人教版比例的意义和基本性质
- 格式:ppt
- 大小:628.50 KB
- 文档页数:13
人教版六年级数学上册《比例》知识点归纳(五四制)第六章比例一、比例的意义表示两个比相等的式子叫做比例。
如:2:1=6:3二、内外项组成比例的四个数叫做比例的项。
两端的两项叫做外项.中间的两项叫做内项。
三、比例的性质在比例里两个外项的积等于两个两个内向的积。
这叫做比例的基本性质。
例如:3:2=6:4可知3×4=2×6;或者由x×1.5=y×1.2可知x:y=1.2: 1.5。
四、解比例根据比例的基本性质.如果已知比例中的任何三项.就可以求出这个数比例中的另外一个未知项。
求比例中的未知项.叫做解比例。
例如:3:x = 4:8.内项乘内项.外项乘外项.则:4x =3×8.解得x=6。
五、正比例和反比例:(1)、成正比例的量:两种相关联的量.一种量变化.另一种量也随着变化.如果这两种量中相对应的两个数的比值(也就是商)一定.这两种量就叫做成正比例的量.他们的关系叫做正比例关系。
用字母表示y/x=k(一定)例如:①、速度一定.路程和时间成正比例;因为:路程÷时间=速度(一定)。
②、圆的周长和直径成正比例.因为:圆的周长÷直径=圆周率(一定)。
③、圆的面积和半径不成比例.因为:圆的面积÷半径=圆周率和半径的积(不一定)。
④、y=5x.y和x成正比例.因为:y÷x=5(一定)。
⑤、每天看的页数一定.总页数和天数成正比例.因为:总页数÷天数=每天看页数(一定)。
(2)、成反比例的量:两种相关联的量.一种量变化.另一种量也随着变化.如果这两种量中相对应的两个数的积一定.这两种量就叫做成反比例的量.他们的关系叫做反比例关系。
用字母表示x×y=k(一定)例如:①、路程一定.速度和时间成反比例.因为:速度×时间=路程(一定)。
②、总价一定.单价和数量成反比例.因为:单价×数量=总价(一定)。
比例的意义和基本性质观课报告1. 引言比例是数学中的重要概念,广泛应用于各个领域,如金融、统计、经济等。
本文将探讨比例的意义和基本性质,并通过观课报告的方式进行实际案例分析。
本文将采用Markdown文本格式进行输出。
2. 比例的意义比例是指两个或多个量之间的关系。
比例关系在生活中无处不在,例如人的身高与体重的关系、速度与时间的关系等。
比例的意义在于能够揭示事物之间的相对关系,帮助我们更好地理解和应用这些关系。
比例的意义主要体现在以下几个方面:2.1 量的相对关系比例能够揭示两个量之间的相对关系。
通过比例关系,我们可以判断两个量的大小、增长趋势等。
例如,身高与体重的比例可以反映一个人的体型是否匀称,速度与时间的比例可以判断一个物体的运动情况等。
2.2 数据分析与预测比例在数据分析和预测中有着重要的应用。
通过比例关系,我们可以对一组数据进行分析和比较。
例如,在金融领域,比例可以帮助我们分析股票的涨跌趋势,预测未来的市场走向等。
2.3 解决实际问题比例在解决实际问题中也具有重要作用。
通过比例关系,我们可以求解未知量,解决各种实际问题。
例如,在商业中,比例可以帮助我们计算成本、利润等,帮助做出正确的决策。
3. 比例的基本性质比例具有以下基本性质:3.1 比例恒定性比例恒定性是指在比例关系中,两个量之间的比值始终保持不变。
即使数量发生变化,比例关系仍然成立。
例如,如果一辆车的速度是另一辆车的两倍,那么无论速度是多少,两辆车的速度比始终保持为2:1。
3.2 比例的可逆性比例具有可逆性,即如果两个量之间存在比例关系,那么它们的倒数之间也存在比例关系。
例如,如果一个物体在10秒内移动了100米,那么它的速度为10米/秒,这两个量之间存在比例关系。
而如果我们将速度的单位改为秒/米,那么速度的倒数就为0.1秒/米,这两个量之间仍然存在比例关系。
3.3 比例的扩大和缩小比例关系可以通过扩大或缩小其中一个量来改变。
例如,如果一辆车的速度是另一辆车的两倍,我们可以通过减小第一辆车的速度或增加第二辆车的速度来改变比例关系。
第五讲 比例的意义和基本性质一、知识梳理1、比例的概念:表示两个比相等的式子叫做比例。
2、比和比例的区别:比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。
3、比例的基本性质:在比例里,两个外项的积等于两个内项的积如果把比例写成分数形式,比例的基本性质就是等号两端分子和分母分别交叉相乘,积相等。
如:280=5200 80×5=2×200前面要判断两个比是不是成比例,我们是通过计算它们的比值来判断的。
学过比例的基本性质以后,也可以应用比例的基本性质来判断两个比能不能成比例。
4、解比例:如果知道比例中的任何三项,就可以求出这个比例中的另外一个未知项。
求比例中的未知项,叫做解比例。
5、比例尺:图上距离和实际距离的比叫做比例尺。
图上距离:实际距离=比例尺。
①比例尺与一般的尺不同,这是一个比,不应带计量单位。
②求比例尺时,前、后项的长度单位一定要化成同级单位。
如10厘米: 10米,要把后项的米化成厘米后再算出比例尺。
③为了计算简便,通常把比例尺的前项或后项化简成“1”,如果写成分数形式,分子也应化简成“1”。
比例尺通常写成20:1或1001 二、方法归纳1、因为这两个比的比值相等,所以这两个比也是相等的,我们把它们用等号连起来。
4. 5:2.7=10:6,像这样表示两个比相等的式子叫做比例。
2、应用比例的基本性质判断3:4和6:8能不能组成比例。
先假设3:4和6:8可以组成比例。
再算出两个外项的积(两个外项的积:3×8=24)和两个内项的积(两个内项的积:4×6=24)。
因为3×8=4×6.也就是说两个外项的积等于两个内项的积,所以3:4和6:8可以组成比例,3:4=6:8。
3、第一次所行驶的路程和时间的比是80:2 80 :2=:200 :580:2=40 └-内项-┘第二次所行驶的路程和时间的比是200:5 └------外项-----┘200:5=40 两个外项的积是80×5=40080:2=200:5或280=5200) 两个内项的积是2×200=40080×5=2×2004、图上距离=实际距离×比例尺实际距离=图上距离÷比例尺比例尺=图上距离÷实际距离三、课堂精讲(一)比例的意义例1 判断下面每组的两个比能不能组成比例。
六下第四单元比例1.比例的意义和基本性质2.正比例和反比例3.比例的应用(1)比例的意义:表示两个比相等的式子(2)比例各部分名称A.组成比例的四个数叫做比例的项B.两端叫外项,中间的叫内项(3)比例的基本性质两个外项的积等于两个内项的积(4)比和比例的联系和区别(5)解比例A.含义:求比例中的未知项叫解比例B.方法:根据比例的基本性质转化为乘法(1)正比例(2)反比例A.意义:两个数的比值一定,一个数变大,另一个数也变大B.字母表示C.图像特点(k一定)正比例关系的图像是一条从(0,0)出发的无限延伸的射线。
A.意义:两个数量的乘积一定,一个数变大,另一个数变小B.字母表示:xy=k(k一定)(3)正反比例图像异同点(1)比例尺(2)图形的放大与缩小A.意义:一幅图的图上距离和实际距离的比,叫做这幅图的比例尺B.分类:按表现形式分按将实际距离是放大还是缩小分数值比例尺线段比例尺缩小比例尺放大比例尺C.计算比例尺=图上距离÷实际距离实际距离=图上距离÷比例尺图上距离=实际距离x比例尺D.用比例尺画平面图a.求图上距离b.根据方向和图上距离画位置(3)用比例解决问题A.特点:把一个图形放大或者缩小以后,得到的图形与原来的图形相比,形状相同,大小不同(4)判断正反比例的方法: a.找变量b.看定量c.判断A.判断题中的两个量是成正比例关系还是反比例关系B.根据正反比例的意义列出比例方程C.解比例D.写检验和答语。
4 比 例一、比例的意义表示两个比相等的式子叫做比例。
二、比例的基本性质1.组成比例的四个数,叫做比例的项,两端的两项叫做比例的外项,中间的两项叫做比例的内项。
2.比例的基本性质:在比例里....,.两个外项的积等于两.........个内项的积。
......可以用字母表示比例的基本性质,如果a ∶b=c ∶d ,那么ad=bc 。
3.运用比例的意义和比例的基本性质可以判断两个比是否可以组成比例,也可以解比例。
三、解比例1.求比例中的未知项........,.叫做解比例。
......2.解比例的依据:比例的基本性质.......。
3.解比例的方法:利用比例的基本性质将比例转化..............为外项之积与内项之积相等的等式...............,.再通过解方程求出........未知项的值。
......四、正比例1.两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
2.如果用字母y 和x 表示两种相关联的量,用k 表示它们的比值(一定),正比例关系可以表示为=k ..。
3.正比例的图象......:如果把成正比例关系的两个量中相对应的数都看作是一个数对,在方格纸上把写这些数对相对应的点连起来,形成一条射线..;反之,该射线上的每一个点对应的就是正比例关系中两个相关联的量的一组具体值。
五、反比例提示:组成比例的两个比既可以写成带比号的形式,也可以写成分数的形式,但读法相同。
例如:2.4×40=1.6×60提示:如果4个不同的数能组成比例,那么这4个数一共能组成8个不同的比例。
提示:应用比例的基本性质不是解比例唯一的方法,也可以用求比值的方法或其他方法解比例。
总结:判断两种量是否成正比例的方法:先找变量(两种相关联的量),再看定量(两种量是比值一定,还是乘积一定),最后作出判断。
人教版小学六年级数学下册同步复习与测试讲义第四章比例【知识点归纳总结】故选:B.点评:本题主要考查比例的意义,注意判断能否组成比例可以用求比值的方法,求出比值,比值相等两个比就能组成比例.例2:在比例3:4=9:12中,若第一个比的后项加上8,要使比例仍然成立,则第二个比的后项应加上()A、8B、12C、24D、36分析:在比例3:4=9:12中,若第一个比的后项加上8,由4变成12,这样两内项的积就成了108,根据比例的性质,两外项的积也得是108,再用108除以前一个比的前项3即得后一个比的后项,进而求出第二个比的后项应加上几即可.解:比例3:4=9:12中,第一个比的后项加上8,由4变成12,则两内项的积:12×9=108,两外项的积也得是108,第二个比的后项应是:108÷3=36,第二个比的后项应加上:36-12=24;故选:C.点评:此题主要考查比例的基本性质:在比例里,两内项的积等于两外项的积.点评:此题属于辨识两种相关联的量成什么比例,就看这两种量是对应的比值一定,还是对应的乘积一定,再做出判断.例2:长方形的面积一定,长和宽()A、成正比例B、成反比例C、不成比例分析:根据正比例的意义x:y=k(一定)和反比例的意义xy=k(一定),因为长×宽=长方形的面积(一定),符合反比例的意义.解:根据长方形的面积公式,长×宽=长方形的面积(一定),符合反比例的意义xy=k(一定),所以长方形的面积一定,长和宽成反比例.故选:B.点评:此题主要考查正、反比例的意义,以及长方形的面积公式.3. 解比例根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例中的另外一个未知项.求比例中的未知项,叫做解比例.一般来说,求比例的未知项有以下两种情况:例2:如果比例的两个外项互为倒数,那么比例的两个内项()A、成反比例B、成正比例C、不成比例分析:根据互为倒数的定义和比例的两内项之积等于两外项之积,可得比例的两个内项之积等于1,再根据成反比例的定义即可求解.解:因为比例的两个外项互为倒数,那么比例的两个内项之积=1(为恒指),则比例的两个内项成反比例.故选:A.点评:本题考查了倒数的定义和成反比例的条件,两种相关联的量,一种量变化,另一种量也随着变化,这两种量中相对应的两个数的积一定.这两种量叫做成反比例的量.它们的关系叫做反比例关系.4. 比例的应用根据问题中的不变量找出两种相关联的量,并判断这两种相关联的量成什么比例关系,根据正、5. 比的应用1.按比例分配问题的解题方法:(1)把比看作分得的份数,用先求出每一份的方法来解答.解题步骤:a.求出总份数;b.求出每一份是多少;c.求出各部分相应的具体数量.(2)转化成份数乘法来解答.解题步骤:a.先根据比求出总份数;b.再求出各部分量占总量的几分之几;c.求出各部分的数量.2.按比例分配问题常用解题方法的应用:(1)已知一个数量的各部分的比和其中某一部分的量,求另外几个部分量;(2)已知两个量或几个量的比和其中两个量的差,求总量.【经典例题】例1:一个三角形与一个平行四边形的面积和底部都相等,这个三角形与平行四边形高的比是()A、2:1B、1:2C、1:1D、3:1分析:根据三角形和平行四边形的面积公式可得:三角形的高=面积×2÷底;平行四边形的高=面积÷底,由此即可进行比较,解答问题.解:三角形的高=面积×2÷底,平行四边形的高=面积÷底,当三角形和平行四边形的面积和底分别相等时,三角形的高是平行四边形的高的2倍.所以这个三角形与平行四边形高的比是2:1.故选:A.点评:考查了平行四边形的面积和三角形的面积公式,解题的关键是知道底相等、面积也相等的三角形和平行四边形中三角形的高是平行四边形的高的2倍.例2:甲、乙两人各走一段路,他们的速度比是3:4,路程比是8:3,那么他们所需时间比是()答:甲乙所需的时间比是32:9.故选:B.点评:关键是把速度和路程设出来,然后根据时间=路程÷速度,先求得各自用的时间,再写出所用的时间比并化简比.6.辨识成正比例的量与成反比例的量1.成正比例的量:(1)“变化方向”相同,一种量扩大或缩小,另一种量也扩大或缩小.2.成反比例的量:(1)“变化方向”相反,一种量扩大或缩小,另一种量反而缩小或扩大.(2)相对应的两个数的乘积一定.(3)关系式:xy=k(一定).3.判断方法:关键是看着两种相关量中相对应的两个数是商一定还是积一定,如果商一定,所以xy=1,是乘积一定,x和y成反比例;故选:D.点评:此题属于根据正、反比例的意义,辨识两种相关联的量是否成反比例,就看这两种量是否是对应的乘积一定,再做出选择.【同步测试】单元同步测试题一.选择题(共8小题)1.当:4=x:5时,x的值是()A.B.C.D.2.根据6×7=2×21,写出下面的比例中正确的一组是()A.6:7=2:24B.6:2=7:21C.6:2=21:7 3.如表,如果x和y成反比例,那么“?”处应填()x3?y56A.2B.3.6C.2.5D.104.语文书和数学书共40本,语文书的本数和数学书的本数的比可能是()A.4:3B.4:5C.5:3D.无法确定5.煤的总量一定,每天烧煤量和烧煤的天数()关系.A.成正比例B.成反比例C.不成比例D.无法判断6.A=,如果B一定,A和C这两种量成()关系.A.正比例B.反比例C.不成比例D.按比例分配7.一个三角形三个内角度数的比是1:3:4,这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形8.一个长4cm,宽2cm的长方形按4:1放大,得到的图形的面积是()cm2.A.32B.72C.128二.填空题(共8小题)9.甲数与乙数的比例为5:3,甲数为60,乙数为.10.解比例:3.5:x=0.5:20%则x=11.表中x和y是两个成反比例的量,请将表格填写完整.x36120.18y10154012.一个最简分数的分母减去一个数,分子加上同一个数,所得的新分数可以约简为,这个数是.13.按照如图的配方,做5人份炒面,需要购买克面.14.利用正比例图象解决问题时,想找出已知量所在的数轴及位置,然后在另一数轴上找出已知量相的数值.15.一个比例中,两个内项的积是1,其中一个外项是1.25,另一个外项是.16.在3,15,12,5,9,30,20中,把可以组成的比例写出两组、.三.判断题(共5小题)17.比例2:a=b:3,那么a与b的积是6.(判断对错)18.甲数的与乙数的相等,且甲、乙均不为零,则甲数大于乙数..(判断对错)19.a:b=2:4,则b是a的2倍.(判断对错)20.小明上学,已经走的路程与剩下的路程,是两个相关联的量.(判断对错)21.如果小华与小红体重的比是7:8,那么小华就比小红轻.(判断对错)四.计算题(共1小题)22.解比例.=4:2.4x:=15:五.应用题(共6小题)23.一种酒精溶液,水和酒精的比是4:1.如果要调3.2升的酒精溶液,水和酒精分别需要多少毫升?24.学校体育组购进12根大绳,准备按年级学生人数分配给参加“蓓蕾计划”的一、二、三年级学生.一年级45人,二年级75人,三年级60人,二年级能分到多少根大绳?25.修路队修一段铁路,修了一天后,已修路程和未修路程的比是1:4,第二天修了3600米,正好修完这条铁路的一半,这段铁路长多少米?26.甜甜学习做面包,她搜索得知,做面包需要的面粉、全麦、黄油可以按10:4:1配制.如果三样食材配成后共重3000克,其中含有全麦多少克?如果这三样食材各有200克制作这种面包,当面粉全部用完时,黄油还剩多少克?27.六年级一、二、三3个班献爱心捐书,一班捐的本数是三个班总数的,二、三两个班捐的本数比是4:3.已知三个班捐书总数为700本.求三班捐了多少本?28.解决问题.参考答案与试题解析一.选择题(共8小题)1.【分析】根据比例的性质,把比例先改写成两个内项的积等于两个外项的积的形式,再进一步求出比例中的未知项,再进行选择.【解答】解::4=x:5,4x=×5,4x=3,x=.故选:B.【点评】此题考查比例性质的运用即解比例.2.【分析】根据比例的性质:两内项的积等于两外项的积,据此逐项写出等式,与等式6×7=2×21比较得解.【解答】解:A、因为6:7=2:24,6×24不等于7×2,所以选项A不正确.B、因为6:2=7:21,6×21不等于7×2,所以选项B不正确.C、因为6:2=21:7,所以6×7=2×21,所以选项C正确.由此得出C是正确的.故选:C.【点评】此题考查比例性质的灵活运用,即:两内项的积等于两外项的积.3.【分析】如果x和y成反比例,则x和y的乘积一定,由此列出比例解答即可.【解答】解:6x=3×56x=15x=2.5答:如果x和y成反比例,那么“?”处填2.5.故选:C.【点评】此题属于根据反比例的意义解题,如果两种相关联的量成反比例,则对应的乘积一定;再根据乘积一定列出比例,求得未知数的数值即可.4.【分析】要求这两种书的本数比是几比几,因为数的本数应该为整数,所以只要40能整除比的前项和后项份数的和即可.【解答】解:A、因为4+3=7,7不能整除40,所以这两种书的本数比不可能是4:3;B、因为4+5=9,9不能整除40,所以这两种书的本数比不可能是4:5;C、5+3=8,40能被8整除,所以这两种书的本数比可能是5:3;故选:C.【点评】此题考查了学生对比的应用以及分析判断的能力.5.【分析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.【解答】解:因为:每天烧煤量×烧煤天数=煤的总量(一定),是乘积一定,所以每天烧煤量和烧煤天数成反比例;故选:B.【点评】此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.6.【分析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.【解答】解:A=,如果B一定,即AC=B(一定),是乘积一定,则A和C成反比例;故选:B.【点评】此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.7.【分析】根据题意可得:三角形的三个内角分别占三角形内角和的、和,三角形的内角和是180度,根据一个数乘分数的意义分别求出三个角,进而进行判断即可.【解答】解:1+3+4=8180°×=22.5°180°×=67.5°180°×=90°所以该三角形是直角三角形.故选:B.【点评】解答此题的关键是先根据一个数乘分数的意义分别求出三个角,进而根据三角形的分类,判断即可.8.【分析】先根据按4:1放大,放大后长和宽是原来的4倍,求出放大后的长和宽,再求出面积.【解答】解:放大后的长:4×4=16(厘米);放大后的宽:2×4=8(厘米);面积:16×8=128(平方厘米);故选:C.【点评】先根据比例求出放大后的长和宽,再求出面积.二.填空题(共8小题)9.【分析】利用比例的基本性质即可求解,即两内项之积等于两外项之积.【解答】解:设乙数为x,则5:3=60:x,5x=180,x=36.故答案为:36.【点评】此题主要考查比例的基本性质.10.【分析】根据比例的基本性质,原式化成0.5x=3.5×20%,再依据等式的性质,方程两边同时除以0.5求解.【解答】解:3.5:x=0.5:20%0.5x=3.5×20%0.5x÷0.5=0.7÷0.5x=1.4;故答案为:1.4.【点评】本题主要考查学生依据等式的性质以及比例基本性质解方程的能力,解方程时注意对齐等号.11.【分析】根据x和y两个量成反比例关系,可知x和y这两个量对应的乘积一定,进而根据乘积一定得解.【解答】解:12×15=180180÷36=5180÷10=18180÷0.18=1000180÷40=4.5如图:x36180120.18 4.5y51015100040故答案为:5,180,1000,4.5.【点评】此题属于考查正、反比例的意义,如果两种相关联的量成反比例关系,那么它们对应的乘积一定相等.12.【分析】若设这个数为x,则的分母减去一个数,分子加上同一个数后,新分数的分子与分母的比是,据此就可以列比例求解.【解答】解:设这个数为x,则=,5×(13+x)=3×(27﹣x),65+5x=81﹣3x,8x=16,x=2;答:这个数是2.故答案为:2.【点评】解答此题的关键是明白的分母减去一个数,分子加上同一个数后,新分数与成比例,从而问题得解.13.【分析】通过观察配方表可知,2人份炒面需要600克面粉,由此可以求出1人份炒面需要面粉多少克,再根据乘法的意义,用乘法解答即可.【解答】解:600÷2×5=300×5=1500(克)答:需要购买1500克面粉.故答案为:1500.【点评】此题考查的目的是理解比的意义,掌握比与除法之间的联系及应用.14.【分析】根据正比例的定义,以及函数图象的对应关系即可求解.【解答】解:利用正比例图象解决问题时,想找出已知量所在的数轴及位置,然后在另一数轴上找出已知量相对应的数值.故答案为:对应.【点评】考查了正比例图象,关键是熟练掌握正比例的定义,以及利用正比例图象解决问题.15.【分析】根据比例的基本性质:在比例中,两个外项的积等于两个内项的积;已知两个内项的积是1,则两个外项的积也是1;用1除以1.25,即为另一个外项.【解答】解:因为两内项之积等于两外项之积,所以另一个外项是:1÷1.25=0.8.故答案为:0.8.【点评】本题主要考查比例基本性质的应用.16.【分析】根据比例的基本性质“两外项的积等于两内项的积”,只要找出四个数中任意两个数的积等于另外两个数的积,就说明这四个数能组成比例.据此解答.【解答】解:在3,15,12,5,9,30,20中3×20=12×5所以可以组成比例:3:12=5:20、3:5=12:20.故答案为:3:12=5:20、3:5=12:20.【点评】此题考查比例的意义和比例的性质的运用:验证所给的四个数能否组成比例,可以根据比例的性质:两外项的积等于两内项的积;也可以用求比值的方法,任意两个数的比值和另外两个数的比值相等,就能组成比例,否则就不能组成比例.三.判断题(共5小题)17.【分析】根据比例的性质,两个内项之积等于两个外项之积,进行判断即可.【解答】解:2:a=b:3,ab=2×3=6;所以原题计算正确;故答案为:√.【点评】此题考查比例性质的运用.18.【分析】利用比例的性质,将两个内项积等于两个外项积先改写成比例,再进一步化简比得解.【解答】解:甲数×=乙数×,则甲数:乙数=:=24:25,因为24份的数<25份的数,所以甲数<乙数.故答案为:错误.【点评】此题考查比例的运用,关键是把两个内项积等于两个外项积先改写成比例的形式.19.【分析】在比例中,两个外项的积等于两个内项的积,据此先把a:b=2:4改写成2b=4a,再根据等式的性质,两边同除以2得到b=2a,即b是a的2倍;据此判断即可.【解答】解:a:b=2:4,即2b=4a,则b=2a,即b是a的2倍;所以原题说法正确.故答案为:√.【点评】此题考查了比例的基本性质和等式性质的运用.20.【分析】已经走的路程与剩下的路程相加是总路程,它们是加数、加数与和的关系,所以已经走的路程与剩下的路程是两个相关联的量,据此判断.【解答】解:已经走的路程与剩下的路程相加是总路程,所以已经走的路程与剩下的路程是两个相关联的量.原题说法正确.故答案为:√.【点评】此题考查了两种相关联的量,成正比例、反比例,不成比例,有三种情况.21.【分析】如果小华与小红体重的比是7:8,把小华的体重看作7份数,把小红体重看作8份数,据此解答.【解答】解:小华与小红体重的比是7:8,把小华的体重看作7份数,把小红体重看作8份数,7<8,所以小华就比小红轻;原题说法正确.故答案为:√.【点评】此题考查了比的运用,把比看作份数比来理解.四.计算题(共1小题)22.【分析】(1)根据比例的性质,两外项之积等于两内项之积,把比例转化成一般方程4x=0.2×2.4,再根据等式的性质,方程两边都除以4即可得到原比例的解.(2)根据比例的性质,两外项之积等于两内项之积,把比例转化成一般方程x=×15,再根据等式的性质,方程两边都除以即可得到原比例的解.【解答】解:(1)=4:2.44x=0.2×2.44x÷4=0.2×2.4÷4x=0.12(2)x:=15:x=×15x÷=×15÷x=8【点评】解比例时,先根据比例的性质,两外项之积等于两内项之积,把比例转化成一般方程,然后再根据解方程的方法解答.五.应用题(共6小题)23.【分析】先求出总份数,即4+1=5份,然后分别求出水和酒精各占3.2升的几分之几,最后根据分数乘法的意义解答即可.【解答】解:4+1=53.2×=2.56(升)3.2×=0.64(升)答:水需要2.56毫升;酒精需要0.64毫升.【点评】此题主要考查按比例分配应用题的特点:已知两个数的比(三个数的比),两个数的和(三个数的和),求这两个数(三个数),用按比例分配解答.24.【分析】把大绳的根数看作单位“1”,先求出总人数,再求出二年级学生人数占总人数的几分之几,然后根据一个数乘分数的意义,用乘法解答.【解答】解:45+75+60=180(人)12×=5(根)答:二年级能分到5根大绳.【点评】此题考查的目的是理解掌握按比例分配应用题的结构特征及解答规律.即先求出总份数,再求出各部分占总数的几分之几,然后根据一个数乘分数的意义解答.25.【分析】把这段铁路的总长度看作单位“1”,修了1天后,已修的占总长度的,第二天修3600米,已修的占总长度的,则3600的对应分率是(﹣),用对应量除以对应分率,就是这段铁路的总长度.【解答】解:3600÷(﹣)=3600÷=12000(米)答:这段铁路长12000米.【点评】解答此题的关键是:求出3600的对应分率,用对应量除以对应分率,就是这条段路的总长度.26.【分析】已知一种面包需要的面粉、全麦、黄油可以按10:4:1配制.又知三样食材配成后共重3000克,先求出一份是多少克,进而求出含有全麦多少克;如果这三样食材各有200克制作这种面包,先求出面粉200克对应的黄油克数,再用200克减去对应的黄油克数即可求解.【解答】解:3000×=3000×=800(克)200﹣200÷10×1=200﹣20=180(克)答:其中含有全麦800克,黄油还剩180克.【点评】此题考查的目的是掌握按比例分配应用题的结构特征和解答规律,此题关键是求出一份是多少千克.进而求出缺少和剩余的各是多少千克.27.【分析】把六年级三个班捐书的总数看作单位“1”,一班捐的本数是三个班总数的,根据一个数乘分数的意义,用乘法即可得出一班捐的本数,用总数减去一班捐的本数就是二班和三班共捐书多少本,已知二、三两个班捐的本数比是4:3,也就是三班捐书的本数占二、三班捐书本数的,根据一个数乘分数的意义,用乘法即可求得三班捐了多少本.【解答】解:700×=280(本)(700﹣280)×=420×=180(本)答:三班捐书180本.【点评】此题考查的目的是理解掌握比的意义及应用,以及比与分数之间的联系及应用.28.【分析】根据高年级和低年级所分的本数比,求出各占剩余本数的几分之几,进而根据分数乘法解决问题.【解答】解:640×=400(本)640×=240(本)答:高年级分得400本图书,低年级分得240本图书.【点评】本题考查了分数问题和按比例分配的实际问题,按比例分配的方法求出两个年级的本数,是比较难的问题.。
《比例的意义和基本性质》说课稿《比例的意义和基本性质》说课稿1一、说教材1、教学内容:《比例的意义和基本性质》是人教版数学第十二册的内容。
比例的知识在工农业生产和日常生活中有广泛的应用。
这部分知识是在学习了比的知识和除法、分数等的基础上教学的,是本套教材教学内容的第三个单元。
而本节课内容是这个单元的第一节课,主要属于概念教学,是为以后解比例,讲解正、反比例做准备的。
学生学好这部分知识,不仅可以初步接触函数的思想,而且可以用来解决日常生活中一些具体的问题。
2、教学目标:根据新课标要求和教材的特点,结合六年级学生的实际水平,可以确定以下教学目标:(1)通过计算、观察、比较,让学生概括、理解比例的意义和比例的基本性质。
(2)认识比例的各部分名称。
(3)学会用比例的意义或比例的基本性质,判断两个比能不能组成比例,并写出比例。
3、教学重、难点:理解比例的意义和基本性质,会用比例的意义和基本性质判断两个比能不能组成比例,并写出比例。
二、说教法、学法:根据本节教材内容和编排特点,为了更好地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,主要让学生在“计算——观察、比较——概括——应用”的`学习过程中掌握知识三、说教学过程:课堂学习是学生学习数学知识,发展能力的重要途经,因此我进行了如下设计:复习了什么叫做比?什么叫做比值?求下面各比的比值.目的就是为新授进行铺垫,搭建脚手架,同时也为学生后面区分比例和比打下基础。
在新授这个环节里我设计了四个部分:第一部分是教学比例的意义,运用比例的意义进行的练习;第二部分是学习比例的基本性质,运用比例的基本性质进行的练习;第三部分运用比例的意义和基本性质进行的练习;第四部分给出四个数让学生写出比例、和给一个乘法等式写出比例。
在第一部分里,我先让学生把相等的比写成等式的形式,为揭示比例的意义做铺垫。
随着学生的汇报,教师有意识的将比值相等的比写在一行上,引导学生观察每两个比之间的关系,告诉学生像这样的式子叫做比例,给学生直观的印象。
比例是数学中一个重要的概念,它在我们的生活中也有很广泛的应用。
在数学六年级下册中,比例的意义和基本性质是一个重要的知识点,也是孩子们需要掌握的内容之一、下面将详细介绍比例的意义和基本性质,包括适用于云南地区的内容。
一、比例的意义比例是指两个或多个有对应关系的量之间的比较关系。
比例可以描述两个量之间的相对大小关系,常用于表示物体的尺寸、面积、体积等。
在现实生活中,我们经常会遇到需要使用比例的情况。
例如,商店里打折商品的标价,物品的重量和价格的关系,图表的缩放比例等等。
比例的意义在于帮助我们理解和解决这些问题,使我们能够更好地处理实际情况。
二、比例的基本性质比例有一些基本性质,它们在解题过程中非常实用。
1. 同比例的数的乘法性质:如果a、b成比例,那么对于任意非零数k,ka,kb也成比例。
这个性质表明,在比例中,我们可以将两个数同时乘以同一个非零数,比例关系依然成立。
2. 反比例数的乘法性质:如果a、b反比例,那么对于任意非零数k,ka、1/(kb)也反比例。
这个性质表示,在反比例中,如果我们将一个数倍增,另一个数取倒数,比例关系依然成立。
3.正比例的两个性质:如果a、b成正比,那么(1)a/b是一个常数,称为比例常数,用k表示;(2)a的值等于b的值与比例常数的乘积。
这两个性质说明了在正比例关系中,两个数的比值是一个常数,并且其中一个数的值可以通过另一个数的值与比例常数的乘积计算得出。
4.反比例的两个性质:如果a、b反比,那么(1)a*b是一个常数,称为比例常数,用k表示;(2)a的值与b的值成反比。
这两个性质说明了在反比例关系中,两个数的乘积是一个常数,并且两个数的值成反比。
以上是比例的基本性质,掌握这些性质有助于我们灵活运用比例解决实际问题。
云南地区的特殊考点:在云南地区的数学教材中,为了使知识更贴近孩子们的实际生活,可能会引入一些与云南地区特定相关的问题。
例如,用农田的种植面积和收获粮食的多少进行比较,用地势高度和气温的关系进行比较等等。
比例的意义和基本性质(一 )比例的意义比例的意义:表示两个比相等的式子叫做比例。
比例是一个等式。
注意:写比例时,组成比例的两个比既可以写成带比号的形式,也可以写成分数的形式,但是读法相同。
(二)比例的基本性质比例各部分的名称:组成比例的四个数,叫做比例的项,两端的两项叫做外项,中间的两项叫做比例的内项。
a :b =c : d比例的基本性质:在比例里,两个外项的积等于两个内项的积。
用字母表示,如果a:b=c:d (b 、d 均不为0),那么ad=bc 。
注意:比例写成分数形式后,内项和外项并不改变。
如b a =dc (b 、d 均不为0),a 、d 仍然是外项,c 、d 仍然是内项,这时求两个外项的积等于两个内项的积,就是把等号两边的分子和分母分别交叉相乘,即ad=bc 。
判断两个比能否组成比例内项外项方法1:根据比例的意义可以判断两个比能否组成比例:判定等式两边的比是否相等,若相等则能组成比例,否则不能组成比例。
方法2:应用比例的基本性质判断两个比能否组成比例:先假设这两个比能组成比例,再看两个内项的积与两个外项的积是否相等。
若相等,则假设成立,能够组成比例,否则不能组成比例。
(三)解比例解比例:求比例中的未知项,就是解比例。
解比例的方法:根据比例的基本性质解比例,先把比例转化成两个外项的积与两个内项的积相等的形式,再通过解方程求出未知项的值。
检验:把求得的未知数的值代入比例中,看比例是否成立。
知识点一:比例的意义例题1. 判断下面哪组中的两个比可以组成比例,能组成比例的填入()中0.9:1.2和8:651:61和6:5 0.6:0.4和43:41 1.2:43和54:5( )练习1. 12:9的比值是( ),31:41的比值是( ),所以这两个比( )组成比例(填“能”或者不能)。
练习2.(判断) 8:2=4是比例( )例题2.用图中的4个数据可以组成多少个比例?练习. 12的因数有( ),用其中的4个因数组成比例是( ):( )=( ):( )知识点二:比例的基本性质例题1:在24:9=8:3中,外项是( )和( ),内项是( )和( )。
第3课时解比例教学内容教科书P40例2、例3,完成教科书P42“练习八”中第9、10题。
教学目标1.掌握解比例的方法和格式,能根据比例的基本性质把比例的比的形式和分数形式改写成乘积形式,正确地解比例。
2.经历根据实际情境中的数量关系列出比例、解比例、检验的完整过程,培养学生解决问题的能力。
3.感受数学知识的内在联系,体验应用知识解决问题的乐趣,培养灵活的思维方式。
教学重点掌握解比例的方法和格式。
教学难点能根据实际问题灵活列出比例并解比例。
教学准备课件。
教学过程一、复习旧知,揭示解比例的意义师:同学们,我们已经学习了比例的一些知识,谁来说一说你已经了解了比例的哪些知识?【学情预设】学生会说出比例的意义、比例的基本性质。
(让学生说说什么是比例的意义,什么是比例的基本性质) 师:比例的知识可以帮助我们解决一些实际问题。
你能求出比例中的未知项吗?(课件出示比例)【学情预设】预设1:根据比例的意义,3÷9=13,()÷15=13,教学笔记这个未知项是5。
预设2:根据比例的基本性质,把比例写成9×()=3×15,求出这个未知项是5。
师:根据比例的基本性质,如果已知比例中的任意三项,就可以求出这个比例中的另外一个未知项。
求比例中的未知项,叫做解比例。
(板书课题:解比例)【设计意图】复习达到了两个目的:一是唤起学生对已有知识经验的回忆,回顾与本节课相关的知识点;二是搭建从已知走向未知的桥梁,为学习新知提供合适的空间。
二、创设实际情境,用解比例的知识解决问题1.课件出示教科书P40例2。
(1)师:从题目中,你知道了哪些信息?【学情预设】学生说出,已知长征五号运载火箭总长约57m,一长征五号运载火箭模型的高度与火箭总长的比是1∶10,要求模型的高度。
师:你会解决这个问题吗?试一试吧!学生独立思考并解答,再汇报交流。
【学情预设】预设1:57÷10=5.7(m)(让学生说说是怎样想的),火箭总长高度是模型高度的10倍。
六年级下册数学教案-4.1 比例的意义和基本性质第2课时∣人教新课标教学目标:知识与技能:1. 理解比例的概念,能识别和写出比例。
2. 掌握比例的基本性质,并能运用比例的基本性质解决实际问题。
过程与方法:1. 通过实际情境,培养学生观察、分析、比较的能力。
2. 培养学生运用比例知识解决实际问题的能力。
情感态度价值观:1. 培养学生积极参与、主动探索的精神。
2. 培养学生的合作意识,增强团队协作能力。
教学内容:比例的意义和基本性质教学重点与难点:重点:1. 理解比例的概念,能识别和写出比例。
2. 掌握比例的基本性质。
难点:1. 理解比例的概念。
2. 运用比例的基本性质解决实际问题。
教学方法:引导探究法、小组合作法、实际操作法教学步骤:1. 导入(5分钟)通过生活中的实例,引导学生理解比例的概念,激发学生学习兴趣。
2. 探究比例的意义(10分钟)引导学生通过实际操作,探究比例的意义,理解比例的概念。
3. 学习比例的基本性质(10分钟)通过实例,引导学生学习比例的基本性质,并能运用比例的基本性质解决实际问题。
4. 实践应用(10分钟)设计实际问题,让学生运用所学的比例知识解决,巩固所学知识。
5. 总结与拓展(5分钟)总结本节课所学的比例知识,引导学生进行拓展,培养学生的创新思维。
教学评价:1. 观察学生在课堂上的参与程度,了解学生对比例知识的掌握情况。
2. 通过课后作业,了解学生对比例知识的运用能力。
3. 通过小组合作,评价学生在团队中的合作能力。
教学反思:1. 在教学过程中,注意引导学生积极参与,培养学生的自主学习能力。
2. 在教学过程中,注意引导学生运用比例知识解决实际问题,培养学生的实际操作能力。
3. 在教学过程中,注意培养学生的合作意识,增强团队协作能力。
教学资源:1. 课本2. 教学课件3. 实际操作材料教学建议:1. 在教学过程中,注意引导学生积极参与,培养学生的自主学习能力。
2. 在教学过程中,注意引导学生运用比例知识解决实际问题,培养学生的实际操作能力。
比例的意义和基本性质(教案)20232024学年数学六年级下册人教版作为一名经验丰富的教师,我深刻理解比例的意义和基本性质对于数学六年级学生的重要性。
因此,我精心设计了这份教案,以帮助学生更好地理解和掌握这部分知识。
一、教学内容本节课的教学内容选自人教版数学六年级下册,主要包括比例的定义、比例尺的概念、比例的性质和比例的应用。
我将引导学生通过观察、思考和操作,深入理解比例的意义和基本性质。
二、教学目标1. 理解比例的定义,掌握比例的基本性质。
2. 能够正确判断两个相关联的量成正比例还是反比例。
3. 能够运用比例解决实际问题,提高解决问题的能力。
三、教学难点与重点本节课的重点是比例的定义和比例的基本性质,难点是判断两个相关联的量成正比例还是反比例。
四、教具与学具准备1. 教具:黑板、粉笔、多媒体教学设备。
2. 学具:练习本、铅笔、直尺、三角板。
五、教学过程1. 实践情景引入:我通过展示一幅比例尺地图,让学生观察并思考:“同学们,你们能从这个地图上找到学校和家之间的距离吗?如果知道实际距离,你们能计算出学校和家之间的图上距离吗?”2. 例题讲解:我选取了一道典型例题,引导学生通过观察、讨论和操作,发现比例的基本性质。
例如:“已知一张地图上,学校到家的距离是5厘米,实际距离是10公里,求这张地图的比例尺。
”3. 随堂练习:我设计了几个随堂练习题,让学生巩固所学知识。
例如:“已知一张地图上,甲地到乙地的距离是8厘米,乙地到丙地的距离是12厘米,求这张地图的比例尺。
”4. 比例的应用:我通过实际问题,让学生运用比例解决问题。
例如:“一个长方形的长是10厘米,宽是5厘米,求它的面积。
”六、板书设计比例的定义:两个比相等的式子叫做比例。
比例的基本性质:在比例里,两内项之积等于两外项之积。
七、作业设计1. 完成练习本上的相关练习题。
2. 选取一个实际问题,运用比例解决。
八、课后反思及拓展延伸课后,我进行了深刻的反思。
比例的意义和基本性质1、比例的意义(1)表示两个比相等的式子叫做比例。
根据比例的意义能判断两个比是否能组成比例。
(2)组成比例的四个数,叫做比例的项,两端的两项叫做比例的外项,中间的两项叫做比例的内项。
24 ∶ 18 = 4 ∶ 3 外项 内项 内项 外项 2、比例的基本性质在比例里,两个外项的积等于两个内项的积。
(外项×外项=内项×内项) 如果a :b = c :d 那么 ad = bc 或例1、判断下面两个比能否组成比例。
52∶65和12∶25 方法一:用求比值的方法 方法二:因为52×25= ,65×12=52∶65= 两外项的积等于两内项的积,所以能组12∶25= 成比例。
因为两个比相等,所以能组成比例。
组成的比例是:_______________________ 组成的比例是:_________________ 例2、用3、6、9和18组成不同的比例。
点拨:根据3×18=6×9组成比例3、解比例方法:(1)根据比例的基本性质把比例转化成方程。
(2)通过解方程求出比例中的未知项。
(3)书写格式和解方程相同。
例3、解比例 (1) 10x =2.10 (2)43∶81=X ∶125教学拓展【易错题】1、判断:5X=6y ,则 X ∶y=5∶6 ( )2、解比例:X36=9∶3真题训练:1.在比例里,两个( )的积和两个( )的积相等。
2.如果7ɑ=5b ,那么ɑ:b=( ):( ),ɑ:5=( ):( )3.10:( )=( ):8 = 5:1 =4.下面哪组中的两个比可以组成比例。
( )A. 6:9和9:12B.1.4:2和2:40C.51:21 和 41:85 D.9.5:13和5.9:3.15. 红星小学六年级四个班的学生人数在165到170之间,其中男女人数的比是3:4。
那么六年级学生的总人数是( )。
( A )166 (B)167 (C)168 (D)169 6.比值相等的两个比可以组成比例。