5原子的核式结构原子的能级链接动画
- 格式:ppt
- 大小:53.50 KB
- 文档页数:6
原子和原子核 ——知识介绍一.原子结构(一)原子的核式结构人们认识原子有复杂结构是从1897年汤姆生发现电子开始的。
汤姆生通过研究对阴极射线的分析发现了电子,从而知道,电子是原子的组成部分,为了保持原子的电中性,除了带负电的电子外,还必须有等量的正电荷。
因此汤姆生提出了“葡萄干面包”模型:正电荷部分连续分布于整个原子,电子镶在其中。
1909年卢瑟福在α粒子散射实验中,以α粒子轰击重金属箔发现:大多数α粒子穿过薄膜后的散射角很小,但还有八千分之一的α粒子,散射角超过了900,有些甚至被弹回来,散射角几乎达到1800。
1911年卢瑟福提出了原子核式结构模型:在原子的中心有一个很小的核称为原子核,原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外空间绕核高速旋转。
从α粒子散射实验的数据可以估计出原子核的大小约为10-15——10-14米,原子半径大约为10-10米。
原子核式结构模型较好的解释了α粒子散射实验现象,也说明了汤姆生的“葡萄干面包”模型是错误的。
(二)玻尔的氢原子理论1.1.巴耳末公式1885年,瑞士物理学家巴耳末首先发现氢原子光谱中可见光区的四条谱线的波长,可用一经验公式来表示:)121(122n R -=λ n =3,4,5……式中λ为波长,R =×10 7米-1称为里德伯恒量,上式称为巴耳末公式。
2.2.里德伯公式1889年,里德伯发现氢原子光谱德所有谱线波长可用一个普通的经验公式表示出来:)11(122n m R -=λ式中n=m+1,m+2,m+3……,上式称为里德伯公式。
对于每一个m ,上式可构成一个光谱系: m=1,n=2,3,4……赖曼系(紫外区)m=2,n=3,4,5……巴尔末系(可见光区)m=3,n=4,5,6……帕邢系(红外区)m=4,n=5,6,7……布喇开系(远红外区)3.3.玻尔的氢原子理论卢瑟福的原子核式结构模型能成功地解释α粒子散射实验,但无法解释原子的稳定性和原子光谱是明线光谱等问题。
原子的核式结构模型一、背景在深入研究原子的内部结构后,科学家们得出了一种关于原子构造的理论,即核式结构模型。
这个模型揭示了原子中心的秘密,为我们打开了理解物质世界的新视角。
二、核式结构模型的提出19世纪末,卢瑟福通过α粒子散射实验,发现原子中心有一个密集的原子核,其体积仅占据原子体积的几千分之一。
同时,他发现原子核周围环绕着电子,这些电子沿着轨道运动,就像行星围绕太阳运动一样。
这一发现,彻底改变了我们对原子的理解。
三、核式结构模型的内容核式结构模型的主要内容是:原子由一个位于中心的原子核和核外电子组成,电子在特定轨道上运动,并受到原子核的吸引。
原子核由质子和中子组成,其质量约占原子质量的99.9%,而电子的质量几乎可以忽略不计。
因此,原子的大部分体积是由原子核占据的。
四、核式结构模型的意义核式结构模型的提出,为我们理解原子的性质和行为提供了基础。
它解释了为什么原子在化学反应中会形成稳定的化合物,为什么元素之间会有不同的化学亲和力等等。
这一模型成为了现代化学的基础,为我们的科技发展提供了重要的理论基础。
五、结论总的来说,原子的核式结构模型是科学史上的一个重大突破,它为我们打开了理解物质世界的新视角。
然而,随着科技的发展,我们还需要更深入的研究和探索,以揭示原子内部的更多秘密。
让我们期待更多的科学发现,以更好地理解这个美丽的物质世界。
原子的核式结构模型一、背景在深入研究原子的内部结构后,科学家们得出了一种关于原子构造的理论,即核式结构模型。
这个模型揭示了原子中心的秘密,为我们打开了理解物质世界的新视角。
二、核式结构模型的提出19世纪末,卢瑟福通过α粒子散射实验,发现原子中心有一个密集的原子核,其体积仅占据原子体积的几千分之一。
同时,他发现原子核周围环绕着电子,这些电子沿着轨道运动,就像行星围绕太阳运动一样。
这一发现,彻底改变了我们对原子的理解。
三、核式结构模型的内容核式结构模型的主要内容是:原子由一个位于中心的原子核和核外电子组成,电子在特定轨道上运动,并受到原子核的吸引。
高中物理原子物理知识点总结在高中物理的学习中,原子物理是一个重要且充满趣味的部分。
它为我们揭示了微观世界的奥秘,帮助我们理解物质的本质和原子的行为。
接下来,让我们一起深入探索高中物理原子物理的重要知识点。
一、原子的结构1、汤姆孙的枣糕模型汤姆孙认为原子是一个球体,正电荷均匀分布在整个球内,而电子像枣糕中的枣子一样镶嵌在其中。
2、卢瑟福的核式结构模型通过α粒子散射实验,卢瑟福提出了原子的核式结构模型。
该模型认为,在原子的中心有一个很小的原子核,原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外空间绕核旋转。
原子核很小,但集中了原子的绝大部分质量。
原子核的直径约为10⁻¹⁵米到 10⁻¹⁴米,而原子的直径约为 10⁻¹⁰米。
二、玻尔的原子模型1、定态假设原子只能处于一系列不连续的能量状态中,在这些状态中,电子虽然绕核运动,但并不向外辐射能量,这些状态叫定态。
2、跃迁假设原子从一种定态跃迁到另一种定态时,它辐射(或吸收)一定频率的光子,光子的能量由这两种定态的能量差决定,即hν = Eₘ Eₘ (h 是普朗克常量,ν 是光子的频率,Eₘ 和 Eₘ 分别表示高能级和低能级的能量)。
3、轨道量子化假设原子的不同能量状态跟电子沿不同的圆形轨道绕核运动相对应。
电子的轨道半径不是任意的,只有当半径的大小符合一定条件时,电子才能够在这些轨道上运动。
三、氢原子的能级1、能级公式Eₘ = E₁/ n²(n = 1,2,3,……),其中 E₁为基态能量,E₁=-136 eV。
2、能级图能级图直观地展示了氢原子各个能级的能量大小以及能级之间的跃迁情况。
四、天然放射现象1、天然放射现象的发现1896 年,法国物理学家贝克勒尔发现了天然放射现象,揭示了原子核具有复杂的结构。
2、三种射线α 射线:高速运动的氦原子核,带正电,电离作用强,穿透能力弱。
β 射线:高速运动的电子流,带负电,电离作用较弱,穿透能力较强。
原子的核式结构原子的能级原子的核式结构由原子核和电子云组成。
原子核位于原子的中心,由质子和中子组成。
质子带有正电荷,中子不带电荷。
原子核的质量约等于整个原子质量的99.9%,但体积非常小,约占整个原子体积的1/10,000。
电子云围绕着原子核的核式结构。
电子带有负电荷,质量很小。
电子云的半径可以看作是电子能级的大小,每个能级可以容纳一定数量的电子。
电子能级按照一定规律排列,较近原子核的能级能量较低,较远原子核的能级能量较高。
电子能级之间的能量差叫做能级间隔,对应于光的频率和波长。
当电子从低能级跃迁到高能级时,吸收能量;反之,从高能级跃迁到低能级时,放出能量。
原子的核式结构对物质的性质和结构起着重要的影响。
原子核决定了原子的质量和化学性质,例如质子数决定了元素的种类,质子数与中子数之和决定了原子的质量数。
电子云则决定了元素的化学反应性质,例如原子的化学键形成和断裂等。
原子核和电子云之间的相互作用力决定了原子的稳定性和化学行为。
原子的能级对化学反应和物质的性质也有着重要的影响。
根据泡利不相容原理和泡利排斥原理,每个能级上的电子自旋和量子数必须不同。
这种能级的填充规则决定了元素的电子构型和化学结构。
原子的化学反应和化学键的形成和断裂都涉及到电子的跃迁和能级的变化。
总结起来,原子的核式结构是由原子核和电子云组成的。
原子核决定了原子的质量和化学性质,电子云决定了原子的化学反应性质。
原子的能级决定了电子的运动状态和能量变化,对原子的化学反应和物质的性质有着重要的影响。
原子的核式结构模型原子的核式结构模型是近代物理学重要的一部分。
这一模型的提出,不仅为我们理解原子的性质、构建了从微观层面认识物质结构的框架,而且为今天的量子力学、核物理、原子物理等领域的研究提供了坚实的理论基础。
接下来,我将详细介绍原子的核式结构模型。
20世纪初,英国物理学家汤姆孙(J.J. Thomson)提出了“西瓜布条糖果模型”,即“西瓜代表原子,软而大的苦瓜肉部分代表了电子,硬脆的绿色外壳由正电荷均匀分布。
” 这一模型的主要观点是:原子是一个均匀带正电荷的球体,电子均匀地分布在其中。
然而,后来的实验证明了这一模型有其局限性。
1909年,英国物理学家拉瑟福(Ernest Rutherford)进行了著名的“金箔散射实验”。
他将α粒子射向一个百万分之一毫米厚度的金箔,观察α粒子的散射情况。
根据经典电动力学理论,根本不能解释实验观测结果。
实验结果显示,大部分α粒子直接穿透金箔,并且只有极少数α粒子发生散射。
这一现象令人困惑,而拉瑟福进一步研究发现,如果假设原子有一个类似太阳系的结构,即中心有一个被电子包围的带正电荷的核,那么这一结果就可以得到自然解释。
据此,拉瑟福提出了著名的“核式结构模型”。
这一模型认为,原子主要由正电荷均匀分布的核和绕核运动的电子组成。
原子核占据原子的中心部位,质量非常集中,电子则围绕核运动。
通过核与电子之间的电磁相互作用,电子能保持在核的附近稳定运动。
从而解释了金箔散射实验中观察到的结果。
基于核式结构模型,我们可以进一步解释原子的一些性质。
例如,原子的大小主要由核的大小决定,因为电子的质量远小于核的质量。
但是,由于电子的运动轨道是不确定的,所以无法详细确定一个原子的大小。
此外,核式结构模型还解释了原子光谱的现象。
当原子受到能量激发后,电子会从较低能量轨道跃迁到较高能量轨道上,或者从较高能量轨道跃迁到较低能量轨道上。
当电子跃迁时,会吸收或发射特定能量的光子,形成特定波长的光谱线。
易错点29 原子 原子核易错总结一、氢原子光谱、氢原子的能级、能级公式1.原子的核式结构(1)电子的发现:英国物理学家汤姆孙发现了电子。
(2)α粒子散射实验:1909~1911年,英国物理学家卢瑟福和他的助手进行了用α粒子轰击金箔的实验,实验发现绝大多数α粒子穿过金箔后基本上仍沿原来方向前进,但有少数α粒子发生了大角度偏转,偏转的角度甚至大于90°,也就是说它们几乎被“撞”了回来。
(3)原子的核式结构模型:在原子中心有一个很小的核,原子全部的正电荷和几乎全部质量都集中在核里,带负电的电子在核外空间绕核旋转。
2.光谱(1)光谱用光栅或棱镜可以把光按波长展开,获得光的波长(频率)和强度分布的记录,即光谱。
(2)光谱分类有些光谱是一条条的亮线,这样的光谱叫做线状谱。
有的光谱是连在一起的光带,这样的光谱叫做连续谱。
(3)氢原子光谱的实验规律巴耳末线系是氢原子光谱在可见光区的谱线,其波长公式1λ=R ⎝⎛⎭⎫122-1n 2,(n =3,4,5,…),R 是里德伯常量,R =1.10×107 m -1,n 为量子数。
3.玻尔理论(1)定态:原子只能处于一系列不连续的能量状态中,在这些能量状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量。
(2)跃迁:原子从一种定态跃迁到另一种定态时,它辐射或吸收一定频率的光子,光子的能量由这两个定态的能量差决定,即hν=E m -E n 。
(h 是普朗克常量,h =6.63×10-34 J·s ) (3)轨道:原子的不同能量状态跟电子在不同的圆周轨道绕核运动相对应。
原子的定态是不连续的,因此电子的可能轨道也是不连续的。
4.氢原子的能级、能级公式(1)氢原子的能级能级图如图所示(2)氢原子的能级和轨道半径①氢原子的能级公式:E n=1n2E1(n=1,2,3,…),其中E1为基态能量,其数值为E1=-13.6 eV。
②氢原子的半径公式:r n=n2r1(n=1,2,3,…),其中r1为基态半径,又称玻尔半径,其数值为r1=0.53×10-10m。