某中承式钢拱桥边跨钢结构局部分析
- 格式:pdf
- 大小:1.27 MB
- 文档页数:4
中承式系杆拱桥动荷载实验及分析摘要:基于有限元分析理论, 采用有限元软件midas civil, 以中承式系杆拱桥为工程背景, 对该桥的自振特性进行了理论分析, 通过对结构进行动荷载试验, 并将现场采集的试验数据与理论计算数据进行对比分析, 发现自振频率理论值低于实测值, 冲击系数实测值比理论值略大, 说明结构实际刚度比理论刚度大, 但桥面平整度略差。
关键词:中承式系杆拱桥;动载试验;有限元模型;中图分类号: u448.22+5 文献标识码: a 文章编号:1.工程概况中承式系杆拱桥,跨径布置为27+100+27米,宽36米。
主桥主拱采用二次抛物线拱轴线,边拱采用圆弧拱轴线,截面材料为钢筋混凝土。
吊杆采用定型生产的挤包护层扭绞型拉索,间距5.0米,每两根构成一束吊杆,全桥共64根吊杆。
桥面以下立柱采用钢筋混凝土结构,间距5米;纵梁之间与吊杆相同间距设置预应力混凝土横梁。
设计荷载:城-a级;抗震设防烈度:7度,设计基本地震加速度0.15g。
2.有限元模型建立采用有限元软件midas civil进行计算分析。
纵梁、横梁、拱肋、风撑、加劲撑和立柱采用梁单元模拟,拱座和二级承台采用实体单元模拟,吊杆采用索单元模拟,行车道板采用板单元模拟。
全桥共有节点7844个,单元6374个,模型如图1。
建立刚度大无质量的虚拟纵梁,将移动荷载简化为集中荷载后加载到虚拟梁上,计算得到各控制截面的内力、变形的时程曲线。
图1 midas civil空间模型3、动载试验目的研究该桥的整体结构的动力学特性,以判断桥梁的实际运营状况和桥梁的实际承载能力。
桥梁在运营过程中过大的振动,一方面会引起乘客或行人的不舒适感;另一方面会带来人们心理上的不安全感。
桥梁的自振频率处在某些范围时,很容易由外荷载(包括行驶的车辆、行人、地震、风载)引起共振。
通过桥梁动力荷载试验测定桥梁性能,从而为桥梁能承受哪种实际的荷载、运营状况进行评价。
4、动载试验内容首先,测定桥梁作为一个整体结构在动力荷载作用下的受迫振动特性,特别是桥梁在接近各种运营条件下的汽车或单辆重车以不同的速度通过桥梁,桥梁所反映出的动频率、振幅、速度、振型各种动力特性,以评价大桥的最大动力响应是否满足有关规范的要求,同时根据结构的振动模型来分析桥梁结构有无较大缺陷。
近期,国内桥梁垮塌事故频发,牵动着人们的神经。
今年5月,严厉的“酒驾”处罚让人们为不可预测的交通安全松了一口气,但桥梁垮塌事件再次引发热议,人们开始将注意力转到桥梁本身的质量安全。
“一座桥梁通南北”,桥梁,建筑的是品质、养护的是安全。
桥梁垮塌,拷问着建筑商和养护单位的良知,考量着政府的公信力。
本文在盘点中国“桥脆脆”事件的同时,更倾向于垮塌原因的分析,从失败中总结经验,希望桥梁垮塌悲剧不再发生。
1、福建:武夷山公馆大桥垮塌事件回放:2011年7月14日早上8时50分许,福建武夷山公馆大桥北端轰然垮塌,一辆正在桥上行驶的旅游大巴车坠入桥下,造成1名驾驶员当场死亡,其余22人受伤。
事故原因:桥梁个别或部分吊杆断裂,导致桥面荷载失去承载而发生桥面垮塌。
桥梁简介:武夷山公馆大桥大桥于1996年11月8日动工兴建,1999年11月20日竣工通车。
武夷山公馆大桥由福建省交通规划设计院设计,福建省林业工程公司承建,为中承式钢架拱桥,上部结构为3孔中承式悬链线等截面(拱脚处截面加高加厚)钢筋砼箱型无铰拱拱桥,设两墩两台,中间跨度100米,两边跨度80米,全长301米,宽18米(车行道12米,人行道6米)荷载为汽20,挂100;总投资约1700万元。
该桥桥型雄伟壮观,是20世纪闽北此类桥型最大的桥梁。
2、浙江:钱江三桥引桥垮塌事件回放:2011年7月15日凌晨1时55分,钱江三桥引桥北向南离滨江转盘不到800米处右侧车道部分桥面突然塌落,一辆大货车从桥面坠落,又将下匝道砸塌。
事故原因:发生塌陷的引桥上部梁板结构估计为20m跨的预应力空心板,按桥梁开工时期判断,当时简支结构所用的预应力空心板俗称小空板,板宽为99cm,板与板之间通过铰缝连接,并在板面上设置约10cm厚的钢筋混凝土整体化层,形成桥面荷载在板间分布,整体化层上面还要铺8~10cm沥青混凝土桥面铺装层。
据了解,设计采用厚6cm的30号混凝土现浇层和5cm厚沥青混凝土面层,设计稍有不足。
【钢管混凝土拱桥拱座结构受力分析】钢管混凝土拱桥结构及受力特点分析某中承式钢管混凝土拱桥拱肋的理论计算跨径为152m,拱肋直径1.5m,厚度为2cm,内部浇筑C50混凝土,计算矢高为47m,矢跨比为1/3,拱肋拱轴线采用倒悬链线,拱轴系数为1.55。
拱肋采用圆形截面,主梁采用扁平流线形钢箱截面,拱肋设18对吊杆。
下部结构为钢筋混凝土拱座及承台接钻孔灌注桩基础。
桥面铺装采用6cm 厚环氧沥青。
钢箱梁主体结构均采用Q345-C钢,钢箱拱肋结构采用Q345D钢,其技术指标应符合《低合金高强度结构钢》(GB/T1591-94)的相关要求,盖梁及墩柱采用C40混凝土,拱座及承台采用C30混凝土,基桩采用C25混凝土。
桥梁设计荷载为公路-I级,人群荷载5.0KN/m2;环境类别为II类;设计安全等级为一级。
Midas/Civil有限元模型使用Midas/Civil建立全桥模型,本桥3D模型按照桥梁设计选择相应的材料和截面特性。
模型划分共计368个节点,378个单元,其中梁单元360个,桁架单元18个,考虑到的各作用效应有:(1)恒载:自重以及设计荷载;(2)均匀温度:结构因均匀温升、温降,梯度温升、温降产生的作用效应按《公路桥涵设计通用规范》(JTG D60-2004)规定计算。
(3)支座沉降:支座不均匀沉降按1cm考虑。
(4)车辆荷载:按最不利车辆荷载考虑,车辆为公路—I级五车道,人群荷载为5.0KN/m。
本桥考虑2.5%的桥梁纵坡。
模型节点单元见图3。
其中,拱肋单元编号为155~322,共计167个单元。
图1 钢管混凝土拱桥有限元模型永久作用分项系数按照作用对结构承载能力不利的情况选取,可变作用分项系数按照规范的要求进行取值。
各荷载组合系数见表3。
表3 荷载组合系数名称荷载工况组合系数结构恒载自重+二期1.1车辆荷载公路—Ⅰ级1.4支座沉降1cm 1.0温度荷载±20℃ 0.7计算结构自重+二期+车辆荷载+升、降温效应(±20℃)+支座沉降(1cm)作用下的拱肋内力。
中承式钢管混凝土拱桥施工1. 引言中承式钢管混凝土拱桥是一种广泛应用于道路和铁路交通建设中的桥梁形式。
它具有较大的跨度、高的承载能力和良好的抗震性能,被认为是传统拱桥和连续梁桥的优化结合。
本文将介绍中承式钢管混凝土拱桥施工的关键步骤和注意事项。
2. 施工前准备2.1 桥梁设计图纸在施工开始之前,需要准备好桥梁的详细设计图纸。
图纸应包括桥梁的平面布置、纵断面、结构细部等细节。
施工方需要根据图纸确定施工方案和具体的施工工序。
2.2 施工材料和设备施工材料包括钢管、混凝土、钢筋等。
施工设备包括起重机、混凝土泵车、模板支架等。
在施工前,需要确保所有材料和设备的准备充分,并进行必要的检查和试验。
2.3 地基处理对于较软的地基,需要进行地基处理,如加固、压实等。
地基处理的目的是为了提供稳固的基础支撑,确保拱桥的稳定性和安全性。
3. 桥墩施工3.1 基础浇筑首先,在桥墩位置进行基础的浇筑。
根据设计要求,施工人员应按照计算的基础尺寸和混凝土配合比进行浇筑。
为了确保浇筑的质量,施工人员需要严格控制浇筑过程中的浇筑速度和混凝土的均匀性。
3.2 桥墩安装基础完成后,可以进行桥墩的安装。
根据设计要求,施工人员需要使用起重机将桥墩逐个安装到预定位置。
在安装过程中,需要注意保证桥墩的垂直度和水平度,以及与基础的连接质量。
4. 拱肋安装4.1 钢管制作拱桥主要采用钢管作为拱肋材料。
施工前,需要将钢管进行加工制作,包括切割、焊接等工序。
制作完成后,需要对钢管进行质量检查,确保其满足设计要求。
4.2 拱肋安装安装拱肋是拱桥施工的核心步骤之一。
首先,施工人员需要将拱肋倒置,并用临时支撑固定在桥墩上。
然后,使用起重机将拱肋逐个正装在预定位置,并与桥墩进行连接。
在安装过程中,需要严格控制拱肋的位置和水平度。
5. 模板支撑5.1 模板搭设在进行混凝土浇筑之前,需要搭设模板作为混凝土的浇注基准。
模板应按照设计要求进行搭设,并进行充分的安全检查。
某大跨度中承式拱桥承载能力检测评定与分析贺才松【摘要】Taking some large-span arch bridge as the research object,the paper finds out some diseases and their features on the bridge,analyzesthe unfavorable influence of the current damages of the bridge accordingto the non-destructive test,evaluates the working status of the bridge ac-cording to the loading test,modifies the structural resistanteffect,undertakes current loading capacity evaluation of the bridge,and undertakes the analysis of reasons for main diseases by combining withthe test result,so as to provide some reference for bridges maintenance.%以某大跨度中承式吊杆拱桥为研究对象,基于外观检测,查出桥梁存在的病害及其特征,根据无损检测,分析了桥梁的现存缺损给其造成的不利影响,通过荷载试验,评估了桥梁的工作状态,并对结构抗力效应进行修正,同时对桥梁进行了现有承载能力评定,结合检测结果对主要病害进行病害成因分析,为桥梁维修加固提供依据。
【期刊名称】《山西建筑》【年(卷),期】2015(000)011【总页数】3页(P155-157)【关键词】中承式拱桥;承载能力评估;荷载试验;病害成因【作者】贺才松【作者单位】宁波江北高新技术产业园管委会,浙江宁波 315211【正文语种】中文【中图分类】U442.55钢筋混凝土拱桥以其造型美观、跨越能力强等特点而被广泛应用。
宝汉高速公路坪坎至XX(石门)段石门水库特大桥专项监理细则XX公路交通工程监理咨询XX宝汉高速公路汉坪段PH-J5监理工程师办公室二○一四年十月审批:目录第一章、工程概况 (5)一、工程概况 (5)二、工程地形地貌地质 (5)三、气象 (6)四、工程内容 (8)第二章、监理依据与目标 (10)一、监理依据 (10)二、监理X围 (10)三、监理内容 (11)四、监理方针 (13)五、监理目标 (13)第三章、监理人员与设备 (15)一、监理人员 (15)二、监理设备配置 (20)第四章、监理细则 (22)一、质量监理细则 (22)监理工作要点 (22)施工准备阶段监理 (30)施工阶段监理 (31)1、一般要求 (31)2、 (32)3、 (36)4、 (40)5、 (43)6、 (56)7、 (59)8、 (68)9、 (82)10、 (83)二、安全与环保监理 (84)1、安全监理 (84)2、环保监理 (84)三、工程旁站方案 (86)第一章、工程概况地理位置:石门水库特大桥是“XX定汉线坪坎至XX(石门)高速公路”的重要节点工程,该桥跨越316国道和石门水库,桥位距石门水库大坝约4km 。
石门水库是国家级水利风景区,位于XX市汉台区北18公里的褒河谷口。
桥位情况:大桥两侧分别接石门隧道与牛头山隧道,路线在此处为分离式,上下行相距35m。
桥位处路线与316国道与水库垂直交叉,桥面设计高程高出316国道路面约15m,316国道山体侧有滑塌,塌方碎石堆弃在国道靠近水库侧坡岸上。
水库水面宽约200m,水深20m左右,水库最高蓄水水位622.08m,水库不通航,水面两侧坡岸山体陡峭,有基岩出露。
气象水文:年均气温14.8℃,最高气温38℃,最低气温-10.1℃,属温热地区,夏季受副热带高压影响,冬季,受极地大陆冷气团控制,多西北季风,形成寒冷干燥少雨的天气。
春秋为过渡季节,春暖少雨,秋凉多雨,气候湿润。
中承式钢管混凝土劲性骨架拱桥数值模拟分析的开题报告一、研究背景及意义随着我国经济的快速发展,城市化进程不断加快,交通运输网络建设日益扩大,桥梁的使用频率和工程复杂度也在逐步增加。
其中,中承式钢管混凝土劲性骨架拱桥作为一种新型的桥梁结构,具有结构简单、施工方便、经济性高等优点,受到了广泛的关注。
然而,由于这种桥梁结构与传统桥梁结构存在巨大差异,在设计和施工过程中存在一系列问题。
例如,如何准确评估其结构稳定性和荷载承载能力、如何优化设计方案以实现更好的经济效益等。
因此,深入研究中承式钢管混凝土劲性骨架拱桥结构力学行为和性能,开展数值模拟分析,有助于提高其设计和施工的可靠性和经济性,促进桥梁结构的发展与进步。
二、研究内容和方法本研究的主要内容是对中承式钢管混凝土劲性骨架拱桥的力学行为和性能进行数值模拟分析。
具体研究内容包括:1. 桥梁结构的建模:利用有限元方法对中承式钢管混凝土劲性骨架拱桥进行建模,包括建立结构几何形态、材料力学参数和荷载情况等方面的参数。
2. 结构力学行为分析:采用数值模拟的方法,对中承式钢管混凝土劲性骨架拱桥的静力荷载和动力荷载进行模拟分析,研究桥梁结构的应力、应变、变形等力学行为。
3. 参数优化:在对桥梁进行数值模拟的基础上,对其结构参数和材料参数进行优化设计,以提高其结构稳定性和荷载承载能力。
4. 结果分析和结论:对数值模拟得到的结果进行分析和总结,得出中承式钢管混凝土劲性骨架拱桥的力学性能特点和设计优化建议。
本研究所采用的主要方法包括基于ANSYS有限元软件的数值模拟方法,以及参数优化方法。
同时,还将参考相关文献、实测数据和实际工程经验,实现数值模拟结果的可信度和科学性。
三、预期成果和意义通过本研究的数值模拟分析,预期可以得到以下成果:1. 对中承式钢管混凝土劲性骨架拱桥的设计、施工和维护提供科学的参考依据和技术支持,提高其可靠性和经济性。
2. 系统性地研究中承式钢管混凝土劲性骨架拱桥在不同荷载作用下的力学行为和性能,为桥梁结构设计和优化提供参考。
××大桥拱圈浇筑过程中拱圈支架的受力分析××大学应用力学研究所目录1.工程概况 (1)2.有限元分析模型的建立 (1)2.1.结构模型的简化 (1)2.2.材料说明 (3)2.3.按设计说明要求进行整体计算 (3)2.3.1.拱架位移 (4)2.3.2.拱架应力 (5)2.3.3.拱架稳定 (5)3.砼施工过程中拱架受力计算 (6)3.1.荷载的简化 (6)3.2.施工阶段的模拟 (7)4.各施工阶段拱圈支架的受力情况 (7)4.1.第一阶段:拱架自重,拱盔荷、载风荷载作用 (7)4.1.1.拱架位移 (7)4.1.2.拱架应力 (8)4.2.第二阶段:对称浇筑拱脚段22.447m底板 (8)4.2.1.拱架位移 (8)4.2.2.拱架应力 (9)4.3.第三阶段:浇筑拱顶段30.762m底板 (9)4.3.1.拱架位移 (9)4.3.2.拱架应力 (10)4.4.第四阶段:对称浇筑1/4跨段20.073m底板(底板合拢) 104.4.1.拱架位移 (10)4.4.2.拱架应力 (11)4.5.第五阶段:对称浇筑拱脚段22.72m腹板 (11)4.5.1.拱架位移 (11)4.5.2.拱架应力 (12)4.6.第六阶段:浇筑拱顶段31.137m腹板 (12)4.6.1.拱架位移 (12)4.6.2.拱架应力 (13)4.7.第七阶段:对称浇筑1/4跨段20.318m腹板(腹板合拢) 134.7.1.拱架位移 (13)4.7.2.拱架应力 (14)4.8.第八阶段:对称浇筑拱脚段23m顶板 (14)4.8.1.拱架位移 (14)4.8.2.拱架应力 (15)4.9.第九阶段:浇筑拱顶段31.513m顶板 (15)4.9.1.拱架位移 (15)4.9.2.拱架应力 (16)4.10.第十阶段:对称浇筑1/4跨段20.563m顶板(顶板合拢) 164.10.1.拱架位移 (16)4.10.2.拱架应力 (17)5.各施工阶段拱圈支架的稳定情况 (17)5.1.整体稳定计算 (17)5.1.1.浇筑底板时拱架的整体稳定计算 (17)5.1.2.浇筑腹板时拱架的整体稳定计算 (18)5.2.局部稳定计算 (19)5.2.1.上弦杆局部稳定计算 (20)5.2.2.下弦杆局部稳定计算 (20)5.3.抗风倾覆性验算 (22)6.总结 (22)7.结论与建议 (23)1. 工程概况××大桥是××至四级公路项目中的一座大型桥梁,里程桩号K0+177.675~K0+327.325,桥梁全长149.65m ,桥型布置为:2x10m (钢筋混凝土空心板)+1x105(箱型拱)+1x10m (钢筋混凝土空心板),主桥桥宽9.0m 。
大跨度中承式钢管混凝土拱桥施工方案渠江特大桥上部结构采用3*30+40+418.8+40+2*30m预应力砼T梁+中承式钢管混凝土拱桥,全桥长6557.8米。
下部结构桥墩采用钢筋混凝土柱式墩,钻孔桩基础。
桥台采用柱式台、扩大基础基础。
根据工程特点,结合工程的工作进度安排,大桥推荐方案全部工程(含引道和附属工程)工期为36个月。
1.1 总体施工方案(1)拱座基础施工主桥拱座基础施工涉及①基坑的开挖及围护;②混凝土浇筑施工等内容。
(2)钢结构加工根据桥位区的运输条件,拱肋及钢梁无法整节段运输至桥位的实际情况,因此采用厂内加工单根杆件运输到桥位临时组装场地,在临时场地将拱肋单元件组焊成吊装节段、试拼装,然后进行吊装。
(3)主拱安装主拱采用缆索吊斜拉扣挂施工。
吊装顺序为每节段内上、下游拱肋及相应横撑同步进行,即每节段上游拱肋(或下游拱肋)→每节段下游拱肋(或上游拱肋)→每节段内横撑,以上循环为一环,安装就位后再进行下节段的吊装,拱肋接头设计为先栓接再焊接,横撑接头设计为定位之后直接焊接的方式进行。
每一扣段的吊装节段就位后,应调整扣索力,使拱肋轴线位于设计标高,当安装误差满足规定要求后,即可焊接主拱钢管接头。
(4)钢管砼灌注拱肋合龙形成完整的拱圈,监控单位完成各项测试,并经分析满足计算及规范要求以后,即可灌注主拱圈上、下弦钢管内混凝土和设计指定的横联等构件内混凝土。
采用C60自密实补偿收缩高性能混凝土,以泵压法自拱脚向拱顶灌注主拱钢管内混凝土,灌注混凝土时应分不同阶段张拉监控单位指定的扣索及索力,在拱肋1/4处设置备用灌注孔。
横联管等构件钢管内混凝土采用泵压法,但应事先完成灌注工艺设计报告,请监理、业主审查批准。
施工单位需作灌注孔堵塞的应急预案。
(5)桥面系施工桥面系各构件用缆索吊装,施工单位在设计缆索吊装系统时,应充分考虑桥面梁的最大吊装重量。
为方便钢纵梁的运输和安装,钢纵梁在工厂分段制作运抵工地后,按设计要求以拼接缝分段连接、吊装。
钢结构拱桥拱肋施工线形控制技术及监控分析发布时间:2022-10-21T07:09:24.078Z 来源:《工程管理前沿》2022年第12期作者:陈濡森[导读] 拱桥属于无推力拱桥,外部静定而内部超静定。
陈濡森珠海航空城工程建设有限公司摘要:拱桥属于无推力拱桥,外部静定而内部超静定。
其理想的线形和内力状态不仅与设计有关,还需要有科学、合理的施工方法。
以珠海金岛大桥为例,制定合理可行的施工工序及科学地调整主梁、拱肋标高和吊杆索力值等监控手段,使成桥状态应力和几何线型符合设计要求,保证桥梁施工和运营过程安全。
下承式拱桥是高次超静定结构,吊杆张拉力的偏差都会使桥面线形偏离设计值,并导致结构内力重新分配,使成桥内力偏离设计值。
主拱肋、箱梁和吊索之间刚度相差大,受吊索垂度、温度变化、风力、日照的影响、施工临时荷载等复杂因素干扰,使力与变形关系变得十分复杂,施工中虽可以采用多种计算方法,算出各施工阶段或步骤的索力和相应的梁体变形,但根据理论计算所给出的索力、线形指导施工时,结构的实际变形却未必能达到预期效果。
吊索张拉在施工中表现出来的这种理论与实际的偏差具有累积性,如不及时加以有效控制和调整,主梁标高最终会显著偏离设计目标,影响成桥的内力和线形。
拱桥施工过程中桥梁经历了多次结构体系的转换,每次转换桥梁的受力状态和构件位移均会发生较大改变。
因此,必须根据工程实际情况,制定合理的施工监控方案。
关键词:钢结构;拱桥拱肋;线形控制;监控分析工程概述金岛大桥为珠海航空产业园滨海商务区市政配套工程二期中的一座桥梁,该桥位于金岛路上,跨越白龙河,桥梁起点为KC0+132.00,桥梁终点为KC0+232.00。
金岛大桥桥孔布置为1×100m,采用下承式非对称异形钢箱拱肋拱桥结构形式,拱肋净空高44m。
本桥为跨径100m 的非对称异形拱肋拱桥,拱肋采用钢箱截面,断面尺寸为2.8×2.8m。
主梁为钢—混凝土组合梁结构。
中承式钢管拱施工技术
益阳资江三桥主桥全长318米,为跨径组成96+108+96米(净跨)桥宽27.1米的不等跨钢管混凝土中承式拱桥。
主孔设置两组哑铃形断面分离式平行钢管混凝土拱肋,桥跨结构由钢筋混凝土桥面板和预应力混凝土T型结构横梁组成,承力横梁依靠冷铸锚和高强钢丝组成的柔性吊杆悬挂于拱肋。
拱肋位于桥面以下部分,设置支撑于拱肋的墩(立柱)梁(横梁)结构,其上铺设桥面板构成桥跨。
拱结构不平衡力通过墩身传递给主桥副孔(净55米钢筋混凝土箱拱)的承重墩承担。
钢管拱裸拱由工厂成节段加工制造,缆吊三段式拼装成拱。
节段现场安装,采用拉固在墩位的横向拉索充当临时缆风。
扣索通过24米万能杆件单悬臂临时塔架(扣塔),锚固到缆吊主锚位置的预留索位上(即:通扣)。
预留索与塔扣之间通过滑轮组连接,卷扬机提供收缆动力。
缆吊体系跨径660米。
采用万能杆件门式塔架,最大塔高86米,双肢塔中距22米。
主索矢跨比f0=L0/(16~18)=41.25(m)。
设计吊重600千牛,最大吊重700千牛。
为双主索、双吊结构。
施工过程,在大桥建设指挥部、设计和监理单位的大力支持下,我们大胆采用新工艺、新技术、新材料。
如钢管拱制作采用德国进口的钢带螺旋成型设备进行旋管卷制,煨弯成管;节段连接采用美国进口的自动焊接机进行焊接,配套检验设备进行检验,为省内工程首次应用;混凝土施工采用泵送顶升工艺;国内先进的GCM防护体系进行钢结构内外防腐等。
二、施工简介:。