奥本海姆信 与系统 部分习题答案
- 格式:pdf
- 大小:1.06 MB
- 文档页数:26
奥本海姆《信号与系统》(第2版)配套模拟试题及详解一、单项选择题(本大题共5小题,每题3分,共15分;在每小题列出的四个选项中只有一个是符合题目要求的,错选、多选或未选均无分。
)1.用下列差分方程描述的系统为线性系统的是______。
A.B.C.D.【答案】C查看答案【解析】A项,方程右边出现常数3,是非线性关系。
B项,出现y(k-1)y(k-2)项,是非线性关系。
D项,出现|f(k)|,是非线性关系。
2.单边Z变换的原序列,f(k)等于______。
【答案】A查看答案【解析】3.系统的幅频特性和相频特性如图1(a)、(b)所示,则下列信号通过该系统时,不产生失真的是______。
图1A.B.C.D.【答案】B查看答案【解析】由系统的幅频特性和相频特性可知:若输入信号的频率均处于w=-5~5之间,既不产生幅度失真又不产生相位失真。
只有B满足这一条件。
4.试确定序列是否为周期序列。
若是,其周期N为______。
A.不是周期序列B.是,N=24C.是,N=12D.是,N=8【答案】B查看答案【解析】因为,得,得。
又因为是有理数,因此是周期序列。
设共同周期为N,则有。
5.信号f(t)的傅里叶变换为,则的傅里叶变换为______。
【答案】B查看答案【解析】因为,由傅里叶变换的时移性质,有,由傅里叶变换的频移性质,有二、填空题(本大题共5小题,每题3分;共15分。
)1.对连续时间信号,按采样频率采样得到的离散时间信号=______。
【答案】查看答案【解析】,其中,为离散域的频率,为连续域的频率,。
2.周期性方波x(t)如图2所示,T=2,它的四次谐波频率=______rad/s。
图2【答案】查看答案【解析】基波频率,则四次谐波频率为。
3.周期矩形信号f(t)的波形如图3,则该信号的谱线间隔为0.1Hz,其中,直流分量为______。
图3【答案】0.4查看答案【解析】由f(t)波形可知T=l0S,基波频率即谱线间隔为0.1Hz。
第七章7.6 解:见 8.17.8 解: (a) )]()([)21()(50πωδπωδπωk k j j X n k +--=∑= 信号截止频率 πω5=m采样频率 m s T ωπππω2102.022====对于正弦信号,会发生混叠 (b) ππω5==T c所以输出信号 )sin()21()(40t k t y k k π∑== 所以j e e t g tjk t jk k k 2)21()(40ππ-=-=∑ ∑-==44k t jk k e a π其中,⎪⎪⎩⎪⎪⎨⎧≤≤-=≤≤-=+-+14)21(0041)21(11k j k k j a k k k 7.10 解:(a) 错 信号时域为矩形波,频域为sinc 函数,无论怎么样都会混叠 (b) 符合采样定理,对(c) 符合采样定理,对7.15 解:要求 76N 2,76273ππππω>=⨯>即s 237max =<∴N N 取 7.16 解: 易见ππn n 2sin2满足性质1, 3对性质2,考虑时域乘积得频域卷积,易见2))2/sin((4][n n n x ππ=7.19 解:设x[n]经零值插入后得输出为z[n] (a) 531πω≤时, ⎪⎩⎪⎨⎧><=1101)(ωωωωωj e X ⎪⎪⎩⎪⎪⎨⎧>≤<=30531)(11ωωπωωωj e Z所以 ⎪⎪⎩⎪⎪⎨⎧><=3031)(11ωωωωωj e W因此可得,n n n w πω/)3(sin ][1=又由 ]5[][n w n y =可得 )5/()35(sin][1n n n y πω= (b) 531πω>时 ⎪⎪⎩⎪⎪⎨⎧>><=53031)(11πωωωωωj e Z)/()5(sin ][n nn w ππ=∴][51)5/()(sin ][n n n n y δππ== 7.21 解: 采样频率m s Tωππω2200002>== 即πω10000<m 时,可以恢复 (a) 可以(b) 不可以(c) 不能确定(d) 可以 (e) 不可以 (f) 可以 (g) 可以7.22 解:)(*)()(21t x t x t y = 则有πωωωω10000)()()(21>==j X j X j Y πω1000=∴m 因而 πωω20002=>m s故 s T s 3102-=<ωπ 7.23 解:见 8.27.24 解:见 8.37.29 解:见 8.107.31 解:见 8.157.35 解:见 8.247.38 解:见 8.97.41 解:见 8.197.45 解: 见 8.17。
Chapter 44.1 Solution: (a). ⎰∞∞--=dt e t x jw X jwt )()(⎰∞∞-----=dt e t u e jwt t )1()1(2 ⎰∞∞-----=dt e t u e jwt t )1()1(2⎰⎰∞--∞---==12)2(1)1(2dt e e dt e e t jw jwt tjwe jw e e jw e e jw jw t jw +=---=--=---∞--222)2(21)2(24.2 Solution: (a). ⎰∞∞--=dt e t x jw X jwt )()(⎰∞∞++=-j w t -1)]e -(t 1)(t [dt δδ⎰⎰∞∞∞∞-++=-j w t-j w t-1)e -(t 1)e (tdt dt δδw e e jw jw cos 2=+=-+(b). ⎰∞∞--=dt e t x jw X jwt )()(dt e t u t u dtdjwt -∞∞--+--=⎰)}2()2({ dt e t t jwt -∞∞--+---=⎰)}2()2({δδ dt e t dt e t jwt jwt -∞∞--∞∞--+---=⎰⎰)2()2(δδw j e ew j wj 2s i n 222-=+-=-+4.3 Solution: (a). )42sin(ππ+t =je et j t j 2)42()42(ππππ+-+-=je e ee tj jtj j22424ππππ---t j e π2 −→←FT)2(2ππδ-wt j e π2- −→←FT)2(2ππδ+w∴ )42sin(ππ+t −→←FT)}2()2({44πδπδπππ+---w ew e jjj4.4 Solution: (a). dw e jw X t x jwt)(21)(⎰∞∞-=π dw e w w w jwt )}4()4()(2{21ππδππδπδπ++-+=⎰∞∞- })4()4()(2{21dw e w dw e w dw e w jwt jwtjwt ππδππδπδπ++-+=⎰⎰⎰∞∞-∞∞-∞∞-)4cos(1)}4cos(22{21}2{2144t t e e t j t j ππππππππ+=+=++=- 4.5 Solution:dw e e jw X dw e jw X t x jwt jw X j jwt )()(21)(21)(<∞∞-∞∞-⎰⎰==ππdw e ew u w u jwt w j )23()}3()3({221ππ+-∞∞---+=⎰dw ee dw ee wt j j jwtw j )23(33)23(331--+--⎰⎰==ππππ)23(1)23(1)23(3)23(333)23(--⋅-=-⋅-=-----t j e e t j e t j t j wt j ππ)23()23(3sin 2)23()23(3sin 21---=--⋅-=t t j t j t j ππ If0)(=t x ,then ⎪⎪⎩⎪⎪⎨⎧≠-±±==-0)23(,...2,1,0,.........)23(3t k k t πThat is 0., (2)33≠+=k k t π 4.6 Solution:Accorrding to the properties of the Fourier transform, we ’ll get: (a). )(t x −→←FT)(jw X∴)1(t x - −→←FT jwe jw X --)()1(t x -- −→←FT jwe jw X +-)(then)1()1()(1t x t x t x --+-=−→←FTw jw X e jw X e jw X jw X jw jw cos )(2)()()(1-=-+-=--(b). )(t x −→←FT)(jw X)(b at x + −→←FTwa bj e aw j X a )(1∴)63()(2-=t x t x −→←FTw j e wj X jw X 22)3(31)(-= (c).)(t x −→←FT)(jw X )1(-t x −→←FTjw e jw X -)()(22t x dtd −→←FT)()(2jw X jw∴)1()(223-=t x dtd t x −→←FTjw e jw X w jw X --=)()(234.7. (a). neither,neither Solution: )2()()(1--=w u w u jw X∴ )()(*11jw X jw X -≠,that is )()(*t x t x ≠so )(t x is not real.)()(*11jw X jw X -≠-,that is )()(*t x t x -≠so )(t x is not imaginary.And )()(11jw X jw X -≠,that is )()(t x t x -≠so )(t x is not even.)()(11jw X jw X --≠,that is )()(t x t x --≠so )(t x is not odd.4.10. (a). s olution:suppose t t t f πsin )(= −→←FT⎪⎩⎪⎨⎧><=1,.......01,........1)(w w jw Fthen 21)]([)(t f t f =−→←FT)()(21jw F jw F *π=)(1jw F )()(21)(1jw F jw F jw F '*='π)]1()1([)(21--+*=w w jw F δδπ)]}1([)]1([{21--+=w j F w j F π⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤-<≤-=others w w ..........,.........020...,.........2102...,.........21ππ∴)(1jw F ⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤--<≤-+=others w w w w ..........,.........020..., (22)02...,.........22ππ∴ )()(1t tf t x = −→←FT)()(1jw F dw d j jw X =⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤-<≤-=others w j w j..........,.........020...,.........202...,.........2ππ (b). Solution:dw jw X dt t t t A 222)(21sin ⎰⎰∞∞-∞∞-=⎪⎭⎫⎝⎛=ππ32222214421221πππππ===⎰-dw j 4.11 A=1/3, B=3 Solution: )()()(t h t x t y *= −→←FT)()()(jw H jw X jw Y =and )3()3()(t h t x t g *=)3(t x −→←FT)3(31w j X )3(t h −→←FT)3(31w j H then )3(31)3(31)(w j H w j X jw G ⋅=)3(91wj Y =−→←FT)3(31)(t y t g =∴3,31==B A4.13. Solution:(a). According to the property of FT, )(t tx −→←FT)(jw X dwdj te- −→←FT212w+∴tte- −→←FT()()222221412212w wj w w j w dw d j+-=+⋅-=⎪⎭⎫ ⎝⎛+(b). According to the duality of FT, If)(t x −→←FT)(jw X then )(jt X −→←FT)(2w f -πandtte- −→←FT()2214w wj +-tjte- −→←FT()2214w w+∴()2214t t+ −→←FT wwwej ew j ----=-ππ2)(24.14 Solution: From (1), we know )(t x is real and 0)(≥t x ;From (2), we know : )(2t u Ae t- −→←FT)()1(jw X jw +And we also know )(2t u Ae t - −→←FT2+jw ASo )()1(jw X jw +=2+jw AThat is21)2)(1()(+-++=++=jw Ajw A jw jw A jw X−→←FT )()()(2t u Ae t u Ae t x t t ---=From (3), we know: π2)(2=⎰∞∞-dw jw XBut dt e e A dt t x dw jw X t t 22222)(2)(2)(--∞∞∞-∞∞--==⎰⎰⎰ππdt e e e At t t )2(243202---∞+-=⎰π∞----+---=04322)4322(2tt t e e e A π22122)413221(2A A ππ=+-= So 2122A π=π2, that is 122=A, 12±=AWhile 0)(≥t x ,12=AThen)()()(2t u Ae t u Ae t x t t ---=)()(122t u e e t t ---=4.15 Solution:From (3), we know:tet - −→←FT)}(Re{jw X)}(Re{jw X 2)()(jw X jw X *+=−→←FT2)()(t x t x -+*From (1)、(2), we know: )(t x is real and )()()(t u t x t x =∴2)()(t x t x -+*=2)()(t x t x -+=te t -∴ )()]()([t u t x t x -+*=)()]()([t u t x t x -+===)()()(t x t u t x )(2t u e t t-then=)(t x )(2t u te t -4.16. Solution:(a).)(sin )4()4()4sin()(t g t t k t k kt x k ⎪⎭⎫ ⎝⎛=-=∑∞-∞=ππδππ∴ )4()(πδπk t t g k -=∑∞-∞=(b).)4(sin )(sin )(πδπππk t t t t g t t t x k -⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=∑∞-∞=⎪⎭⎫ ⎝⎛=t t t f πsin )(−→←FT⎩⎨⎧≤=others w jw F ...,.........01....,.........1)()4()(πδπk t t g k -=∑∞-∞=−→←FT)8(8)4/2(4/2)(k w k w jw G k k -=-=∑∑∞-∞=∞-∞=δπππδπππ∴ ))8((4)()(21)(k w j F jw G jw F jw X k -=*=∑∞-∞=π∴ In one period, ⎪⎩⎪⎨⎧≤<≤=41.,.........01.,.........4)(w w jw X 4.21. (g).Solution: ⎰∞∞--=dt e t x jw X jwt )()(⎰⎰⎰------++-=211112dt e dt tedt ejwt jwtjwt=21111112}{1jw ejw e te jwjwe jwt jwt jwt jwt -+-------------222)(jw e e jw e e e e e e jwjw jw w j jw jw w j jw ----++++-=----222)(jw e e jw e e jwjw w j w j ---+=--jw wjww j w w j jw w 2cos 2sin 2sin 22cos 222-=----=4.22 Solution:(a). According to the duality of FT: )(jt X −→←FT)(2w x -π, we will gett Wt πsin −→←FT⎪⎩⎪⎨⎧>≤=Ww W w jw X ,...0,...1)(∴when )2()]2(3sin[2)(ππ--=w w jw X , ⎪⎩⎪⎨⎧>≤=3.......,.........03.,.........)(2t t e t x tj π(b). 22)34cos()(4343)34()34(wj jwj jw j w j e e ee e ew jw X --+-+-=-=+=πππππ∴2)4()4()(33--+=-t e t e t x jjδδππ(d). )]2()2([3)]1()1([2)(πδπδδδ++-++--=w w w w jw X∴ t t j e e e e t x t j t j jt jt πππππππ2cos 3sin 2)(23)(1)(22+=++-=-- 4.24. (a). Solution:for )(t x is real, we have:(1). 0)}(Re{=jw X02)()()}(Re{=+=*jw X jw X jw X−→←FT02)()(2)()()}({=-+=-+=*t x t x t x t x t x Ev ∴To satisfy 0)}(Re{=jw X , )()(t x t x --=, )(t x is real and odd.∴ figure (a), (d) satisfy the condition.(2). 0)}(Im{=jw X02)()()}(Im{=-=*jw X jw X jw X−→←FT02)()(2)()()}({=--=--=*t x t x t x t x t x Ev ∴To satisfy 0)}(Im{=jw X , )()(t x t x -=, )(t x is real and even.∴ figure (e), (f) satisfy the condition.(3). There exists a real αsuch that )(jw X e w j α is real)(jw X e w j α is real∴ 0)}(Im{=jw X e w j α, and )(jw X e w j α −→←FT)(α+t x ∴ To satisfy 0)}(Im{=jw X e w j α, )(α+t x is real and even. ∴ figure(a) and (b) )0(=α, (e) and (f) )0(≠αsatisfy the condition.(4). 0)(=⎰∞∞-dw jw X)0(x =0)(=⎰∞∞-dw jw X∴ If 0)(=t x when 0=t , then it can satisfy 0)(=⎰∞∞-dw jw X∴ figure(a) , (c), (d) and (f) satisfy the condition.Note: (b) is not satisfies the condition.)1(2-t δ −→←FT2 (5). 0)(=⎰∞∞-dw jw wX)(t x dtd −→←FT)(jw jwX∴ To satisfy0)(=⎰∞∞-dw jw wX , it only needs0)(0==t t x dt d)1(2-t δ −→←FT2, 02=⎰∞∞-wdw∴ figure (b), (c), (e), (f) satisfy this condition.(6). )(jw X is periodicIf )(jw X is periodic, )(t x is discrete in time domain.So only (b) satisfies the condition.4.25. Solution:(a). Suppose )(1t x =)1(+t x , then we ’ll find )(1t x is real and even. So )(1jw X is real and even, which means 0)(1=<jw X .)(1jw X =jw e jw X )(∴ )(jw X =jw e jw X -)(1∴ ⎩⎨⎧≤-≥-=<0)(,......0)(,.........)(11jw X w jw X w jw X π (b). dt t x X j X )()0()0(⎰∞∞-== is the integral area of )(t xthen, 718122124)0(=-=**-*=X (c). πππ422)0(2)(=*==⎰∞∞-x dw jw X (e).dt t x dw jw X 22)(2)(⎰⎰∞∞-∞∞-=π⎪⎭⎫ ⎝⎛++-+=⎰⎰⎰⎰-dt dt t dt t dt 2322212102012)2(22ππ376=4.27. Solution: (1).)(t u −→←FTjww 1)(2+πδ∴ )3()2(2)1()(-+---=t u t u t u t x−→←FT)2(1)(2)(32wj w j jw e e e jw w jw X ---+-⎪⎪⎭⎫ ⎝⎛+=πδ)2(132w j w j jwe e e jw---+-=(2).dt e t x T dt et x T a t T jk Tt Tjk T k ππ22)(1)(~1--⎰⎰==)2(1)(12Tjk X T dte t x T t T jk ππ==-∞∞-⎰4.30. Solution: (a).⎩⎨⎧≤=others w jw G ., (02).,.........1)( ∴ tt t t t t g ππcos sin 22sin )(==t t x t g cos )()(=∴ ttt x πsin 2)(=4.32 Solution: (a).)()()(11t h t x t y *=)1())1(4sin()(--=t t t h π −→←FT ⎩⎨⎧≤=-others w e jw H jw .........,.........04....,.........)()26cos()(1π+=t t x −→←FT)}6()6({)(121-++=w w ejw X jδδππ∴ )()()(11jw H jw X jw Y =0=(b).)()()(22t h t x t y *=)1())1(4sin()(--=t t t h π −→←FT⎩⎨⎧≤=-others w e jw H jw .........,.........04....,.........)()3sin()21()(02kt t x k k ∑∞==−→←FT)}3()3({)21()(02k w k w j jw X k k --+=∑∞=δδπ∴ ⎪⎪⎩⎪⎪⎨⎧=--+=-==--others k w w e j k w w e j jw H jw X jw Y jw jw ........,.........01)},...3()3({210....)},.......()({)()()(22δδπδδπ⎪⎪⎩⎪⎪⎨⎧=--+==-o t h e r s k w e j w e j k j j ........................................................,.........01..),........3(21)3(210.......................................................,.........033δπδπ∴ only when 1k =, 2()Y j ω has output impulse .∴ )1(3sin 212214141)()1(3)1(333332-=--=-=-----t j e e e e j e e j t y t j t j t j t j 4.34 Solution: (a).)()()(jw H jw X jw Y =65)(4564)(22+++=+-+=jw jw jw jw w jw jw H∴ }4){(}65)){((2+=++jw jw X jw jw jw Y∴)(4)()(6)(5)(22t x t x dt dt y t y dt d t y dt d +=++ (b).65)(4564)(22+++=+-+=jw jw jw jw w jw jw H3122)3)(2(4+-++=+++=jw jw jw jw jw∴ )()(2)(32t u e t u e t h t t ---=(c). )()()(44t u te t u e t x t t ---=∴ 22)4(3)4(141)(++=+-+=jw jw jw jw jw X)3)(2(4564)(2+++=+-+=jw jw jw jw w jw jw H∴ )3)(2(4)4(3)()()(2+++++==jw jw jw jw jw jw H jw X jw Y)2(2/1)4(2/1)2)(4(1+++-=++=jw jw jw jw∴ ))()((21)(42t u e t u e t y t t---=4.35 Solution: (a).0........,.........)(>+-=a jwa jwa jw Hthe magnitude is: 1)(2222=++=+-=wa w a jwa jwa jw Hthe phase is: ⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=<a w arctg a w arctg a w arctg jw H 2)( the impulse response is:jwa jwjw a a jw a jw a jw H +-+=+-=)()()(2))(()()(t t u ae t u e dtd t u ae t h at atat δ-=-=--- (b). )3cos(cos )3/cos()(t t t t x ++= +-++=)3/1()3/1({)(w w jw X δδπ)}3()3()1()1(-+++-+++w w w w δδδδandarctgw j e jwjwjw H 211)(-=+-=so )()()(jw H jw X jw y =+-++=---)3/1()3/1({)3/1(2)3/1(2w e w e a r c t g j a r c t gj δδπ)1()1()1(2)1(2-+++---w e w e arctg j arctg j δδ)}3()3()3(2)3(2-+++---w e w e arctg j arctg j δδ+-++=-)3/1()3/1({3/3/w e w e j j δδπππ)1()1(2/2/-+++-w e w e j j δδππ)}3()3(3/23/2-+++-w e w e j j δδππThen )3/23cos()2/cos()3/3/cos()(πππ-+-+-=t t t t yWe can find that y(t) is the sum of a phase shift for each x(t)’s component. 4.36 Solution: (a). )(][)(3t u e e t x t t --+=∴ )3)(1()2(23111)(+++=+++=jw jw jw jw jw jw X )(]22[)(4t u e e t y t t ---=∴ )4)(1(64212)(++=+-++=jw jw jw jw jw Y∴ )2)(4()3(3)()()(+++==jw jw jw jw X jw Y jw H(b). According to (a)’s result,22/342/3)2)(4()3(3)(+++=+++=jw jw jw jw jw jw H∴ )()(23)(24t u e e t h t t--+=(c).86)(93)2)(4()3(3)(2+++=+++=jw jw jw jw jw jw jw H∴ )}93){(}86)){((2+=++jw jw X jw jw jw Y∴ )(9)(3)(8)(6)(22t x t x dt dt y t y dt d t y dtd +=++4.37 Solution:(a). Supposing )(t x −→←FT)(jw X ,and from the differentiation property of FT,we canget22()d x t dt −→←FT 2()()j X j ωω22()(1)2()(1)d x t t t t dt δδδ=+-+-∴ 2/2/222()()2()(2sin(/2))j j j j j X j e e ee j ωωωωωωω--=-+=-=Finally, 22sin(/2)()[]X j ωωω=(b).(c). It is obvious that another signal g(t) sketched as following figure can reduce:~()()(4)k x t g t t k δ∞=-∞=*-∑(d).(4)()22k k t k k ππδδω∞∞=-∞=-∞-↔-∑∑From the convolution property of FT,we can get: ~~()()(4)()()()222k k kx t g t t k X j G jk πππδωδω∞∞=-∞=-∞=*-↔=-∑∑~~()()(4)()()()222k k kx t x t t k X j X jk πππδωδω∞∞=-∞=-∞=*-↔=-∑∑ So, we can know that,although ()G j ω is different from ()X j ω,()()22kkG j X jππ= forall integers k .4.43 Solution:We can draw a system as figure (a) ,where ,sin ttπ −→←FT ()H j ω2tshown in figure(c).Extra problems:We have known )(t x −→←FT)(jw X , prooftt x dt d π1)(* −→←FT)(jw X w ⋅ Proof: )(t x −→←FT)(jw X∴)(t x dtd −→←FT)(jw jwX)(t sign −→←FTjw2According to the duality of FT, we will get t π1 −→←FT)()(w jsign w jsign -=- ∴ tt x dt d π1)(* −→←FT)]([)(w jsign jw jwX -⋅)()()(w sign w jw X w wsign ⋅==Then, we havett x dt d π1)(* −→←FT)(jw X w ⋅)(t s )(t y )(t x t)(a )(b。
第三章 3.5 解:由于)(2t x 只是对)(1t x 做了平移变换 所以,21ωω=而由傅立叶级数的性质有,1121ωωjk k jk k k k k e a ea b b b ---+=+=)(1k k jk a a e +=--ω3.8 解:由1,k k k k a a a a ∴-==-,*是虚的奇函数由2,ππω===TT 2,2 由3,)(t x 至多有三个非零傅立叶级数系数,110,,-a a a 又⎰==Tdt t x T a 0)(10,11a a -=- )()(1t j tj e ea t x ππ--=∴由4,利用parseval 定理,21,1112121===+--a a a a 即 j a j a 22,2211μ=±=∴- )sin(2)(t t x π±=∴3.11 解:由1,k a 是实偶函数由2,3可知,55,101111==⇒==-a a a N由4,∑∑∑==-==⇒==909552225050][101n k k kka a n x又511==-a a ⎩⎨⎧±==∴取其它值k N k a k ,01,5综上,)5cos(10][552)(2n ea ea n x k nNj k N k nNj k πππ===∑∑-==故有,0,5,10===C B A π3.22 解:(a). (a) 2T =,()x t Q 是实的奇函数,00a ∴=11111111111(1)||,(0)22(1)(1)()kjk t jk t jk t k k k jk t jk tk k j a te te e k jk jk k j j x t e e k k ππππππππππ-------∞=-∞=-⎡⎤-==-+=≠⎢⎥⎣⎦--∴=+⎰∑∑b). 6T =,012a ∴=00,()(1)jkw t k k k k k even a x t a e j k odd k π∞=-∞⎧⎪=∴=⎨-⎪⎩∑c). T=3, 01a ∴=02/3/3223sin(2/3)2sin(/3),(0)2()jk jk k jk tkk ja e k e k k k x t a eππωπππ∞=-∞⎡⎤=+≠⎣⎦∴=∑3.28 解:a). a) N=7, 472675sin()117[]77sin()7jk j knk n ek a x n ek ππππ--===∑ b). N=6, ∑∑=--=----•===503345033116161][61n k j k j n kn j kn j k e e e e n x a ππππ =k kek j 6sin 32sin612πππ- 51≤≤k ; 320=ac). ∑=-=----+++-==223233323]212[61][61n n k j k j k j k j kn j k e e e e e n x a πππππ=k k 32cos 313cos 3261ππ-+, 50≤≤k c). (c) )(2114sin 1][44nj n j e e jnn x πππ---=-=, (30≤≤n )∑∑∑=+-=--=-+-=80)21(280)21(2802818141n k n j n k n j n kn j k ej e j e a πππ=)21(2)21(2)21(2)21(222118111811141+-+---------•+--•---•k j k j k j k j k j kj e e j e e j e e ππππππ =22cos 22221114122----•--k e e k j k j πππ 即: ,423)21(4110-=+-=a ),2cos 21()1(411πk a k k +-=+ 3,2,1=k (d) ∑∑∑=+-=--=-+-=110)23(6110)23(61106241241121n k n j n k n j n kn j k e j e j e a πππ =)23(6)23(2)23(6)23(262112411124111121+-+---------•+--•---•k j k j k j k j k j kj e ej e e j e e ππππππ = 26cos 222611112162-•---•--k e e k j k j πππ 即: 1221122226110-=-•-=a ,3cos 16cos212126cos 22121kk k a k πππ+-=--= 111≤≤k 3.30 N=6, a). 0111,1/2,a a a -=== b). */411/2,j b b eπ--==c). 22k l k ll c a b-=-=∑,可求得:*/4*/401122cos(/4)/2,/2,/2j j c c c ec c e πππ----===== 3.34解:设0(),jk tkk y t b eω∞=-∞=∑则0();k k b a H k ω=其中k k a b 、分别是()x t 和()y t 的傅里叶级数系数。
系统(第二版)-学习说明(练习答案)系计算机工程系2005.12目录17第35章第62章第83章第109章第119章第132章第140章160章答案1.1从极坐标转换:1.2从笛卡尔极坐标转换:limlim dtdtdt=cos(t)。
因此,信号翻转限制信号对,所以因此,我们知道(2)线性压缩,因为线性压缩。
因此,基态周期奇信号,所有值为零时为零只有当周期复指数时。
10 10复数指数乘以衰减指数。
因此,周期信号。
复指数基本周期信号。
fundamentalperiod我们得到fundamentalperiod complexexponential=3/5。
找不到任何整数整数。
因此,定期1.10。
x(t)=2cos(10t+1)-sin(4t-1)周期第一项第一项,整个信号周期至少有多个第二项。
-3-1-1-2-3-3-3第一项第二项第二项整个信号周期,至少在35.1.12中有多个共同的三项。
图1.12。
翻转信号对,所以,no=-3.1.13其导数图1.14。
因此[n-3]=2x[n-2]+4x[n-3]+4x[n-4])=2x[n-2]+5x输入输出关系y[n]=2x[n-2]+5x[n-3]2x[n-4]输入输出关系的连接序列是反向的。
我们可以很容易地证明[n-3])+4(x输入-输出关系在y[n]=2x[n-2]+5x[n-3]2x[n-4]1.16无记忆性,因为过去值我们可能总是得出系统输出,因为有时可能取决于考虑两个任意输入(sin(t))的未来值,让线性组合任意标量给系统相应的输出线性。
1.18.(a)考虑两个任意输入线性组合任意标量。
给定系统,相应的输出随机输入相应的输出。
考虑第二个输入输出对应的Alsonote+1)B。
因此+1)B.1.19考虑两个任意输入(t-1)让线性组合任意标量。
给定系统,相应的输出为线性。
(ii)考虑相应输出的任意输入。
考虑第二输入输出相应的输出。
考虑两个任意输入[n-2]。
第3章周期信号的傅里叶级数表示基本题3.1 有一实值连续时间周期信号x(t),其基波周期了T=8,x(t)的非零傅里叶级数系数为a1=a-1=2,a3=a-3=4j。
试将x(t)表示成:解:3.2 有一实值离散时间周期信号x[n],其基波周期N=5,x[n]的非零傅里叶级数系数为,试将x[n]表示成:解:3.3 对下面连续时间周期信号求基波频率ω0和傅里叶级数系数a k,以表示成解:即非零的傅里叶级数系数为3.4 利用傅里叶级数分析式计算下连续时间周期信号(基波频率ω0=π)的系数a k:解:因ω0=π,故3.5 设x1(t)是一连续时间周期信号,其基波频率为叫ω1,傅里叶系数为a k,已知x2(t)=x1(1-t)十x1(t-1),问x2(t)的基波频率ω2与ω1是什么关系?求x2(t)的傅里叶级数系数b k与系数a k之间的关系。
解:x1(1-t)和x1(t-1)的基波频率都是ω1,则它们的基波周期都是T1=2π/π。
因为x2(t)是x1(1-t)和x1(t-1)的线性组合,所以x2(t)的基波周期,即ω2=ω1。
又故即3.6 有三个连续时间周期信号,其傅里叶级数表示如下:利用傅里叶级数性质回答下列问题:(a)三个信号中哪些是实值的?(b)哪些又是偶函数?解:(a)与式对照可知,对于x1(t),有由共轭对称性可知,若x1(t)为实信号,则有显然故x1(t)不是实信号。
同理,对于x2(t),对于x3(t),由于故可知x2(t)和x3(t)都是实信号。
(b)由于偶函数的傅里叶级数是偶函数,由上可知,只有x2(t)的a k是偶函数,故只有x2(t)是偶信号。
3.7 假定周期信号x(t)有基波周期为T,傅里叶系数为,的傅里叶级数系数为b k。
已知,试利用傅里叶级数的性质求a k用b k和T表达的表达式。
解:当k=0时,故3.8 现对一信号给出如下信息:(1)x(t)是实的且为奇函数;(2)x(t)是周期的,周期T=2,傅里叶级数为a k;(3)对|k|>1,a k=0;(4)试确定两个不同的信号都满足这些条件。
Signals and SystemChap11.6 Determine whether or not each of the following signals is periodic:(a): (/4)1()2()j t x t e u t π+= (b): 2[][][]x n u n u n =+-(c): 3[]{[4][14]}k x n n k n k δδ∞=-∞=----∑Solution:(a).No 【周期信号无始无终,单边肯定不周期】Because 12cos()2sin(),0()440,0t j t t x t t ππ⎧+++>⎪=⎨⎪<⎩ when t<0, )(1t x =0. (b).No 【注意n =0】 Because 21,0[]2,01,0n n n n x >⎧⎪==⎨⎪<⎩(c).Y es 【画图、归纳】 Because∑∞-∞=--+--+=+k k m n k m n m n x ]}414[]44[{]4[3δδ∑∞-∞=------=k m k n m k n )]}(41[)](4[{δδ{[4][14]}k n k n k δδ∞=-∞=----∑N=4.1.9 Determine whether or not each of the following signals is periodic, if a signal is periodic, specify its fundamental period:(a): 101()j tx t je =(b): (1)2()j t x t e -+=(c): 73[]j n x n e π=(d): 3(1/2)/54[]3j n x n e π+= (e): 3/5(1/2)5[]3j n x n e += Solution: (a). T=π/5Because 0w =10, T=2π/10=π/5. (b). Aperiodic.Because jt t e e t x --=)(2, while t e -is not periodic, )(2t x is not periodic. (c). N=2Because 0w =7π, N=(2π/0w )*m, and m=7. (d). N=10Because n j j e e n x )5/3(10/343)(ππ=, that is 0w =3π/5,N=(2π/0w )*m, and m=3. (e). Aperiodic.Because 0w =3/5, N=(2π/0w )*m=10πm/3 , it ’s not a rational number.1.14 consider a periodic signal 1,01()2,12t x t t ≤≤⎧=⎨-<<⎩with periodT=2. The derivative of this signal is related to the “impulsetrain ”()(2)k g t t k δ∞=-∞=-∑, with period T=2. It can be shownthat1122()()()dx t A g t t A g t t dt=-+-. Determine the values of1A , 1t , 2A , 2t .Solution:A 1=3, t 1=0, A 2=-3, t 2=1 or -1 Because∑∞-∞=-=k k t t g )2()(δ,)1(3)(3)(--=t g t g dtt dx1.15. Consider a system S with input x[n] and output y[n].This system is obtained through a series interconnection of a system S 1 followed by a system S2. The input-output relationships for S 1 and S 2 areS 1: ],1[4][2][111-+=n x n x n y S 2: ]3[21]2[][222-+-=n x n x n yWhere ][1n x and ][2n x denote input signals.(a) Determine the input-output relationship for system S.(b)Does the input-output relationship of system S change if the order in which S 1 and S 2 are connected in series is reversed(ie., if S2 follows S 1)? Solution: (a)]3[21]2[][222-+-=n x n x n y]3[21]2[11-+-=n y n y]}4[4]3[2{21]}3[4]2[2{1111-+-+-+-=n x n x n x n x]4[2]3[5]2[2111-+-+-=n x n x n xThen, ]4[2]3[5]2[2][-+-+-=n x n x n x n y【可以考虑先求取单位脉冲响应,再做卷积】(b).No. because it ’s linear, S 1 and S 2 do not diverge.1.16. Consider a discrete-time system with input x[n] and output y[n].The input-output relationship for this system is]2[][][-=n x n x n y(a) Is the system memory less?(b) Determine the system output when the input is ][n A δ, where A is any real or complex number . (c) Is the system invertible? Solution: (a). No.For example, when n=0, y[0]=x[0]x[-2]. So the system is memory. (b). y[n]=0.When the input is ][n A δ,]2[][][2-=n n A n y δδ, so y[n]=0.(c). No.For example, when x[n]=0, y[n]=0; when x[n]=][n A δ, y[n]=0. So the system is not invertible.1.17.Consider a continuous-time system with input x(t) and output y(t) related by ))(sin()(t x t y =, (a) Is this system causal? (b) Is this system linear? Solution: (A). No.For example,)0()(x y =-π. So it ’s not causal.【得到什么启示?】 (b). Y es.Because : ))(sin()(11t x t y = , (sin()(22tx t y =)()())(sin())(sin()(21213t by t ay t bx t ax t y +=+=1.21. A continuous-time signal ()x t is shown in Figure P1.21. Sketch and label carefully each of the following signals:(a): (1)x t - (b): (2)x t - (c): (21)x t + (d): (4/2)x t - (e): [()()]()x t x t u t +-(f): ()[(3/2)(3/2)]x t t t δδ+--Solution: (a).(b).(c). (d).1.22. A discrete-time signal ][n x is shown in as the following. Sketch and label carefully each of the following signals: (a): [4]x n - (b): [3]x n - (c): [3]x n(d): [31]x n + (e): [][3]x n u n -(f): [2][2]x n n δ--(g): 11[](1)[]22nx n x n +-(h): 2[(1)]x n -Solution:(a).(b).(e).(f) ]2[-n δ(g)1.25. Determine whether or not each of the following continuous-time signals is periodic. If the signal is periodic, determine its fundamental period.(a): ()3cos(4)3x t t π=+ (b): (1)()j t x t e π-=(c): 2()[cos(2)]3x t t π=-(d): (){cos(4)()}x t t u t ενπ=(e): (){sin(4)()}x t t u t ενπ= (f): (2)()t n n x t e∞--=-∞=∑Solution:(a).Periodic. T=π/2. Solution: T=2π/4=π/2. (b). Periodic. T=2.Solution: T=2π/π=2.(c). Periodic. T=π/2.【括号内周期,平方后仍然周期,或者做三角变换】 (d). Periodic. T=0.5. Solution: )}()4{cos()(t u t E t x v π= )}())(4cos()()4{cos(21t u t t u t --+=ππ )}()(){4cos(21t u t u t -+=π)4cos(21t π=So, T=2π/4π=0.5【值得商榷】 (e)、(f)非周期信号。
Chapter 44.1 Solution: (a). ⎰∞∞--=dt e t x jw X jwt )()(⎰∞∞-----=dt e t u e jwt t )1()1(2 ⎰∞∞-----=dt e t u e jwt t )1()1(2⎰⎰∞--∞---==12)2(1)1(2dt e e dt e e t jw jwt tjwe jw e e jw e e jw jw t jw +=---=--=---∞--222)2(21)2(24.2 Solution: (a). ⎰∞∞--=dt e t x jw X jwt )()(⎰∞∞++=-j w t -1)]e -(t 1)(t [dt δδ⎰⎰∞∞∞∞-++=-j w t-j w t-1)e -(t 1)e (tdt dt δδw e e jw jw cos 2=+=-+(b). ⎰∞∞--=dt e t x jw X jwt )()(dt e t u t u dtdjwt -∞∞--+--=⎰)}2()2({ dt e t t jwt -∞∞--+---=⎰)}2()2({δδ dt e t dt e t jwt jwt -∞∞--∞∞--+---=⎰⎰)2()2(δδw j e ew j wj 2s i n 222-=+-=-+4.3 Solution: (a). )42sin(ππ+t =je et j t j 2)42()42(ππππ+-+-=je e ee tj jtj j22424ππππ---t j e π2 −→←FT)2(2ππδ-wt j e π2- −→←FT)2(2ππδ+w∴ )42sin(ππ+t −→←FT)}2()2({44πδπδπππ+---w ew e jjj4.4 Solution: (a). dw e jw X t x jwt)(21)(⎰∞∞-=π dw e w w w jwt )}4()4()(2{21ππδππδπδπ++-+=⎰∞∞- })4()4()(2{21dw e w dw e w dw e w jwt jwtjwt ππδππδπδπ++-+=⎰⎰⎰∞∞-∞∞-∞∞-)4cos(1)}4cos(22{21}2{2144t t e e t j t j ππππππππ+=+=++=- 4.5 Solution:dw e e jw X dw e jw X t x jwt jw X j jwt )()(21)(21)(<∞∞-∞∞-⎰⎰==ππdw e ew u w u jwt w j )23()}3()3({221ππ+-∞∞---+=⎰dw ee dw ee wt j j jwtw j )23(33)23(331--+--⎰⎰==ππππ)23(1)23(1)23(3)23(333)23(--⋅-=-⋅-=-----t j e e t j e t j t j wt j ππ)23()23(3sin 2)23()23(3sin 21---=--⋅-=t t j t j t j ππ If0)(=t x ,then ⎪⎪⎩⎪⎪⎨⎧≠-±±==-0)23(,...2,1,0,.........)23(3t k k t πThat is 0., (2)33≠+=k k t π 4.6 Solution:Accorrding to the properties of the Fourier transform, we ’ll get: (a). )(t x −→←FT)(jw X∴)1(t x - −→←FT jwe jw X --)()1(t x -- −→←FT jwe jw X +-)(then)1()1()(1t x t x t x --+-=−→←FTw jw X e jw X e jw X jw X jw jw cos )(2)()()(1-=-+-=--(b). )(t x −→←FT)(jw X)(b at x + −→←FTwa bj e aw j X a )(1∴)63()(2-=t x t x −→←FTw j e wj X jw X 22)3(31)(-= (c).)(t x −→←FT)(jw X )1(-t x −→←FTjw e jw X -)()(22t x dtd −→←FT)()(2jw X jw∴)1()(223-=t x dtd t x −→←FTjw e jw X w jw X --=)()(234.7. (a). neither,neither Solution: )2()()(1--=w u w u jw X∴ )()(*11jw X jw X -≠,that is )()(*t x t x ≠so )(t x is not real.)()(*11jw X jw X -≠-,that is )()(*t x t x -≠so )(t x is not imaginary.And )()(11jw X jw X -≠,that is )()(t x t x -≠so )(t x is not even.)()(11jw X jw X --≠,that is )()(t x t x --≠so )(t x is not odd.4.10. (a). s olution:suppose t t t f πsin )(= −→←FT⎪⎩⎪⎨⎧><=1,.......01,........1)(w w jw Fthen 21)]([)(t f t f =−→←FT)()(21jw F jw F *π=)(1jw F )()(21)(1jw F jw F jw F '*='π)]1()1([)(21--+*=w w jw F δδπ)]}1([)]1([{21--+=w j F w j F π⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤-<≤-=others w w ..........,.........020...,.........2102...,.........21ππ∴)(1jw F ⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤--<≤-+=others w w w w ..........,.........020..., (22)02...,.........22ππ∴ )()(1t tf t x = −→←FT)()(1jw F dw d j jw X =⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤-<≤-=others w j w j..........,.........020...,.........202...,.........2ππ (b). Solution:dw jw X dt t t t A 222)(21sin ⎰⎰∞∞-∞∞-=⎪⎭⎫⎝⎛=ππ32222214421221πππππ===⎰-dw j 4.11 A=1/3, B=3 Solution: )()()(t h t x t y *= −→←FT)()()(jw H jw X jw Y =and )3()3()(t h t x t g *=)3(t x −→←FT)3(31w j X )3(t h −→←FT)3(31w j H then )3(31)3(31)(w j H w j X jw G ⋅=)3(91wj Y =−→←FT)3(31)(t y t g =∴3,31==B A4.13. Solution:(a). According to the property of FT, )(t tx −→←FT)(jw X dwdj te- −→←FT212w+∴tte- −→←FT()()222221412212w wj w w j w dw d j+-=+⋅-=⎪⎭⎫ ⎝⎛+(b). According to the duality of FT, If)(t x −→←FT)(jw X then )(jt X −→←FT)(2w f -πandtte- −→←FT()2214w wj +-tjte- −→←FT()2214w w+∴()2214t t+ −→←FT wwwej ew j ----=-ππ2)(24.14 Solution: From (1), we know )(t x is real and 0)(≥t x ;From (2), we know : )(2t u Ae t- −→←FT)()1(jw X jw +And we also know )(2t u Ae t - −→←FT2+jw ASo )()1(jw X jw +=2+jw AThat is21)2)(1()(+-++=++=jw Ajw A jw jw A jw X−→←FT )()()(2t u Ae t u Ae t x t t ---=From (3), we know: π2)(2=⎰∞∞-dw jw XBut dt e e A dt t x dw jw X t t 22222)(2)(2)(--∞∞∞-∞∞--==⎰⎰⎰ππdt e e e At t t )2(243202---∞+-=⎰π∞----+---=04322)4322(2tt t e e e A π22122)413221(2A A ππ=+-= So 2122A π=π2, that is 122=A, 12±=AWhile 0)(≥t x ,12=AThen)()()(2t u Ae t u Ae t x t t ---=)()(122t u e e t t ---=4.15 Solution:From (3), we know:tet - −→←FT)}(Re{jw X)}(Re{jw X 2)()(jw X jw X *+=−→←FT2)()(t x t x -+*From (1)、(2), we know: )(t x is real and )()()(t u t x t x =∴2)()(t x t x -+*=2)()(t x t x -+=te t -∴ )()]()([t u t x t x -+*=)()]()([t u t x t x -+===)()()(t x t u t x )(2t u e t t-then=)(t x )(2t u te t -4.16. Solution:(a).)(sin )4()4()4sin()(t g t t k t k kt x k ⎪⎭⎫ ⎝⎛=-=∑∞-∞=ππδππ∴ )4()(πδπk t t g k -=∑∞-∞=(b).)4(sin )(sin )(πδπππk t t t t g t t t x k -⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=∑∞-∞=⎪⎭⎫ ⎝⎛=t t t f πsin )(−→←FT⎩⎨⎧≤=others w jw F ...,.........01....,.........1)()4()(πδπk t t g k -=∑∞-∞=−→←FT)8(8)4/2(4/2)(k w k w jw G k k -=-=∑∑∞-∞=∞-∞=δπππδπππ∴ ))8((4)()(21)(k w j F jw G jw F jw X k -=*=∑∞-∞=π∴ In one period, ⎪⎩⎪⎨⎧≤<≤=41.,.........01.,.........4)(w w jw X 4.21. (g).Solution: ⎰∞∞--=dt e t x jw X jwt )()(⎰⎰⎰------++-=211112dt e dt tedt ejwt jwtjwt=21111112}{1jw ejw e te jwjwe jwt jwt jwt jwt -+-------------222)(jw e e jw e e e e e e jwjw jw w j jw jw w j jw ----++++-=----222)(jw e e jw e e jwjw w j w j ---+=--jw wjww j w w j jw w 2cos 2sin 2sin 22cos 222-=----=4.22 Solution:(a). According to the duality of FT: )(jt X −→←FT)(2w x -π, we will gett Wt πsin −→←FT⎪⎩⎪⎨⎧>≤=Ww W w jw X ,...0,...1)(∴when )2()]2(3sin[2)(ππ--=w w jw X , ⎪⎩⎪⎨⎧>≤=3.......,.........03.,.........)(2t t e t x tj π(b). 22)34cos()(4343)34()34(wj jwj jw j w j e e ee e ew jw X --+-+-=-=+=πππππ∴2)4()4()(33--+=-t e t e t x jjδδππ(d). )]2()2([3)]1()1([2)(πδπδδδ++-++--=w w w w jw X∴ t t j e e e e t x t j t j jt jt πππππππ2cos 3sin 2)(23)(1)(22+=++-=-- 4.24. (a). Solution:for )(t x is real, we have:(1). 0)}(Re{=jw X02)()()}(Re{=+=*jw X jw X jw X−→←FT02)()(2)()()}({=-+=-+=*t x t x t x t x t x Ev ∴To satisfy 0)}(Re{=jw X , )()(t x t x --=, )(t x is real and odd.∴ figure (a), (d) satisfy the condition.(2). 0)}(Im{=jw X02)()()}(Im{=-=*jw X jw X jw X−→←FT02)()(2)()()}({=--=--=*t x t x t x t x t x Ev ∴To satisfy 0)}(Im{=jw X , )()(t x t x -=, )(t x is real and even.∴ figure (e), (f) satisfy the condition.(3). There exists a real αsuch that )(jw X e w j α is real)(jw X e w j α is real∴ 0)}(Im{=jw X e w j α, and )(jw X e w j α −→←FT)(α+t x ∴ To satisfy 0)}(Im{=jw X e w j α, )(α+t x is real and even. ∴ figure(a) and (b) )0(=α, (e) and (f) )0(≠αsatisfy the condition.(4). 0)(=⎰∞∞-dw jw X)0(x =0)(=⎰∞∞-dw jw X∴ If 0)(=t x when 0=t , then it can satisfy 0)(=⎰∞∞-dw jw X∴ figure(a) , (c), (d) and (f) satisfy the condition.Note: (b) is not satisfies the condition.)1(2-t δ −→←FT2 (5). 0)(=⎰∞∞-dw jw wX)(t x dtd −→←FT)(jw jwX∴ To satisfy0)(=⎰∞∞-dw jw wX , it only needs0)(0==t t x dt d)1(2-t δ −→←FT2, 02=⎰∞∞-wdw∴ figure (b), (c), (e), (f) satisfy this condition.(6). )(jw X is periodicIf )(jw X is periodic, )(t x is discrete in time domain.So only (b) satisfies the condition.4.25. Solution:(a). Suppose )(1t x =)1(+t x , then we ’ll find )(1t x is real and even. So )(1jw X is real and even, which means 0)(1=<jw X .)(1jw X =jw e jw X )(∴ )(jw X =jw e jw X -)(1∴ ⎩⎨⎧≤-≥-=<0)(,......0)(,.........)(11jw X w jw X w jw X π (b). dt t x X j X )()0()0(⎰∞∞-== is the integral area of )(t xthen, 718122124)0(=-=**-*=X (c). πππ422)0(2)(=*==⎰∞∞-x dw jw X (e).dt t x dw jw X 22)(2)(⎰⎰∞∞-∞∞-=π⎪⎭⎫ ⎝⎛++-+=⎰⎰⎰⎰-dt dt t dt t dt 2322212102012)2(22ππ376=4.27. Solution: (1).)(t u −→←FTjww 1)(2+πδ∴ )3()2(2)1()(-+---=t u t u t u t x−→←FT)2(1)(2)(32wj w j jw e e e jw w jw X ---+-⎪⎪⎭⎫ ⎝⎛+=πδ)2(132w j w j jwe e e jw---+-=(2).dt e t x T dt et x T a t T jk Tt Tjk T k ππ22)(1)(~1--⎰⎰==)2(1)(12Tjk X T dte t x T t T jk ππ==-∞∞-⎰4.30. Solution: (a).⎩⎨⎧≤=others w jw G ., (02).,.........1)( ∴ tt t t t t g ππcos sin 22sin )(==t t x t g cos )()(=∴ ttt x πsin 2)(=4.32 Solution: (a).)()()(11t h t x t y *=)1())1(4sin()(--=t t t h π −→←FT ⎩⎨⎧≤=-others w e jw H jw .........,.........04....,.........)()26cos()(1π+=t t x −→←FT)}6()6({)(121-++=w w ejw X jδδππ∴ )()()(11jw H jw X jw Y =0=(b).)()()(22t h t x t y *=)1())1(4sin()(--=t t t h π −→←FT⎩⎨⎧≤=-others w e jw H jw .........,.........04....,.........)()3sin()21()(02kt t x k k ∑∞==−→←FT)}3()3({)21()(02k w k w j jw X k k --+=∑∞=δδπ∴ ⎪⎪⎩⎪⎪⎨⎧=--+=-==--others k w w e j k w w e j jw H jw X jw Y jw jw ........,.........01)},...3()3({210....)},.......()({)()()(22δδπδδπ⎪⎪⎩⎪⎪⎨⎧=--+==-o t h e r s k w e j w e j k j j ........................................................,.........01..),........3(21)3(210.......................................................,.........033δπδπ∴ only when 1k =, 2()Y j ω has output impulse .∴ )1(3sin 212214141)()1(3)1(333332-=--=-=-----t j e e e e j e e j t y t j t j t j t j 4.34 Solution: (a).)()()(jw H jw X jw Y =65)(4564)(22+++=+-+=jw jw jw jw w jw jw H∴ }4){(}65)){((2+=++jw jw X jw jw jw Y∴)(4)()(6)(5)(22t x t x dt dt y t y dt d t y dt d +=++ (b).65)(4564)(22+++=+-+=jw jw jw jw w jw jw H3122)3)(2(4+-++=+++=jw jw jw jw jw∴ )()(2)(32t u e t u e t h t t ---=(c). )()()(44t u te t u e t x t t ---=∴ 22)4(3)4(141)(++=+-+=jw jw jw jw jw X)3)(2(4564)(2+++=+-+=jw jw jw jw w jw jw H∴ )3)(2(4)4(3)()()(2+++++==jw jw jw jw jw jw H jw X jw Y)2(2/1)4(2/1)2)(4(1+++-=++=jw jw jw jw∴ ))()((21)(42t u e t u e t y t t---=4.35 Solution: (a).0........,.........)(>+-=a jwa jwa jw Hthe magnitude is: 1)(2222=++=+-=wa w a jwa jwa jw Hthe phase is: ⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=<a w arctg a w arctg a w arctg jw H 2)( the impulse response is:jwa jwjw a a jw a jw a jw H +-+=+-=)()()(2))(()()(t t u ae t u e dtd t u ae t h at atat δ-=-=--- (b). )3cos(cos )3/cos()(t t t t x ++= +-++=)3/1()3/1({)(w w jw X δδπ)}3()3()1()1(-+++-+++w w w w δδδδandarctgw j e jwjwjw H 211)(-=+-=so )()()(jw H jw X jw y =+-++=---)3/1()3/1({)3/1(2)3/1(2w e w e a r c t g j a r c t gj δδπ)1()1()1(2)1(2-+++---w e w e arctg j arctg j δδ)}3()3()3(2)3(2-+++---w e w e arctg j arctg j δδ+-++=-)3/1()3/1({3/3/w e w e j j δδπππ)1()1(2/2/-+++-w e w e j j δδππ)}3()3(3/23/2-+++-w e w e j j δδππThen )3/23cos()2/cos()3/3/cos()(πππ-+-+-=t t t t yWe can find that y(t) is the sum of a phase shift for each x(t)’s component. 4.36 Solution: (a). )(][)(3t u e e t x t t --+=∴ )3)(1()2(23111)(+++=+++=jw jw jw jw jw jw X )(]22[)(4t u e e t y t t ---=∴ )4)(1(64212)(++=+-++=jw jw jw jw jw Y∴ )2)(4()3(3)()()(+++==jw jw jw jw X jw Y jw H(b). According to (a)’s result,22/342/3)2)(4()3(3)(+++=+++=jw jw jw jw jw jw H∴ )()(23)(24t u e e t h t t--+=(c).86)(93)2)(4()3(3)(2+++=+++=jw jw jw jw jw jw jw H∴ )}93){(}86)){((2+=++jw jw X jw jw jw Y∴ )(9)(3)(8)(6)(22t x t x dt dt y t y dt d t y dtd +=++4.37 Solution:(a). Supposing )(t x −→←FT)(jw X ,and from the differentiation property of FT,we canget22()d x t dt −→←FT 2()()j X j ωω22()(1)2()(1)d x t t t t dt δδδ=+-+-∴ 2/2/222()()2()(2sin(/2))j j j j j X j e e ee j ωωωωωωω--=-+=-=Finally, 22sin(/2)()[]X j ωωω=(b).(c). It is obvious that another signal g(t) sketched as following figure can reduce:~()()(4)k x t g t t k δ∞=-∞=*-∑(d).(4)()22k k t k k ππδδω∞∞=-∞=-∞-↔-∑∑From the convolution property of FT,we can get: ~~()()(4)()()()222k k kx t g t t k X j G jk πππδωδω∞∞=-∞=-∞=*-↔=-∑∑~~()()(4)()()()222k k kx t x t t k X j X jk πππδωδω∞∞=-∞=-∞=*-↔=-∑∑ So, we can know that,although ()G j ω is different from ()X j ω,()()22kkG j X jππ= forall integers k .4.43 Solution:We can draw a system as figure (a) ,where ,sin ttπ −→←FT ()H j ω2tshown in figure(c).Extra problems:We have known )(t x −→←FT)(jw X , prooftt x dt d π1)(* −→←FT)(jw X w ⋅ Proof: )(t x −→←FT)(jw X∴)(t x dtd −→←FT)(jw jwX)(t sign −→←FTjw2According to the duality of FT, we will get t π1 −→←FT)()(w jsign w jsign -=- ∴ tt x dt d π1)(* −→←FT)]([)(w jsign jw jwX -⋅)()()(w sign w jw X w wsign ⋅==Then, we havett x dt d π1)(* −→←FT)(jw X w ⋅)(t s )(t y )(t x t)(a )(b。
Chapter 1 Answers1.6 (a).NoBecause when t<0, )(1t x =0.(b).NoBecause only if n=0, ][2n x has valuable.(c).Yes Because ∑∞-∞=--+--+=+k k m n k m n m n x ]}414[]44[{]4[δδ ∑∞-∞=------=k m k n m k n )]}(41[)](4[{δδ ∑∞-∞=----=k k n k n ]}41[]4[{δδ N=4.1.9 (a). T=π/5Because 0w =10, T=2π/10=π/5.(b). Not periodic.Because jt t e e t x --=)(2, while t e -is not periodic, )(2t x is not periodic.(c). N=2Because 0w =7π, N=(2π/0w )*m, and m=7.(d). N=10Because n j j e e n x )5/3(10/343)(ππ=, that is 0w =3π/5, N=(2π/0w )*m, and m=3.(e). Not periodic. Because 0w =3/5, N=(2π/0w )*m=10πm/3 , it ’s not a rational number.1.14 A1=3, t1=0, A2=-3, t2=1 or -1 dt t dx )( isSolution: x(t) isBecause ∑∞-∞=-=k k t t g )2()(δ, dt t dx )(=3g(t)-3g(t-1) or dtt dx )(=3g(t)-3g(t+1) 1.15. (a). y[n]=2x[n-2]+5x[n-3]+2x[n-4]Solution:]3[21]2[][222-+-=n x n x n y ]3[21]2[11-+-=n y n y ]}4[4]3[2{21]}3[4]2[2{1111-+-+-+-=n x n x n x n x ]4[2]3[5]2[2111-+-+-=n x n x n xThen, ]4[2]3[5]2[2][-+-+-=n x n x n x n y(b).No. For it ’s linearity.the relationship between ][1n y and ][2n x is the same in-out relationship with (a). you can have a try.1.16. (a). No.For example, when n=0, y[0]=x[0]x[-2]. So the system is memory. (b). y[n]=0.When the input is ][n A δ,then, ]2[][][2-=n n A n y δδ, so y[n]=0. (c). No.For example, when x[n]=0, y[n]=0; when x[n]=][n A δ, y[n]=0. So the system is not invertible.1.17. (a). No.For example, )0()(x y =-π. So it ’s not causal.(b). Yes.Because : ))(sin()(11t x t y = , ))(sin()(22t x t y =))(sin())(sin()()(2121t bx t ax t by t ay +=+1.21. Solution:Wehave known:(a).(b).(c).(d).1.22. Solution:We have known:(a).(b).(e).(g)1.23. Solution:For )]()([21)}({t x t x t x E v -+= )]()([21)}({t x t x t x O d --= then,(a).(b).(c).1.24.For: ])[][(21]}[{n x n x n x E v -+= ])[][(21]}[{n x n x n x O d --=then,(a).(b).1.25. (a). Periodic. T=π/2.Solution: T=2π/4=π/2.(b). Periodic. T=2.Solution: T=2π/π=2.(d). Periodic. T=0.5. Solution: )}()4{cos()(t u t E t x v π=)}())(4cos()()4{cos(21t u t t u t --+=ππ )}()(){4cos(21t u t u t -+=π )4cos(21t π= So, T=2π/4π=0.51.26. (a). Periodic. N=7Solution: N=m *7/62ππ=7, m=3.(b). Aperriodic.Solution: N=ππm m 16*8/12=, it ’s not rational number.(e). Periodic. N=16 Solution as follow:)62cos(2)8sin()4cos(2][ππππ+-+=n n n n x in this equation, )4cos(2n π, it ’s period is N=2π*m/(π/4)=8, m=1. )8sin(n π, it ’s period is N=2π*m/(π/8)=16, m=1. )62cos(2ππ+-n , it ’s period is N=2π*m/(π/2)=4, m=1. So, the fundamental period of ][n x is N=(8,16,4)=16. 1.31. SolutionBecause )()1()(),2()()(113112t x t x t x t x t x t x ++=--=. According to LTI property ,)()1()(),2()()(113112t y t y t y t y t y t y ++=--=Extra problems:Sketch ⎰∞-=t dt t x t y )()(. 1. SupposeSolution:2. SupposeSketch: (1). )]1(2)1()3()[(--+++t t t t g δδδ(2). ∑∞-∞=-k k t t g )2()(δ(2).Chapter 22.1 Solution:Because x[n]=(1 2 0 –1)0, h[n]=(2 0 2)1-, then(a).So, ]4[2]2[2]1[2][4]1[2][1---+-+++=n n n n n n y δδδδδ (b). according to the property of convolutioin:]2[][12+=n y n y(c). ]2[][13+=n y n y][*][][n h n x n y =][][k n h k x k -=∑∞-∞= ∑∞-∞=-+--=k k k n u k u ]2[]2[)21(2 ][211)21()21(][)21(12)2(0222n u n u n n k k --==+-++=-∑ ][])21(1[21n u n +-= the figure of the y[n] is:2.5 Solution:We have known: ⎩⎨⎧≤≤=elsewhere n n x ....090....1][,,, ⎩⎨⎧≤≤=elsewhere N n n h ....00....1][,,,(9≤N ) Then, ]10[][][--=n u n u n x , ]1[][][---=N n u n u n h∑∞-∞=-==k k n u k h n h n x n y ][][][*][][ ∑∞-∞=-------=k k n u k n u N k u k u ])10[][])(1[][(So, y[4] ∑∞-∞=-------=k k u k u N k u k u ])6[]4[])(1[][( ⎪⎪⎩⎪⎪⎨⎧≥≤=∑∑==4,...14, (140)0N N k Nk =5, then 4≥N And y[14] ∑∞-∞=------=k k u k u N k u k u ])4[]14[])(1[][(⎪⎪⎩⎪⎪⎨⎧≥≤=∑∑==14,...114, (1145)5N N k Nk =0, then 5<N ∴4=N2.7 Solution:[][][2]k y n x k g n k ∞=-∞=-∑(a )[][1]x n n δ=-,[][][2][1][2][2]k k y n x k g n k k g n k g n δ∞∞=-∞=-∞=-=--=-∑∑(b) [][2]x n n δ=-,[][][2][2][2][4]k k y n x k g n k k g n k g n δ∞∞=-∞=-∞=-=--=-∑∑ (c) S is not LTI system..(d) [][]x n u n =,0[][][2][][2][2]k k k y n x k g n k u k g n k g n k ∞∞∞=-∞=-∞==-=-=-∑∑∑2.8 Solution: )]1(2)2([*)()(*)()(+++==t t t x t h t x t y δδ )1(2)2(+++=t x t xThen,That is, ⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<-≤<-+-=-<<-+=others t t t t t t t t y ,........010,....2201,.....41..,.........412,.....3)(2.10 Solution:(a). We know:Then,)()()(αδδ--='t t t h)]()([*)()(*)()(αδδ--='='t t t x t h t x t y )()(α--=t x t xthat is,So, ⎪⎪⎩⎪⎪⎨⎧+≤≤-+≤≤≤≤=others t t t t t t y ,.....011,.....11,....0,.....)(ααααα(b). From the figure of )(t y ', only if 1=α, )(t y ' would contain merely therediscontinuities.2.11 Solution:(a). )(*)]5()3([)(*)()(3t u et u t u t h t x t y t----==⎰⎰∞∞---∞∞--------=ττττττττd t u e u d t u eu t t )()5()()3()(3)(3⎰⎰-------=tt tt d e t u d et u 5)(33)(3)5()3(ττττ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥+-=-<≤-=<=---------⎰⎰⎰5,.......353,.....313.........,.........0315395)(33)(3393)(3t e e d e d e t e d e t tt t t t t t t t ττττττ(b). )(*)]5()3([)(*)/)(()(3t u et t t h dt t dx t g t----==δδ)5()3()5(3)3(3---=----t u e t u e t t(c). It ’s obvious that dt t dy t g /)()(=.2.12 Solution∑∑∞-∞=-∞-∞=--=-=k tk tk t t u ek t t u e t y )]3(*)([)3(*)()(δδ∑∞-∞=---=k k t k t u e)3()3(Considering for 30<≤t ,we can obtain33311])3([)(---∞=-∞-∞=--==-=∑∑ee e ek t u e e t y tk k tk kt. (Because k must be negetive ,1)3(=-k t u for 30<≤t ).2.19 Solution:(a). We have known:][]1[21][n x n w n w +-=(1) ][]1[][n w n y n y βα+-=(2)from (1), 21)(1-=E EE Hfrom (2), αβ-=E EE H )(2then, 212212)21(1)21)(()()()(--++-=--==E E E E E E H E H E H ααβαβ∴][]2[2]1[)21(][n x n y n y n y βαα=-+-+-but, ][]1[43]2[81][n x n y n y n y +-+--=∴⎪⎩⎪⎨⎧=⎪⎭⎫ ⎝⎛=+=143)21(:....812βααor ∴⎪⎩⎪⎨⎧==141βα(b). from (a), we know )21)(41()()()(221--==E E E E H E H E H21241-+--=E EE E ∴][)41()21(2][n u n h n n ⎥⎦⎤⎢⎣⎡-=2.20 (a). 1⎰⎰∞∞-∞∞-===1)0cos()cos()()cos()(0dt t t dt t t u δ(b). 0dt t t )3()2sin(5+⎰δπ has value only on 3-=t , but ]5,0[3∉-∴dt t t )3()2sin(5+⎰δπ=0(c). 0⎰⎰---=-641551)2cos()()2cos()1(dt t t u d u πτπττ⎰-'-=64)2cos()(dt t t πδ0|)2(s co ='=t t π 0|)2sin(20=-==t t ππ∑∞-∞=-==k t h kT t t h t x t y )(*)()(*)()(δ∑∞-∞=-=k kT t h )(∴2.27Solution()y A y t dt ∞-∞=⎰,()xA x t dt ∞-∞=⎰,()hA h t dt ∞-∞=⎰.()()*()()()y t x t h t x x t d τττ∞-∞==-⎰()()()()()()()()()(){()}y x hA y t dt x x t d dtx x t dtd x x t dtd x x d d x d x d A A ττττττττττξξτττξξ∞∞∞-∞-∞-∞∞∞∞∞-∞-∞-∞-∞∞∞∞∞-∞-∞-∞-∞==-=-=-===⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰(a) ()()(2)tt y t e x d τττ---∞=-⎰,Let ()()x t t δ=,then ()()y t h t =. So , 2()(2)(2)()(2)()(2)t t t t t h t ed e d e u t τξδττδξξ---------∞-∞=-==-⎰⎰(b) (2)()()*()[(1)(2)]*(2)t y t x t h t u t u t eu t --==+---(2)(2)(1)(2)(2)(2)t t u eu t d u e u t d ττττττττ∞∞-------∞-∞=+------⎰⎰22(2)(2)12(1)(4)t t t t u t ed u te d ττττ---------=---⎰⎰(2)2(2)212(1)[]|(4)[]|t t t t u t e e u t ee ττ-------=--- (1)(4)[1](1)[1](4)t t e u t e u t ----=-----2.46 SolutionBecause)]1([2)1(]2[)(33-+-=--t u dtde t u e dt d t x dt d t t )1(2)(3)1(2)(333-+-=-+-=--t e t x t e t x t δδ.From LTI property ,we know)1(2)(3)(3-+-→-t h e t y t x dtdwhere )(t h is the impulse response of the system. So ,following equation can be derived.)()1(223t u e t h e t --=-Finally, )1(21)()1(23+=+-t u e e t h t 2.47 SoliutionAccording to the property of the linear time-invariant system: (a). )(2)(*)(2)(*)()(000t y t h t x t h t x t y ===(b). )(*)]2()([)(*)()(00t h t x t x t h t x t y --==)(*)2()(*)(0000t h t x t h t x --=012y(t)t4)2()(00--=t y t y(c). )1()1(*)(*)2()1(*)2()(*)()(00000-=+-=+-==t y t t h t x t h t x t h t x t y δ(d). The condition is not enough.(e). )(*)()(*)()(00t h t x t h t x t y --==τττd t h x )()(00+--=⎰∞∞-)()()(000t y dm m t h m x -=--=⎰∞∞-(f). )()]([)](*)([)(*)()(*)()(000000t y t y t h t x t h t x t h t x t y "=''='--'=-'-'==Extra problems:1. Solute h(t), h[n](1).)()(6)(5)(22t x t y t y dt dt y dt d =++ (2). ]1[][2]1[2]2[+=++++n x n y n y n y Solution:(1). Because 3121)3)(2(1651)(2+-++=++=++=P P P P P P P Hso )()()()3121()(32t u e e t P P t h t t ---=+-++=δ (2). Because )1)(1(1)1(22)(22i E i E EE E E E E E H -+++=++=++=iE Ei i E E i -+-+++=1212 so []][)1()1(2][1212][n u i i i k i E E i i E E i n h n n +----=⎪⎪⎪⎪⎭⎫⎝⎛-+-+++=δChapter 33.1 Solution:Fundamental period 8T =.02/8/4ωππ==00000000033113333()224434cos()8sin()44j kt j t j t j t j tk k j t j t j t j tx t a e a e a e a e a e e e je je t t ωωωωωωωωωππ∞----=-∞--==+++=++-=-∑3.2 Solution:for, 10=a , 4/2πj ea --= , 4/2πj ea = , 3/42πj ea --=, 3/42πj ea =n N jk k N k e a n x )/2(][π∑>=<=n j n j n j n j e a e a e a e a a )5/8(4)5/8(4)5/4(2)5/4(20ππππ----++++=n j j n j j n j j n j j e e e e e e e e )5/8(3/)5/8(3/)5/4(4/)5/4(4/221ππππππππ----++++=)358cos(4)454cos(21ππππ++++=n n)6558sin(4)4354sin(21ππππ++++=n n3.3 Solution: for the period of )32cos(t πis 3=T , the period of )35sin(t πis 6=Tso the period of )(t x is 6 , i.e. 3/6/20ππ==w)35sin(4)32cos(2)(t t t x ππ++=)5sin(4)2cos(21200t w t w ++=)(2)(21200005522t w j t w j t w j t w j e e j e e ----++=then, 20=a , 2122==-a a , j a 25=-, j a 25-=3.5 Solution:(1). Because )1()1()(112-+-=t x t x t x , then )(2t x has the same period as )(1t x ,that is 21T T T ==, 12w w =(2). 212111()((1)(1))jkw t jkw tk T T b x t e dt x t x t e dt T--==-+-⎰⎰111111(1)(1)jkw tjkw t T Tx t e dt x t e dt T T --=-+-⎰⎰ 111)(jkw k k jkw k jkw k e a a e a e a -----+=+=3.8 Solution:kt jw k k e a t x 0)(∑∞-∞==while:)(t x is real and odd, then 00=a , k k a a --=2=T , then ππ==2/20wand0=k a for 1>kso kt jw k k e a t x 0)(∑∞-∞==t jw t jw e a e a a 00110++=--)sin(2)(11t a e e a t j t j πππ=-=-for12)(2121212120220==++=-⎰a a a a dt t x ∴2/21±=a ∴)sin(2)(t t x π±=3.13 Solution:Fundamental period 8T =.02/8/4ωππ==kt jw k k e a t x 0)(∑∞-∞==∴t jkw k k e jkw H a t y 0)()(0∑∞-∞==0004, 0sin(4)()0, 0k k H jk k k ωωω=⎧==⎨≠⎩ ∴000()()4jkw t k k y t a H jkw e a ∞=-∞==∑Because 48004111()1(1)088T a x t dt dt dt T ==+-=⎰⎰⎰So ()0y t =.kt jw k k e a t x 0)(∑∞-∞==∴t jkw k k e jkw H a t y 0)()(0∑∞-∞==∴dt e jkw H t y T a t jkw Tk 0)()(10-⎰=for⎪⎩⎪⎨⎧>≤=100,.......0100,.......1)(w w jw H∴if 0=k a , it needs 1000>kwthat is 12100,........1006/2>>k kππand k is integer, so 8>K3.22 Solution:021)(1110===⎰⎰-tdt dt t x T a T dt te dt tedt et x Ta tjk t jktjkw Tk ππ-----⎰⎰⎰===1122112121)(10 t jk tde jk ππ--⎰-=1121⎥⎥⎦⎤⎢⎢⎣⎡---=----111121ππππjk e te jk t jk tjk ⎥⎦⎤⎢⎣⎡---+-=--ππππππjk e e e e jk jk jk jk jk )()(21⎥⎦⎤⎢⎣⎡-+-=ππππjk k k jk )sin(2)cos(221[]πππππk j k k j k jk k)1()cos()cos(221-==-=0............≠k404402()()1184416tj tj t t j t t j t H j h t edt ee dte e dt e e dtj j ωωωωωωωω∞∞----∞-∞∞----∞===+=+=-++⎰⎰⎰⎰A periodic continous-signal has Fourier Series:. 0()j kt k k x t a e ω∞=-∞=∑T is the fundamental period of ()x t .02/T ωπ=The output of LTI system with inputed ()x t is 00()()jk t k k y t a H jk e ωω∞=-∞=∑Its coefficients of Fourier Series: 0()k k b a H jk ω= (a)()()n x t t n δ∞=-∞=-∑.T=1, 02ωπ=11k a T==. 01/221/21()()1jkw tjk t k Ta x t e dt t e dt T πδ---===⎰⎰(Note :If ()()n x t t nT δ∞=-∞=-∑,1k a T=) So 2282(2)16(2)4()k k b a H jk k k πππ===++ (b)()(1)()n n x t t n δ∞=-∞=--∑.T=2, 0ωπ=,11k a T== 01/23/21/21/2111()()(1)(1)221[1(1)]2jkw t jk tjk t k T k a x t e dt t e dt t e dtT ππδδ----==+--=--⎰⎰⎰So 24[1(1)]()16()k k k b a H jk k ππ--==+,(c) T=1, 02ωπ=01/421/4sin()12()jk t jk tk T k a x t e dt e dt Tk ωπππ---===⎰⎰28sin()2()[16(2)]k k k b a H jk k k ππππ==+ 3.35 Solution: T=/7π, 02/14T ωπ==.kt jw k k e a t x 0)(∑∞-∞==∴t jkw k k e jkw H a t y 0)()(0∑∞-∞==∴0()k k b a H jkw =for⎩⎨⎧≥=otherwise w jw H ,.......0250,.......1)(,01,.......17()0,.......k H jkw otherwise ⎧≥⎪=⎨⎪⎩ that is 0250250, (14)k k ω<<, and k is integer, so 18....17k or k <≤. Let ()()y t x t =,k k b a =, it needs 0=k a ,for 18....17k or k <≤.3.37 Solution:11()[]()212()21312411511cos 224nj j nj n n n n j nn j nn n j j j H e h n ee ee e e e ωωωωωωωωω∞∞--=-∞=-∞-∞--=-∞=-===+=+=---∑∑∑∑A periodic sequence has Fourier Series:2()[]jk n Nk k N x n a eπ=<>=∑.N is the fundamental period of []x n .The output of LTI system with inputed []x n is 22()[]()jk jk n NNk k N y n a H eeππ=<>=∑.Its coefficients of Fourier Series: 2()jk Nk k b a H eπ=(a)[][4]k x n n k δ∞=-∞=-∑.N=4, 14k a =.So 2314()524cos()44j k Nk k b a H e k ππ==-3165cos()42k b k π=-3.40 Solution: According to the property of fourier series: (a). )2cos(2)cos(20000000t Tka t kw a e a ea a k k t jkw k t jkw k k π==+='- (b). Because 2)()()}({t x t x t x E v -+=}{2k v k k k a E a a a =+='-(c). Because 2)(*)()}({t x t x t x R e +=2*kk k a a a -+='(d). k k k a Tjka jkw a 220)2()(π=='(e). first, the period of )13(-t x is 3T T ='then 3)(1)13(131213120dme m x T dt e t x T a m T jk T t T jk T k+'--'-'-'⎰⎰'=-'='ππTjkk m T jk T T jk T jk m T jk T ea dm e m x T e dm e e m x T πππππ221122211)(1)(1---------=⎥⎦⎤⎢⎣⎡==⎰⎰3.43 (a) Proof:(i )Because ()x t is odd harmonic ,(2/)()jk T t k k x t a e π∞=-∞=∑,where 0k a = for everynon-zero even k.(2/)()2(2/)(2/)()2T jk T t k k jk jk T tk k jk T tk k T x t a ea e e a e ππππ∞+=-∞∞=-∞∞=-∞+===-∑∑∑It is noticed that k is odd integers or k=0.That means()()2Tx t x t =-+(ii )Because of ()()2Tx t x t =-+,we get the coefficients of Fourier Series222/200/222(/2)/2/20022/2/200111()()()11()(/2)11()()(1)jk t jk t jk t T T T T T T k T jk t jk t T T T T Tjk t jk t T T k TT a x t e dt x t e dt x t e dtT T T x t e dt x t T e dt T T x t e dt x t e dt T T πππππππ-----+--==+=++=--⎰⎰⎰⎰⎰⎰⎰ 2/21[1(1)]()jk t T kT x t e dt T π-=--⎰It is obvious that 0k a = for every non-zero even k. So ()x t is odd harmonic ,(b)Extra problems:∑∞-∞=-=k kT t t x )()(δ, π=T(1). Consider )(t y , when )(jw H is()x t 1-12-21-1t0......(2). Consider )(t y , when )(jw H isSolution:∑∞-∞=-=k kT t t x )()(δ↔π11=T , 220==Tw π(1).kt j k k tjkw k k e k j H a ejkw H a t y 20)2(1)()(0∑∑∞-∞=∞-∞===ππ2=(for k can only has value 0)(2).kt j k k tjkw k k e k j H a ejkw H a t y 20)2(1)()(0∑∑∞-∞=∞-∞===πππte e t j t j 2cos 2)(122=+=- (for k can only has value –1 and 1)。
Chapter 44.10 (a) 解:1sin ()sin tx t t tππ=⋅令:12sin ()sin ,()tx t t x t tπ==则:12()(1)(1)0,1()11X j jjX j ππωδωδωωωω=--+⎧>⎪=⎨<⎪⎩,所以:,202(),0220,jjX j ωπωωπω⎧-≤<⎪⎪⎪=-≤<⎨⎪⎪⎪⎩其他 (b )2243sin 11()()22t A t dt X j d t ωωπππ+∞+∞-∞-∞===⎰⎰ 4.11 证明: 111()()()()3339j G j X j H Y j ωωωω=⋅= 因为1(3)()33j y t Y ω↔ 所以11(3)()()393j y t Y G j ωω↔= 即:11()(3),333g t y t A B =⇒==4.13 (a) 51()(1)()2j t j t x t e e x t ππ=++⇒非周期 (b) []()()()()F x t h t X j H j ωω*=⋅[]211()(2)(5)()(())j e j j ωδωδωδωπδωπδωωω-⎡⎤=+-+-⋅+-+⎢⎥⎣⎦则:[]11051()()()()(1)10j j t x t h t FX j H j e e jωωπ--*=⋅=- 因此:()()x t h t *是周期的,周期为25π。
(c) 由(b)可知,()x t 和()h t 都不是周期的,但卷积周期。
这说明两个非周期信号的卷积有可能是周期的。
4.14 解: 由条件2得:2()2tAF Ae u t j ω-⎡⎤=⎣⎦+所以:(1)()2Aj X j j ωωω+=+即:11()()(2)(1)12A X j A j j j j ωωωωω==-++++2()()()t t x t A e e u t --=-由条件3知:22220()1()1t t x t dt A e e dt +∞+∞---∞=⇒-=⎰⎰212A ⇒=,由()0x t A ≥⇒=从而有2())()t t x t e e u t --=-。
第一章 1.3 解:(a). 2401lim(),04Tt T TE x t dt e dt P ∞-∞∞→∞-====⎰⎰(b) dt t x TP T TT ⎰-∞→∞=2)(21lim121lim ==⎰-∞→dt T TTT∞===⎰⎰∞∞--∞→∞dt t x dt t x E TTT 22)()(lim(c).222lim()cos (),111cos(2)1lim()lim2222TT TTTT T TTE x t dt t dt t P x t dt dt TT∞∞→∞--∞∞→∞→∞--===∞+===⎰⎰⎰⎰(d) 034121lim )21(121lim ][121lim 022=⋅+=+=+=∞→=∞→-=∞→∞∑∑N N n x N P N Nn n N N N n N 34)21()(lim202===∑∑-∞=∞→∞nNNn N n x E (e). 2()1,x n E ∞==∞211lim []lim 112121N NN N n N n NP x n N N ∞→∞→∞=-=-===++∑∑ (f) ∑-=∞→∞=+=NNn N n x N P 21)(121lim 2∑-=∞→∞∞===NNn N n x E 2)(lim1.9. a). 00210,105T ππω===; b) 非周期的; c) 00007,,22m N N ωωππ=== d). 010;N = e). 非周期的; 1.12 解:∑∞=--3)1(k k n δ对于4n ≥时,为1即4≥n 时,x(n)为0,其余n 值时,x(n)为1 易有:)3()(+-=n u n x , 01,3;M n =-=-1.15 解:(a)]3[21]2[][][222-+-==n x n x n y n y , 又2111()()2()4(1)x n y n x n x n ==+-, 1111()2[2]4[3][3]2[4]y n x n x n x nx n ∴=-+-+-+-,1()()x n x n =()2[2]5[3]2[4]y n x n x n x n =-+-+- 其中][n x 为系统输入。
信号与系统 奥本海姆第二版 习题解答Department of Computer Engineering2005.12ContentsChapter 1 (2)Chapter 2 (17)Chapter 3 (35)Chapter 4 (62)Chapter 5 (83)Chapter 6 (109)Chapter 7 (119)Chapter 8 (132)Chapter 9 (140)Chapter 10 (160)Chapter 1 Answers1.1 Converting from polar to Cartesian coordinates:111cos 222j eππ==- 111c o s ()222j e ππ-=-=- 2cos()sin()22jj j eπππ=+=2c o s ()s i n ()22jjj eπππ-=-=- 522j jj eeππ==4c o s ()s i n ())144jjj πππ+=+9441j jj ππ=-9441j j j ππ--==-41jj π-=-1.2 055j=, 22j e π-=,233jj e π--=212je π--=, 41j j π+=, ()2221jj eπ-=-4(1)j je π-=, 411j je π+=-12e π-1.3. (a) E ∞=4014tdt e∞-=⎰, P ∞=0, because E ∞<∞ (b) (2)42()j t t x eπ+=, 2()1t x =.Therefore, E ∞=22()dt t x +∞-∞⎰=dt +∞-∞⎰=∞,P ∞=211limlim222()TTTTT T dt dt TTt x --→∞→∞==⎰⎰lim11T →∞=(c) 2()t x =cos(t). Therefore, E ∞=23()dt t x +∞-∞⎰=2cos()dt t +∞-∞⎰=∞, P ∞=2111(2)1lim lim 2222cos()TTTTT T COS t dt dt T Tt --→∞→∞+==⎰⎰(d)1[][]12nn u n x =⎛⎫ ⎪⎝⎭,2[]11[]4nu n n x =⎛⎫ ⎪⎝⎭. Therefore, E ∞=24131[]4nn n x +∞∞-∞===⎛⎫∑∑ ⎪⎝⎭P ∞=0,because E ∞<∞.(e) 2[]n x =()28n j e ππ-+,22[]n x =1. therefore, E ∞=22[]n x +∞-∞∑=∞,P ∞=211limlim1122121[]NNN N n Nn NN N n x →∞→∞=-=-==++∑∑.(f) 3[]n x =cos 4nπ⎛⎫ ⎪⎝⎭. Therefore, E ∞=23[]n x +∞-∞∑=2cos()4n π+∞-∞∑=2cos()4n π+∞-∞∑,P ∞=1limcos 214nNN n NN π→∞=-=+⎛⎫∑ ⎪⎝⎭1cos()112lim ()2122NN n Nn N π→∞=-+=+∑ 1.4. (a) The signal x[n] is shifted by 3 to the right. The shifted signal will be zero for n<1, And n>7. (b) The signal x[n] is shifted by 4 to the left. The shifted signal will be zero for n<-6. And n>0. (c) The signal x[n] is flipped signal will be zero for n<-1 and n>2.(d) The signal x[n] is flipped and the flipped signal is shifted by 2 to the right. The new Signal will be zero for n<-2 and n>4.(e) The signal x[n] is flipped and the flipped and the flipped signal is shifted by 2 to the left. This new signal will be zero for n<-6 and n>0.1.5. (a) x(1-t) is obtained by flipping x(t) and shifting the flipped signal by 1 to the right. Therefore, x (1-t) will be zero for t>-2. (b) From (a), we know that x(1-t) is zero for t>-2. Similarly, x(2-t) is zero for t>-1, Therefore, x (1-t) +x(2-t) will be zero for t>-2. (c) x(3t) is obtained by linearly compression x(t) by a factor of3. Therefore, x(3t) will be zero for t<1.(d) x(t/3) is obtained by linearly compression x(t) by a factor of 3. Therefore, x(3t) will bezero for t<9.1.6(a) x1(t) is not periodic because it is zero for t<0.(b) x2[n]=1 for all n. Therefore, it is periodic with a fundamental period of 1.(c) x3[n1.7. (a)()1[]vnxε={}1111[][]([][4][][4])22n n u n u n u n u nx x+-=--+----Therefore, ()1[]vnxεis zero for1[]nx>3.(b) Since x1(t) is an odd signal, ()2[]vnxεis zero for all values of t.(c)(){}11311[][][][3][3]221122vn nn n n u n u nx x xε-⎡⎤⎢⎥=+-=----⎢⎥⎢⎥⎣⎦⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭Therefore, ()3[]vnxεis zero when n<3 and when n→∞.(d) ()1554411()(()())(2)(2)22vt tt t t u t u tx x x e eε-⎡⎤=+-=---+⎣⎦Therefore, ()4()vtxεis zero only when t→∞.1.8. (a) ()01{()}22cos(0)tt tx eπℜ=-=+(b) ()02{()}cos()cos(32)cos(3)cos(30)4tt t t tx eππℜ=+==+(c) ()3{()}sin(3)sin(3)2t tt t tx e eππ--ℜ=+=+(d) ()224{()}sin(100)sin(100)cos(100)2t t tt t t tx e e eππ---ℜ=-=+=+1.9. (a)1()tx is a periodic complex exponential.101021()j t j tt jx e eπ⎛⎫+⎪⎝⎭==(b)2()tx is a complex exponential multiplied by a decaying exponential. Therefore,2()tx is not periodic.(c)3[]nx is a periodic signal. 3[]n x=7j neπ=j neπ.3[]nx is a complex exponential with a fundamental period of 22ππ=.(d)4[]nx is a periodic signal. The fundamental period is given by N=m(23/5ππ)=10().3mBy choosing m=3. We obtain the fundamental period to be 10.(e)5[]nx is not periodic. 5[]nx is a complex exponential with 0w=3/5. We cannot find any integer m such that m(2wπ) is also an integer. Therefore,5[]nxis not periodic.1.10. x(t)=2cos(10t+1)-sin(4t-1)Period of first term in the RHS =2105ππ=.Period of first term in the RHS =242ππ=.Therefore, the overall signal is periodic with a period which the least commonmultiple of the periods of the first and second terms. This is equal toπ.1.11. x[n] = 1+74j n e π−25j n e πPeriod of first term in the RHS =1. Period of second term in the RHS =⎪⎭⎫ ⎝⎛7/42π=7 (when m=2)Period of second term in the RHS =⎪⎭⎫ ⎝⎛5/22ππ=5 (when m=1)Therefore, the overall signal x[n] is periodic with a period which is the least common Multiple of the periods of the three terms inn x[n].This is equal to 35.1.12. The signal x[n] is as shown in figure S1.12. x[n] can be obtained by flipping u[n] and thenShifting the flipped signal by 3 to the right. Therefore, x[n]=u[-n+3]. This implies that M=-1 and no=-3.1.13y (t)=⎰∞-tdt x )(τ =dt t))2()2((--+⎰∞-τδτδ=⎪⎩⎪⎨⎧>≤≤--<2,022,12,0,t t tTherefore ⎰-==∞224d t E∑∑∞-∞=∞-∞=----=k k k t k t t g 12(3)2(3)(δδ)This implies that A 1=3, t 1=0, A 2=-3, and t 2=1.1.15 (a) The signal x 2[n], which is the input to S 2, is the same as y 1[n].Therefore ,y 2[n]= x 2[n-2]+21x 2[n-3] = y 1[n-2]+ 21y 1[n-3]=2x 1[n-2] +4x 1[n-3] +21( 2x 1[n-3]+ 4x 1[n-4]) =2x 1[n-2]+ 5x 1[n-3] + 2x 1[n-4] The input-output relationship for S isy[n]=2x[n-2]+ 5x [n-3] + 2x [n-4](b) The input-output relationship does not change if the order in which S 1and S 2 are connected series reversed. . We can easily prove this assuming that S 1 follows S 2. In this case , the signal x 1[n], which is the input to S 1 is the same as y 2[n].Therefore y 1[n] =2x 1[n]+ 4x 1[n-1]= 2y 2[n]+4 y 2[n-1]=2( x 2[n-2]+21 x 2[n-3] )+4(x 2[n-3]+21x 2[n-4]) =2 x 2[n-2]+5x 2[n-3]+ 2 x 2[n-4]The input-output relationship for S is once againy[n]=2x[n-2]+ 5x [n-3] + 2x [n-4]1.16 (a)The system is not memory less because y[n] depends on past values of x[n].(b)The output of the system will be y[n]= ]2[][-n n δδ=0(c)From the result of part (b), we may conclude that the system output is always zero for inputs of the form ][k n -δ, k ∈ ґ. Therefore , the system is not invertible .1.17 (a) The system is not causal because the output y(t) at some time may depend on future values of x(t). For instance , y(-π)=x(0).(b) Consider two arbitrary inputs x 1(t)and x 2(t).x 1(t) →y 1(t)= x 1(sin(t)) x 2(t) → y 2(t)= x 2(sin(t))Let x 3(t) be a linear combination of x 1(t) and x 2(t).That is , x 3(t)=a x 1(t)+b x 2(t)Where a and b are arbitrary scalars .If x 3(t) is the input to the given system ,then the corresponding output y 3(t) is y 3(t)= x 3( sin(t))=a x 1(sin(t))+ x 2(sin(t)) =a y 1(t)+ by 2(t)Therefore , the system is linear.1.18.(a) Consider two arbitrary inputs x 1[n]and x 2[n].x 1[n] → y 1[n] =][01k x n n n n k ∑+-=x 2[n ] → y 2[n] =][02k x n n n n k ∑+-=Let x 3[n] be a linear combination of x 1[n] and x 2[n]. That is :x 3[n]= ax 1[n]+b x 2[n]where a and b are arbitrary scalars. If x 3[n] is the input to the given system, then the corresponding outputy 3[n] is y 3[n]=][03k x n n n n k ∑+-==])[][(2100k bx k ax n n n n k +∑+-==a ][001k x n n n n k ∑+-=+b ][02k x n n n n k ∑+-== ay 1[n]+b y 2[n]Therefore the system is linear.(b) Consider an arbitrary input x 1[n].Lety 1[n] =][01k x n n n n k ∑+-=be the corresponding output .Consider a second input x 2[n] obtained by shifting x 1[n] in time:x 2[n]= x 1[n-n 1]The output corresponding to this input isy 2[n]=][02k x n n n n k ∑+-== ]n [1100-∑+-=k x n n n n k = ][01011k x n n n n n n k ∑+---=Also note that y 1[n- n 1]=][01011k x n n n n n n k ∑+---=.Therefore , y 2[n]= y 1[n- n 1] This implies that the system is time-invariant.(c) If ][n x <B, then y[n]≤(2 n 0+1)B. Therefore ,C ≤(2 n 0+1)B.1.19 (a) (i) Consider two arbitrary inputs x 1(t) and x 2(t). x 1(t) → y 1(t)= t 2x 1(t-1)x 2(t) → y 2(t)= t 2x 2(t-1)Let x 3(t) be a linear combination of x 1(t) and x 2(t).That is x 3(t)=a x 1(t)+b x 2(t)where a and b are arbitrary scalars. If x 3(t) is the input to the given system, then the corresponding output y 3(t) is y 3(t)= t 2x 3 (t-1)= t 2(ax 1(t-1)+b x 2(t-1))= ay 1(t)+b y 2(t)Therefore , the system is linear.(ii) Consider an arbitrary inputs x 1(t).Let y 1(t)= t 2x 1(t-1)be the corresponding output .Consider a second input x 2(t) obtained by shifting x 1(t) in time:x 2(t)= x 1(t-t 0)The output corresponding to this input is y 2(t)= t 2x 2(t-1)= t 2x 1(t- 1- t 0)Also note that y 1(t-t 0)= (t-t 0)2x 1(t- 1- t 0)≠ y 2(t) Therefore the system is not time-invariant.(b) (i) Consider two arbitrary inputs x 1[n]and x 2[n]. x 1[n] → y 1[n] = x 12[n-2]x 2[n ] → y 2[n] = x 22[n-2].Let x 3(t) be a linear combination of x 1[n]and x 2[n].That is x 3[n]= ax 1[n]+b x 2[n]where a and b are arbitrary scalars. If x 3[n] is the input to the given system, then the corresponding output y 3[n] is y 3[n] = x 32[n-2]=(a x 1[n-2] +b x 2[n-2])2=a 2x 12[n-2]+b 2x 22[n-2]+2ab x 1[n-2] x 2[n-2]≠ ay 1[n]+b y 2[n]Therefore the system is not linear.(ii) Consider an arbitrary input x 1[n]. Let y 1[n] = x 12[n-2]be the corresponding output .Consider a second input x 2[n] obtained by shifting x 1[n] in time:x 2[n]= x 1[n- n 0]The output corresponding to this input isy 2[n] = x 22[n-2].= x 12[n-2- n 0]Also note that y 1[n- n 0]= x 12[n-2- n 0] Therefore , y 2[n]= y 1[n- n 0] This implies that the system is time-invariant.(c) (i) Consider two arbitrary inputs x 1[n]and x 2[n].x 1[n] →y 1[n] = x 1[n+1]- x 1[n-1] x 2[n ]→y 2[n] = x 2[n+1 ]- x 2[n -1]Let x 3[n] be a linear combination of x 1[n] and x 2[n]. That is :x 3[n]= ax 1[n]+b x 2[n]where a and b are arbitrary scalars. If x 3[n] is the input to the given system, then the corresponding output y 3[n] is y 3[n]= x 3[n+1]- x 3[n-1]=a x 1[n+1]+b x 2[n +1]-a x 1[n-1]-b x 2[n -1]=a(x 1[n+1]- x 1[n-1])+b(x 2[n +1]- x 2[n -1])= ay 1[n]+b y 2[n]Therefore the system is linear.(ii) Consider an arbitrary input x 1[n].Let y 1[n]= x 1[n+1]- x 1[n-1]be the corresponding output .Consider a second input x 2[n] obtained by shifting x 1[n] in time: x 2[n]= x 1[n-n 0]The output corresponding to this input isy 2[n]= x 2[n +1]- x 2[n -1]= x 1[n+1- n 0]- x 1[n-1- n 0] Also note that y 1[n-n 0]= x 1[n+1- n 0]- x 1[n-1- n 0] Therefore , y 2[n]= y 1[n-n 0] This implies that the system is time-invariant.(d) (i) Consider two arbitrary inputs x 1(t) and x 2(t).x 1(t) → y 1(t)= d O {}(t) x 1 x 2(t) → y 2(t)= {}(t) x 2d OLet x 3(t) be a linear combination of x 1(t) and x 2(t).That is x 3(t)=a x 1(t)+b x 2(t)where a and b are arbitrary scalars. If x 3(t) is the input to the given system, then the corresponding output y 3(t) is y 3(t)= d O {}(t) x 3={}(t) x b +(t) ax 21d O=a d O {}(t) x 1+b {}(t) x 2d O = ay 1(t)+b y 2(t)Therefore the system is linear.(ii) Consider an arbitrary inputs x 1(t).Lety 1(t)= d O {}(t) x 1=2)(x -(t) x 11t -be the corresponding output .Consider a second input x 2(t) obtained by shifting x 1(t) in time:x 2(t)= x 1(t-t 0)The output corresponding to this input isy 2(t)= {}(t) x 2d O =2)(x -(t) x 22t -=2)(x -)t -(t x 0101t t --Also note that y 1(t-t 0)= 2)(x -)t -(t x 0101t t --≠ y 2(t)Therefore the system is not time-invariant.1.20 (a) Givenx )(t =jt e 2 y(t)=t j e 3x )(t =jt e 2- y(t)=t j e 3- Since the system liner+=tj e t x 21(2/1)(jt e 2-))(1t y =1/2(tj e 3+tj e 3-)Thereforex 1(t)=cos(2t))(1t y =cos(3t)(b) we know thatx 2(t)=cos(2(t-1/2))= (j e -jte 2+je jt e 2-)/2Using the linearity property, we may once again writex 1(t)=21( j e -jt e 2+j e jte 2-))(1t y =(j e -jt e 3+je jte 3-)= cos(3t-1)Therefore,x 1(t)=cos(2(t-1/2)))(1t y =cos(3t-1)1.21.The signals are sketched in figure S1.21.1.24 The even and odd parts are sketched in Figure S1.24 1.25 (a) periodic period=2π/(4)= π/2 (b) periodic period=2π/(4)= 2(c) x(t)=[1+cos(4t-2π/3)]/2. periodic period=2π/(4)= π/2 (d) x(t)=cos(4πt)/2. periodic period=2π/(4)= 1/2 (e) x(t)=[sin(4πt)u(t)-sin(4πt)u(-t)]/2. Not period. (f) Not period.1.26 (a) periodic, period=7.(b) Not period.(c) periodic, period=8.(d) x[n]=(1/2)[cos(3πn/4+cos(πn/4)). periodic, period=8. (e) periodic, period=16. 1.27 (a) Linear, stable(b) Not period. (c) Linear(d) Linear, causal, stable(e) Time invariant, linear, causal, stable (f) Linear, stable(g) Time invariant, linear, causal 1.28 (a) Linear, stable(b) Time invariant, linear, causal, stable (c)Memoryless, linear, causal (d) Linear, stable (e) Linear, stable(f) Memoryless, linear, causal, stable (g) Linear, stable1.29 (a) Consider two inputs to the system such that[][][]{}111.S e x n y n x n −−→=ℜand [][][]{}221.Se x n y n x n −−→=ℜNow consider a third inputx3[n]=x2[n]+x 1[n]. The corresponding system outputWill be [][]{}[][]{}[]{}[]{}[][]33121212e e e e y n x n x n x n x n x n y n y n ==+=+=+ℜℜℜℜtherefore, we may conclude that the system is additive Let us now assume that inputs to the system such that [][][]{}/4111.Sj e x n y n e x n π−−→=ℜand[][][]{}/4222.Sj e x n y n e x n π−−→=ℜNow consider a third input x 3 [n]= x 2 [n]+ x 1 [n]. The corresponding system outputWill be[][]{}()[]{}()[]{}()[]{}()[]{}()[]{}()[]{}[]{}[]{}[][]/433331122/4/41212cos /4sin /4cos /4sin /4cos /4sin /4j e m e m e m e j j e e y n e x n n x n n x n n x n n x n n x n n x n e x n e x n y n y n πππππππππ==-+-+-=+=+ℜℜI ℜI ℜI ℜℜ therefore, we may conclude that the system is additive (b) (i) Consider two inputs to the system such that()()()()211111Sdx t x t y t x t dt ⎡⎤−−→=⎢⎥⎣⎦and ()()()()222211S dx t x t y t x t dt ⎡⎤−−→=⎢⎥⎣⎦ Now consider a third input x3[t]=x2[t]+x 1[t]. The corresponding system outputWill be()()()()()()()()()2333211111211dx t y t x t dt d x t x t x t x t dt y t y t ⎡⎤=⎢⎥⎣⎦⎡⎤+⎡⎤⎣⎦=⎢⎥+⎢⎥⎣⎦≠+ therefore, we may conclude that the system is not additiveNow consider a third input x 4 [t]= a x 1 [t]. The corresponding system output Will be()()()()()()()()2444211211111dx t y t x t dt d ax t ax t dt dx t a x t dt ay t ⎡⎤=⎢⎥⎣⎦⎡⎤⎡⎤⎣⎦=⎢⎥⎢⎥⎣⎦⎡⎤=⎢⎥⎣⎦=Therefore, the system is homogeneous.(ii) This system is not additive. Consider the fowling example .Let δ[n]=2δ[n+2]+2δ[n+1]+2δ[n] andx2[n]=δ[n+1]+ 2δ[n+1]+ 3δ[n]. The corresponding outputs evaluated at n=0 are [][]120203/2y andy ==Now consider a third input x 3 [n]= x 2 [n]+ x 1 [n].= 3δ[n+2]+4δ[n+1]+5δ[n]The corresponding outputs evaluated at n=0 is y 3[0]=15/4. Gnarly, y 3[0]≠ ]0[][21y y n +.This[][][][][]444442,1010,x n x n x n y n x n otherwise ⎧--≠⎪=-⎨⎪⎩[][][][][][]4445442,1010,x n x n ax n y n ay n x n otherwise ⎧--≠⎪==-⎨⎪⎩Therefore, the system is homogenous.1.30 (a) Invertible. Inverse system y(t)=x(t+4)(b)Non invertible. The signals x(t) and x 1(t)=x(t)+2πgive the same output (c) δ[n] and 2δ[n] give the same output d) Invertible. Inverse system; y(t)=dx(t)/dt(e) Invertible. Inverse system y(n)=x(n+1) for n ≥0 and y[n]=x[n] for n<0 (f) Non invertible. x (n) and –x(n) give the same result (g)Invertible. Inverse system y(n)=x(1-n) (h) Invertible. Inverse system y(t)=dx(t)/dt(i) Invertible. Inverse system y(n) = x(n)-(1/2)x[n-1] (j) Non invertible. If x(t) is any constant, then y(t)=0 (k) δ[n] and 2δ[n] result in y[n]=0 (l) Invertible. Inverse system: y(t)=x(t/2)(m) Non invertible x 1 [n]= δ[n]+ δ[n-1]and x 2 [n]= δ[n] give y[n]= δ[n] (n) Invertible. Inverse system: y[n]=x[2n]1.31 (a) Note that x 2[t]= x 1 [t]- x 1 [t-2]. Therefore, using linearity we get y 2 (t)= y 1 (t)- y 1 (t-2).this is shown in Figure S1.31(b)Note that x3 (t)= x1 [t]+ x1 [t+1]. .Therefore, using linearity we get Y3 (t)= y1 (t)+ y1 (t+2). this is2(4) y 2(t) periodic, period T; x(t) periodic, period T/2;1.33(1) True x[n]=x[n+N ]; y 1 (n)= y 1 (n+ N 0)i.e. periodic with N 0=n/2if N is even and with period N 0=n if N is odd.(2)False. y 1 [n] periodic does no imply x[n] is periodic i.e. Let x[n] = g[n]+h[n] where0,1,[][]0,(1/2),nn even n even g n and h n n odd n odd⎧⎧==⎨⎨⎩⎩ Then y 1 [n] = x [2n] is periodic but x[n] is clearly not periodic. (3)True. x [n+N] =x[n]; y 2 [n+N 0] =y 2 [n] where N 0=2N (4) True. y 2 [n+N] =y 2 [n]; y 2 [n+N 0 ]=y 2 [n] where N 0=N/2 1.34. (a) ConsiderIf x[n] is odd, x[n] +x [-n] =0. Therefore, the given summation evaluates to zero. (b) Let y[n] =x 1[n]x 2[n] .Theny [-n] =x 1[-n] x 2[-n] =-x 1[n]x 2[n] =-y[n]. This implies that y[n] is odd.(c)ConsiderUsing the result of part (b), we know that x e [n]x o [n] is an odd signal .Therefore, using the result of part (a) we may conclude thatTherefore,(d)ConsiderAgain, since x e (t) x o (t) is odd,Therefore,1.35. We want to find the smallest N 0 such that m(2π /N) N 0 =2πk or N 0 =kN/m,{}1[][0][][]n n x n x x n x n ∞∞=-∞==++-∑∑22[][]e o n n n n x x ∞∞=-∞=-∞=+∑∑222[][][]e on n n n n n x x x∞∞∞=-∞=-∞=-∞==+∑∑∑2[][]0eon n n x x ∞=-∞=∑222[][][].e on n n n n n xx x ∞∞∞=-∞=-∞=-∞==+∑∑∑2220()()()2()().eoet dt t dt t dt t t dt x x x x x ∞∞∞∞-∞-∞-∞-∞=++⎰⎰⎰⎰0()()0.et t dt x x ∞-∞=⎰222()()().e ot dt t dt t dt xx x ∞∞∞-∞-∞-∞=+⎰⎰⎰()()()()()().xy yx t x t y d y t x d t φττττττφ∞-∞∞-∞=+=-+=-⎰⎰where k is an integer, then N must be a multiple of m/k and m/k must be an integer .this implies that m/k is a divisor of both m and N .Also, if we want the smallest possible N 0, then m/k should be the GCD of m and N. Therefore, N 0=N/gcd(m,N). 1.36.(a)If x[n] is periodic0(),0..2/j n N T o e where T ωωπ+= This implies that022o T kNT k T T Nππ=⇒==a rational number . (b)T/T 0 =p/q then x[n] =2(/)j n p q e π,The fundamental period is q/gcd(p,q) and the fundmental frequencyis(c) p/gcd(p,q) periods of x(t) are needed .1.37.(a) From the definition of ().xy t φWe havepart(a) that()().xx xx t t φφ=-This implies that()xy t φis(b) Note from even .Therefore,the odd part of().xx t φis zero.(c) Here, ()().xy xx t t T φφ=-and ()().yy xx t t φφ= 1.38.(a) We know that /22(2)().t t δδ=ThereforeThis implies that1(2)().2t t δδ=(b)The plot are as shown in Figure s3.18. 1.39 We havelim ()()lim (0)()0.u t t u t δδ→→==Also,0022gcd(,)gcd(,)gcd(,)gcd(,).T pp q p q p q p q q p q p pωωππ===/21lim (2)lim ().2t t δδ→∞→∞=01lim ()()().2u t t t δδ→=u Δ'(t ) 1 1/2Δ/2-Δ/2t 0tu Δ'(t )12Δ t 0tu Δ'(t ) 1 1/2Δ-Δttu Δ'(t )1 1/2Δ-Δt 0t⎰⎰∞∞∞--=-=0)()()()()(ττδτττδτd t u d t u t gTherefore,0,0()1,00t g t t undefined for t >⎧⎪=<⎨⎪=⎩()0()()()t u t t δττδτδτ-=-=-1.40.(a) If a system is additive ,then also, if a system is homogeneous,then(b) y(t)=x 2(t) is such a systerm . (c) No.For example,consider y(t) ()()ty t x d ττ-∞=⎰with ()()(1).x t u t u t =--Then x(t)=0for t>1,but y(t)=1 for t>1.1.41. (a) y[n]=2x[n].Therefore, the system is time invariant.(b) y[n]=(2n-1)x[n].This is not time-invariant because y[n- N 0]≠(2n-1)2x [n- N 0]. (c) y[n]=x[n]{1+(-1)n +1+(-1)n-1}=2x[n].Therefore, the system is time invariant .1.42.(a) Consider two system S 1 and S 2 connected in series .Assume that if x 1(t) and x 2(t) arethe inputs to S 1..then y 1(t) and y 2(t) are the outputs.respectively .Also,assume thatif y 1(t) and y 2(t) are the input to S 2 ,then z 1(t) and z 2(t) are the outputs, respectively . Since S 1 is linear ,we may write()()()()11212,s ax t bx t ay t by t +→+where a and b are constants. Since S 2 is also linear ,we may write()()()()21212,s ay t by t az t bz t +→+We may therefore conclude that)()()()(212121t b t a t b t a z z x x s s +−→−+Therefore ,the series combination of S 1 and S 2 is linear. Since S 1 is time invariant, we may write()()11010s x t T y t T -→-and()()21010s y t T z t T -→-Therefore,()()121010s s x t T z t T -→-Therefore, the series combination of S 1 and S 2 is time invariant.(b) False, Let y(t)=x(t)+1 and z(t)=y(t)-1.These corresponds to two nonlinear systems. If these systems are connected in series ,then z(t)=x(t) which is a linear system.00.()().00x t y t =→=0()()()()0x t x t y t y t =-→-=(c) Let us name the output of system 1 as w[n] and the output of system 2 as z[n] .Then11[][2][2][21][22]24y n z n w n w n w n ==+-+-[][][]241121-+-+=n x n x n xThe overall system is linear and time-invariant.1.43. (a) We have())(t y t x s−→−Since S is time-invariant.())(T t y T t x s-−→−-Now if x (t) is periodic with period T. x{t}=x(t-T). Therefore, we may conclude that y(t)=y(t-T).This impliesthat y(t) is also periodic with T .A similar argument may be made in discrete time . (b)1.44 (a) Assumption : If x(t)=0 for t<t 0 ,then y(t)=0 for t< t 0.To prove That : The system is causal.Let us consider an arbitrary signal x 1(t) .Let us consider another signal x 2(t) which is the same as x 1(t)fort< t 0. But for t> t 0 , x 2(t) ≠x 1(t),Since the system is linear,()()()()1212,x t x t y t y t -→-Since ()()120x t x t -=for t< t 0 ,by our assumption =()()120y t y t -=for t< t 0 .This implies that()()12y t y t =for t< t 0 . In other words, t he output is not affected by input values for 0t t ≥. Therefore, thesystem is causal .Assumption: the system is causal . To prove that :If x(t)=0 for t< t 0 .then y(t)=0 for t< t 0 .Let us assume that the signal x(t)=0 for t< t 0 .Then we may express x(t) as ()()12()x t x t x t =-, Where()()12x t x t = for t< t 0 . the system is linear .the output to x(t) will be()()12()y t y t y t =-.Now ,since the system is causal . ()()12y t y t = for t< t 0 .implies that()()12y t y t = for t< t 0 .Therefore y(t)=0 for t< t 0 .(b) Consider y(t)=x(t)x(t+1) .Now , x(t)=0 for t< t 0 implies that y(t)=0 for t< t 0 .Note that the system is nonlinear and non-causal .(c) Consider y(t)=x(t)+1. the system is nonlinear and causal .This does not satisfy the condition of part(a). (d) Assumption: the system is invertible. To prove that :y[n]=0 for all n only if x[n]=0 for all n . Consider[]0[]x n y n =→. Since the system is linear :2[]02[]x n y n =→.Since the input has not changed in the two above equations ,we require that y[n]= 2y[n].This implies that y[n]=0. Since we have assumed that the system is invertible , only one input could have led to this particular output .That input must be x[n]=0 .Assumption: y[n]=0 for all n if x[n]=0 for all n . To prove that : The system is invertible . Suppose that11[][]x n y n → and21[][]x n y n →Since the system is linear ,1212[][][][]0x n x n y n y n -=→-=By the original assumption ,we must conclude that 12[][]x n x n =.That is ,any particular y 1[n] can be produced that by only one distinct input x 1[n] .Therefore , the system is invertible. (e) y[n]=x 2[n]. 1.45. (a) Consider ,()111()()shx x t y t t φ→= and()222()()shx x t y t t φ→=.Now, consider ()()()312x t ax t bx t =+. The corresponding system output will be()()12331212()()()()()()()()()hx hx y t x h t d a x h t d b x t h t d a t b t ay t by t ττττττττφφ∞-∞∞∞-∞-∞=+=+++=+=+⎰⎰⎰Therefore, S is linear .Now ,consider x 4(t)=x 1(t-T).The corresponding system output will be()14411()()()()()()()hx y t x h t d x T h t d x h t T d t T τττττττττφ∞-∞∞-∞∞-∞=+=-+=++=+⎰⎰⎰Clearly, y 4(t)≠ y 1(t-T).Therefore ,the system is not time-invariant.The system is definitely not causal because the output at any time depends on future values of the input signal x(t).(b) The system will then be linear ,time invariant and non-causal. 1.46. The plots are in Figure S1.46.1.47.(a) The overall response of the system of Figure P1.47.(a)=(the response of the system to x[n]+x 1[n])-the response of the system to x 1[n]=(Response of a linear system L to x[n]+x 1[n]+zero input response of S)- (Response of a linear system L to x 1[n]+zero input response of S)=( (Response of a linear system L to x[n]).Chapter 2 answers2.1 (a) We have know that 1[]*[][][]k y x n h n h k x n k ∞=-∞==-∑1[][1][1][1][1]y n h x n h x n =-++-2[1]2[1]x n x n =++-This gives1[]2[1]4[]2[1]2[2]2[4]y n n n n n n δδδδδ=+++-+--- (b)We know that2[][2]*[][][2]k y n x n h n h k x n k ∞=-∞=+=+-∑Comparing with eq.(S2.1-1),we see that21[][2]y n y n =+(c) We may rewrite eq.(S2.1-1) as1[][]*[][][]k y n x n h n x k h n k ∞=-∞==-∑Similarly, we may write3[][]*[2][][2]k y n x n h n x k h n k ∞=-∞=+=+-∑Comparing this with eq.(S2.1),we see that31[][2]y n y n =+2.2 Using given definition for the signal h[n], we may write{}11[][3][10]2k h k u k u k -⎛⎫=+-- ⎪⎝⎭The signal h[k] is non zero only in the rang 1[][2]h n h n =+. From this we know that the signal h[-k] is non zero only in the rage 93k -≤≤.If we now shift the signal h[-k] by n to the right, then the resultant signal h[n-k] will be zero in the range (9)(3)n k n -≤≤+. Therefore ,9,A n =- 3B n =+ 2.3 Let us define the signals11[][]2nx n u n ⎛⎫= ⎪⎝⎭and1[][]h n u n =. We note that1[][2]x n x n =- and 1[][2]h n h n =+ Now,。
信号与系统 奥本海姆第二版 习题解答Department of Computer Engineering2005.12ContentsChapter 1 (2)Chapter 2 (17)Chapter 3 (35)Chapter 4 (62)Chapter 5 (83)Chapter 6 (109)Chapter 7 (119)Chapter 8 (132)Chapter 9 (140)Chapter 10 (160)Chapter 1 Answers1.1 Converting from polar to Cartesian coordinates:111cos 222j eππ==- 111c o s ()222j e ππ-=-=- 2cos()sin()22jj j eπππ=+=2c o s ()s i n ()22jjj eπππ-=-=- 522j jj eeππ==4c o s ()s i n ())144jjj πππ+=+9441j jj ππ=-9441j j j ππ--==-41jj π-=-1.2 055j=, 22j e π-=,233jj e π--=212je π--=, 41j j π+=, ()2221jj eπ-=-4(1)j je π-=, 411j je π+=-12e π-1.3. (a) E ∞=4014tdt e∞-=⎰, P ∞=0, because E ∞<∞ (b) (2)42()j t t x eπ+=, 2()1t x =.Therefore, E ∞=22()dt t x +∞-∞⎰=dt +∞-∞⎰=∞,P ∞=211limlim222()TTTTT T dt dt TTt x --→∞→∞==⎰⎰lim11T →∞=(c) 2()t x =cos(t). Therefore, E ∞=23()dt t x +∞-∞⎰=2cos()dt t +∞-∞⎰=∞, P ∞=2111(2)1lim lim 2222cos()TTTTT T COS t dt dt T Tt --→∞→∞+==⎰⎰(d)1[][]12nn u n x =⎛⎫ ⎪⎝⎭,2[]11[]4nu n n x =⎛⎫ ⎪⎝⎭. Therefore, E ∞=24131[]4nn n x +∞∞-∞===⎛⎫∑∑ ⎪⎝⎭P ∞=0,because E ∞<∞.(e) 2[]n x =()28n j e ππ-+,22[]n x =1. therefore, E ∞=22[]n x +∞-∞∑=∞,P ∞=211limlim1122121[]NNN N n Nn NN N n x →∞→∞=-=-==++∑∑.(f) 3[]n x =cos 4nπ⎛⎫ ⎪⎝⎭. Therefore, E ∞=23[]n x +∞-∞∑=2cos()4n π+∞-∞∑=2cos()4n π+∞-∞∑,P ∞=1limcos 214nNN n NN π→∞=-=+⎛⎫∑ ⎪⎝⎭1cos()112lim ()2122NN n Nn N π→∞=-+=+∑ 1.4. (a) The signal x[n] is shifted by 3 to the right. The shifted signal will be zero for n<1, And n>7. (b) The signal x[n] is shifted by 4 to the left. The shifted signal will be zero for n<-6. And n>0. (c) The signal x[n] is flipped signal will be zero for n<-1 and n>2.(d) The signal x[n] is flipped and the flipped signal is shifted by 2 to the right. The new Signal will be zero for n<-2 and n>4.(e) The signal x[n] is flipped and the flipped and the flipped signal is shifted by 2 to the left. This new signal will be zero for n<-6 and n>0.1.5. (a) x(1-t) is obtained by flipping x(t) and shifting the flipped signal by 1 to the right. Therefore, x (1-t) will be zero for t>-2. (b) From (a), we know that x(1-t) is zero for t>-2. Similarly, x(2-t) is zero for t>-1, Therefore, x (1-t) +x(2-t) will be zero for t>-2. (c) x(3t) is obtained by linearly compression x(t) by a factor of3. Therefore, x(3t) will be zero for t<1.(d) x(t/3) is obtained by linearly compression x(t) by a factor of 3. Therefore, x(3t) will bezero for t<9.1.6(a) x1(t) is not periodic because it is zero for t<0.(b) x2[n]=1 for all n. Therefore, it is periodic with a fundamental period of 1.(c) x3[n1.7. (a)()1[]vnxε={}1111[][]([][4][][4])22n n u n u n u n u nx x+-=--+----Therefore, ()1[]vnxεis zero for1[]nx>3.(b) Since x1(t) is an odd signal, ()2[]vnxεis zero for all values of t.(c)(){}11311[][][][3][3]221122vn nn n n u n u nx x xε-⎡⎤⎢⎥=+-=----⎢⎥⎢⎥⎣⎦⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭Therefore, ()3[]vnxεis zero when n<3 and when n→∞.(d) ()1554411()(()())(2)(2)22vt tt t t u t u tx x x e eε-⎡⎤=+-=---+⎣⎦Therefore, ()4()vtxεis zero only when t→∞.1.8. (a) ()01{()}22cos(0)tt tx eπℜ=-=+(b) ()02{()}cos()cos(32)cos(3)cos(30)4tt t t tx eππℜ=+==+(c) ()3{()}sin(3)sin(3)2t tt t tx e eππ--ℜ=+=+(d) ()224{()}sin(100)sin(100)cos(100)2t t tt t t tx e e eππ---ℜ=-=+=+1.9. (a)1()tx is a periodic complex exponential.101021()j t j tt jx e eπ⎛⎫+⎪⎝⎭==(b)2()tx is a complex exponential multiplied by a decaying exponential. Therefore,2()tx is not periodic.(c)3[]nx is a periodic signal. 3[]n x=7j neπ=j neπ.3[]nx is a complex exponential with a fundamental period of 22ππ=.(d)4[]nx is a periodic signal. The fundamental period is given by N=m(23/5ππ)=10().3mBy choosing m=3. We obtain the fundamental period to be 10.(e)5[]nx is not periodic. 5[]nx is a complex exponential with 0w=3/5. We cannot find any integer m such that m(2wπ) is also an integer. Therefore,5[]nxis not periodic.1.10. x(t)=2cos(10t+1)-sin(4t-1)Period of first term in the RHS =2105ππ=.Period of first term in the RHS =242ππ=.Therefore, the overall signal is periodic with a period which the least commonmultiple of the periods of the first and second terms. This is equal toπ.1.11. x[n] = 1+74j n e π−25j n e πPeriod of first term in the RHS =1. Period of second term in the RHS =⎪⎭⎫ ⎝⎛7/42π=7 (when m=2)Period of second term in the RHS =⎪⎭⎫ ⎝⎛5/22ππ=5 (when m=1)Therefore, the overall signal x[n] is periodic with a period which is the least common Multiple of the periods of the three terms inn x[n].This is equal to 35.1.12. The signal x[n] is as shown in figure S1.12. x[n] can be obtained by flipping u[n] and thenShifting the flipped signal by 3 to the right. Therefore, x[n]=u[-n+3]. This implies that M=-1 and no=-3.1.13y (t)=⎰∞-tdt x )(τ =dt t))2()2((--+⎰∞-τδτδ=⎪⎩⎪⎨⎧>≤≤--<2,022,12,0,t t tTherefore ⎰-==∞224d t E∑∑∞-∞=∞-∞=----=k k k t k t t g 12(3)2(3)(δδ)This implies that A 1=3, t 1=0, A 2=-3, and t 2=1.1.15 (a) The signal x 2[n], which is the input to S 2, is the same as y 1[n].Therefore ,y 2[n]= x 2[n-2]+21x 2[n-3] = y 1[n-2]+ 21y 1[n-3]=2x 1[n-2] +4x 1[n-3] +21( 2x 1[n-3]+ 4x 1[n-4]) =2x 1[n-2]+ 5x 1[n-3] + 2x 1[n-4] The input-output relationship for S isy[n]=2x[n-2]+ 5x [n-3] + 2x [n-4](b) The input-output relationship does not change if the order in which S 1and S 2 are connected series reversed. . We can easily prove this assuming that S 1 follows S 2. In this case , the signal x 1[n], which is the input to S 1 is the same as y 2[n].Therefore y 1[n] =2x 1[n]+ 4x 1[n-1]= 2y 2[n]+4 y 2[n-1]=2( x 2[n-2]+21 x 2[n-3] )+4(x 2[n-3]+21x 2[n-4]) =2 x 2[n-2]+5x 2[n-3]+ 2 x 2[n-4]The input-output relationship for S is once againy[n]=2x[n-2]+ 5x [n-3] + 2x [n-4]1.16 (a)The system is not memory less because y[n] depends on past values of x[n].(b)The output of the system will be y[n]= ]2[][-n n δδ=0(c)From the result of part (b), we may conclude that the system output is always zero for inputs of the form ][k n -δ, k ∈ ґ. Therefore , the system is not invertible .1.17 (a) The system is not causal because the output y(t) at some time may depend on future values of x(t). For instance , y(-π)=x(0).(b) Consider two arbitrary inputs x 1(t)and x 2(t).x 1(t) →y 1(t)= x 1(sin(t)) x 2(t) → y 2(t)= x 2(sin(t))Let x 3(t) be a linear combination of x 1(t) and x 2(t).That is , x 3(t)=a x 1(t)+b x 2(t)Where a and b are arbitrary scalars .If x 3(t) is the input to the given system ,then the corresponding output y 3(t) is y 3(t)= x 3( sin(t))=a x 1(sin(t))+ x 2(sin(t)) =a y 1(t)+ by 2(t)Therefore , the system is linear.1.18.(a) Consider two arbitrary inputs x 1[n]and x 2[n].x 1[n] → y 1[n] =][01k x n n n n k ∑+-=x 2[n ] → y 2[n] =][02k x n n n n k ∑+-=Let x 3[n] be a linear combination of x 1[n] and x 2[n]. That is :x 3[n]= ax 1[n]+b x 2[n]where a and b are arbitrary scalars. If x 3[n] is the input to the given system, then the corresponding outputy 3[n] is y 3[n]=][03k x n n n n k ∑+-==])[][(2100k bx k ax n n n n k +∑+-==a ][001k x n n n n k ∑+-=+b ][02k x n n n n k ∑+-== ay 1[n]+b y 2[n]Therefore the system is linear.(b) Consider an arbitrary input x 1[n].Lety 1[n] =][01k x n n n n k ∑+-=be the corresponding output .Consider a second input x 2[n] obtained by shifting x 1[n] in time:x 2[n]= x 1[n-n 1]The output corresponding to this input isy 2[n]=][02k x n n n n k ∑+-== ]n [1100-∑+-=k x n n n n k = ][01011k x n n n n n n k ∑+---=Also note that y 1[n- n 1]=][01011k x n n n n n n k ∑+---=.Therefore , y 2[n]= y 1[n- n 1] This implies that the system is time-invariant.(c) If ][n x <B, then y[n]≤(2 n 0+1)B. Therefore ,C ≤(2 n 0+1)B.1.19 (a) (i) Consider two arbitrary inputs x 1(t) and x 2(t). x 1(t) → y 1(t)= t 2x 1(t-1)x 2(t) → y 2(t)= t 2x 2(t-1)Let x 3(t) be a linear combination of x 1(t) and x 2(t).That is x 3(t)=a x 1(t)+b x 2(t)where a and b are arbitrary scalars. If x 3(t) is the input to the given system, then the corresponding output y 3(t) is y 3(t)= t 2x 3 (t-1)= t 2(ax 1(t-1)+b x 2(t-1))= ay 1(t)+b y 2(t)Therefore , the system is linear.(ii) Consider an arbitrary inputs x 1(t).Let y 1(t)= t 2x 1(t-1)be the corresponding output .Consider a second input x 2(t) obtained by shifting x 1(t) in time:x 2(t)= x 1(t-t 0)The output corresponding to this input is y 2(t)= t 2x 2(t-1)= t 2x 1(t- 1- t 0)Also note that y 1(t-t 0)= (t-t 0)2x 1(t- 1- t 0)≠ y 2(t) Therefore the system is not time-invariant.(b) (i) Consider two arbitrary inputs x 1[n]and x 2[n]. x 1[n] → y 1[n] = x 12[n-2]x 2[n ] → y 2[n] = x 22[n-2].Let x 3(t) be a linear combination of x 1[n]and x 2[n].That is x 3[n]= ax 1[n]+b x 2[n]where a and b are arbitrary scalars. If x 3[n] is the input to the given system, then the corresponding output y 3[n] is y 3[n] = x 32[n-2]=(a x 1[n-2] +b x 2[n-2])2=a 2x 12[n-2]+b 2x 22[n-2]+2ab x 1[n-2] x 2[n-2]≠ ay 1[n]+b y 2[n]Therefore the system is not linear.(ii) Consider an arbitrary input x 1[n]. Let y 1[n] = x 12[n-2]be the corresponding output .Consider a second input x 2[n] obtained by shifting x 1[n] in time:x 2[n]= x 1[n- n 0]The output corresponding to this input isy 2[n] = x 22[n-2].= x 12[n-2- n 0]Also note that y 1[n- n 0]= x 12[n-2- n 0] Therefore , y 2[n]= y 1[n- n 0] This implies that the system is time-invariant.(c) (i) Consider two arbitrary inputs x 1[n]and x 2[n].x 1[n] →y 1[n] = x 1[n+1]- x 1[n-1] x 2[n ]→y 2[n] = x 2[n+1 ]- x 2[n -1]Let x 3[n] be a linear combination of x 1[n] and x 2[n]. That is :x 3[n]= ax 1[n]+b x 2[n]where a and b are arbitrary scalars. If x 3[n] is the input to the given system, then the corresponding output y 3[n] is y 3[n]= x 3[n+1]- x 3[n-1]=a x 1[n+1]+b x 2[n +1]-a x 1[n-1]-b x 2[n -1]=a(x 1[n+1]- x 1[n-1])+b(x 2[n +1]- x 2[n -1])= ay 1[n]+b y 2[n]Therefore the system is linear.(ii) Consider an arbitrary input x 1[n].Let y 1[n]= x 1[n+1]- x 1[n-1]be the corresponding output .Consider a second input x 2[n] obtained by shifting x 1[n] in time: x 2[n]= x 1[n-n 0]The output corresponding to this input isy 2[n]= x 2[n +1]- x 2[n -1]= x 1[n+1- n 0]- x 1[n-1- n 0] Also note that y 1[n-n 0]= x 1[n+1- n 0]- x 1[n-1- n 0] Therefore , y 2[n]= y 1[n-n 0] This implies that the system is time-invariant.(d) (i) Consider two arbitrary inputs x 1(t) and x 2(t).x 1(t) → y 1(t)= d O {}(t) x 1 x 2(t) → y 2(t)= {}(t) x 2d OLet x 3(t) be a linear combination of x 1(t) and x 2(t).That is x 3(t)=a x 1(t)+b x 2(t)where a and b are arbitrary scalars. If x 3(t) is the input to the given system, then the corresponding output y 3(t) is y 3(t)= d O {}(t) x 3={}(t) x b +(t) ax 21d O=a d O {}(t) x 1+b {}(t) x 2d O = ay 1(t)+b y 2(t)Therefore the system is linear.(ii) Consider an arbitrary inputs x 1(t).Lety 1(t)= d O {}(t) x 1=2)(x -(t) x 11t -be the corresponding output .Consider a second input x 2(t) obtained by shifting x 1(t) in time:x 2(t)= x 1(t-t 0)The output corresponding to this input isy 2(t)= {}(t) x 2d O =2)(x -(t) x 22t -=2)(x -)t -(t x 0101t t --Also note that y 1(t-t 0)= 2)(x -)t -(t x 0101t t --≠ y 2(t)Therefore the system is not time-invariant.1.20 (a) Givenx )(t =jt e 2 y(t)=t j e 3x )(t =jt e 2- y(t)=t j e 3- Since the system liner+=tj e t x 21(2/1)(jt e 2-))(1t y =1/2(tj e 3+tj e 3-)Thereforex 1(t)=cos(2t))(1t y =cos(3t)(b) we know thatx 2(t)=cos(2(t-1/2))= (j e -jte 2+je jt e 2-)/2Using the linearity property, we may once again writex 1(t)=21( j e -jt e 2+j e jte 2-))(1t y =(j e -jt e 3+je jte 3-)= cos(3t-1)Therefore,x 1(t)=cos(2(t-1/2)))(1t y =cos(3t-1)1.21.The signals are sketched in figure S1.21.1.24 The even and odd parts are sketched in Figure S1.24 1.25 (a) periodic period=2π/(4)= π/2 (b) periodic period=2π/(4)= 2(c) x(t)=[1+cos(4t-2π/3)]/2. periodic period=2π/(4)= π/2 (d) x(t)=cos(4πt)/2. periodic period=2π/(4)= 1/2 (e) x(t)=[sin(4πt)u(t)-sin(4πt)u(-t)]/2. Not period. (f) Not period.1.26 (a) periodic, period=7.(b) Not period.(c) periodic, period=8.(d) x[n]=(1/2)[cos(3πn/4+cos(πn/4)). periodic, period=8. (e) periodic, period=16. 1.27 (a) Linear, stable(b) Not period. (c) Linear(d) Linear, causal, stable(e) Time invariant, linear, causal, stable (f) Linear, stable(g) Time invariant, linear, causal 1.28 (a) Linear, stable(b) Time invariant, linear, causal, stable (c)Memoryless, linear, causal (d) Linear, stable (e) Linear, stable(f) Memoryless, linear, causal, stable (g) Linear, stable1.29 (a) Consider two inputs to the system such that[][][]{}111.S e x n y n x n −−→=ℜand [][][]{}221.Se x n y n x n −−→=ℜNow consider a third inputx3[n]=x2[n]+x 1[n]. The corresponding system outputWill be [][]{}[][]{}[]{}[]{}[][]33121212e e e e y n x n x n x n x n x n y n y n ==+=+=+ℜℜℜℜtherefore, we may conclude that the system is additive Let us now assume that inputs to the system such that [][][]{}/4111.Sj e x n y n e x n π−−→=ℜand[][][]{}/4222.Sj e x n y n e x n π−−→=ℜNow consider a third input x 3 [n]= x 2 [n]+ x 1 [n]. The corresponding system outputWill be[][]{}()[]{}()[]{}()[]{}()[]{}()[]{}()[]{}[]{}[]{}[][]/433331122/4/41212cos /4sin /4cos /4sin /4cos /4sin /4j e m e m e m e j j e e y n e x n n x n n x n n x n n x n n x n n x n e x n e x n y n y n πππππππππ==-+-+-=+=+ℜℜI ℜI ℜI ℜℜ therefore, we may conclude that the system is additive (b) (i) Consider two inputs to the system such that()()()()211111Sdx t x t y t x t dt ⎡⎤−−→=⎢⎥⎣⎦and ()()()()222211S dx t x t y t x t dt ⎡⎤−−→=⎢⎥⎣⎦ Now consider a third input x3[t]=x2[t]+x 1[t]. The corresponding system outputWill be()()()()()()()()()2333211111211dx t y t x t dt d x t x t x t x t dt y t y t ⎡⎤=⎢⎥⎣⎦⎡⎤+⎡⎤⎣⎦=⎢⎥+⎢⎥⎣⎦≠+ therefore, we may conclude that the system is not additiveNow consider a third input x 4 [t]= a x 1 [t]. The corresponding system output Will be()()()()()()()()2444211211111dx t y t x t dt d ax t ax t dt dx t a x t dt ay t ⎡⎤=⎢⎥⎣⎦⎡⎤⎡⎤⎣⎦=⎢⎥⎢⎥⎣⎦⎡⎤=⎢⎥⎣⎦=Therefore, the system is homogeneous.(ii) This system is not additive. Consider the fowling example .Let δ[n]=2δ[n+2]+2δ[n+1]+2δ[n] andx2[n]=δ[n+1]+ 2δ[n+1]+ 3δ[n]. The corresponding outputs evaluated at n=0 are [][]120203/2y andy ==Now consider a third input x 3 [n]= x 2 [n]+ x 1 [n].= 3δ[n+2]+4δ[n+1]+5δ[n]The corresponding outputs evaluated at n=0 is y 3[0]=15/4. Gnarly, y 3[0]≠ ]0[][21y y n +.This[][][][][]444442,1010,x n x n x n y n x n otherwise ⎧--≠⎪=-⎨⎪⎩[][][][][][]4445442,1010,x n x n ax n y n ay n x n otherwise ⎧--≠⎪==-⎨⎪⎩Therefore, the system is homogenous.1.30 (a) Invertible. Inverse system y(t)=x(t+4)(b)Non invertible. The signals x(t) and x 1(t)=x(t)+2πgive the same output (c) δ[n] and 2δ[n] give the same output d) Invertible. Inverse system; y(t)=dx(t)/dt(e) Invertible. Inverse system y(n)=x(n+1) for n ≥0 and y[n]=x[n] for n<0 (f) Non invertible. x (n) and –x(n) give the same result (g)Invertible. Inverse system y(n)=x(1-n) (h) Invertible. Inverse system y(t)=dx(t)/dt(i) Invertible. Inverse system y(n) = x(n)-(1/2)x[n-1] (j) Non invertible. If x(t) is any constant, then y(t)=0 (k) δ[n] and 2δ[n] result in y[n]=0 (l) Invertible. Inverse system: y(t)=x(t/2)(m) Non invertible x 1 [n]= δ[n]+ δ[n-1]and x 2 [n]= δ[n] give y[n]= δ[n] (n) Invertible. Inverse system: y[n]=x[2n]1.31 (a) Note that x 2[t]= x 1 [t]- x 1 [t-2]. Therefore, using linearity we get y 2 (t)= y 1 (t)- y 1 (t-2).this is shown in Figure S1.31(b)Note that x3 (t)= x1 [t]+ x1 [t+1]. .Therefore, using linearity we get Y3 (t)= y1 (t)+ y1 (t+2). this is2(4) y 2(t) periodic, period T; x(t) periodic, period T/2;1.33(1) True x[n]=x[n+N ]; y 1 (n)= y 1 (n+ N 0)i.e. periodic with N 0=n/2if N is even and with period N 0=n if N is odd.(2)False. y 1 [n] periodic does no imply x[n] is periodic i.e. Let x[n] = g[n]+h[n] where0,1,[][]0,(1/2),nn even n even g n and h n n odd n odd⎧⎧==⎨⎨⎩⎩ Then y 1 [n] = x [2n] is periodic but x[n] is clearly not periodic. (3)True. x [n+N] =x[n]; y 2 [n+N 0] =y 2 [n] where N 0=2N (4) True. y 2 [n+N] =y 2 [n]; y 2 [n+N 0 ]=y 2 [n] where N 0=N/2 1.34. (a) ConsiderIf x[n] is odd, x[n] +x [-n] =0. Therefore, the given summation evaluates to zero. (b) Let y[n] =x 1[n]x 2[n] .Theny [-n] =x 1[-n] x 2[-n] =-x 1[n]x 2[n] =-y[n]. This implies that y[n] is odd.(c)ConsiderUsing the result of part (b), we know that x e [n]x o [n] is an odd signal .Therefore, using the result of part (a) we may conclude thatTherefore,(d)ConsiderAgain, since x e (t) x o (t) is odd,Therefore,1.35. We want to find the smallest N 0 such that m(2π /N) N 0 =2πk or N 0 =kN/m,{}1[][0][][]n n x n x x n x n ∞∞=-∞==++-∑∑22[][]e o n n n n x x ∞∞=-∞=-∞=+∑∑222[][][]e on n n n n n x x x∞∞∞=-∞=-∞=-∞==+∑∑∑2[][]0eon n n x x ∞=-∞=∑222[][][].e on n n n n n xx x ∞∞∞=-∞=-∞=-∞==+∑∑∑2220()()()2()().eoet dt t dt t dt t t dt x x x x x ∞∞∞∞-∞-∞-∞-∞=++⎰⎰⎰⎰0()()0.et t dt x x ∞-∞=⎰222()()().e ot dt t dt t dt xx x ∞∞∞-∞-∞-∞=+⎰⎰⎰()()()()()().xy yx t x t y d y t x d t φττττττφ∞-∞∞-∞=+=-+=-⎰⎰where k is an integer, then N must be a multiple of m/k and m/k must be an integer .this implies that m/k is a divisor of both m and N .Also, if we want the smallest possible N 0, then m/k should be the GCD of m and N. Therefore, N 0=N/gcd(m,N). 1.36.(a)If x[n] is periodic0(),0..2/j n N T o e where T ωωπ+= This implies that022o T kNT k T T Nππ=⇒==a rational number . (b)T/T 0 =p/q then x[n] =2(/)j n p q e π,The fundamental period is q/gcd(p,q) and the fundmental frequencyis(c) p/gcd(p,q) periods of x(t) are needed .1.37.(a) From the definition of ().xy t φWe havepart(a) that()().xx xx t t φφ=-This implies that()xy t φis(b) Note from even .Therefore,the odd part of().xx t φis zero.(c) Here, ()().xy xx t t T φφ=-and ()().yy xx t t φφ= 1.38.(a) We know that /22(2)().t t δδ=ThereforeThis implies that1(2)().2t t δδ=(b)The plot are as shown in Figure s3.18. 1.39 We havelim ()()lim (0)()0.u t t u t δδ→→==Also,0022gcd(,)gcd(,)gcd(,)gcd(,).T pp q p q p q p q q p q p pωωππ===/21lim (2)lim ().2t t δδ→∞→∞=01lim ()()().2u t t t δδ→=u Δ'(t ) 1 1/2Δ/2-Δ/2t 0tu Δ'(t )12Δ t 0tu Δ'(t ) 1 1/2Δ-Δttu Δ'(t )1 1/2Δ-Δt 0t⎰⎰∞∞∞--=-=0)()()()()(ττδτττδτd t u d t u t gTherefore,0,0()1,00t g t t undefined for t >⎧⎪=<⎨⎪=⎩()0()()()t u t t δττδτδτ-=-=-1.40.(a) If a system is additive ,then also, if a system is homogeneous,then(b) y(t)=x 2(t) is such a systerm . (c) No.For example,consider y(t) ()()ty t x d ττ-∞=⎰with ()()(1).x t u t u t =--Then x(t)=0for t>1,but y(t)=1 for t>1.1.41. (a) y[n]=2x[n].Therefore, the system is time invariant.(b) y[n]=(2n-1)x[n].This is not time-invariant because y[n- N 0]≠(2n-1)2x [n- N 0]. (c) y[n]=x[n]{1+(-1)n +1+(-1)n-1}=2x[n].Therefore, the system is time invariant .1.42.(a) Consider two system S 1 and S 2 connected in series .Assume that if x 1(t) and x 2(t) arethe inputs to S 1..then y 1(t) and y 2(t) are the outputs.respectively .Also,assume thatif y 1(t) and y 2(t) are the input to S 2 ,then z 1(t) and z 2(t) are the outputs, respectively . Since S 1 is linear ,we may write()()()()11212,s ax t bx t ay t by t +→+where a and b are constants. Since S 2 is also linear ,we may write()()()()21212,s ay t by t az t bz t +→+We may therefore conclude that)()()()(212121t b t a t b t a z z x x s s +−→−+Therefore ,the series combination of S 1 and S 2 is linear. Since S 1 is time invariant, we may write()()11010s x t T y t T -→-and()()21010s y t T z t T -→-Therefore,()()121010s s x t T z t T -→-Therefore, the series combination of S 1 and S 2 is time invariant.(b) False, Let y(t)=x(t)+1 and z(t)=y(t)-1.These corresponds to two nonlinear systems. If these systems are connected in series ,then z(t)=x(t) which is a linear system.00.()().00x t y t =→=0()()()()0x t x t y t y t =-→-=(c) Let us name the output of system 1 as w[n] and the output of system 2 as z[n] .Then11[][2][2][21][22]24y n z n w n w n w n ==+-+-[][][]241121-+-+=n x n x n xThe overall system is linear and time-invariant.1.43. (a) We have())(t y t x s−→−Since S is time-invariant.())(T t y T t x s-−→−-Now if x (t) is periodic with period T. x{t}=x(t-T). Therefore, we may conclude that y(t)=y(t-T).This impliesthat y(t) is also periodic with T .A similar argument may be made in discrete time . (b)1.44 (a) Assumption : If x(t)=0 for t<t 0 ,then y(t)=0 for t< t 0.To prove That : The system is causal.Let us consider an arbitrary signal x 1(t) .Let us consider another signal x 2(t) which is the same as x 1(t)fort< t 0. But for t> t 0 , x 2(t) ≠x 1(t),Since the system is linear,()()()()1212,x t x t y t y t -→-Since ()()120x t x t -=for t< t 0 ,by our assumption =()()120y t y t -=for t< t 0 .This implies that()()12y t y t =for t< t 0 . In other words, t he output is not affected by input values for 0t t ≥. Therefore, thesystem is causal .Assumption: the system is causal . To prove that :If x(t)=0 for t< t 0 .then y(t)=0 for t< t 0 .Let us assume that the signal x(t)=0 for t< t 0 .Then we may express x(t) as ()()12()x t x t x t =-, Where()()12x t x t = for t< t 0 . the system is linear .the output to x(t) will be()()12()y t y t y t =-.Now ,since the system is causal . ()()12y t y t = for t< t 0 .implies that()()12y t y t = for t< t 0 .Therefore y(t)=0 for t< t 0 .(b) Consider y(t)=x(t)x(t+1) .Now , x(t)=0 for t< t 0 implies that y(t)=0 for t< t 0 .Note that the system is nonlinear and non-causal .(c) Consider y(t)=x(t)+1. the system is nonlinear and causal .This does not satisfy the condition of part(a). (d) Assumption: the system is invertible. To prove that :y[n]=0 for all n only if x[n]=0 for all n . Consider[]0[]x n y n =→. Since the system is linear :2[]02[]x n y n =→.Since the input has not changed in the two above equations ,we require that y[n]= 2y[n].This implies that y[n]=0. Since we have assumed that the system is invertible , only one input could have led to this particular output .That input must be x[n]=0 .Assumption: y[n]=0 for all n if x[n]=0 for all n . To prove that : The system is invertible . Suppose that11[][]x n y n → and21[][]x n y n →Since the system is linear ,1212[][][][]0x n x n y n y n -=→-=By the original assumption ,we must conclude that 12[][]x n x n =.That is ,any particular y 1[n] can be produced that by only one distinct input x 1[n] .Therefore , the system is invertible. (e) y[n]=x 2[n]. 1.45. (a) Consider ,()111()()shx x t y t t φ→= and()222()()shx x t y t t φ→=.Now, consider ()()()312x t ax t bx t =+. The corresponding system output will be()()12331212()()()()()()()()()hx hx y t x h t d a x h t d b x t h t d a t b t ay t by t ττττττττφφ∞-∞∞∞-∞-∞=+=+++=+=+⎰⎰⎰Therefore, S is linear .Now ,consider x 4(t)=x 1(t-T).The corresponding system output will be()14411()()()()()()()hx y t x h t d x T h t d x h t T d t T τττττττττφ∞-∞∞-∞∞-∞=+=-+=++=+⎰⎰⎰Clearly, y 4(t)≠ y 1(t-T).Therefore ,the system is not time-invariant.The system is definitely not causal because the output at any time depends on future values of the input signal x(t).(b) The system will then be linear ,time invariant and non-causal. 1.46. The plots are in Figure S1.46.1.47.(a) The overall response of the system of Figure P1.47.(a)=(the response of the system to x[n]+x 1[n])-the response of the system to x 1[n]=(Response of a linear system L to x[n]+x 1[n]+zero input response of S)- (Response of a linear system L to x 1[n]+zero input response of S)=( (Response of a linear system L to x[n]).Chapter 2 answers2.1 (a) We have know that 1[]*[][][]k y x n h n h k x n k ∞=-∞==-∑1[][1][1][1][1]y n h x n h x n =-++-2[1]2[1]x n x n =++-This gives1[]2[1]4[]2[1]2[2]2[4]y n n n n n n δδδδδ=+++-+--- (b)We know that2[][2]*[][][2]k y n x n h n h k x n k ∞=-∞=+=+-∑Comparing with eq.(S2.1-1),we see that21[][2]y n y n =+(c) We may rewrite eq.(S2.1-1) as1[][]*[][][]k y n x n h n x k h n k ∞=-∞==-∑Similarly, we may write3[][]*[2][][2]k y n x n h n x k h n k ∞=-∞=+=+-∑Comparing this with eq.(S2.1),we see that31[][2]y n y n =+2.2 Using given definition for the signal h[n], we may write{}11[][3][10]2k h k u k u k -⎛⎫=+-- ⎪⎝⎭The signal h[k] is non zero only in the rang 1[][2]h n h n =+. From this we know that the signal h[-k] is non zero only in the rage 93k -≤≤.If we now shift the signal h[-k] by n to the right, then the resultant signal h[n-k] will be zero in the range (9)(3)n k n -≤≤+. Therefore ,9,A n =- 3B n =+ 2.3 Let us define the signals11[][]2nx n u n ⎛⎫= ⎪⎝⎭and1[][]h n u n =. We note that1[][2]x n x n =- and 1[][2]h n h n =+ Now,。
第1章信号与系统1.1复习笔记1,连续时间和离散时间信号1个连续时间信号和离散时间信号(1)连续时间信号(图1-1(a))①定义连续时间信号是指自变量是连续变量的信号,并且该信号是在自变量的连续值上定义的。
②代表自变量由T表示,表示连续时间。
连续时间信号表示为X(T)。
(2)离散时间信号(图1-1(b))①定义离散时间信号的自变量仅在一组离散值中选择,并且仅在离散时间点定义信号。
②代表自变量由N表示,N表示离散时间。
离散时间信号表示为x [n]。
说明:hwocrtemp_ ROC60图1-1信号的图形表示(a)连续的时间表示;(b)离散时间信号2.信号能量和功率(1)有限间隔内信号的总能量和功率①描述中的连续时间信号x(T):hwocrtemp_ roc120中的总能量说明:hwocrtemp_ ROC130哪里x |是X的模块(可能是复数)。
通过将上述公式除以长度t2-t1,可以获得平均功率。
②描述中的离散时间信号x [n]:hwocrtemp_ roc140中的总能量说明:hwocrtemp_ ROC150将其除以interval_中的点数即可。
Roc160获得该范围内的平均功率。
(2)无限间隔内信号的总能量和功率①无限时间连续时间信号的总能量x(T)说明:hwocrtemp_ ROC180无限时间连续时间信号x(T)的平均功率说明:hwocrtemp_ ROC220②无限时间中离散时间信号x [n]的总能量说明:hwocrtemp_ ROC190无限时间间隔内离散时间信号x [n]的平均功率说明:hwocrtemp_ ROC230(3)根据信号能量和功率的限制进行分类①该信号的总能量有限,即:hwocrtemp_ Roc240,该信号的平均功率为零。
②如果平均功率P∞是有限的,则其能量是无限的。
③具有无限大的P∞和E∞的信号。
2,自变量的变换基本转型(1)时移①X(t-t0)表示具有延迟|的X(T)。
Charpt 11.21—(a),(b),(c)一连续时间信号x(t)如图original所示,请画出下列信号并给予标注:a)x(t-1)b)x(2-t)c)x(2t+1)d)x(4-t/2)e)[x(t)=x(-t)]u(t)f)x(t)[δ(t+3/2)-δ(t-3/2)](d),(e),(f)1.22一离散时间信号x[n]如图original所示,请画出下列信号并给予标注。
a)x[n-4]b)x[3-n]c)x[3n]e)x[n]u[3-n]f)x[n-2]δ[n-2]1.23确定并画出图original信号的奇部和偶部,并给予标注。
1.25判定下列连续时间信号的周期性,若是周期的,确定它的基波周期。
a)x(t)=3cos(4t+π/3)T=2π/4=π/2;b)x(t)=e )1(t j T=2π/π=2;c)x(t)=[cos(2t-π/3)]2x(t)=1/2+cos[(cos(4t-2π/3))]/2, so T=2π/4=π/2;d)x(t)=E v {cos(4πt)u(t)}定义x(0)=1/2,则T=1/2; e)E v {sin(4πt)u(t)}非周期f )x(t)=n n t e )2(假设其周期为T 则n n t e )2(=n T n t e )22(=n T n t e ))2(2(=n n t e )2(所以T=1/2(最小正周期);1.26判定下列离散时间信号的周期性;若是周期的,确定他们的基波周期。
(a)x[n]=sin(6π/7+1) N=7(b)x[n]=cos(n/8-π) 不是周期信号(c )x[n]=cos(πn 2/8)假设其周期为N ,则8/8/)(22n N n +k 2所以易得N=8(d )x[n]=)4cos()2cos(n n N=8(e) x[n]=)62cos(2)8sin()4cos(2n n n N=16 1.31在本题中将要说明线性时不变性质的最重要的结果之一,即一旦知道了一个线性系统或线性时不变系统对某单一输入的响应或者对若干个输入的响应,就能直接计算出对许多其他输入信号的响应。