七年级数学竞赛试卷
- 格式:doc
- 大小:54.00 KB
- 文档页数:2
3.如图,在长方形ABCD中,E是AD的中点,F是CE的中点,E a+2000的值不能是().1998⨯1998+1998,b=-1999⨯1999+1999,c=-2000⨯2000+2000,CF=BC,则长方形ABCD的面积是阴影部分面积的d+2000,则a,b,c,d的大小关系是(9.有理数-3,+8,-12,0.1,0,,-10,5,-0.4中,绝对值小于1的数共有_____个;所有七年级数学竞赛(时间100分钟满分100分)一、选择题:(每小题4分,共32分)1.(-1)2000的值是().(A)2000(B)1(C)-1(D)-2000二、填空题:(每题4分,共44分)1.用科学计数法表示2150000=__________.2.有理数a、b、c在数轴上的位置如图所示:若m=│a+b│-│b-1│-│a-c│-│1-c│,则1000m=_________.A D2.a是有理数,则11若△BDF的面积为6平方厘米,则长方形ABCD的面积6(A)1(B)-1(C)0(D)-20003.若a<0,则2000a+11│a│等于().(A)2007a(B)-2007a(C)-1989a(D)1989a 是________平方厘米.F4.a的相反数是2b+1,b的相反数是3a+1,则a2+b2=____.B C5.某商店将某种超级VCD按进价提高35%,然后打出“九折酬宾,外送50元出租车费”4.已知a=-1999⨯1999-1999则abc=().2000⨯2000-20002001⨯2001-2001的广告,结果每台超级VCD仍获利208元,那么每台超级VCD的进价是________.6.如图,C是线段AB上的一点,D是线段CB的中点.已知图(A)-1(B)3(C)-3(D)15.某种商品若按标价的八折出售,可获利20%,若按原价出售,则可获利()(A)25%(B)40%(C)50%(D)66.7%6.如图,长方形ABCD中,E是AB的中点,F是BC上的一点,且A D13 ()倍.E中所有线段的长度之和为23,线段AC的长度与线段CB的A C D B长度都是正整数,则线段AC的长度为_______.7.张先生于1998年7月8日买入1998年中国工商银行发行的5年期国库券1000元.回家后他在存单的背面记下了当国库券于2003年7月8日到期后他可获得的利息数为390元.若张先生计算无误的话,则该种国库券的年利率是________.8.甲、乙分别自A、B两地同时相向步行,2小时后在中途相遇.相遇后,甲、乙步行速(A)2(B)3(C)4(D)57.若四个有理数a,b,c,d满足B 1111a-1997=b+1998=c-1999=)F C度都提高了1千米/小时.当甲到达B地后立刻按原路向A地返行,当乙到达A地后也立刻按原路向B地返行.甲乙二人在第一次相遇后3小时36分钟又再次相遇,则A、B两地的距离是_________千米.(A)a>c>b>d(B)b>d>a>c;(C)c>a>b>d(D)d>b>a>c8.小明编制了一个计算程序.当输入任一有理数,显示屏的结果总等于所输入有理数的平方与1之和.若输入-1,并将所显示的结果再次输入,这时显示的结果应当是().(A)2(B)3(C)4(D)513正数的平方和等于_________.10.设m和n为大于0的整数,且3m+2n=225.(1)如果m和n的最大公约数为15,则m+n=________.(2)如果m和n的最小公倍数为45,则m+n=________.11.若a、b、c是两两不等的非0数码,按逆时针箭头指向组成的两位数a 2.如图所示,边长为3厘米与5厘米的两个正方形并排放在一起.在大正方形中画一段以它的一个顶点为ab,bc都是7的倍数(如图),则可组成三位数abc共_______个;圆心,边长为半径的圆弧.则阴影部分的面积是多其中的最大的三位数与最小的三位数的和等于_________.b c少?(取3).三、解答题(每小题12分,共24分)1.某书店积存了画片若干张.按每张5角出售,无人买.现决定按成本价出售,一下子全部售出.共卖了31元9角3分.则该书店积存了这种画片多少张?每张成本价多少元?a - 1997 = 2. ∵a 是有理数, ∴不论a 取任何有理数, 11当选(D)时, 111998 ⨯ (1998 + 1) =- 1999 ⨯19981998 ⨯1999 = -1 ,1999 ⨯ (1999 +1) =- 2000 ⨯ (2000 +1) =- 2001 ⨯20002000 ⨯2001 = -1 ,FQ= 1 b,FG= 12 BC ·FQ= 1因△BFC 的面积= 12 a · 2 2 · b · 4 解之得 x= 36= 18ab)= 1 2 ab-(48 ab ∴ x 所以若按标价出售可获利为 3 ⎩-b 3a 1 5 ,b=- 2解之得 a=- 12 b,又∵以FC= 1 ∴ BE= 1∴a +b = 1 5 .23 a ⨯ b = ∴阴影部分的面积= 1答案:7.由 1 1 b + 1998 = 1 c - 1999 =1d + 2000 ,一、选择题1. 由-1的偶次方为正1,-1的奇次方为负1可得(-1)2000=1,所以应选(B).a + 2000 的值永远不会是0. ∴选(C).但要注意a + 2000 这个式子本身无意义, ∴不能选(D).故选(C)是正确的.3.∵ a<0,∴│a │=-a,∴ 2000a+11│a │=2000a-11a=1989a,所以应选(D).4.∵ a=- 1999 ⨯ (1999 - 1)可知a-1997=b+1998=c-1999=d+2000,由这个连等式可得:a>b,a<c,a>d;b<c,b>d,c>d,由 此可得c>a>b>d,故应选(C).8.因为当输入任一有理数,显示屏的结果总等于所输入有理数的平方与1 之和,所以若输入-1,则显示屏的结果为(-1)2+1=2,再将2输入,则显示屏的结果为22+1=5 ,故应选择(D). 二、填空题1.∵ 2150000=2.16× 106∴ 用科学计数法表示2150000=2.15×106 .2.由图示可知,b<a<0,c>0,∴ │a+b │=-(a+b),│b-1│=1-b,│a-c │=c-a,│1-c │=1-c, ∴ 1000n=1000×(-a-b-1+b-c+a-1+c)=1000×(-2)b= 2000 ⨯ (2000 -1) 2000 ⨯1999 1999 ⨯2000 = -1,=-20003.如图所示.设这个长方形ABCD 的长为a 厘米,宽为b 厘米.即BC=a,AB=b,则其面积为ab 平方厘米. ∵ E 为AD 的中点,F 为CE 的中点,∴过F 作FG ⊥CD,FQ ⊥BC 且分别交CD 于G 、BC 于Q,则c= 2001⨯ (2001 -1)∴ abc=(-1)×(-1)×(-1)=-1,故应选(A).5.设某种商品的标价为x,进价为y.由题意可得:80%x=(1+20%)y2 y .3y = 2 ,这就是说标价是进价的1.5倍,12 y - y = 2 y ,即是进价的50%,所以应选(C).6.设长方形ABCD 的长为a,宽为b,则其面积为ab.在△ABC 中, ∵ E 是AB 的中点,12 CD= 2 4 a.1 1 1b,同理△FCD 的面积= ∴△BDF 的面积△= BCD 的面积-( △BFC 的面积△+ CDF 的面积),即1 1 ab+∴ ab=48.∴ 长方形ABCD 的面积是48平方厘米.⎧-a = 2b + 1 4.∵ a 的相反数是2b+1,b 的相反数是3a+1,由此可得: ⎨5 .a,2 3 a,∴ BF= 3a,2 212 1 ∴ △EBF 的面积为 ⨯ 21 1 6 ab △但 ABC 的面积=2 ab , 5.设每台超级VCD 的进价为x 元,则按进价提高35%,然后打出“九折”的出售价每台为x ·(1+35%)×90%元,由题意可列方程为:1 12 ab - 6 ab =3 ab ,∴ 长方形的面积是阴影部分面积的3倍,故应选(B).x · ((1+35%)×90%-50=x+2081.35×0.9x=x+2580.215x=2583∴ AC= 23 - 7CD9.绝对值小于1的数共有5个.所有正数的平方和等于89 109x=12001 ∴ 每台超级VCD 的进价是1200元.∴ 阴影部分面积=4 π R 2 = 6.由图知,图中共有六条线段,即AC 、AD 、AB 、CD 、CB 、DB.又因D 是CB 的中点, 所以CD=DB,CB=2CD,AB=AC+2CD,AD=AC+CD,由题意可得AC+AD+AB+CD+CB+DB=23,即AC+AC+CD+AC+2CD+CD+2CD+CD=23,也即 3AC+7CD=233 ,∵ AC 是正整数,∴ 23-7CD ∣3的条件是CD=2,也即23-7CD=9时,能被3整除, ∴AC=3.7.设该国库券的年利率为x,则由题意可列方程:1000×5×x=390解之得 x=7.8%所以,该国库券的年利率为7.8%.8.设甲每小时行v 1千米,乙每小时行v 2千米,则甲乙两地的距离就是2(v 1+v 2)千米.由题意可得:3.6·(v 1+v 2+2)=4(v 1+v 2),0.4(v 1+v 2)=7.2, v 1+v 2=18.∴2(v 1+v 2)=2×18=36,即A 、B 两地的距离为36千米.900 .10.∵ m 、n 为大于0的整数,且3m+2n=225,若(m,n)=15,则3m=3×15=45,2n= 2×90=180,∴ m=15,n=90∴(1)m+n=15+90=105.(2)若[m,n]=45,则m+n=45+45=90.11.若 ab , b c 都是7的倍数,则可组成 abc 的三位数共有15个,其中最大的是984,最小的是142,它们的和是1126. 三、 解答题1.∵ 每张的成本价小于5角.但又能被31元9角3分整除. 所以可设每张成本价为x 角y 分,则3193∣ xy ,显然 xy =31(分).即每张成本价为0. 31 元. 这种画片共有3193÷31=103(张).25 ⨯ 34 = 18.752.根据已知可得,S Δ ABC =S 梯形BCDE∴S Δ ABC -S 梯形BCFE = S 梯形BCDE - S 梯形BCFE ,即S Δ cdf = S Δ aef。
学习资料七年级数学竞赛试题(一)一、精心选一选(将唯一正确答案的代号填在题后的答题卡中 12×3分=36分) 1、43-的绝对值是( ) A 、34- B 、34 C 、43- D 、432、下列算式正确的是( ) A 、239-= B 、()1414⎛⎫-÷-= ⎪⎝⎭C 、5(2)3---=-D 、()2816-=- 3、如果x 表示有理数,那么x x +的值( )A 、可能是负数B 、不可能是负数C 、必定是正数D 、可能是负数也可能是正数 4、下列各题中计算结果正确的是( )A 、0275.3=-ab ab B 、xy y x 532=+C 、2245a b ab ab -=-D 、2x x +=3x5、如图,数轴上的点A 所表示的数为k ,化简1k k +-的结果为( ) A 、1 B 、21k - C 、21k + D 、12k-6、一商店将某种服装按成本提高40%标价,又以8折优惠卖出,结果每件服装仍可获利15元,则这种服装每件的成本价是( ) A 、125元 B 、135元 C 、145元 D 、150元 7、儿子今年12岁,父亲今年39岁,( )父亲的年龄是儿子的年龄的4倍. (A )3年后; (B )3年前; (C )9年后; (D )不可能. 8、老师讲了多项式的加减,放学后,某同学回家拿出笔记,认真地复习老师讲的内容,他突然发现一道题222221131(3)(4)2222x xy y x xy y x -+---+-=- +2y 空格的地方被钢笔水弄污了,那么空格中的一项是( ) A 、7xy - B 、7xy C 、xy D 、xy - 9、把方程17.012.04.01=--+x x 中分母化整数,其结果应为( ) A 、17124110=--+x x B、107124110=--+x xC、1710241010=--+x x D、10710241010=--+x x10、观察下列算式:331=,932= ,2733=,8134=,24335=,72936=,218737=,656138=…………;那么20113的末位数字应该是( )A 、 3B 、 9C 、 7D 、 111、七年级的两名爱好数学的学生,在学完第三章《一元一次方程》后,一位同学对另一个同学说:“方程x x x -+-=--321312与方程4223324xk kx --=+-的解相同,k 的值是多少?”( )A 、0B 、 2C 、 1D 、–112、某出租车的收费标准是:起步价7元(即行驶距离不超过3km 都需付7元车费),超过3km 以后,每增加1km ,加收2.4元(不足1km 按1km 计). 某人乘这种出租车从甲地到乙地共支付车费19元,设此人从甲地到乙地经过的路程的最大值是( ) A 、11 B 、8 C 、7 D 、5 二、细心填一填(6×3分=18分) 13、211-的相反数是 ,倒数是 ,绝对值是 . 14、若x 2+3x -5的值为7,则2-9x -3x 2的值为__________. 15、一个长方形的周长26cm ,这个长方形的长减少1cm ,宽增2cm ,就可成为一个正方A学习资料00201003...-x002003..-形,设长方形的长为x cm ,可列方程是______________________________. 16、已知362y x 和-313m nx y 是同类项,则29517m mn --的值是 . 17、观察下列各式:2311=,233321=+,23336321=++,23333104321=+++,………根据观察,计算:333310321++++ 的值为______________. 18、一系列方程:第1个方程是32=+x x ,解为2=x ;第2个方程是532=+xx ,解为6=x ;第3个方程是743=+xx ,解为12=x ;…,根据规律,第10个方程是___________,其解为____________.三、用心做一做(本大题共7小题,满分46分) 19、计算:(每题4分,共8分)(1) 12524()236-⨯+-; (2) )3()4()2(8102-⨯---÷+-20、化简:(每题3分,共6分)(1) )]3(33[2b a b a ---- ; (2) )]3-(-7[-122222b a ab b a ab21、解方程:(每题3分,共6分) (1) (2)22、(6分)先化简,再求值:2223(2)x y x y +--(),其中21=x ,1-=y .23、( 6分)在广州亚运会中,志愿者们手上、脖子上的丝巾非常美丽.车间70名工人承接了制作丝巾的任务,已知每人每天平均生产手上的丝巾1 800条或者脖子的丝巾1 200条,一条脖子上的丝巾要配两条手上的丝巾.为了使每天生产的丝巾刚好配套,应分配多少名工人生产脖子上的丝巾,多少名工人生产手上的丝巾?24、( 6分)如图所示,是某年12月份的日历,用一个矩形在日历内任圈出4个数。
七年级数学竞赛试题及答案一、选择题1. 下列哪个分数是最简分数?A. 2/4B. 3/6C. 5/10D. 3/52. 计算:(2x + 3)(x - 2) = ?A. 2x^2 - x - 6B. 2x^2 - 4x + 3x - 6C. 2x^2 - 6x + 3D. 2x^2 - 2x - 63. 一个长方形的长是12cm,宽是8cm,那么它的面积是多少平方厘米?A. 20B. 96C. 120D. 2004. 一个等差数列的前三项分别是2,5,8,那么第10项是多少?A. 20B. 22C. 24D. 265. 一个圆的半径是7cm,求这个圆的周长(π取3.14)。
A. 14cmB. 28cmC. 42cmD. 56cm二、填空题1. 一个等边三角形的每个内角是______度。
2. 如果a:b = 3:4,那么b:a = ______3. 一个分数的分子是12,分母是18,这个分数化简后的结果是______。
4. 一个长方体的体积是60立方厘米,长是5cm,宽是2cm,那么它的高是______厘米。
5. 一个圆的直径是10cm,求这个圆的面积(π取3.14)。
三、解答题1. 甲乙两人同时从A地出发,甲以每小时5公里的速度向东走,乙以每小时7公里的速度向南走。
如果他们各自沿着直线走到B地和C地,且B、C两地相距10公里,求甲乙两人出发后多少时间相遇。
2. 一个班级有40名学生,其中男生和女生的比例是3:2。
如果增加10名女生,那么男生和女生的比例将变为多少?3. 一个数除以4余1,除以5余2,除以6余3,这个数最小是多少?4. 一块长方形的草坪长是20米,宽是15米。
现在要在草坪的四周种上一圈花,每株花占地0.2平方米,问需要多少株花?5. 一个数的平方减去它的三倍再加上20得到的结果是5,求这个数是多少?四、证明题1. 证明:勾股定理。
在一个直角三角形中,直角边的平方和等于斜边的平方。
2. 证明:两个等边三角形如果它们的边长相等,那么这两个三角形全等。
七年级数学竞赛练习卷(2)一、选择题:1、两个正整数的和是60,它们的最小公倍数是273,则它们的乘积是( )A. 1911B. 1199C. 819D. 273 2、若790a b +=,则2ab 一定是( )A 、正数B 、负数C 、非负数D 、非正数 3、满足(n 2-n-1)n + 2=1的整数n 有几个?( )A 、4个B 、3个C 、2个D 、1个4、若不等式︱x+1︱+︱x-3︱≤a 有解,则a 的取值范围是( ) A.0<a ≤4 B.a ≥4 C.0<a ≤2 D.a ≥25、若a 、b 是有理数,且a 2001+b 2001=0,则A 、a=b=0B 、a-b=0C 、a+b=0D 、ab=06、某工厂七月份生产某产品的产量比六月份减少了20%,若八月份产品要达到六月份的产量,则八月份的产量比七月份要增加( )A 、20%B 、25%C 、80%D 、75%7、两个相同的瓶子中装满了酒精溶液,第一个瓶子里的酒精与水的体积之比为a :1,第一个瓶子为b :1,现将两瓶溶液全部混和在一起,则混和溶液中酒精与水的体积之比是( ) (安徽省初中数学联赛试题)A 、2b a + B 、12++b a ab C 、22++++b a ab b a D 、24++++b a abb a 8、咖啡A 与咖啡B 按x :y(以重量计)的比例混合。
A 的原价为每千克50元,B 的原价为每千克40元,如果A 的价格增加10%,B 的价格减少15%,那么混合咖啡的价格保持不变。
则x :y 为( ) A 、5:6 B 、6:5 C 、5:4 D 、4:59、设P 是质数,若有整数对(a ,b )满足 ,则这样的整数对(a ,b )共有 ( ) A .3对 B .4对 C .5对 D .6对 10、有理数a 、b 、c 满足下列条件:a +b +c =0且abc <0,那么cb a 111++的值 ( ) (A )是正数 (B)是零 (C)是负数 (D)不能确定11、设四个自然数a,b,c,d 满中条件1≤a<b<c<d≤2004和a+b+c+d=ad+bc ,m 与n 分别为abcd 的最大值和最小值,则6nm +等于( ) A .2002; B .2004: C .2006: D .2008。
七年级上册数学竞赛题和经典题一、竞赛题与经典题。
1. (有理数运算)计算:( 2)^3+[26 ( 3)×2]÷4解析:先计算指数运算( 2)^3=-8。
再计算括号内的式子,[26-( 3)×2]=[26 + 6]=32。
然后进行除法运算32÷4 = 8。
最后进行加法运算-8+8 = 0。
2. (整式的加减)化简:3a + 2b 5a b解析:合并同类项,3a-5a=-2a,2b b=b。
所以化简结果为-2a + b。
3. (一元一次方程)解方程:3(x 1)-2(x + 1)=6解析:先去括号,3x-3-2x 2=6。
再移项,3x-2x=6 + 3+2。
合并同类项得x = 11。
4. (数轴相关)在数轴上,点A表示的数为-3,点B表示的数为5,求A、B两点间的距离。
解析:数轴上两点间的距离等于右边的数减去左边的数(大数减小数)。
所以AB = 5-( 3)=5 + 3 = 8。
5. (绝对值)已知| x|=3,| y| = 5,且x>y,求x + y的值。
解析:因为| x|=3,所以x=±3;因为| y| = 5,所以y=±5。
又因为x>y,当x = 3时,y=-5,此时x + y=3+( 5)=-2;当x=-3时,y=-5,此时x + y=-3+( 5)=-8。
6. (有理数的混合运算)计算:(1)/(2)×(-2)^2-((2)/(3))^2÷(2)/(9)解析:先计算指数运算,(-2)^2 = 4,((2)/(3))^2=(4)/(9)。
然后进行乘除运算,(1)/(2)×4 = 2,(4)/(9)÷(2)/(9)=(4)/(9)×(9)/(2)=2。
最后进行减法运算2-2 = 0。
7. (整式的概念)若3x^m + 5y^2与x^3y^n是同类项,则m=_ ,n=_ 。
人教版七年级数学上册竞赛试卷及答案一.选择题(共10小题,共30分)1.如果温度上升3C ︒,记作3C ︒+,那么温度下降2C ︒记作( )A .2C ︒-B .2C ︒+ C .3C ︒+D .3C ︒-2.中华民族的母亲河黄河,发源于巴颜喀拉山脉北麓,注入渤海,流域面积约为750000千米2.将750000千米2用科学记数法表示为( )A .47.510⨯千米2;B .57.510⨯千米2;C .47510⨯千米2;D .57510⨯千米23.在下列生活、生产现象中,不可以用基本事实“两点确定一条直线”来解释的有( )A .1个B .2个C .3个D .4个4.早在两千多年前,中国人就已经开始使用负数,并运用到生产和生活中,比西方早一千多年.下列各式计算结果为负数的是( ) A .3(2)+- B .3(2)-- C .3(2)⨯- D .(3)(2)-÷-5.点A 在数轴上,点A 所对应的数用21a +表示,且点A 到原点的距离等于3,则a 的值为( )A .2-或1B .2-或2C .2-D .16.如图:CD 是直角三角形ABC 的高,将直角三角形ABC 按以下方式旋转一周可以得到右侧几何体的是( )A .绕着AC 旋转B .绕着AB 旋转C .绕着CD 旋转 D .绕着BC 旋转 7.若单项式12m a b -与212n a b 的和仍是单项式,则m n 的值是( )A .3B .6C .8D .9 8.下列结论中不能由0a b +=得到的是( )A .2a ab =-B .||||a b =C .0a =,0b =D .22a b =9.在解方程13132x x x -++=时,方程两边同时乘以6,去分母后,正确的是( ) A .2163(31)x x x -+=+ B .2(1)63(31)x x x -+=+ C .2(1)3(31)x x x -+=+ D .(1)3(1)x x x -+=+10.点C 是线段AB 的中点,点D 是线段AC 的三等分点.若线段12AB cm =,则线段BD 的长为( )A .10cmB .8cmC .10cm 或8cmD .2cm 或4cm 二.填空题(共5小题,15分)11.如图,数轴上A 、B 两点所表示的数分别是4-和2,点C 是线段AB的中点,则点C 所表示的数是 .12.某种商品每件的进价为120元,标价为180元.为了拓展销路,商店准备打折销售.若使利润率为20%,则商店应打 折.13.往返于甲、乙两地的列车,中途需要停靠4个车站,如果每两站的路程都不相同,要准备 种不同的车票.14.请你只在“加、减、乘、除和括号”中选择使用,可以重复,将四个数2-,4,6-,8组成算式(四个数都用且每个数只能用一次),使运算结果为24,你列出的算式是 (只写一种)15.如图.在正方形ABCD 的边长为3,以A 为圆心,2为半径作圆弧.以D 为圆心,3为半径作圆弧.若图中阴影部分的面积分为1S 、2S .则12S S -= .三.解答题(共8小题,共75分)16.(8分)先化简,再求值:223(2)2(3)x xy y x y ----,其中1x =-,2y =.学校:______________ 班级:___________ 姓名:_____________ 考场_____________ 学号:___________........................... 装.......................订.........................线......................17.(9分)平面上有A ,B ,C ,D 四个村庄,为解决当地缺水问题,政府准备投资修建一个蓄水池,不考虑其他因素,请你画图确定蓄水池H 的位置,使它与四个村庄的距离之和最小(A ,B ,C ,D 四个村庄的地理位置如图所示),你能说明理由吗?18.(9分)已知a 、b 互为相反数,c 、d 互为倒数,x 的绝对值是2,求1(1)322a b cd x+---的值. 19.(9分)先阅读理解, 再回答问题 .计算:12112()()3031065-÷-+- 解:原式的倒数为211212112()()()(30)310653031065-+-÷-=-+-⨯-203512=-+-+10=-,故原式110=-;请阅读上述材料, 选择合适的方法计算:11322()()4261437-÷-+-.20.(9分)已知有理数a 、b 、c 在数轴上的位置,(1)a b + 0;a c + 0;b c - 0;(用“>,<,=”填空) (2)试化简||||||a b a c b c +-++-.21.(10分)已知代数式231A x x =-+,马小虎同学在做整式加减运算时,误将“A B -”看成“A B +”了,计算的结果是2232x x --. (1)请你帮马小虎同学求出正确的结果;(2)x 是最大的负整数,将x 代入(1)问的结果求值. 22.(10分)粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作,无人化是自动驾驶的终极目标.某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场.今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%.(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元; (2)求明年改装的无人驾驶出租车是多少辆. 23.(11分)如图:A 、B 、C 、D 四点在同一直线上. (1)若AB CD =.①比较线段的大小:AC BD (填“>”、“ =”或“<” );②若34BC AC =,且12AC cm =,则AD 的长为 cm ; (2)若线段AD 被点B 、C 分成了3:4:5三部分,且AB 的中点M 和CD 的中点N 之间的距离是16cm ,求AD 的长.参考答案1.如果温度上升3C ︒,记作3C ︒+,那么温度下降2C ︒记作( ) A .2C ︒- B .2C ︒+ C .3C ︒+ D .3C ︒-【解答】解:“正”和“负”相对,如果温度上升3C ︒,记作3C ︒+, 温度下降2C ︒记作2C ︒-. 故选:A .2.中华民族的母亲河黄河,发源于巴颜喀拉山脉北麓,注入渤海,流域面积约为750000千米2.将750000千米2用科学记数法表示为( )A .47.510⨯千米2B .57.510⨯千米2C .47510⨯千米2D .57510⨯千米2 【解答】解:数据750000用科学记数法可表示57.510⨯, 故选:B .3.在下列生活、生产现象中,不可以用基本事实“两点确定一条直线”来解释的有( )A .1个B .2个C .3个D .4个【解答】解:第一、二、三幅图中的生活、生产现象可以用基本事实“两点确定一条直线”来解释,第四幅图中利用的是“两点之间,线段最短”的知识. 故选:A .4.早在两千多年前,中国人就已经开始使用负数,并运用到生产和生活中,比西方早一千多年.下列各式计算结果为负数的是( )A .3(2)+-B .3(2)--C .3(2)⨯-D .(3)(2)-÷- 【解答】解:.3(2)1A +-=,故A 不符合题意; .3(2)325B --=+=,故B 不符合题意; .3(2)6C ⨯-=-,故C 符合题意;D .(3)(2) 1.5-÷-=,故D 不符合题意.综上,只有C 计算结果为负. 故选:C .5.点A 在数轴上,点A 所对应的数用21a +表示,且点A 到原点的距离等于3,则a 的值为( )A .2-或1B .2-或2C .2-D .1 【解答】解:由题意得, |21|3a +=,解得,1a =或2a =-, 故选:A .6.如图:CD 是直角三角形ABC 的高,将直角三角形ABC 按以下方式旋转一周可以得到右侧几何体的是( )A .绕着AC 旋转B .绕着AB 旋转C .绕着CD 旋转 D .绕着BC 旋转【解答】解:将直角三角形ABC 绕斜边AB 所在直线旋转一周得到的几何体是,故选:B .7.若单项式12m a b -与212n a b 的和仍是单项式,则m n 的值是( )A .3B .6C .8D .9 【解答】解:单项式12m a b -与212n a b 的和仍是单项式,∴单项式12m a b -与212n a b 是同类项,12m ∴-=,2n =, 3m ∴=,2n =,8m n ∴=.故选:C .8.下列结论中不能由0a b +=得到的是( )A .2a ab =-B .||||a b =C .0a =,0b =D .22a b =【解答】解:A 、2a ab =-,即20a ab +=,即()0a a b +=,当0a b +=时,2a ab =-一定成立,故选项一定能由0a b +=得到;B 、因为a b =-,即a 与b 互为相反数,根据互为相反数的两个数的绝对值相等,得到||||a b =; C 、因为a b =-,即a 与b 互为相反数,则0a =,0b =不一定成立,故不能由0a b +=得到;D 、因为a b =-,即a 与b 互为相反数,则22a b =,一定成立,故能由0a b +=得到. 故只有C 不一定能由0a b +=得到. 故选:C .9.在解方程13132x x x -++=时,方程两边同时乘以6,去分母后,正确的是( ) A .2163(31)x x x -+=+ B .2(1)63(31)x x x -+=+ C .2(1)3(31)x x x -+=+ D .(1)3(1)x x x -+=+【解答】解:方程两边同时乘以6得:2(1)63(31)x x x -+=+,故选:B .10.点C 是线段AB 的中点,点D 是线段AC 的三等分点.若线段12AB cm =,则线段BD 的长为( )A .10cmB .8cmC .10cm 或8cmD .2cm 或4cm 【解答】解:C 是线段AB 的中点,12AB cm =, 11126()22AC BC AB cm ∴===⨯=, 点D 是线段AC 的三等分点, ①当13AD AC =时,如图,26410()3BD BC CD BC AC cm =+=+=+=; ②当23AD AC =时,如图, 1628()3BD BC CD BC AC cm =+'=+=+=.所以线段BD 的长为10cm 或8cm , 故选:C .二.填空题(共5小题)11.如图,数轴上A 、B 两点所表示的数分别是4-和2,点C 是线段AB 的中点,则点C 所表示的数是 1- .【解答】解:数轴上A ,B 两点所表示的数分别是4-和2,∴线段AB 的中点所表示的数1(42)12=-+=-. 即点C 所表示的数是1-. 故答案为:1-12.某种商品每件的进价为120元,标价为180元.为了拓展销路,商店准备打折销售.若使利润率为20%,则商店应打 8 折. 【解答】解:设商店打x 折, 依题意,得:180********%10x⨯-=⨯, 解得:8x =. 故答案为:8.13.往返于甲、乙两地的列车,中途需要停靠4个车站,如果每两站的路程都不相同,问要准备 种不同的车票. 【解答】解:(1)如图:根据线段的定义:可知图中共有线段有AC ,AD ,AE ,AF ,AB ,CD 、CE ,CF 、CB 、DE ,DF 、DB 、EF ,EB ,FB 共15条,有15种不同的票价;因车票需要考虑方向性,如,“A C →”与“C A →”票价相同,但车票不同,故需要准备30种车票. 故答案为: 30.14.请你只在“加、减、乘、除和括号”中选择使用,可以重复,将四个数2-,4,6-,8组成算式(四个数都用且每个数只能用一次),使运算结果为24,你列出的算式是 8(6)[4(2)]24⨯-÷÷-= (只写一种) 【解答】解:8(6)[4(2)]24⨯-÷÷-= 故答案为:8(6)[4(2)]24⨯-÷÷-=.(答案不唯一) 15.如图.在正方形ABCD 的边长为3,以A 为圆心,2为半径作圆弧.以D 为圆心,3为半径作圆弧.若图中阴影部分的面积分为1S 、2S .则12S S -=1394π- .【解答】解:339S =⨯=正方形,290393604ADC S ππ⨯==扇形, 2902360EAF S ππ⨯==扇形,()129139944EAF ADC S S S S S πππ⎛⎫∴-=--=--=- ⎪⎝⎭正方形扇形扇形. 故答案为:1394π-.三.解答题(共8小题)16.先化简,再求值:223(2)2(3)x xy y x y ----,其中1x =-,2y =. 【解答】解:原式2233626x xy y x y =---+23x xy =-,把1x =-,2y =代入223(1)3(1)27x xy -=--⨯-⨯=.17.平面上有A ,B ,C ,D 四个村庄,为解决当地缺水问题,政府准备投资修建一个蓄水池,不考虑其他因素,请你画图确定蓄水池H 的位置,使它与四个村庄的距离之和最小(A ,B ,C ,D 四个村庄的地理位置如图所示),你能说明理由吗?【解答】解:如答图所示,连接AC ,BD ,它们的交点是H ,点H 就是修建水池的位置,这一点到A ,B ,C ,D 四点的距离之和最小.18.已知a 、b 互为相反数,c 、d 互为倒数,x 的绝对值是2,求1(1)322a b cd x +---的值.【解答】解:a 、b 互为相反数,c 、d 互为倒数,x 的绝对值是2, 0a b ∴+=,1cd =,2x =±,当2x =时,111(1)32(01)31227222a b cd x +---=⨯--⨯-⨯=-;当2x =-时,111(1)32(01)312(2)222a b cd x +---=⨯--⨯-⨯-=.19.先阅读理解, 再回答问题 .计算:12112()()3031065-÷-+- 解: (方 法一) 原式12112151()[()()]()()30361053062=-÷++--=-÷-1330=-⨯110=-(方 法二) 原式的倒数为211212112()()()(30)310653031065-+-÷-=-+-⨯-203512=-+-+ 10=-故原式110=-请阅读上述材料, 选择合适的方法计算:11322()()4261437-÷-+-.【解答】解: 原式的倒数为13221()()6143742-+-÷-1322()(42)61437=-+-⨯- 79281214=-+-+=-故原式114=-.20.已知有理数a 、b 、c 在数轴上的位置,(1)a b + < 0;a c + 0;b c - 0;(用“>,<,=”填空) (2)试化简||||||a b a c b c +-++-.【解答】解:(1)由数轴可得:0c a b <<<, 0a b ∴+<,0a c +<,0b c ->,(2)0a b +<,0a c +<,0b c ->, ||||||0a b a c b c a b a c b c ∴+-++-=--+++-=.故答案为:(1)<;<;>.21.已知代数式231A x x =-+,马小虎同学在做整式加减运算时,误将“A B -”看成“A B +”了,计算的结果是2232x x --.(1)请你帮马小虎同学求出正确的结果;(2)x 是最大的负整数,将x 代入(1)问的结果求值. 【解答】解:(1)根据题意知22232(31)B x x x x =----+ 2223231x x x x =---+- 223x x =---,则22(31)(23)A B x x x x -=-+---- 223123x x x x =-++++244x x =++;(2)x 是最大的负整数, 1x ∴=-,则原式24(1)14=⨯--+414=-+ 7=.22.粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作,无人化是自动驾驶的终极目标.某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场.今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%.(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元; (2)求明年改装的无人驾驶出租车是多少辆.【解答】解:(1)50(150%)25⨯-=(万元).故明年每辆无人驾驶出租车的预计改装费用是25万元;(2)设明年改装的无人驾驶出租车是x 辆,则今年改装的无人驾驶出租车是(260)x -辆,依题意有50(260)259000x x -+=,解得160x =.故明年改装的无人驾驶出租车是160辆.23.如图:A 、B 、C 、D 四点在同一直线上. (1)若AB CD =.①比较线段的大小:AC = BD (填“>”、“ =”或“<” );②若34BC AC =,且12AC cm =,则AD 的长为 cm ; (2)若线段AD 被点B 、C 分成了3:4:5三部分,且AB 的中点M 和CD 的中点N 之间的距离是16cm ,求AD 的长.【解答】解:(1)①AB CD =, AB BC CD BC ∴+=+, 即,AC BD =, 故答案为:=;②34BC AC =,且12AC cm =, 3129()4BC cm ∴=⨯=,1293()AB CD AC BC cm ∴==-=-=, 12315()AD AC CD cm ∴=+=+=,故答案为:15; (2)如图,设每份为x ,则3AB x =,4BC x =,5CD x =,12AD x =, M 是AB 的中点,点N 是CD 的中点N , 32AM BM x ∴==,52CN DN x ==, 又16MN =, ∴3541622x x x ++=, 解得,2x =,1224()AD x cm ∴==,答:AD 的长为24cm.。
七年级数学竞赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. 2D. -12. 如果一个数的3倍加上5等于这个数的5倍减去9,那么这个数是:A. 3B. 4C. 5D. 63. 一个长方形的长是14厘米,宽是10厘米,那么它的周长是多少厘米?A. 24B. 28C. 48D. 564. 下列哪个分数是最接近0.5的?A. 1/2B. 3/5C. 4/7D. 5/95. 一个数的75%是60,那么这个数是多少?A. 80B. 120C. 160D. 2006. 一个班级有48名学生,其中2/3是男生,那么这个班级有多少名女生?A. 16B. 24C. 32D. 407. 一个数除以3的商加上2等于这个数除以4的商,这个数是多少?A. 6B. 9C. 12D. 158. 下列哪个数是质数?A. 2B. 4C. 6D. 89. 一个长方体的体积是120立方厘米,长是10厘米,宽是6厘米,那么它的高是多少厘米?A. 1B. 2C. 3D. 410. 下列哪个表达式的结果是一个整数?A. (1/2) + (1/3)B. (1/2) + (1/4)C. (1/3) + (1/6)D. (1/4) + (1/5)二、填空题(每题4分,共40分)11. 一个数的1/4加上它的1/2等于______。
12. 如果5个连续的整数的和是45,那么中间的数是______。
13. 一个数的2倍与7的和是35,那么这个数是______。
14. 一个等腰三角形的两个底角都是70度,那么它的顶角是______度。
15. 一本书的价格是35元,如果打8折出售,那么现价是______元。
16. 一辆汽车以每小时60公里的速度行驶,2小时后它行驶了______公里。
17. 一个数的3/4加上它的1/2等于5,那么这个数是______。
18. 一个长方体的长、宽、高分别是8厘米、6厘米和5厘米,那么它的表面积是______平方厘米。
七年级数学竞赛试题一.选择题(每小题4分,共32分) 1.x 是随意有理数,则2 的值( ).A .大于零B . 不大于零C .小于零D .不小于零 2.在-0.1428中用数字3交换其中的一个非0数码后,使所得的数最大,则被交换的数字是( ) A .1 B .4 C .2 D .83.如图,在数轴上1的对应点A 、B , A 是线段的中点,则点C 所表示的数是( )A.2 B2 C1 D.14.桌上放着4张扑克牌,全部正面朝下,其中恰有1张是老K 。
两人做嬉戏,嬉戏规则是:随机取2张牌并把它们翻开,若2张牌中没有老K ,则红方胜,否则蓝方胜。
则赢的时机大的一方是( )A .红方B .蓝方C .两方时机一样D .不知道 5.假如在正八边形硬纸板上剪下一个三角形(如图①中的阴影局部),那么图②,图③,图④中的阴影局部,均可由这个三角形通过一次平移、对称或旋转而得到.要得到图②,图③,图④中的阴影局部,依次进展的变换不行行...的是( )A.平移、对称、旋转 B.平移、旋转、对称 C.平移、旋转、旋转 D.旋转、对称、旋转6.计算:22221111(1)(1)(1)(1)2342007---⋅⋅⋅-等于( ) A .10042007 B .10032007 C .20082007D .200620077.如图,三个天平的托盘中一样的物体质量相等。
图⑴、⑵所示的两个天平处于平衡状态要使第三个天平也保持平衡,则需在它的右盘中放置( )(3)(2)(1)A. 3个球B. 4个球C. 5个球D. 6个球8.用火柴棒搭三角形时,大家都知道,3根火柴棒只能搭成1种三角形,不妨记作它的边长分别为1,1,1;4根火柴棒不能搭成三角形;5根火柴棒只能搭成一种三角形,其边长分别为2,2,1;6根火柴棒只能搭成一种三角形,其边长分别为2,2,2;7根火柴棒只能搭成2种三角形,其边长分别为3,3,1和3,2,2;…;那么30根火柴棒能搭成三角形个数是( ) A .15 B .16 C .18 D .19 二.填空题(每题4分,共28分)x图①图②图③ 图④9.定义a*,若3*31,则x 的值是。
七年级数学竞赛试题及答案一、选择题1. 已知a = 3,b = -4,则下列哪一个式子是正确的?A. a + b = 7B. a - b = -1C. a × b = -12D. a ÷ b = -3答案:B2. 如果a × b = 20,且b = 5,求a的值。
A. 4B. 5C. 10D. 25答案:C3. 打折前售价为120元的商品现以原价的95%出售,打折后的价格是多少?A. 108元B. 114元C. 119元D. 123元答案:B4. 若一边长为5的正方形的面积是矩形的面积的四分之一,则矩形的长为多少?A. 5B. 10C. 15D. 20答案:C5. 以下哪个数不是素数?A. 17B. 19C. 21D. 23答案:C二、解答题1. 一个数减去13等于19,求这个数是多少?解答:设这个数为x,根据题目可得方程x - 13 = 19,将方程两边同时加上13,则x = 32。
因此,这个数是32。
2. 计算1/4 + 2/3的值,结果用最简分数表示。
解答:首先计算通分,得到3/12 + 8/12 = 11/12。
因此,1/4 + 2/3 = 11/12。
3. 六边形ABCDEF的周长是42 cm,已知AB = CD = EF = 5 cm,BC = DE = 6 cm。
求六边形的面积。
解答:六边形由三个边长相等的正三角形组成,而正三角形的面积公式为S = (边长^2 * √3) / 4。
根据题目可得六边形的面积为3 * [(5^2 * √3) / 4] = (75√3) / 4。
因此,六边形的面积为(75√3) / 4。
4. 如图所示,一个长方体的表面积为94 cm²,其中长、宽和高的比为1:2:3。
求长方体的体积。
解答:设长、宽和高分别为x、2x和3x,则根据长方体的表面积公式2(x * 2x + 2x * 3x + x * 3x) = 94,化简为14x^2 = 94,解得x =√(94/14) = √(47/7)。
七年级数学培优竞赛试题 (满分100分)一、选择题:(每小题5分,共40分)1、在一个停车场内有24辆车,其中汽车有4个轮子,摩托车有3 个轮子,且停车场上只有汽车和摩托车,这些车共有86个轮子,则摩托车应为:A 、14辆B 、12辆C 、16辆D 、10辆2、文具店的老板均以60元的价格卖了两个计算器,其中一个赚了20﹪,另一个亏了20﹪,则该老板:A 、赚了5元B 、亏了25元C 、赚了25元D 、亏了5元 3.如果关于x 的不等式 (a+1) x>a+1的解集为x<1,则a 的取值范围是:A 、a>0B 、a<0C 、a>-1D 、a<-14已知关于x 的方程01)2(=-+x b a 无解,则b a 的值是:A 、负数B 、正数C 、非负数D 、非正数5、如图△ABC 中已知D 、E 、F 分别为BC 、AD 、CE 的中点,且S △ABC =2Mcm ,则S 阴影的值为:A 、2Mcm 61 B 、2Mcm 51C 、2Mcm 41 D 、2Mcm 316、x 是任意有理数,则2|x |+x 的值:A 、大于零B 、不大于零C 、小于零D 、不小于零7、设“●,▲,■”分别表示三种不同的物体,如下图所示,前两架天平保持平衡,如果要使第三架天平也平衡,则“?”处应放“■” 的个数为:A 、5B 、4C 、3D 、28、老王家到单位的路程是3 500米,老王每天早上7∶30离家步行去上班,在8∶10(含8∶10)至8∶20(含8∶20)之间到达单位,如果设老王步行的速度为x 米/分,则老王步行的速度范围是:●● ▲■ ●■ ▲ ●▲(1) (2) (3)A 、70≤x ≤87.5B 、x ≤70或x ≥87.5C 、x ≤70D 、x ≥87.5二、填空题(每小题6分,共60分)9、某次数学竞赛共出了25道选择题,评分办法是:答对一道加4分,答错一道倒扣1分,不答记0分, 已知小王不答的题比答错的题多2道,他的总分是74分,则他答对了________________ 道题。
七年级上数学竞赛试题(考试时间:90分钟满分:100分)学校班级姓名一、选择题(每小题3分,共30分)1.已知,且a>b,那么a+b的值等于()A. 或B. 或C. 或D. 或2.如图,数轴上每个刻度为1个单位长,则A,B分别对应数a,b,且b-2a=7,那么数轴上原点的位置在()A. A 点B. B 点C. C 点D. D 点3.下列语句中:(1)线段AB就是A,B两点间的距离;(2)画射线AB=10cm;(3)A,B两点之间的所有连线中,最短的是A,B两点间的距离;(4)在直线上取A,B,C三点,使得AB=5cm,BC=2cm,则AC=7cm。
其中正确的有()A.1 个B.2 个C.3 个D.4 个4.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂重物的质量x(kg)有下面的关系,( )A.y=x +12B.y=0.5x+12C.y=0.5x+10D.y=x+10.55.港珠澳大桥于2018年10月24日正式通车,该工程总投资额为1269亿元,将1269亿用科学记数法表示为().A.12.69×1010B.1.269×1011C.1.269×1012D.0.1269×10136.若(m-2)x|2m-3|=6是关于x的一元一次方程,则m的值是()A. 1B. 任何数 C. 2 D. 1或27.如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的是()A. B. C.D.8.如图,两只蚂蚁以相同的速度沿两条不同的路径,同时从A出发爬到B,则( )122503.002.003.05.09.0x 4.0-=+-+x xA.乙比甲先到B.甲和乙同时到C.甲比乙先到D.无法确定9.如图,线段AB 和线段CD 的重合部分CB 的长度是线段AB 长的,M 、N 分别是线段AB 和线段CD 的中点,AB=18,MN=13,则线段AD 的长为( ) A. 31 B. 33 C. 32 D. 34 10.如图所示的立方体,如果把它展开,可以是下列图形中的( )A. B. C. D.二、填空题(每小题3分,共24分)11.数轴上表示-2的点距离3个长度单位的点所表示的数是________. 12.钟表上的时间是2时30分,此时时针与分针所成的夹角是________ 度. 13.现在网购越来越多地成为人们的一种消费方式,刚刚过去的2015年的“双11”网上促销活动中,天猫和淘宝的支付交易额突破67000000000元,将67000000000元用科学记数法表示为____ ____.14.观察下列算式:21=2、22=4、23=8、24=16、25=32、26=64、27=128、28=256….观察后,用你所发现的规律写出223的末位数字是________. 15.已知m=,n=, 则代数式(m+2n )﹣(m ﹣2n )的值为________16.一组“数值转换机”按下面的程序计算,如果输入的数是36,则输出的结果为106,要使输出的结果为127,则输入的最小正整数是________.18.你会玩“二十四点”游戏吗?现有“2,-3,-4, 5,”四个数,每个数用且只用一次进行加、减、乘、除,使其结果为24,写出你的算式(只写一个即可):________=24. 17.如图,OA ⊥OC ,OB ⊥OD ,下面结论:①∠AOB=∠COD ;②∠AOB+∠COD=90°;③∠BOC+∠AOD=180°;④∠AOC-∠COD=∠BOC 中,正确的有________ (填序号).三、计算题(共3题;共15分)19.解方程:20.计算:(1)×24-×(-2.5)×(-8).(2).四、解答题(共5题;共31分)21.设B为线段AC上的一点,AB=8cm,BC=2cm,M、N分别为AB、AC的中点.求MN的长.22.已知a,b互为相反数,c,d互为倒数,m的倒数等于本身,求代数式的值.23.小李到某城市行政中心大楼办事,假定乘电梯向上一楼记为+1,向下一楼记为–1.小李从1楼出发,电梯上下楼层依次记录如下(单位:层):+5,–3,+10,–8,+12,–6,–10.(1)请你通过计算说明小李最后是否回到出发点1楼;3(2)该中心大楼每层高2.8m,电梯每上或下1m需要耗电0.1度.根据小李现在所处的位置,请你算一算,当他办事时电梯需要耗电多少度?24.如图,直线AB、CD相交于点O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度数.25.坟中安葬着丢番图,多么令人惊讶,他忠实地记录了所经历的道路.上帝给予的童年占六分之一,又过了十二分之一,两颊长胡,再过七分之一,点燃结婚的蜡烛,五年之后天赐贵子,可怜迟到的宁馨儿,享年仅及其父之半,便进入坟墓,悲伤只有用数论研究去弥补,又过四年,他也走完了人生的旅途。
七年级竞赛模拟数学试题一.选择题(共11小题)1.某粮店出售的三种品牌的面粉袋上,分别标有质量为(25±0.1)kg、(25±0.2)kg、(25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差()A.0.8kg B.0.6kg C.0.5kg D.0.4kg2.文具店的老板均以60元的价格卖了两个计算器,其中一个赚了20%,另一个亏了20%,则该老板()A.赚了5元B.亏了25元C.赚了25元D.亏了5元3.如图是一个4×4的正方形网格,图中所标示的7个角的角度之和等于()A.585°B.540°C.270°D.315°4.如果有2003名学生排成一列,按1, 2,3,4,3,2,l,2,3,4,3,2,…的规律报数,那么第2003名学生所报的数是()A.1 B.2 C.3 D.45.适合|2a+7|+|2a﹣1|=8的整数a的值的个数有()A.5 B.4 C.3 D.26.某人下午6点多外出购物,表上的时针和分针的夹角恰为55°,下午近7点回家,发现表上的时针和分针的夹角又是33°,此人外出共用了()分钟?A.16 B.20 C.32 D.407.如果将加法算式1+2+3+…+1994+1995中任意项前面“+”号改为“﹣”号,所得的代数和是()A.总是偶数B.n为偶数时是偶数,n为奇数时是奇数C.总是奇数D.n为偶数时是奇数,n为奇数时是偶数8.同一价格的一种商品在三个商场都进行了两次价格调整.甲商场:第一次提价的百分率为a,第二次提价的百分率为b;乙商场:两次提价的百分率都是(a>0,b>0);丙商场:第一次提价的百分率为b,第二次提价的百分率为a,则提价最多的商场是()A.甲B.乙C.丙D.不能确定二.填空题(共10小题)9.观察这一列数:,,,,,依此规律下一个数是_________ .10.自然数按一定规律排成如图所示,那么第200行的第5个数是_________ .11.设有四个数,其中每三个数的和分别是17、21、25、30.则这四个数分别是_________ .12.若|x﹣y+1|+(y+5)2=0,则xy= _________ .13.如图,把三角形△ABC绕着点C顺时针旋转35°,得到△A′B′C,A′B′交AC于D 点.若∠A′DC=90°,则∠A=_________ 度.14.已知2a=5,4b=3,求4a+2b= _________ .15.小龙乘坐商场的自动扶梯下楼,他以每步一级的速度往下走,结果走了30步就到楼下,猛然发现,由于匆忙包丢在购物处了,接着他又以下楼时速度的3倍冲上楼梯,结果走了90步才到楼上,当电梯停下时,露在外面的电梯一共有_________ 级.三.解答题(共5小题)16.某人沿电车路线骑车,每隔12分钟有一辆车从后面超过,每4分钟有车迎面驶来,若人、车的速度不变,问每隔几分钟有车从车站开出?17.阅读、理解和探索(1)观察下列各式:①;②;③;…用你发现的规律写出:第④个式子是(_________ ),第n个式子是(_________ );(2)利用(1)中的规律,计算:++;(3)应用以上规律化简:+;18.对于有理数x、y,定义新运算:x*y=ax+by,其中a、b是常数,等式右边是通常的加法和乘法运算,已知1*2=9,(﹣3)*3=6,求2*(﹣7)的值.19.设x1,x2,…,x9是正整数,且x1<x2<…<x9,x1+x2+…+x8+x9=230,求x9的最小值,并写出x9取得最小值且x1取得最大值时一组x1,x2,…,x9的值.20.如图,△ABC是边长为l的等边三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D 为顶点作一个60°角,角的两边分别交AB于M,交AC于N,连接MN,形成一个三角形,求证:△AMN的周长等于2.初一数学竞赛答案一.选择题(共11小题)1 B.2.D.3 A4.C.5 B.6.A.7 A.8.B.二.填空题(共10小题)9.观察这一列数:,,,,,依此规律下一个数是.10.自然数按一定规律排成如图所示,那么第200行的第5个数是19905 .11.设有四个数,其中每三个数的和分别是17、21、25、30.则这四个数分别是14、10、6、1 .12.若|x﹣y+1|+(y+5)2=0,则xy= 30 .13.如图,把三角形△ABC绕着点C顺时针旋转35°,得到△A′B′C,A′B′交AC于D 点.若∠A′DC=90°,则∠A=55 度.14.已知2a=5,4b=3,求4a+2b= 225 .15.小龙乘坐商场的自动扶梯下楼,他以每步一级的速度往下走,结果走了30步就到楼下,猛然发现,由于匆忙包丢在购物处了,接着他又以下楼时速度的3倍冲上楼梯,结果走了90步才到楼上,当电梯停下时,露在外面的电梯一共有60 级.三.解答题(共5小题)16.某人沿电车路线骑车,每隔12分钟有一辆车从后面超过,每4分钟有车迎面驶来,若人、车的速度不变,问每隔几分钟有车从车站开出?分析:每12分钟有一辆电车从后面赶上属于追及问题,等量关系为:电车12分钟走的路程=行人12分钟走的路程+两辆电车间隔的路程;每4分钟有一辆电车迎面开来属于相遇问题,等量关系为:电车4分钟走的路程+行人4分钟走的路程=两辆电车间隔的路程.两辆电车间隔的路程为两辆电车相隔的时间×电车的速度.解答:解:设电车每分钟走x米,行人每分走y米,电车每隔a分钟从起点开出一辆.则,两式相减得:x=2y.把x=2y代入方程组中第二个式子,得到a=6.答:每隔6分钟有车从车站开出.17.附加题阅读、理解和探索(1)观察下列各式:①;②;③;…用你发现的规律写出:第④个式子是(),第n个式子是(.);(2)利用(1)中的规律,计算:++;(3)应用以上规律化简:+;解答:解:根据以上分析故(1)第④个式子是,第n个式子是.(2)解:++=(3)解:原式===18.对于有理数x、y,定义新运算:x*y=ax+by,其中a、b是常数,等式右边是通常的加法和乘法运算,已知1*2=9,(﹣3)*3=6,求2*(﹣7)的值.解答:解:根据题意可得方程组解得那么定义的新运算xy=ax+by可替换为xy=x+y因此2×(﹣7)=2×+(﹣7)×=﹣.答:所求值为﹣.19.设x1,x2,…,x9是正整数,且x1<x2<…<x9,x1+x2+…+x8+x9=230,求x9的最小值,并写出x9取得最小值且x1取得最大值时一组x1,x2,…,x9的值.分析:由题意可知,x9最大,由于都是正整数,所以x8≤x9﹣1.x7≤x8﹣1≤x9﹣2.…,x2≤x9﹣7,x1≤x9﹣8.然后将x1+x2+…+x8+x9=230用含有x9的式子表示出来,即可求出x9的值,再解答即可得出答案.解答:解:由已知x8≤x9﹣1.x7≤x8﹣1≤x9﹣2.…,x2≤x9﹣7,x1≤x9﹣8.(4分)∴x1+x2+…+x9≤(x9﹣8)+(x9﹣7)+(x9﹣2)+(x9﹣1)+x9=9x9﹣(1+2++7+8)=9x9﹣36.(8分)∴9x9﹣36≥230.x9≥即x9的最小值为30.(11分)若x l=22,x2=23,…,x9=230.其和为234>230,可取x l=21,x2=22,x3=23,x4=24,x5=26x6=27,x7=28,x8=29,x9=30.(14分)20.如图,△ABC是边长为l的等边三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D 为顶点作一个60°角,角的两边分别交AB于M,交AC于N,连接MN,形成一个三角形,求证:△AMN的周长等于2.分析:可在AC延长线上截取CM1=BM,得Rt△BDM≌Rt△CDM1,得出边角关系,再求解△MDN≌△M1DN,得MN=NM1,再通过线段之间的转化即可得出结论.解答:证明:如图,在AC延长线上截取CM1=BM,∵△ABC是等边三角形,△BDC是顶角∠BDC=120°的等腰三角形,∴∠ABC=∠ACB=60°,∠DBC=∠DCB=30°,∴∠ABD=∠ACD=90°,∴∠DCM1=90°,∵BD=CD,∵在Rt△BDM≌Rt△CDM1中,,∴Rt△BDM≌Rt△CDM1(SAS),得MD=M1D,∠MDB=∠M1DC,∴∠MDM1=120°﹣∠MDB+∠M1DC=120°,∴∠NDM1=60°,∵MD=M1D,∠MDN=∠NDM1=60°,DN=DN,∴△MDN≌△M1DN,∴MN=NM1,故△AMN的周长=AM+MN+AN=AM+AN+NM1=AM+AM1=AB+AC=2.。
一、选择题(每题5分,共25分)1. 下列各数中,属于有理数的是()A. $\sqrt{2}$B. $\pi$C. $-3.14$D. $\frac{1}{2}$2. 若$a$、$b$、$c$为等差数列,且$a+b+c=0$,则$3a+5b+c$的值为()A. $0$B. $3$C. $-3$D. 无法确定3. 下列函数中,在其定义域内单调递增的是()A. $y=x^2$B. $y=-x^2$C. $y=x^3$D. $y=-x^3$4. 在$\triangle ABC$中,$a=3$,$b=4$,$c=5$,则$\cos A$的值为()A. $\frac{3}{5}$B. $\frac{4}{5}$C. $\frac{5}{3}$D. $\frac{5}{4}$5. 下列各图中,能够通过平移、旋转、翻折得到的是()A.B.C.D.二、填空题(每题5分,共25分)6. 已知数列$\{a_n\}$中,$a_1=1$,$a_n=2a_{n-1}+1$,则$a_5$的值为______。
7. 若$a$、$b$、$c$、$d$为等比数列,且$a+b+c+d=20$,$ab+ac+ad+bc+bd+cd=40$,则$abc$的值为______。
8. 若函数$f(x)=2x+1$,则$f(3)$的值为______。
9. 在$\triangle ABC$中,$a=5$,$b=7$,$c=8$,则$\sin B$的值为______。
10. 已知直线$y=2x+1$与直线$y=-x+3$的交点坐标为______。
三、解答题(每题10分,共30分)11. 已知数列$\{a_n\}$中,$a_1=2$,$a_n=2a_{n-1}-1$,求证:数列$\{a_n\}$是等比数列。
12. 已知函数$f(x)=x^2-4x+3$,求函数$f(x)$的最小值。
13. 在$\triangle ABC$中,$a=3$,$b=4$,$c=5$,求$\sin A$的值。
七年级数学计算竞赛试题一、选择题(每题3分,共15分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 22. 已知一个数的平方根是4,这个数是多少?A. 16B. 8C. 4D. 23. 如果一个角的补角是120°,那么这个角是多少度?A. 60°B. 120°C. 180°D. 30°4. 一个数的绝对值是5,这个数可能是:A. -5B. 5C. -5或5D. 05. 下列哪个分数是最简分数?A. 4/8B. 5/10C. 3/4D. 6/9二、填空题(每题2分,共10分)6. 计算:\( 3x + 2y = 7 \) 和 \( 2x - 3y = 8 \),求 \( x \) 和 \( y \) 的值。
7. 一个数的立方根是2,那么这个数是________。
8. 如果一个三角形的内角和为180°,那么一个直角三角形的两个锐角的和是________。
9. 一个数的倒数是1/4,这个数是________。
10. 计算:\( \frac{3}{4} + \frac{2}{5} = \)________。
三、计算题(每题5分,共20分)11. 计算下列表达式的值:\( (3x - 2)^2 + 5x - 3 \)假设 \( x = 1 \)。
12. 解下列方程:\( 4x + 3 = 11 \)。
13. 计算下列多项式的乘积:\( (2x + 3)(3x - 2) \)。
14. 计算下列分数的和:\( \frac{1}{2} + \frac{3}{4} + \frac{5}{6} \)。
四、解答题(每题10分,共30分)15. 一个长方形的长是15厘米,宽是10厘米,求这个长方形的周长和面积。
16. 一个圆的半径是7厘米,求这个圆的周长和面积。
17. 一个班级有45名学生,其中男生占总人数的55%,求这个班级的男生和女生各有多少人。
1七年级第 二学期数学竞赛试题选择题(每题3分,满分30分)1. 若01-<<a ,则2,1,a aa a ,2a ,a1从小到大排列正确的是 ( )A .aa a 12<< B .21a a a <<C .21a a a <<D .aa a 12<< 2.下列运用等式的性质变形正确的是( ).A .若y x =,则55+=-y xB .若b a =,则bc ac =C .若a b cc=,则b a 32= D .若y x = ,则x y aa= 3.已知有理数a ,b 在数轴上对应的两点分别是A ,B.请你将具体数值代入a ,b ,充分实验验证:对于任意有理数a ,b ,计算A , B 两点之间的距离正确的公式一定是( )A .a b -B .||||a b +C .||||a b -D .||a b - 4.若A 和B 都是3次多项式,则A+B 一定是( ) A 、6次多项式 B 、3次多项式C 、次数不高于3次的多项式D 、次数不低于3次的多项式 5.一个多项式与2x -2x +1的和是3x -2,则这个多项式为( )A .2x -5x +3B .-2x +x -1C .-2x +5x -3D .2x -5x -1326.若2237y y ++的值为8,则2469y y +-的值是( ). A .2 B .-17 C .-7 D .77.一个纸环链,纸环按红黄绿蓝紫的顺序重复排列,截去其中的一部分,剩下部分如图所示,则被截去部分纸环的个数可能是( ) (A )2010 (B )2011 (C )2012 (D )20138.六个整数的积36=⋅⋅⋅⋅⋅f e d c b a ,f e d c b a 、、、、、 互不相等,则f e d c b a +++++ 的和可能是( ).A .0B .10C .6D .89.把100个苹果分给若干个小朋友,每个人至少分得一个,且每个人分得的数目不同,那么最多有( )人. A.11 B. 12 C. 13 D.14 10.方程120072005 (35153)=⨯++++x x x x的解是x 等于( ) A.20072006 B.20062007 C. 10032007 D.20071003二、填空题(每题3分,满分24分)11.如果b a ⋅<0,那么=++ababb b a a. … …红 黄 绿 蓝 紫 红 黄 绿 黄 绿 蓝 紫312.如果3()480a a x +++=是关于x 的一元一次方程,那么21a a +-= .13.在图中每个小方格内填入一个数,使每一行、每一列都有1、2、3、4、5.那么右下角的小方格内填入的数是 .(1)451(2)321(3)53?14.如上图,一个正方体的每个面分别标有数字1,2,3,4,5,6.根据图•中该正方体三种状态所显示的数据,可推出“?”处的数字是 . 15.将一张长方形的纸对折,如图所示可得到一条折痕(图中虚线),继续对折,对折时每次折痕与上次的折痕保持平行,连续对折三次后,可以得到7条折痕,那么对折10次可以得到 条折痕。
七年级数学上册竞赛试题及附答案一、选择题,(3′×10=30分)1.如图1是一个长为a,宽为b的矩形,两个阴影图形都是一对以c为底,边在矩形对边上的平行四边形,则矩形中未涂阴影部分的面积为()A.B.CD.2.两个同样大小的正方形状的积木每个正方体上相对的两个面上写的数之和都等于—1,现将两个正方体并列放置,看得见的五个面上的数字如图2所示,则看不见的七个面上的数的和等于()A.—21B.—19C.—5D.—13.如图3,a,b为数轴上的两个点表示的有理数,在,,中,负数的个数有()A.1个B.2个C.3个D.4个4.若=,则等于()A.或B.C.D.零5.若,则一定是()A.正数B.负数C.非负数D.非正数6.…=()A.153B.150C.155D.1607.奶奶说:“如果不算星期天的话,我84岁了”她实际上有多少岁?()A.90B.91C.96D.988.、都是钝角,甲、乙、丙、丁计算的结果依次为:50°,26°,72°,90°.其中所得结果正确的是()A.甲B.乙C.丙D.丁9.已知a是任意有理数,在下面各题中,结论正确的个数是() (1)方程的解是,(2)方程的解是,(3)方程的解是,(4)方程的解是。
A.0B.1C.2D.310.甲、乙两人沿边长为90米的正方形,按A→B→C→D→A…方向,甲从A以65米/分的速度,乙从B以下72米/分的速度行走,当乙第一次追上甲时在正方形的()A.AB边上B.DA边上一、填空题(每小题4分,共40分)1.甲、乙、丙、丁四个数之和等于-90,甲数减-4,乙数加-4,丙数乘-4,丁数除-4彼比相等,则四个数中的最大的一个数比最小的一个数大__2.计算(-2124+7113÷24113-38)÷1512=___。
3.已知与是同类项,则=__。
4.有理数在数轴上的位置如图1所示,化简5.某班学生去参加义务劳动,其中一组到一果园去摘梨子,第一个进园的学生摘了1个梨子,第二个学生摘了2个,第三个学生摘了3个,……以此类推,后来的学生都比前面的学生多摘1个梨子,这样恰好平均每个学生摘了6个梨子,请问这组学生的人数为____.6.小明骑车自甲地经乙地,先上坡后下坡,到达乙地后立即返回甲地,共用34分钟,已知上坡速度是400米/分,下坡速度是450米/分,则甲地到乙地的路程是__米。
初中奥数题试题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0B.a,b之一是0C.a,b互为相反数D.a,b互为倒数答案:C解析:令a=2,b=-2,满足2+(-2)=0,由此a、b互为相反数。
2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式答案:D解析:x²,x3都是单项式.两个单项式x3,x²之和为x3+x²是多项式,排除A。
两个单项式x²,2x2之和为3x2是单项式,排除B。
两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D。
3.下面说法中不正确的是 ( )A. 有最小的自然数B.没有最小的正有理数1C.没有最大的负整数D.没有最大的非负数答案:C解析:最大的负整数是-1,故C错误。
4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( ) A.a,b同号B.a,b异号C.a>0D.b>0答案:D5.大于-π并且不是自然数的整数有 ( )A.2个B.3个C.4个D.无数个答案:C解析:在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C。
6.有四种说法:甲.正数的平方不一定大于它本身;2乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。
这四种说法中,不正确的说法的个数是 ( )A.0个B.1个C.2个D.3个答案:B解析:负数的平方是正数,所以一定大于它本身,故丙错误。
7.a代表有理数,那么,a和-a的大小关系是 ( )A.a大于-aB.a小于-aC.a大于-a或a小于-aD.a不一定大于-a答案:D解析:令a=0,马上可以排除A、B、C,应选D。
8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( )A.乘以同一个数B.乘以同一个整式3C.加上同一个代数式D.都加上1答案:D解析:对方程同解变形,要求方程两边同乘不等于0的数,所以排除A。
一、选择题(每题3分,共30分)1. 下列数中,哪个是质数?A. 15B. 17C. 28D. 352. 下列哪个图形是轴对称图形?A. 长方形B. 三角形C. 平行四边形D. 梯形3. 一个长方形的长是8厘米,宽是4厘米,它的周长是多少厘米?A. 24B. 32C. 16D. 204. 如果一个数的平方是25,那么这个数可能是?A. 5B. -5C. 5或-5D. 255. 下列哪个数是负数?A. -3B. 0C. 3D. ±36. 一个等腰三角形的底边长是6厘米,腰长是8厘米,那么这个三角形的周长是多少厘米?A. 20B. 24C. 28D. 327. 下列哪个数是正数?A. -0.5B. 0C. 0.5D. ±0.58. 一个正方形的边长是5厘米,它的面积是多少平方厘米?A. 10B. 25C. 15D. 209. 下列哪个数是有理数?A. √2B. πC. 0.101001D. √-110. 一个圆的半径是3厘米,那么它的直径是多少厘米?A. 6B. 9C. 12D. 15二、填空题(每题5分,共20分)11. 一个数的倒数是它的什么数?12. 一个等腰直角三角形的两条直角边长分别是3厘米和4厘米,那么它的斜边长是________厘米。
13. 一个长方形的长是10厘米,宽是5厘米,那么它的面积是________平方厘米。
14. 下列分数中,哪个是最简分数?________三、解答题(每题10分,共30分)15. 一辆汽车从甲地出发,以每小时60公里的速度行驶,2小时后到达乙地。
如果以每小时80公里的速度行驶,那么到达乙地需要多少小时?16. 一个梯形的上底是10厘米,下底是20厘米,高是15厘米,求这个梯形的面积。
17. 解下列方程:3x - 5 = 4x + 2。
四、应用题(每题15分,共30分)18. 小明家住在5楼,他每层楼爬3分钟,那么他从1楼到5楼一共需要多少时间?19. 一块正方形的草坪,边长是20米,现在要在草坪周围围一圈篱笆,篱笆的长度是多少米?答案:一、选择题1. B2. A3. B4. C5. A6. B7. C8. B9. C 10. A二、填空题11. 相反数 12. 5 13. 50 14. 2/3三、解答题15. 2小时16. 300平方厘米17. x = -7四、应用题18. 10分钟19. 80米。
七年级(上)数学竞赛试题
2012——2013学年第一学期姓名班级
一、选择题(10×4=40)
1、清晨,蜗牛从树根沿着树干往上爬,树高10米,白天爬上4米,夜间滑下3米,那
么蜗牛从树根爬上树顶需几天()
A、10天
B、9天
C、8天
D、7天
2、如果△+△= ★,○= □+□,△= ○+○+○+○,那么★÷□=()
A、2
B、4
C、8
D、16
3、某商家为了吸引顾客,先把原价提升了20%,再以八折出售,实际上商家给顾客的
优惠是( )
A、16%
B、20%
C、4%
D、2%
4、缸内红茶菌的面积每天长大一倍,若19天长满整个缸面,那么经过()天
长满缸面的一半
A 、5 B、7 C 、16 D、18
5、下列说法中不正确的是()
A、小于-1的有理数比它的倒数小
B、非负数的相反数不一定比它本身小
C、小于零的有理数的立方小于原数
D、小于零的有理数的二次幂大于原数
6、小强拿了一张正方形的纸如图(1),沿虚线对折一次得图(2),再对折一次得图(3),
然后用剪刀沿图(3)中的虚线(虚线与底边平行)剪去一个角,再打开后的形状应是()
7、在一列数1,2,3,4,……,1000中,数字“0”出现的次数一共为()(A)182 (B)189 (C)192 (D)194 8、若5
=
a,3
=
b,那么b
a⨯的值有( )个
(A)4 (B)3 (C)2 (D)1
9.如图1,在数轴上表示到原点的距离为3个单位的点有
A.D点B.A点
C.A点和D点D.B点和C点
10、若∣x-
2
1
∣+(2y+1)2=0,则x2+y2的值是()
A、0
B、
2
1
C、
4
1
D、1
二填空题(8×5=40)
1、有一条长500米的公路,现在要对公路进行绿化,每隔4米栽树一颗,这样一共要
栽树_________颗。
2、定义:a⊙b=ab+a+b,若3⊙x=27,则x的值是________。
3、小明在做数学作业时,把一个多项式加上ab+3bc-2ac时误认为减去此式,所以得到
答案为:2ab-3bc+4ac,试求出正确的答案:________________。
4、一次晚会有n(n≥2)人参加,假设每每两人握一次手,那么一共有_________次握手。
如果n=100,共有_________次握手。
5、线段AB被分为2:3:4三部分,若第一部分与第三部分的两个中点距离是4.2cm,
那么线段AB的长为___________cm。
6、从山脚到山顶的公路上为3千米,小明上山每小时行走2千米,下山时每小时行3
千米,那么小明上山和下山的平均速度为____________千米/小时。
7、某省有两种手机的收费方式:“小灵通”每月话费是10元月租费,加上每分钟0.4
元通话费;“神州行”每月话费是25元月租费,加上每分钟0.2元的通话费。
若某手机用户估计月通话时间在150分钟左右,则他应选择 _____________方式。
8、有人问杨老师:“你班里有多少学生?”,杨老师说:“我班现在有一半学生在参加
数学竞赛,四分之一的学生在参加音乐兴趣小组,七分之一的学生在阅览室,还剩三个女同学在看电视”。
则杨老师班里学生的人数是。
图1
三 计算题(5×8=40)
1、()()20032003
42425.013
1)51()5131(⨯-+-+-÷÷-
2、三家文具店,作业本的价格都是每本0.5元,不过店家的优惠措施不同,华丰店:一律九折优惠;新华店:买5本送1本;文苑店:满55元八折优惠。
某班要买作业本100本,你认为去哪家买比较合算?为什么?
3、有若干个数,第一个数记作a 1,第二个数记作a 2,第三个数记作a 3……,
第n 个数记作a n ,若a 1=-0.5,从第二个数开始,每个数都等于1与它前面的数差的倒数。
(8分)
(1)计算 a 2=___________ a 3=__________
a 4=____________
(2)猜想 a 2004=__________
a 2005=__________
4、学校准备拿出2000元资金给22名“希望杯”竞赛获奖学生买奖品,一等奖每人200
元奖品,二等奖每人50元奖品,求得到一等奖和二等奖的学生分别是多少人?
5、医学研究表明,身高是具有一定遗传性的,因此可以根据父母身高预测子女成年后的身高,其计算方法是:
儿子身高=21
(父亲身高+母亲身高)×1.08
女儿身高=
2
1
(父亲身高×0.923+母亲身高) (1)如果某对父母的身高分别是m 米和n 米,请人预测他们儿子和女儿成年后的身高。
(用代数式表示)
(2)小明(男)的父亲身高1.75米,母亲身高1.62米,求小明成年后的身高。