拉伸试验的过程可以分为弹性变形、塑性变形和断裂三个阶段。
3. 线性⽆定形⾼聚物的三种⼒学状态是玻璃态、⾼弹态、粘流态,它们的基本运动单元相应是链节或侧基、链段、⼤分⼦链,它们相应是塑料、橡胶、流动树脂(胶粘剂的使⽤状态。
⼆、名词解释1.弹性变形:去除外⼒,物体恢复原形状。
弹性变形是可逆的2.弹性模量:拉伸时σ=EεE:弹性模量(杨⽒模数)切变时τ=GγG:切变模量3.虎克定律:在弹性变形阶段,应⼒和应变间的关系为线性关系。
4.弹性⽐功定义:材料在弹性变形过程中吸收变形功的能⼒,⼜称为弹性⽐能或应变⽐能,表⽰材料的弹性好坏。
三、简答:1.⾦属材料、陶瓷、⾼分⼦弹性变形的本质。
答:⾦属和陶瓷材料的弹性变形主要是指其中的原⼦偏离平衡位置所作的微⼩的位移,这部分位移在撤除外⼒后可以恢复为0。
对⾼分⼦材料弹性变形在玻璃态时主要是指键⾓键长的微⼩变化,⽽在⾼弹态则是由于分⼦链的构型发⽣变化,由链段移动引起,这时弹性变形可以很⼤。
2.⾮理想弹性的概念及种类。
答:⾮理想弹性是应⼒、应变不同时响应的弹性变形,是与时间有关的弹性变形。
表现为应⼒应变不同步,应⼒和应变的关系不是单值关系。
种类主要包括滞弹性,粘弹性,伪弹性和包申格效应。
3.什么是⾼分⼦材料强度和模数的时-温等效原理?答:⾼分⼦材料的强度和模数强烈的依赖于温度和加载速率。
加载速率⼀定时,随温度的升⾼,⾼分⼦材料的会从玻璃态到⾼弹态再到粘流态变化,其强度和模数降低;⽽在温度⼀定时,玻璃态的⾼聚物⼜会随着加载速率的降低,加载时间的加长,同样出现从玻璃态到⾼弹态再到粘流态的变化,其强度和模数降低。
时间和温度对材料的强度和模数起着相同作⽤称为时=温等效原理。
四、计算题:⽓孔率对陶瓷弹性模量的影响⽤下式表⽰:E=E0(1—1.9P+0.9P2) E0为⽆⽓孔时的弹性模量;P为⽓孔率,适⽤于P≤50 %。
第一章材料的弹性变形一、填空题:1.金属材料的力学性能是指在载荷作用下其抵抗变形或断裂的能力。
2. 低碳钢拉伸试验的过程可以分为弹性变形、塑性变形和断裂三个阶段。
3. 线性无定形高聚物的三种力学状态是玻璃态、高弹态、粘流态,它们的基本运动单元相应是链节或侧基、链段、大分子链,它们相应是塑料、橡胶、流动树脂(胶粘剂的使用状态。
二、名词解释1.弹性变形:去除外力,物体恢复原形状。
弹性变形是可逆的2.弹性模量:拉伸时σ=EεE:弹性模量(杨氏模数)切变时τ=GγG:切变模量3.虎克定律:在弹性变形阶段,应力和应变间的关系为线性关系。
4.弹性比功定义:材料在弹性变形过程中吸收变形功的能力,又称为弹性比能或应变比能,表示材料的弹性好坏。
三、简答:1.金属材料、陶瓷、高分子弹性变形的本质。
答:金属和陶瓷材料的弹性变形主要是指其中的原子偏离平衡位置所作的微小的位移,这部分位移在撤除外力后可以恢复为0。
对高分子材料弹性变形在玻璃态时主要是指键角键长的微小变化,而在高弹态则是由于分子链的构型发生变化,由链段移动引起,这时弹性变形可以很大。
2.非理想弹性的概念及种类。
答:非理想弹性是应力、应变不同时响应的弹性变形,是与时间有关的弹性变形。
表现为应力应变不同步,应力和应变的关系不是单值关系。
种类主要包括滞弹性,粘弹性,伪弹性和包申格效应。
3.什么是高分子材料强度和模数的时-温等效原理?答:高分子材料的强度和模数强烈的依赖于温度和加载速率。
加载速率一定时,随温度的升高,高分子材料的会从玻璃态到高弹态再到粘流态变化,其强度和模数降低;而在温度一定时,玻璃态的高聚物又会随着加载速率的降低,加载时间的加长,同样出现从玻璃态到高弹态再到粘流态的变化,其强度和模数降低。
时间和温度对材料的强度和模数起着相同作用称为时=温等效原理。
四、计算题:气孔率对陶瓷弹性模量的影响用下式表示:E=E0 (1—1.9P+0.9P2)E0为无气孔时的弹性模量;P为气孔率,适用于P≤50 %。
材料性能学考卷一、选择题(每题2分,共20分)1. 下列哪种材料的弹性模量最大?A. 钢铁B. 塑料C. 木材D. 橡胶2. 下列哪种材料的抗拉强度最高?A. 铝合金B. 玻璃纤维C. 碳钢D. 陶瓷3. 下列哪种材料的硬度最大?A. 黄铜B. 不锈钢C. 钨D. 铅4. 下列哪种材料的导热系数最高?A. 铜B. 铝C. 铁D. 硅胶5. 下列哪种材料的比热容最大?A. 水泥B. 橡胶C. 石墨D. 空气6. 下列哪种材料的密度最小?A. 聚乙烯B. 聚氨酯C. 聚氯乙烯D. 聚丙烯7. 下列哪种材料的断裂韧性最高?A. 玛瑙B. 玉石C. 钨钢D. 玻璃8. 下列哪种材料的耐磨性最好?A. 高铬铸铁B. 轴承钢C. 铸铝D. 粉末冶金9. 下列哪种材料的抗腐蚀性最好?A. 镍基合金B. 铜镍合金C. 铬镍合金D. 钛合金10. 下列哪种材料的磁导率最高?A. 铁B. 钴C. 镍D. 铅二、填空题(每题2分,共20分)1. 材料的弹性极限是指材料在受力后,去掉外力仍能恢复原状的______应力。
2. 材料的屈服强度是指材料在受力过程中,产生______变形时的应力。
3. 材料的断裂韧性是指材料抵抗______裂纹扩展的能力。
4. 材料的疲劳极限是指材料在______循环应力作用下,不发生疲劳破坏的最大应力。
5. 材料的导热系数是指在稳态热传导条件下,单位时间内通过单位面积、单位厚度的材料,温度梯度为1K时传递的______。
6. 材料的比热容是指单位质量的材料温度升高1K所需吸收的______。
7. 材料的密度是指单位体积的______。
8. 材料的硬度是指材料抵抗______变形的能力。
9. 材料的耐磨性是指材料在______过程中抵抗磨损的能力。
10. 材料的抗腐蚀性是指材料在______环境中抵抗腐蚀的能力。
三、简答题(每题10分,共30分)1. 请简要介绍材料性能学的研究内容。
2. 请解释弹性模量、屈服强度和断裂韧性三个力学性能指标的区别。
《工程材料力学性能》(第二版)课后答案第一章材料单向静拉伸载荷下的力学性能一、解释下列名词滞弹性:在外加载荷作用下,应变落后于应力现象。
静力韧度:材料在静拉伸时单位体积材科从变形到断裂所消耗的功。
弹性极限:试样加载后再卸裁,以不出现残留的永久变形为标准,材料能够完全弹性恢复的最高应力。
比例极限:应力—应变曲线上符合线性关系的最高应力。
包申格效应:指原先经过少量塑性变形,卸载后同向加载,弹性极限(ζP)或屈服强度(ζS)增加;反向加载时弹性极限(ζP)或屈服强度(ζS)降低的现象。
解理断裂:沿一定的晶体学平面产生的快速穿晶断裂。
晶体学平面--解理面,一般是低指数,表面能低的晶面。
解理面:在解理断裂中具有低指数,表面能低的晶体学平面。
韧脆转变:材料力学性能从韧性状态转变到脆性状态的现象(冲击吸收功明显下降,断裂机理由微孔聚集型转变微穿晶断裂,断口特征由纤维状转变为结晶状)。
静力韧度:材料在静拉伸时单位体积材料从变形到断裂所消耗的功叫做静力韧度。
是一个强度与塑性的综合指标,是表示静载下材料强度与塑性的最佳配合。
二、金属的弹性模量主要取决于什么?为什么说它是一个对结构不敏感的力学姓能?答案:金属的弹性模量主要取决于金属键的本性和原子间的结合力,而材料的成分和组织对它的影响不大,所以说它是一个对组织不敏感的性能指标,这是弹性模量在性能上的主要特点。
改变材料的成分和组织会对材料的强度(如屈服强度、抗拉强度)有显著影响,但对材料的刚度影响不大。
三、什么是包辛格效应,如何解释,它有什么实际意义?答案:包辛格效应就是指原先经过变形,然后在反向加载时弹性极限或屈服强度降低的现象。
特别是弹性极限在反向加载时几乎下降到零,这说明在反向加载时塑性变形立即开始了。
包辛格效应可以用位错理论解释。
第一,在原先加载变形时,位错源在滑移面上产生的位错遇到障碍,塞积后便产生了背应力,这背应力反作用于位错源,当背应力(取决于塞积时产生的应力集中)足够大时,可使位错源停止开动。
第一套答案一、名词解释(每题4分,共12分)低温脆性:材料随着温度下降,脆性增加,当其低于某一温度时,材料由韧性状态变为脆性状态,这种现象为低温脆性。
疲劳条带:每个应力周期内疲劳裂纹扩展过程中在疲劳断口上留下的相互平行的沟槽状花样。
韧性:材料断裂前吸收塑性变形功和断裂功的能力。
二、填空题(每空1分,共30分)1、滚动摩擦,滑动摩擦。
干、湿(流体),边界,混合,干。
2、△,20~60℃,高,安全,上限。
3、大,低,敏感。
4、剪切唇,纤维区,放射区,杯锥。
5、高,应力,低,应变,高周(应力)6、下降,减小,减小7、抗磁性,顺磁性,铁磁性三、问答题(共20分)1、答:(4分)衡量弹性高低用弹性比功a e=σe/E。
由于弹性比功取决于弹性极限和弹性模2量,而材质一定,弹性模量保持不变,因此依据公式可知提高弹性极限可以提高材料的弹性比功,改善材料的弹性。
(4分)2、答:(4分)不能判定断裂一定为脆性断裂。
(1分)韧性和脆性断了依据断口的宏观形貌和变形特征来判定,单纯从微观断口上的某些特征不能确定断裂一定属于脆断。
(2分)逆着河流的方向可以找到裂纹源。
(1分)3、答:(6分)K Ic代表的是材料的断裂力学性能指标,是临界应力场强度因子,取决于材料的成分、组织结构等内在因素。
K I是力学参量,表示裂纹尖端应力场强度的大小,取决于外加应力、尺寸和裂纹类型,与材料无关。
(3分)K Ic称为平面应变的断裂韧性,K c为平面应力的断裂韧性。
对于同一材料而言,K Ic<K c,平面应变状态更危险,通常以前者衡量材料的断裂韧性。
K IC中的I 代表平面应变,K I的I表示I型裂纹。
(3分)4、答(6分):(1)温度的影响:金属电阻随温度的升高而增大;(2分)(2)冷塑性变形和应力的影响:冷塑性变形使金属的电子率增大,拉应力使电阻率上升,压应力使电阻率下降;(2分)(3)合金化对导电性的影响:一般情况下,形成固溶体和金属化合物时电阻率增高,多相合金的电阻率与组成相的导电性、相对量及形貌有关。
共 4 页 第 页1. 通过静载拉伸实验可以测定材料的 弹性极限、屈服极限、 抗拉强度、断裂强度、比例极限等(答对3个即可)强度指标,及 延伸率 、 断面收缩率 等塑性指标。
2.按照断裂中材料的宏观塑性变形程度,断裂可分为脆性断裂和韧性断裂;按照晶体材料断裂时裂纹扩展的途径(断裂方式),可分为穿晶断裂和沿晶断裂;按照微观断裂机理,可分为解理断裂和剪切断裂3. 单向拉伸条件下的应力状态系数为 0.5 ;而扭转和单向压缩下的应力状态系数分别为 0.8 和 2.0 。
应力状态系数越大,材料越容易产生 (塑性) 断裂。
为测量脆性材料的塑性,长采用压缩的试验方法4.在扭转试验中,塑性材料的断裂面与试样轴线 垂直 ;脆性材料的断裂面与试样轴线 成450角。
5. 低温脆性常发生在具有 体心立方或密排六方 结构的金属及合金中,而在 面心立方 结构的金属及合金中很少发现。
6. 材料截面上缺口的存在,使得缺口根部产生 应力集中 和 双(三)向应力或应力状态改变 ,试样的屈服强度 不变,塑性 降低 。
7.根据磨损面损伤和破坏形式(磨损机理),磨损可分为4类:粘着磨损、磨料磨损、腐蚀磨损和麻点疲劳磨损(接触疲劳)8.典型的疲劳断口有3个特征区:疲劳源、疲劳裂纹扩展区和瞬断区。
疲劳裂纹扩展区最典型的特征是贝纹线9. 在典型金属与陶瓷材料的蠕变曲线上,蠕变过程常由 减速蠕变 ,恒速蠕变 和 加速蠕变 三个阶段组成。
10.根据材料磁化后对磁场所产生的影响,可以把材料分为3类:抗磁性材料、顺磁性材料和铁磁性材料11.一般情况下,温度升高,金属材料的屈服强度下降;应变速率越大,金属材料的屈服应力越高。
12.温度对金属材料的力学性能影响很大,在高温下材料易发生沿晶断裂。
13. 拉伸试样的直径一定,标距越长则测出的断后伸长率会越小14.宏观断口一般呈杯锥装,由纤维区、放射区和剪切唇3个区域组成。
材料强度越高,塑性降低,则放射区比例增大。
第一章一、解:1.滞弹性:在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象, 称为滞弹性。
2. 塑性:在给定载荷下,材料产生永久变形的特性。
3•解理台阶:解理裂纹与螺型位错相交形成解理台阶。
4. 河流状花样:解理裂纹与螺型位错相遇后,沿裂纹前端滑动二相互汇合,同号台阶相互汇合长大,当汇合台阶足够大时,便成为河流状花样。
5. 强度:材料在外力作用下抵抗永久变形和断裂的能力称为强度。
二、解:1.E :弹性模量。
2. d 0.2 :屈服强度3. b b :抗拉强度4. £ :条件应变或条件伸长率。
三、解:由d m= ( E Y s/ao)?得:丫s= d m2 • ao/E ①将代入d c= (2E • 丫s/ JI a)?=d m- ( 2*ao/刃*a)=504MPA.四、解:由题中所给式子知:⑴:材料的成分增多,会引起滑移系减少、孪生、位错钉插等,材料越容易断裂;⑵:杂质:聚集在晶界上的杂质越多,材料越容易断裂;⑶:温度:温度降低,位错摩擦阻力越大,所以材料越容易断裂;⑷、晶粒大小:晶粒越小,位错堆积越少,晶界面积越大,材料韧性越好,所以不容易断裂;⑸、应力状态:减小切应力与正应力比值的应力状态都会使材料越容易断裂;⑹、加载速率:加载速率越大,材料越容易断裂五、解:两者相比较,前者为短比例式样,后者为长比例式样,而对于韧性金属材料,比例试样尺寸越短,其断后伸长率越大,所以 d 5大于d 10.第二章作业题1应力状态软性系数:按“最大切应力理论”计算的最大切应力与按“相当最大正应力理论”计算的最大正应力的比值。
2缺口效应:截面的急剧变化产生缺口,在静载荷作用下,缺口截面上的应力状态将发生变化,产生缺口效应,影响金属材料的力学性能。
3布氏硬度:用一定直径的硬质合金球做压头,施以一定的试验力,将其压入试样表面,经规定保持时间后卸除,试样表面残留压痕。
HBW通过压痕平均直径求得。
第一章材料的力学性能一、选择题1、fsd表示( B )A、钢筋抗压强度设计值;B、钢筋抗拉强度设计值;C、钢筋抗拉强度标准值2、C30混凝土中的“ 30”表示(A )A、混凝土的立方体抗压强度标准值fcu,k 30MP a .?B、混凝土的轴心抗压强度标准值fck 30MP a .?C、混凝土的轴心抗拉强度标准值ftk 30MP a3、混凝土的强度等级以(A )表示A、混凝土的立方体抗压强度标准值fcu,k;B、混凝土的轴心抗压强度标准值fck;C、混凝土的轴心抗拉强度标准值ftk4、测定混凝土的立方体抗压强度标准值fcu ,k,采用的标准试件为( A )A、150mm 150mm 150mm ;B、450mm 150mm 150mm ;450mm 450mm 450mmC、5、测定混凝土的轴心抗压强度时,试件涂油和不涂油相比,( B ) 的测定值大。
A、涂油;B不涂油;C、一样大6、钢筋混凝土构件的混凝土的强度等级不应低于( A ) 。
A、C20;B、C25;C、C307、钢筋混凝土构件中的最大的粘结力出现在( A ) 。
A、离端头较近处;B、靠近钢筋尾部;C、钢筋的中间的部位8、预应力混凝土构件所采用的混凝土的强度等级不应低于( C) 。
A、C20;B、C30;C、C40二、问答题1、检验钢筋的质量主要有哪几项指标?答:对软钢有屈服强度、极限强度、伸长率、冷弯性能。
对硬钢有极限强度、伸长率、冷弯性能。
2、什么是钢筋的屈强比?它反映了什么问题?答:屈强比为钢筋的屈服强度与极限强度的比值。
它反映结构可靠性的潜力及材料的利用率。
3、如何确定混凝土的立方体抗压强度标准值?它与试块尺寸的关系如何?答:按标准方法制作、养护的边长为150mm勺立方体在28天龄期用标准试验方法测得的具有95%保证率的抗压强度。
试件尺寸越小,抗压强度值越高。
4、为什么要有混凝土棱柱体抗压强度这个力学指标?它与混凝土立方体抗压强度有什么关系?答:钢筋混凝土受压构件中棱柱体多于立方体,所以棱柱体抗压强度比立方体抗压强度能更好地反映受压构件中混凝土的实际强度。
名词解释第九章材料的磁学性能磁化:物质在磁场中由于受到磁场作用都呈现出一定的磁性,这种现象叫做磁化现象自发磁化:在没有外磁场的情况下,材料所发生的磁化。
技术磁化:铁磁材料心爱外加磁场的作用下所产生的磁化现象。
抗磁性:材料被磁化后,磁化矢量与外加磁场方向相反的成为抗磁性。
顺磁性:材料被磁化后,磁化矢量与外加磁场方向相同的成为抗磁性。
铁磁性:铁磁材料在外加磁场的作用下,可以产生很强的磁化,这是由于铁磁材料的原子组态所决定的。
铁磁性来源于原子违背抵消的自旋磁矩和自发磁化。
亚铁磁性:反铁磁性:交换积分常数A<0,相邻原子间的自旋趋于反相平行排列原子磁矩相互抵消,不鞥形成自发磁化区域。
固有磁矩:只有原子中存在的未被排满的电子层时,由于未被排满的电子层电子磁矩之和不为0,原子才具有磁矩,这种磁矩叫做~最大磁滞回线:磁滞损失:由于磁滞效应的存在,磁化一周得到一个封闭回线,称之为磁滞回线,回线所包围的面积相当于磁化一周所产生的能量损耗,称为~退磁能:磁铁产生的外力磁场与内磁场方向相反,从而使铁磁体减弱,磁化能力增加。
磁畴:在铁磁性物质中,此你在着许多微小自发磁化区域,成为~剩磁:磁化达到饱和后,在逐渐减小到H的强度,M将随之减小。
当H=0时,磁感应强度并不等于0,而是保持一定大小的数值,这时铁磁金属的剩磁现象。
矫顽力:要使M值继续减小,必须加反向磁场-H, 当H等一定值Hc时,M值才等于0。
Hc 为去掉剩磁的临界外磁场,称为~~居里点:磁晶各向异性:当贴此物质磁化时,沿不同方向磁化所产生的磁化强度不同,即沿着不同方向磁化所消耗的磁化功不同。
这说明磁化矢量(M)在不同的晶向上有不同的能量,M沿易磁化方向时能量最高。
磁化强度沿不同晶轴方向的不同称为磁晶磁晶的各向异性。
磁致伸缩(效应):铁磁物质收缩时,沿磁化方向发生长度伸长或缩短的现象称为~~自发体积磁致伸缩:最大磁能积:第十章材料的电学性能电导率:为电阻率的倒数超导临界转变温度:材料由正常状态转变为超导状态的温度超导临界磁场强度:能破环超导态的最小磁场强度超导临界电流密度:输入电流所产生的磁场一外磁场之和超过临界磁场,超导呗破坏。
这时输入的电流为临界电流。
极化:介质在电电场作用下产生感应电荷的现象介电常数:电容器(两极板间)在有电介质时的电容在真空状态(无电介质)时的电容象比较时的增长倍数。
抗电强度:第十二章材料的压电性能与铁电性能压电效应:在没有电场的作用下,有机械应力的作用而使电介质晶体产生极化并形成晶体表面电荷的现象称为压电效应。
压电性自发极化,在晶体中,如果晶胞中正负电荷中心不重合,具有一定的固有偶极矩,由于晶体构造的周期性和重复性,晶胞的固有偶极矩便会沿同一方向排列整齐,使晶体处于高度极化状态下,称为自发极化。
压电性:压电方程:反映压电体力学量应力T、应变S和电学量电场强度E,电位移D4个参数之间关系的方程式称为压电方程。
热释电效应,晶体因温度均匀变化而发生极化强度改变的现象称为晶体的热释电效应。
铁电性:在热释电晶体中,有若干种点群的晶体不但在某温度范围内具有自发极化,且自发极化有两个或多个可能的取向,在不超过晶体击穿电场强度的电厂作用下,其取向可随电场改变,这种特性称为铁电性。
电滞回线,描述铁电体的极化强度P与外电场E之间的滞后关系曲线就是电滞回线。
电致伸缩效应:电致伸缩效应是指介电体在电场作用下,由诱导极化而引起的形变。
第十三章材料的耐腐蚀性能一、名词解释腐蚀疲劳:金属在交变应力(循环应力或脉动应力)和环境介质的共同作用下产生的脆性断裂。
电极电位平衡电极电位:金属与电解质溶液接触时,由于金属的溶解或析出与溶液之间形成双电层。
当他们在两相中电化学位相相等时,建立起如下的电化学平衡:Mn+ne=Mn+ne 并在金属/溶液界面上建立起一个不变的电位差,这个不变的电位差就是金属的平衡电极电位。
标准电极电位:也称电极电位的氢标度,是把金属电极和标准氢电极组成一个电池,该电池的电动势值则相当于待测电极相对于标准氢电极的相对平衡电极电位,称为标准电极电位。
相对标准电极电位:把待测电极与参比点解组成一个电池,把标准氢电极的电极电位设为0,该电池的电动势就相当于待测电极的相对标准电极电位。
电极的极化:钝化:电化学腐蚀的阳极过程在某些情况下受到强烈的阻滞,使腐蚀速度急剧下降的现象称为金属的钝化应力腐蚀断裂:金属材料在拉应力的作用下某些活性介质中发生的化学腐蚀破裂第十四章材料的老化与稳定性能一、名词解释材料的老化:高分子材料在加工贮藏和使用的过程中,要经受热光照潮湿等各种环境因素的影响。
使性能下降,最后丧失使用价值,这种现象称为材料的老化。
化学老化:是一种不可逆的化学反应,它是高分子材料分子结构变化的结果。
物理老化:是指玻璃台高分子材料通过小区域链段的微布朗运动是其凝聚态结构从非平衡态向平衡态过度,从而使材料的物理力学性能发生变化的现象。
判断题第八章材料的热学性能1. 晶体材料发生相变时比热容为无限大。
(F )2. 固体材料比热容与材料的组织结构关系不大。
(T )3. 材料的晶体结构愈紧密,其热膨胀系数愈小。
(F )4. 通常材料的热膨胀系数越大,其比热容也越大。
(T )5. 线膨胀系数与其它物理性质一样是原子序数的周期函数。
(T)6. 晶体材料发生相变时其热膨胀系数将产生显著变化。
(T )7. 纯金属同素异构转变(一级相变)时,点阵结构重排伴随着金属比容突变,导致线膨胀系数发生不连续变化。
(T )8. 有序—无序转变时无体积突变,膨胀系数在相变温区仅出现拐折。
(T )9. 合金元素的影响则因其形成(合金)碳化物还是固溶于铁素体决定,后者使钢的热膨胀系数降低,前者则使其增大。
(T)10. 因瓦合金(低膨胀合金)的低膨胀系数与温度无显著依赖关系。
(F )第九章材料的磁学性能1. 任何材料在磁场作用下都要产生抗磁性。
(T )2. 材料的顺磁性主要来源于原子(离子)的固有磁矩。
(T )3. 温度升高材料的铁磁性不变。
(F )4. 在多晶体中,一个晶粒中只有一个磁畴。
(F )5. 在磁场的作用下磁畴的大小和方向不会发生变化。
(F )6. 金属与合金在接近居里点温度发生的磁性转变,其膨胀曲线会出现明显的膨胀峰。
(T )7. 同一成分的钢处于不同组织状态时,其磁性能基本相同。
(F )8. 在多相合金中,合金饱和磁化强度MS是由各组成相的饱和磁化强度以及它们的相对量所决定。
(T )第十章材料的电学性能1. 温度升高,材料的电导率下降。
(T)2. 所有金属熔化后电阻率都下降。
(F )3. 金属固溶体组织有序化后,电阻率降低。
(T)4. 在已充电的电容器极板间插入介电质时,极板间的电位差将升高。
(F)5. 介质的介电常数一定是实常数。
(F)6. 介质的介电常数随温度升高而降低,即介电常数温度系数TKε为负。
(F )7. 介质的介电常数与外加电场的频率、电场强度无关。
(F )8. 固体介质的击穿同时伴随着材料的破坏,而气体及液体介质被击穿后,当撤消外电场后仍然能恢复材料性能。
(T)第十一章材料的光学性能1. 材料的折射率与入射光的波长无关。
(F )第十二章材料的压电性能与铁电性能1. 材料的铁电性是指与铁有关的电学性能。
(F )2. 具有铁电性的晶体必然具有压电性。
(T)第十三章材料的耐腐蚀性能1. 在没有外界电流影响下,腐蚀原电池的腐蚀电流随着通电时间的延长而越来越大。
(F )2. 腐蚀原电池极化后其腐蚀速度降低。
(T )3. 金属钝化后其抗腐蚀性能下降。
(F )4. 必须有拉应力存在才能引起应力腐蚀,压应力一般不发生应力腐蚀。
(T )5. 某种金属在任何介质中都会发生应力腐蚀。
(F )6. 不同金属材料在一定介质中产生应力腐蚀都有一个温度范围。
(T )7. 通常应力腐蚀只有在一定的电位范围内才能发生。
(T )8. 一般说来,纯金属比二元合金和多元合金发生应力腐蚀的敏感性高。
(F)9. 一般说来,多相合金更易被腐蚀。
(T )10. 在大多数情况下,金属材料的光滑表面比粗糙表面易受到腐蚀。
(F )11. 几乎所有金属都可采用阳极保护法进行防腐蚀保护。
(F )第十四章材料的老化与稳定性能1. 化学老化是高分子材料分子结构变化的结果,是一种不可逆的化学反应。
主要有降解和交联两种类型。
(T)2. 一般认为,具有立体规整性的高分子聚合物要比无规整结构高聚物稳定性高。
(T )3. 一般说来,高分子材料氧化速度几乎与分子量无关。
(T )4. 分子量分布越宽的高分子聚合物,越容易氧化。
(T )5. 在高聚物中,金属离子不会加速老化速度的。
(F )填空题第八章材料的热学性能1. 金属的德拜特征温度愈高,原子间结合力愈(强),热膨胀系数愈(小),杨氏模量E愈(大)。
2. 晶体结构紧密,热膨胀系数(大),如多晶石英的热膨胀系数为12×10-6 K-1,而无定形石英玻璃则为0.5×10-6 K-1。
非等轴晶系的晶体,各晶轴方向的膨胀系数(不)等。
如石墨,垂直于c轴的层内膨胀系数为1×10-6 K-1,而平行于c轴的垂直层之间膨胀系数为27×10-6 K-1。
一般晶体的结构类型相同时,结合能大的熔点也较(高),所以通常熔点高的膨胀系数也(小)。
3. CuZn合金随温度上升,发生由有序向无序状态转变时,比热容会(出现畸变,急剧变大)。
4. 对于材料的一级相变,在临界点Tc,其热焓曲线出现(跃变),比热容曲线发生(不连续)变化,比热容为(无限大),这种转变的(热效应)即为曲线跃变对应的(热焓)变化值。
5. 材料的二级相变是在一定(温度)范围逐步完成,焓(无)突变,仅在靠近转变点的狭窄(温度)区间内,有明显(增大),导致比热容的(急剧增大)。
温度达转变点时,热焓达到最大值,比热容相应达有限极(大)值,比热容曲线的阴影面积代表其转变的(相变潜热)。
6. 固体材料的αT值并不是一个常数,而随温度变化,通常随温度升高而(增大)。
7. 一般金属及合金随着温度的升高,其热膨胀系数(加大);而铁磁性金属及合金,在Tc 温度以下时,随着温度的升高热膨胀系数却反常地(减小)。
8. 钢的热膨胀特性取决组成相特性。
不同组成相的比容因晶体结构不同而不同,奥氏体和马氏体的比容还随含碳量增加而增大。
钢中奥氏体的比容(小于马氏体),其平均线膨胀系数(最高);铁素体和珠光体的比容(居中),其平均线膨胀系数(居中);马氏体的比容(大于奥氏体),其平均线膨胀系数(最小)。
9. 组成合金的溶质元素对合金热膨胀系数(有)明显影响。
10. 有序结构会使合金原子之间结合力增强,因此有序化导致合金热膨胀系数变(小)。
11. 通常,冷加工使金属和合金的热膨胀系数(降低)。