13.5 因式分解之十字相乘法
- 格式:ppt
- 大小:332.00 KB
- 文档页数:18
因式分解之十字相乘法利用十字交叉线来分解系数,把二次三项式分解因式的方法叫做十字相乘法。
(1)二次项系数为1的十字相乘法:如果二次三项式2++x px q 中的常数项q 能分解成两个因式a 、b 的积,且一次项系数p 恰好是+a b ,那么2++x px q 可以进行如下分解因式,即()()()22++=+++=++x px q x a b x ab x a x b ,用十字交叉线来表示:x+ax +b【要点诠释】①在对2x bx c ++分解因式时,要先从常数项c 的正、负入手,若0c >,则p q 、同号(若0c <,则p q 、异号),然后依据一次项系数b 的正负再确定p q 、的符号;②若2x bx c ++中的b c 、为整数时,要先将c 分解成两个整数的积(要考虑到分解的各种可能),然后看这两个整数之和能否等于b ,直到凑对为止。
(2)二次项系数不为1的十字相乘法:在二次三项式2ax bx c ++(a ≠0)中,如果二次项系数a 可以分解成两个因数之积,即12a a a =,常数项c 可以分解成两个因数之积,即12c c c =,把1212a a c c ,,,排列如下:按斜线交叉相乘、再相加,得到1221a c a c +,若它正好等于二次三项式2ax bx c ++的一次项系数b ,即1221a c a c b +=,那么二次三项式就可以分解为两个因式11a x c +与22a x c +之积,即()()21122ax bx c a x c a x c ++=++.【要点诠释】①分解思路为“看两端,凑中间”;②二次项系数a 一般都化为正数,如果是负数,则提出负号,分解括号里面的二次三项式,最后结果不要忘记把提出的负号添上。
基础强化练习【例1】因式分解:(1)21124x x ++=;(2)21024x x ++=;(3)2224x x --=;(4)2524x x +-=;(5)22524x x ++=;(6)21424x x ++=;(7)21024x x +-=;(8)22324x x --=.【例2】将下列各式因式分解:(1)2109x x ++(2)2212x xy y --(3)2310x x --(4)2243n mn m --(5)22712x y xy -+(6)2412n n x x --(7)2(2)6(2)27x y x y +++-(8)42536x x --(9)()()222812a a a a +-++(8)22483m mn n ++(9)22627x y xy +-(10)2215x x --(11)22443(2)2m mn n m n -+--+(12)632827x x -+(13)()()2222483482x x x x x x x ++++++(14)20322--x x (15)222064xy y x -++(16)256x x -++(17)22(1)7(1)3x x ++++(18)22()5()3x y x y -+--(19)()()421336a b a b +-++(20)()()21623122x y x y +-+-(21)2222(6)4(6)5x x x x ----(22)(1)(2)(3)(6)20x x x x +---+(23)22(1)(2)12x x x x ++++-(24)22(6)(8)24x x x x +-+--(25)()()2243123515x x x x +++++【例3】用十字相乘法解方程:(1)22730x x -+=(2)26750x x --=(3)22530x x --=(4)221570x x ++=(5)23840a a -+=(6)25760x x +-=(7)2611100y y --=(8)2250x -+=(9)2252x x -=-【例4】已知二次三项式218x ax +-能在有理数范围内分解因式,求整数a 的可能值,并分解因式。
因式分解——十字相乘法(一)二次项系数为1的二次三项式直接利用公式——))(()(2q x p x pq x q p x ++=+++进行分解。
特点:(1)二次项系数是1; (2)常数项是两个数的乘积;(3)一次项系数是常数项的两因数的和。
思考:十字相乘有什么基本规律?例1.已知0<a ≤5,且a 为整数,若223x x a ++能用十字相乘法分解因式,求符合条件的a .解析:凡是能十字相乘的二次三项 式ax 2+bx+c ,都要求24b ac ∆=- >0而且是一个完全平方数。
于是98a ∆=-为完全平方数,1a =例2、分解因式:652++x x分析:将6分成两个数相乘,且这两个数的和要等于5。
由于6=2×3=(-2)×(-3)=1×6=(-1)×(-6),从中可以发现只有2×3的分解适合,即2+3=5。
1 2解:652++x x =32)32(2⨯+++x x 1 3=)3)(2(++x x 1×2+1×3=5用此方法进行分解的关键:将常数项分解成两个因数的积,且这两个因数的代数和要等于一次项的系数。
例3、分解因式:672+-x x解:原式=)6)(1()]6()1[(2--+-+-+x x 1 -1=)6)(1(--x x 1 -6(-1)+(-6)= -7练习1、分解因式(1)24142++x x (2)36152+-a a(3)542-+x x练习2、分解因式(1)22-+x x (2)1522--y y(3)24102--x x(二)二次项系数不为1的二次三项式——c bx ax ++2条件:(1)21a a a = 1a 1c(2)21c c c = 2a 2c (3)1221c a c a b += 1221c a c a b += 分解结果:c bx ax ++2=))((2211c x a c x a ++ 例7、分解因式:101132+-x x分析: 1 -2 3 -5 (-6)+(-5)= -11解:101132+-x x =)53)(2(--x x 练习3、分解因式:(1)6752-+x x (2)2732+-x x(3)317102+-x x (4)101162++-y y(三)二次项系数为1的齐次多项式例8、分解因式:221288b ab a -- 分析:将b 看成常数,把原多项式看成关于a 的二次三项式,利用十字相乘法进行分解。
十字相乘法因式分解十字相乘法是乘法公式:(x+a)(x+b)=x²+(a+b)x+ab的逆运算来进行因式分解,用于分解可写成x²+(a+b)x+ab的一元二次方程。
使用十字相乘法前的判定:形如ax²+bx+c的多项式,是否能够使用十字相乘法进行因式分解取决于Δ=b²-4ac是不是完全平方数,当Δ是完全平方数时才能在整数范围内进行十字相乘分解。
例子:a²+a-42首先,我们看看第一个数,是a²,代表是两个a相乘得到的,则推断出(a + ?)×(a -?),然后我们再看第二项,+a 这种式子是经过合并同类项以后得到的结果,所以推断出是两项式×两项式。
再看最后一项是-42 ,(-42)是-6×7 或者6×(-7)也可以分解成 -21×2 或者21×(-2)。
首先,21和2无论正负,通过任意加减后都不可能是1,只可能是7或者6,所以排除后者。
然后,再确定是-7×6还是7×(-6)。
﹣7﹢6=﹣1,7﹣6=1,因为一次项系数为1,所以确定是7×﹣6x所以a²+a-42就被分解成为(a+7)×(a-6)十字相乘法就是要将二次函数各项系数反过来拆成这样的四个数,使之符合上图规律,找到这样的四个数就可以将二次函数转化为两个一次二项式的相乘的形式十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。
对于像ax²+bx+c=(a1x+c1)(a2x+c2)这样的整式来说,这个方法的关键是把二次项系数a分解成两个因数a1,a2的积,把常数项c分解成两个因数c1,c2的积,并使a1c2+a2c1正好等于一次项的系数b。
那么可以直接写成结果:ax²+bx+c=(a1x+c1)(a2x+c2)把a1,a2,c1,c2,排列如下:a1 c1╳a2 c2a1c2 + a2c1按斜线交叉相乘,再相加,得到a1c2+a2c1,若它正好等于二次三项式ax²+bx+c的一次项系数b,即a1c2+a2c1=b,那么二次三项式就可以分解为两个因式a1x+c1与a2x+c2之积,即ax^2+bx+c=(a1x+c1)(a2x+c2)(ax+b)(cx+d)=acx²+(ad+bc)x+bd十字相乘法因式分解练习题:x²-x-56 3x²+4x-15 x²-10x+16 6y²+19y+15 14x²+3x-27 10(x+2)²-29(x+2)+10 2x²-7x+3。
1 十字相乘法的依据和具体内容利用十字相乘法分解因式,实质上是逆用(ax +b )(cx +d )竖式乘法法则.它的一般规律是:(1)对于二次项系数为1的二次三项式q px x ++2,如果能把常数项q 分解成两个因数a ,b 的积,并且a +b 为一次项系数p ,那么它就可以运用公式 ))(()(2b x a x ab x b a x ++=+++分解因式.这种方法的特征是“拆常数项,凑一次项”.公式中的x 可以表示单项式,也可以表示多项式,当常数项为正数时,把它分解为两个同号因数的积,因式的符号与一次项系数的符号相同;当常数项为负数时,把它分解为两个异号因数的积,其中绝对值较大的因数的符号与一次项系数的符号相同.(2)对于二次项系数不是1的二次三项式c bx ax ++2(a ,b ,c 都是整数且a ≠0)来说,如果存在四个整数2121,,,c c a a ,使a a a =⋅21,c c c =⋅21,且b c a c a =+1221,那么c bx ax ++2))(()(2211211221221c x a c x a c c x c a c a x a a ++=+++=它的特征是“拆两头,凑中间”,这里要确定四个常数,分析和尝试都要比首项系数是1的情况复杂,因此,一般要借助“画十字交叉线”的办法来确定.学习时要注意符号的规律.为了减少尝试次数,使符号问题简单化,当二次项系数为负数时,先提出负号,使二次项系数为正数,然后再看常数项;常数项为正数时,应分解为两同号因数,它们的符号与一次项系数的符号相同;常数项为负数时,应将它分解为两异号因数,使十字连线上两数之积绝对值较大的一组与一次项系数的符号相同.用十字相乘法分解因式,还要注意避免以下两种错误出现:一是没有认真地验证交叉相乘的两个积的和是否等于一次项系数;二是由十字相乘写出的因式漏写字母.如:)45)(2(86522-+=-+x x y xy x【典型热点考题】例1 把下列各式分解因式:(1)1522--x x ;(2)2265y xy x +-.点悟:(1)常数项-15可分为3 ×(-5),且3+(-5)=-2恰为一次项系数;(2)将y 看作常数,转化为关于x 的二次三项式,常数项26y 可分为(-2y )(-3y ),而(-2y )+(-3y )=(-5y )恰为一次项系数.解:(1))5)(3(1522-+=--x x x x ;(2))3)(2(6522y x y x y xy x --=+-.例2 把下列各式分解因式:(1)3522--x x ;(2)3832-+x x .点悟:我们要把多项式c bx ax ++2分解成形如))((2211c ax c ax ++的形式,这里a a a =21,c c c =21而b c a c a =+1221.解:(1))3)(12(3522-+=--x x x x ;(2))x )(x (x x 3133832+-=-+.点拨:二次项系数不等于1的二次三项式应用十字相乘法分解时,二次项系数的分解和常数项的分解随机性较大,往往要试验多次,这是用十字相乘法分解的难点,要适当增加练习,积累经验,才能提高速度和准确性.。
十字相乘法分解因式(1)对于二次项系数为1方法的特征是“拆常数项,凑一次项”当常数项为正数时,把它分解为两个同号因数的积,因式的符号与一次项系数的符号相同;当常数项为负数时,把它分解为两个异号因数的积,其中绝对值较大的因数的符号与一次项系数的符号相同.(2)对于二次项系数不是1的二次三项式它的特征是“拆两头,凑中间”当二次项系数为负数时,先提出负号,使二次项系数为正数,然后再看常数项;常数项为正数时,应分解为两同号因数,它们的符号与一次项系数的符号相同;常数项为负数时,应将它分解为两异号因数,使十字连线上两数之积绝对值较大的一组与一次项系数的符号相同注意:用十字相乘法分解因式,还要注意避免以下两种错误出现:一是没有认真地验证交叉相乘的两个积的和是否等于一次项系数;二是由十字相乘写出的因式漏写字母.例5、分解因式:652++x x 分析:将6分成两个数相乘,且这两个数的和要等于5。
由于6=2×3=(-2)×(-3)=1×6=(-1)×(-6),从中可以发现只有2×3的分解适合,即2+3=5。
1 2解:652++x x =32)32(2⨯+++x x 1 3 =)3)(2(++x x 1×2+1×3=5用此方法进行分解的关键:将常数项分解成两个因数的积,且这两个因数的代数和要等于一次项的系数。
例1、分解因式:672+-x x解:原式=)6)(1()]6()1[(2--+-+-+x x 1 -1=)6)(1(--x x 1 -6(-1)+(-6)= -7练习1、分解因式(1)24142++x x (2)36152+-a a (3)542-+x x练习2、分解因式(1)22-+x x (2)1522--y y (3)24102--x x(二)二次项系数不为1的二次三项式—— c bx ax ++2条件:(1)21a a a = 1a 1c (2)21c c c = 2a 2c(3)1221c a c a b += 1221c a c a b +=分解结果:c bx ax ++2=))((2211c x a c x a ++例2、分解因式:101132+-x x分析: 1 -2(-6)+(-5)= -11解:101132+-x x =)53)(2(--x x练习3、分解因式:(1)6752-+x x (2)2732+-x x(3)317102+-x x (4)101162++-y y(三)多字母的二次多项式例3、分解因式:221288b ab a --分析:将b 看成常数,把原多项式看成关于a 的二次三项式,利用十字相乘法进行分解。
因式分解之十字相乘法
因式分解的十字相乘法如下:
因式分解法的十字相乘法方法是十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。
十字相乘法是因式分解中十四种方法之一,十字相乘法的方法简单来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项。
其实就是运用乘法公式运算来进行因式分解。
十字相乘法能用于二次三项式(一元二次式)的分解因式(不一定是在整数范围内)。
对于像ax²+bx+c=(a1x+c1)(a2x+c2)这样的整式来说,这个方法的关键是把二次项系数a分解成两个因数a1,a2的积,把常数项c分解成两个因数c1,c2的积,并使a1c2+a2c1正好等于一次项的系数b。
那么可以直接写成结果:ax²+bx+c=(a1x+c1)(a2x+c2)。
在运用这种方法分解因式时,要注意观察,尝试,并体会,它的实质是二项式乘法的逆过程。
当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。
基本式子:x²+(p+q)x+pq=(x+p)(x+q)。
数学篇学思导引所谓的“十字相乘法”就是借助画十字交叉线分解系数,从而把二次三项式ax 2+bx +c 分解因式的方法.十字相乘法在因式分解中经常用到,它可以解答很多公式法、配方法等不能解答的问题.在运用十字相乘法分解因式时需要拆分常数项或二次项系数,并逐一核验对角线乘积的和是否等于一次项系数,若相等,则拆分成功,否则拆分不成功,需要舍弃,最后将拆分后的项按照乘积的形式书写出来,即可完成因式分解.一、二次项系数为“1”时,拆常数项,凑一次项对于二次三项式x 2+bx +c ,当二次项系数为1时,采用十字相乘法分解因式通常是“拆常数项,凑一次项”.即将常数项c 拆分成两个因数c 1和c 2,使这两个因数c 1和c 2的乘积结果刚好是常数项c ,同时c 1和c 2的和刚好是一次项系数b .如图1所示:只要能满足c =c 1c 2,b =c 1+c 2,则x 2+bx +c =x 2+(c 1+c 2)x +c 1c 2=(x +c 1)(x +c 2).图1例1分解因式y 2-8y +15.分析:此二项式的二次项系数为“1”,直接拆分常数项15即可.常数项15=1×15=-1×图2解:y 2-8y +15=(y -3)(y -5).例2分解因式x 2-2x -15.分析:此题可直接拆分常数项-15,因为常数项是负数,所以拆分的因数中需要安排一个负号,这就需要核验一次项系数后确定.-15=-1×15=1×(-15)=-3×5=3×(-5),-1×15和1×(-15)的情形很容易看出不符合要求,另外两种情形如图3、图4所示;拆分为图3核验结果为1×5+1×(-3)=2,不等于一次项系数-2,舍弃;图4验核结果为1×(-5)+1×3=-2,等于一次项系数-2,核验正确.图3图4解:x 2-2x -15=(x +3)(x -5).评注:从以上的解题过程可以发现:当常数项为正数时,把它分解为两个同号因数的积,每个因数的符号与一次项系数的符号相同;当常数项为负数时,把它分解为两个异号因数的积,其中绝对值较大的因数的符号与一次项系数的符号相同.二、二次项系数不为“1”时,拆两头,凑中间如何利用十字相乘法分解因式盐城市初级中学陈爱荣数学篇学思导引“拆两头,凑中间”,即分别把二次项系数a 和常数项c 各自拆分成两个因数a 1和a 2、c 1和c 2,使a 1和a 2的乘积结果等于二次项系数a ,c 1和c 2的乘积结果等于常数项c ,并使a 1c 2+a 2c 1正好等于一次项系数b ,如图5所示,则ax 2+bx +c =a 1a 2x 2+(a 1c 2+a 2c 1)x +c 1c 2=(a 1x +c 1)(a 2x +c 2),a x1c 1a x 2c 2a x 1a 22c 1c 2(a +1c a c x 221)图5例3分解因式5x 2+7x -6.分析:此题中二次项系数不为“1”,需要拆分二次项系数和常数项系数,即5=1×5,-6=-1×6=1×(-6)=-2×3=2×(-3),如下图6-1至6-8所示,然后逐一核对对角线乘积和与一次项系数是否一致,由表1可知,图6-6的分解符合题意.图6-1图6-2图6-3图6-4图6-5图6-6图6-7图6-8表1十字相乘法数据核验表序号12345678图示6-16-26-36-46-56-66-76-8数据验核1×6+5×(-1)=11×(-6)+5×1=-11×1+5×(-6)=-291×(-1)+5×6=291×3+5×(-2)=-71×(-3)+5×2=71×2+5×(-3)=-131×(-2)+5×3=13取舍情况舍弃,×舍弃,×舍弃,×舍弃,×舍弃,×正确,√舍弃,×舍弃,×解:5x 2+7x -6=(5x -3)(x +2).例4分解因式9+5x -4x 2.分析:此题二次项系数为负数,如果提取负号则可以转化为二次项系数为正数的情形,即9+5x -4x 2=-(4x 2-5x -9).然后求解出4x 2-5x -9的因式分解结果即可.二次项系数可拆分为4=1×4=2×2,常数项可拆分为-9=-1×9=1×(-9)=-3×3,如下图7-1至7-9所示,然后逐一核对对角线乘积和转化后的一次项系数(-5)是否一致.由表2可知,图7-2的分解符合题意.图7-1图7-2图7-3图7-4图7-5图7-6图7-7图7-8图7-9表2十字相乘法数据核验表(转化后)序号123456789图示7-17-27-37-47-57-67-77-87-9数据验核1×9+4×(-1)=51×(-9)+4×1=-51×1+4×(-9)=-351×(-1)+4×9=351×3+4×(-3)=-91×(-3)+4×3=92×9+2×(-1)=162×(-9)+2×1=-162×(-3)+2×3=0取舍情况舍弃,×正确,√舍弃,×舍弃,×舍弃,×舍弃,×舍弃,×舍弃,×舍弃,×解:9+5x -4x 2=-(4x 2-5x -9)=-(x +1)(4x -9).评注:当二次项系数和常数项系数有多种拆分情况时,同学们需要逐一核验拆分后对角线乘积的和是否与一次项系数一致,然后舍弃所有不符合的情况,保留正确的拆分情况.此外,如果二次项系数是负数,则应先将负号提到括号外面,使二次项系数为正数,然后再进行因式分解.27。
因式分解中的十字相乘法《因式分解中的十字相乘法》嘿,你知道吗?在数学这个神奇的世界里,有一个特别有趣又超级有用的方法,那就是十字相乘法。
我呀,今天就想和你唠唠这个十字相乘法。
我先给你举个简单的例子吧。
就像有个二次三项式,比如说x²+5x + 6。
这时候十字相乘法就像一个超级侦探,来把它分解因式啦。
我们要把二次项系数和常数项分别拆成两个数相乘呢。
对于x²的系数1,那就是1×1啦。
对于常数项6呢,我们可以拆成2×3。
然后我们就像搭十字一样,把这些数字摆好。
1和2写在一边,1和3写在另一边,交叉相乘再相加,1×3 + 1×2刚好等于一次项系数5呢。
这样,这个式子就可以分解成(x + 2)(x+ 3)啦。
哇,是不是很神奇呢?我记得我刚开始学这个十字相乘法的时候,那可真是一头雾水啊。
我就想,这都是啥呀,为啥要这么拆数字呢?我就跑去问我的数学老师。
老师就笑着说:“你看啊,这就像是搭积木,每一块积木都有它合适的位置。
二次三项式就像一个待组装的大积木,你得找到合适的小积木块才能把它搭好呀。
”我当时似懂非懂的,不过老师这么一说,我就觉得好像这个方法也没那么难嘛。
有一次,我和我的同桌一起做数学作业。
碰到了一个比较难的二次三项式,好像是2x² - 7x + 3。
我就开始苦思冥想,按照十字相乘法的规则来拆数字。
我先把2x²拆成2x 和x,对于常数项3呢,我拆成- 1和- 3。
我试着搭十字,交叉相乘再相加,结果不对呢。
我就有点沮丧,哎呀,这可怎么办呀。
这时候我的同桌凑过来说:“你看,你把3拆成- 1和- 3不对呢。
你可以把2x²拆成2x和x不变,把3拆成- 1和- 3的话,那交叉相乘再相加就不是- 7x啦。
你应该把3拆成- 1和- 3,2x乘以- 1加上x乘以- 3就等于- 7x啦。
”我一听,眼睛一亮,原来是这样啊。
我就按照同桌说的方法做,果然就把这个式子分解成(2x - 1)(x - 3)啦。
十字相乘法分解因式十字相乘法是一种用于分解多项式因式的数学方法,也被称为乘法法则,是通过乘法运算将多项式分解为两个或多个乘积的过程。
它可以用来解决数学术语中的多项式因式化,也就是将多项式分解为简单的乘积形式。
例如,有一个多项式 (x + 2)(x + 3)它可以分解为 (x + 2) (x + 3) 。
十字相乘法分解因式(也称为十字相乘法)是一种以固定的乘法表格的形式,用于将一个多项式中的系数(即多项式的常数项)和未知数(即多项式的变量项)分开,分解多项式为两个或多个乘积的方法。
它由四列组成,每列包括未知数和系数。
这些四列组成了一个十字表格,由因式和被乘数组成,每一列可以在这些乘数和被乘数之间进行乘法运算,从而实现将多项式分解为两个或多个乘积的目的。
二、十字相乘法分解因式的步骤1.先,将多项式中的未知数或变量项和系数项分别放在一列中(这些元素可能有一个或多个),并在十字表格的其余列中填写数字。
2.后,从每列中找出未知数,并从其他列中乘以对应的系数。
3.得到的乘积求和,检查该和是否恰好等于多项式的常数项,如果是,则多项式已被成功地分解为两个或多个因式的乘积。
4.果求得的乘积和不等于多项式的常数项,则表明十字相乘法分解因式未能成功进行,此时应重新检查步骤是否正确。
三、十字相乘法分解因式的应用十字相乘法分解因式可以用来分解一维、二维和三维多项式,以及高阶多项式。
它可以被用来求解有关二次函数、三次函数和更高阶函数的问题。
它还可以用于求解不等式,以及解决其他复杂的数学问题。
十字相乘法分解因式在很多数学领域的应用不言而喻,它可以用来分析空间问题,解决几何问题,以及分析计算机科学中的复杂问题。
此外,它还可以用于推理推理问题,解决物理问题,以及解决金融学等统计问题。
四、十字相乘法分解因式的优缺点十字相乘法分解因式有有许多优点。
首先,它可以用于分解多项式中繁杂的系数和未知数。
其次,它还可以查找多项式的根和根之和和积,以及计算出未知数的值。
十字相乘法分解因式(1)对于二次项系数为1方法的特征是“拆常数项,凑一次项”当常数项为正数时,把它分解为两个同号因数的积,因式的符号与一次项系数的符号相同;当常数项为负数时,把它分解为两个异号因数的积,其中绝对值较大的因数的符号与一次项系数的符号相同.(2)对于二次项系数不是1的二次三项式它的特征是“拆两头,凑中间”当二次项系数为负数时,先提出负号,使二次项系数为正数,然后再看常数项;常数项为正数时,应分解为两同号因数,它们的符号与一次项系数的符号相同;常数项为负数时,应将它分解为两异号因数,使十字连线上两数之积绝对值较大的一组与一次项系数的符号相同注意:用十字相乘法分解因式,还要注意避免以下两种错误出现:一是没有认真地验证交叉相乘的两个积的和是否等于一次项系数;二是由十字相乘写出的因式漏写字母.例5、分解因式:652++x x分析:将6分成两个数相乘,且这两个数的和要等于5。
由于6=2×3=(-2)×(-3)=1×6=(-1)×(-6),从中可以发现只有2×3的分解适合,即2+3=5。
1 2解:652++x x =32)32(2⨯+++x x 1 3 =)3)(2(++x x 1×2+1×3=5用此方法进行分解的关键:将常数项分解成两个因数的积,且这两个因数的代数和要等于一次项的系数。
例1、分解因式:672+-x x解:原式=)6)(1()]6()1[(2--+-+-+x x 1 -1=)6)(1(--x x 1 -6(-1)+(-6)= -7练习1、分解因式(1)24142++x x (2)36152+-a a (3)542-+x x练习2、分解因式(1)22-+x x (2)1522--y y (3)24102--x x(二)二次项系数不为1的二次三项式—— c bx ax ++2条件:(1)21a a a = 1a 1c(2)21c c c = 2a 2c(3)1221c a c a b += 1221c a c a b +=分解结果:c bx ax ++2=))((2211c x a c x a ++例2、分解因式:101132+-x x分析: 1 -2(-6)+(-5)= -11解:101132+-x x =)53)(2(--x x练习3、分解因式:(1)6752-+x x (2)2732+-x x(3)317102+-x x (4)101162++-y y(三)多字母的二次多项式例3、分解因式:221288b ab a --分析:将b 看成常数,把原多项式看成关于a 的二次三项式,利用十字相乘法进行分解。
初二因式分解解读之五:编制人:平生曜曜因式分解中的“十字相乘”1、把多项式乘法中的“经验性公式”:(x+a)(x+b)= x2+(a+b)x + ab,倒过来可得:x2+(a+b)x + ab = (x+a)(x+b).以上就是,因式分解中的“十字相乘法”公式。
2、可见,十字相乘法可以帮助我们把某些(但并非所有)“二次三项式”分解成两个“一次因式”的乘积。
3、十字相乘法的运用,一般会有一个“尝试、试错、微调、修正”的过程。
当然如果你领悟了其中的技巧,就可以大大缩减“尝试”的次数。
4、十字相乘法的口诀是:竖起相乘分别得两边,交叉相乘之和得中间5、在运用“十字相乘法”分解因式之前,最好把多项式先按“主元”作“降幂排列”。
6、下面通过举例,对“十字相乘法”作一些具体的解读。
(1)、例如,运用十字相乘法,分解因式:x2 + 4x + 3 …………先………写………出………你………的………答………案…………你的答案:______________________________________。
〈分析〉:原式由三部分组成,其中没有任何公因式可提取,又不能用平方差公式,也不能用完全平方公式,在这种情况下,我们可以考虑用十字相乘法。
〈强调〉:“十字相乘法”的运用步骤是:一排顺序,二试口诀。
一排顺序是指:先将原式按“二次项;一次项;常数项”的顺序来作“降幂排列”;二试口诀是指:按“竖起相乘分别得两边,交叉相乘之和得中间”的口诀来进行“试错、微调”。
分解因式:x 2 + 4x + 3经过一番尝试后,可确定原式可分解为:(x+1)(x+3)。
〈疑问〉:你觉得尝试的过程有技巧吗?(2)、又例如,分解因式:①、x 2 -4x + 3②、x 2 -2x - 3③、x 2 + 2x - 3…………先………写………出………你………的………答………案…………你的答案:______________________________________。
十字相乘法因分解
【原创版】
目录
一、十字相乘法简介
二、十字相乘法的原理
三、十字相乘法分解的过程
四、十字相乘法分解的实际应用
正文
一、十字相乘法简介
十字相乘法是一种数学中常用的因式分解方法,主要用于解一元二次方程。
它的特点是将一元二次方程的常数项和一次项拆分成两个数,使这
两个数相乘等于常数项,相加等于一次项。
通过这种方法,可以将一元二次方程转化为两个一元一次方程,从而求得方程的解。
二、十字相乘法的原理
十字相乘法的原理基于数学中的乘法分配律,即:a*(b+c) = a*b + a*c。
在因式分解过程中,我们将二次项拆分成两个数,使得这两个数与一次项
相乘等于二次项,相加等于一次项。
这样,原方程就可以转化为两个一元一次方程,从而简化了解题过程。
三、十字相乘法分解的过程
具体分解过程如下:
1.观察二次项的系数,找到两个数的乘积等于这个系数。
2.找到这两个数,使它们相加等于一次项的系数。
3.将原方程中的二次项拆分成这两个数与一次项的乘积,得到两个一元一次方程。
4.分别解这两个一元一次方程,得到方程的两个解。
四、十字相乘法分解的实际应用
十字相乘法分解在解决一元二次方程中有广泛的应用。
通过这种方法,我们可以将复杂的一元二次方程转化为简单的一元一次方程,从而降低解题难度。
同时,这种方法也可以帮助我们更好地理解因式分解的原理,提高我们的数学素养。
总结:十字相乘法是一种有效的因式分解方法,它基于乘法分配律,通过将二次项拆分成两个数,使得这两个数与一次项相乘等于二次项,相加等于一次项。
一、十字相乘法
利用十字交叉线来分解系数,把二次三项式分解因式方法叫做十字相乘法。
即对于二次三项式x²+bx+c,若存在p+q=b,pq=c ,则x²+bx+c=(x+p)(x+q)
1.在对x²+bx+c分解因式时,要先从常数项c的正、负入手,若c>0,则p、q同号,若c<0,则p、q异号,然后依据一次项系数b的正负再确定p、q的符号。
2.若x²+bx+c中的b、c为整数时,要先将c分解成两个整数的积(要考虑到分解的各种可能),然后看这两个整数之和能否等于b,直到凑对为止。
二、首项系数不为1的十字相乘法
在二次三项式ax²+bx+c (a≠0)中,如果二次项系数a可以分解成两个因数之积,即a=a₁a₂,常数项c可以分解成两个因数之积,即c=c₁c₂,
把a₁,a₂,c₁,c₂排列如下:
若a₁c₂+a₂c₁=b,即ax²+bx+c=(a₁x+c₁)(a₂x+c₂)。
(1)十字相乘法分解思路为“看两端,凑中间”。
(2)二次项系数一般都化为正数,如果是负数,则提出负号,分解括号里面的二次三项式,最后结果不要忘记把提出的负号添上。
三、分组分解法
对于一个多项式的整体,若不能直接运用提公因式法和公式法进行因式分解时,可考虑分组处理的方法,即把这个多项式分成几组,先对各组分别分解因式,然后再对整体作因式分解即先对题目进行分组,然后再分解因式。
因式分解-十字相乘法一、十字相乘法分解因式十字相乘法:有些二次三项式,可以把第一项和第三项的系数分别分解为两个数之积,然后借助画十字交叉线的方法,把二次三项式进行因式分解,这种方法叫十字相乘法。
简单的说十字相乘法就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。
注意:十字相乘法不是适合所有二次三项式,只有在一次项系数和二次项系数以及常数项存在一种特殊关系时才能用,这个特殊关系我们通过例题来说明:1、首项系数是1的二次三项式的因式分解,我们学习了多项式的乘法,即()()()x a x b x a b x a b ++=+++2将上式反过来,()()()x a b x ab x a x b 2+++=++得到了因式分解的一种方法——十字相乘法,用这种方法来分解因式的关键在于确定上式中的a 和b ,例如,为了分解因式x px q 2++,就需要找到满足下列条件的a 、b ;a b p ab q +==⎧⎨⎩如把762-+x x 分解因式,首先要把二次项系数2x 分成x x ⨯,常数项-7分成)1(7-⨯,写成十字相乘,左边两个数的积为二次项,右边两个数的积为常数项。
交叉相乘的和为x x x 67)1(=⨯+-⨯,正好是一次项。
从而)1)(7(762-+=-+x x x x 。
2、二次项系数不为1的二次三项式的因式分解二次三项式ax bx c 2++中,当a ≠1时,如何用十字相乘法分解呢?分解思路可归纳为“分两头,凑中间”,例如,分解因式2762x x -+,首先要把二次项系数2分成1×2,常数项6分成()()-⨯-23,写成十字相乘,左边两个数的积为二次项系数。
右边两个数相乘为常数项,交叉相乘的和为()()13227⨯-+⨯-=-,正好是一次项系x -=-+762x )1)(7(-+x x xx⇓⨯⇓71xx x 67=+-数,从而得()()2762232x x x x -+=--。
因式分解之十字相乘法【知识精读】1.二次三项式(1)多项式c bx ax ++2,称为字母x 的二次三项式,其中2ax 称为二次项,bx 为一次项,c 为常数项.例如,322--x x 和652++x x 都是关于x 的二次三项式.(2)在多项式2286y xy x +-中,如果把y 看作常数,就是关于x 的二次三项式;如果把x 看作常数,就是关于y 的二次三项式.(3)在多项式37222+-ab b a 中,把ab 看作一个整体,即3)(7)(22+-ab ab ,就是关于ab 的二次三项式.同样,多项式12)(7)(2++++y x y x ,把x +y 看作一个整体,就是关于x +y 的二次三项式. 2.十字相乘法(1) 对于首项系数是1的二次三项式的十字相乘法,重点是运用公式特点是:(1)二次项的系数是1(2)常数项是两个数之积(3)一次项系数是常数项的两个因数之和。
pq x q p x +++)(2)()(22pq qx px x pq qx px x +++=+++=))(()()(q x p x p x q p x x ++=+++=(2)对于首项系数不是1的一般二次三项式2ax bx c ++的分解因式大家知道,2112212122112()()()a x c a x c a a x a c a c x c c ++=+++。
反过来,就可得到:2121221121122()()()a a x a c a c x c c a x c a x c +++=++我们发现,二次项系数a 分解成12a a ,常数项c 分解成12c c ,b=1221+a c a c 把1212,,,a a c c 写成1122a c a c ⨯,这里按斜线交叉相乘,再相加,就得到1221a c a c +,那么2ax bx c ++就可以分解成1122()()a x c a x c ++.这种借助画十字交叉线分解系数,从而将二次三项式分解因式的方法,叫做十字相乘法。