七年级(上)第2章整式的加减
- 格式:doc
- 大小:167.50 KB
- 文档页数:5
人教版七年级上册数学第二章整式的加减含答案一、单选题(共15题,共计45分)1、下列判断错误的是()A.1-a-2ab是二次三项式B.-a 2b 2c与2ca 2b 2是同类项C.是多项式 D. πa 2的系数是π2、一个多项式加上多项式2x﹣1后得3x﹣2,则这个多项式为()A.x﹣1B.x+1C.x﹣3D.x+33、下列运算正确的是()A. B. C. D.4、多项式3x3﹣2x2﹣15的次数为()A.2B.3C.4D.55、下列说法正确的是()A.单项式的系数是-5,次数是2B.单项式a的系数为1,次数是0 C. 是二次单项式 D.单项式-ab的系数为-,次数是26、若﹣x2y n与3yx2是同类项,则n的值是()A.﹣1B.3C.1D.27、下列计算正确的是()A.2x+3y=5xyB.x 2•x 3=x 6C.(a 3)2=a 6D.(ab)3=ab 38、下列计算正确的是()A.2x+3y=5xyB.5a 2﹣3a 2=2C.(﹣7)÷ =﹣7D.(﹣2)﹣(﹣3)=19、去括号后结果错误的是()A.2(a+2b)=2a+4bB.3(2m﹣n)=6m﹣3nC.﹣[c﹣(a﹣b)]=﹣c ﹣a+bD.﹣(x﹣y+z)=﹣x+y﹣z10、在一张某月的日历上,任意圈出同一列上的三个数的和不可能是( )A.14B.33C.51D.2711、在﹣3x,6﹣a=2,4ab2, 0,,,>,x中,是代数式的共有()A.7个B.6个C.5个D.4个12、下列说法中正确的是( )A.若,则B.若,则C. 的系数是D.若,则13、下列叙述①单项式- 的系数是- ,次数是3次;②用一个平面去截一个圆锥,截面的形状可能是一个三角形;③在数轴上,点A、B分别表示有理数a、b,若a >b,则A到原点的距离比B到原点的距离大;④从八边形的一个顶点出发,最多可以画五条对角线;⑤六棱柱有八个面,18条棱.其中正确的有()A.2个B.3个C.4个D.5个14、下列结论正确的是( )A.3a 2b-a 2b=2B.单项式-x 2的系数是-1C.使式子(x+2)0有意义的x的取值范围是x≠0D.若分式的值等于0,则a=±115、下列结论正确的是()A.2 ﹣1=﹣2B.单项式﹣x 2的系数是﹣1C.使式子有意义的x的取值范围是x<2D.若分式的值等于0,则a=﹣1二、填空题(共10题,共计30分)16、体育课上,甲、乙两班学生进行“引体向上”身体素质测试,测试统计结果如下:甲班:全班同学“引体向上”总次数为;乙班:全班同学“引体向上”总次数为.(注:两班人数均超过30人)请比较一下两班学生“引体向上”总次数,________班的次数多,多________次.17、写出一个单项式,使它的系数是,次数是,________.18、某同学在做计算2A+B时,误将“2A+B”看成了“2A﹣B”,求得的结果是9x2﹣2x+7,已知B=x2+3x+2,则2A+B的正确答案为________.19、若5x3y n和﹣x m y2是同类项,则3m﹣7n=________.20、观察下面由※组成的图案和算式,解答问题:1+3=4=221+3+5=9=321+3+5+7=16=421+3+5+7+9=25=52请用上述规律计算:1+3+5+…+2003+2005=________.21、﹣πa2b的系数是________,次数是________.22、单项式﹣πa3bc的次数是________,系数是________.23、若﹣2x m﹣n y2与3x4y2m+n是同类项,则m﹣3n的立方根是________.24、已知a、b、c是△ABC的三边,化简|a﹣b﹣c|+|b+c﹣a|+|c+a+b|得________.25、有理数,,在数轴上的位置如图所示,试化简________.三、解答题(共6题,共计25分)26、下列代数式中,哪些是整式?①x2+y2;②﹣x;③;④6xy+1;⑤;⑥0;⑦.27、已知A=3x2-ax+6x-2,B=-3x2+4ax-7,若A+B的值不含x项,求a的值.28、先化简,再求值:已知,求代数式2xy2-[6x-4(2x-1)-2xy2]+9的值。
教学设计:2024秋季七年级数学上册第二章整式的加减整式的加减《整式的加减运算》教学目标(核心素养)1.知识与技能:学生能够理解整式加减运算的意义,掌握整式加减的基本法则,能够准确进行整式的加减运算。
2.数学思维:培养学生的代数运算能力,通过整式加减运算的练习,提高学生的逻辑思维和抽象思维能力。
3.情感态度:激发学生对数学学习的兴趣,体验代数运算的简洁性和美感,培养耐心和细致的学习态度。
教学重点•整式加减的基本法则及其应用。
•准确进行整式加减运算,特别是含有同类项的整式运算。
教学难点•理解整式加减运算中同类项合并的必要性。
•在复杂整式中准确应用加减法则进行运算,避免符号错误和运算顺序错误。
教学资源•多媒体课件(包含整式加减运算示例、练习题)•黑板及粉笔(用于板书关键概念和例题)•学生笔记本(用于记录课堂笔记和练习)•实物教具(如可拆卸的代数式卡片,用于直观展示整式加减过程)教学方法•直观演示法:利用多媒体课件和实物教具,直观展示整式加减的过程和结果。
•讲授法:结合具体例子,详细讲解整式加减的基本法则和运算步骤。
•练习巩固法:通过分层练习,巩固学生对整式加减运算的掌握。
•合作学习法:组织小组合作,让学生共同解决整式加减运算中的问题,促进相互学习和交流。
教学过程要点导入新课•复习引入:回顾整式的概念、同类项以及去括号法则,为整式加减运算做铺垫。
•情境导入:通过一个实际问题(如计算两个多边形面积的差或和),引导学生思考如何用整式表示并求解,引出整式加减运算的必要性。
新课教学•整式加减法则:明确整式加减的基本法则(即同类项相加减,非同类项不能合并)。
•示例演示:选取几个典型例题,逐步演示整式加减的过程,强调同类项合并和符号处理。
•注意事项:提醒学生在运算过程中注意符号的正确性、同类项的准确识别以及运算顺序的遵循。
课堂小结•知识回顾:总结整式加减的基本法则和运算步骤,强调其在代数运算中的重要性。
•方法提炼:引导学生提炼整式加减运算的技巧,如先识别同类项再合并、注意符号变化等。
七上数学第二章整式的加减
一、教学目标
(一)知识与技能
通过具体实例,感受字母表示数的意义,会用代数式表示简单的数量关系,会写含有字母的式子,会求简单的代数式的值.
(二)过程与方法
通过实例,归纳、类比、抽象、概括,从而认识整式的概念,掌握单项式、多项式的概念,并会用单项式、多项式的概念判断一个式子是否是单项式或多项式. 通过具体例子的讨论,理解合并同类项的方法,会进行单项式的加减.
通过实例,理解整式的概念、单项式、多项式的概念,会进行单项式的加减. (三)情感态度和价值观
初步建立符号意识,知道符号的作用,通过实例感受数学符号的简洁美和对称美.
二、教学重难点
教学重点:用代数式表示简单的数量关系,会写含有字母的式子,会求简单的代数式的值.
教学难点:正确判断一个式子是否是单项式或多项式,能进行单项式的加减.
三、教学过程
(一)引入新课
1. 通过实例引入整式的概念、单项式、多项式的概念,体会用字母表示数的优越性.
2. 通过例题学习合并同类项的方法,让学生经历从具体到抽象的过程.
3. 通过练习加深学生对新知识的印象,巩固对新知识的掌握.
4. 通过小结和思考让学生自主发现本节课所学知识之间的联系和区别,加深对知识的理解和记忆.
5. 通过作业布置,进一步巩固所学知识并适当延伸到下节课的内容.。
人教版七年级数学上册第二章《整式的加减》教学设计一. 教材分析人教版七年级数学上册第二章《整式的加减》是学生在初中阶段首次接触整式运算的内容。
本章主要介绍整式的加减运算,包括同类项的定义、合并同类项的方法以及整式的加减法则。
通过本章的学习,学生能够掌握整式加减的基本运算方法,并为后续的代数学习打下基础。
二. 学情分析七年级的学生已经具备了一定的数学基础,对基本的数学运算有一定的了解。
但是,对于整式的加减运算,学生可能还存在一定的困难,特别是在理解同类项的定义和运用整式加减法则方面。
因此,在教学过程中,需要注重引导学生理解同类项的概念,并通过大量的例子让学生熟悉并掌握整式的加减运算方法。
三. 教学目标1.知识与技能目标:学生能够理解同类项的概念,掌握合并同类项的方法,能够运用整式加减法则进行简单的整式运算。
2.过程与方法目标:通过观察、操作、思考、交流等活动,培养学生的问题解决能力和合作能力。
3.情感态度与价值观目标:培养学生对数学的兴趣,培养学生的耐心和细心。
四. 教学重难点1.教学重点:同类项的定义,合并同类项的方法,整式加减法则的应用。
2.教学难点:同类项的判断,整式加减运算的灵活运用。
五. 教学方法1.情境教学法:通过生活实例引入同类项的概念,激发学生的学习兴趣。
2.启发式教学法:通过提问引导学生思考,培养学生的问题解决能力。
3.合作学习法:通过小组讨论和合作,培养学生的合作能力和交流能力。
六. 教学准备1.教学PPT:制作精美的PPT,展示同类项的定义和整式加减运算的例子。
2.练习题:准备一些练习题,用于巩固学生的学习效果。
七. 教学过程1.导入(5分钟)利用生活实例,如购物时计算总价,引入同类项的概念,激发学生的学习兴趣。
2.呈现(10分钟)通过PPT展示同类项的定义和合并同类项的方法,让学生直观地理解同类项的概念,并学会如何合并同类项。
3.操练(10分钟)让学生通过小组合作,解决一些同类项的合并问题,巩固学生对同类项的理解和合并同类项的方法。
一、选择题1.下列用代数式表示正确的是( ) A .a 是一个数的8倍,则这个数是8a B .2x 比一个数大5,则这个数是2x +5C .一件上衣的进价为50元,售价为a 元,用代数式表示一件上衣的利润为(50-a )元D .小明买了5支铅笔和4本练习本,其中铅笔x 元1支,练习本y 元1本,那么他应付(5x +4y )元2.下面用数学语言叙述代数式1a﹣b ,其中表达正确的是( ) A .a 与b 差的倒数 B .b 与a 的倒数的差 C .a 的倒数与b 的差D .1除以a 与b 的差3.有一种密码,将英文26个字母,,,,a b c z (不论大小写)依次对应1,2,3,…,26这26个序号(见表格),当明码对应的序号x 为奇数时,密码对应的序号为|25|2x -,当明码对应的序号x 为偶数时,密码对应的序号为122x+,按照此规定,将明码“love ”译成密码是( )A .loveB .rkwuC .sdriD .rewj4.已知5a b +=,4ab =,则代数式()()35834ab a b a ab +++-的值为( ) A .36B .40C .44D .465.1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”,请观察图中的数字排列规律,则,,a b c 的值分别为( )1111211464115101051331151161a b cA .1,6,15a b c ===B .6,15,20a b c ===C .15,20,15a b c ===D .20,15,6a b c ===6.若关于x ,y 的多项式2237654x y mxy xy -++化简后不含二次项,则m =( ) A .17 B .67 C .-67 D .07.下列去括号正确的是( )A .221135135122x y x x y y ⎛⎫--+=-++⎪⎝⎭B .()8347831221a ab b a ab b --+=---C .()()222353261063x y x x y x+--=+-+D .()()223423422x y xx y x--+=--+8.下列各式中,去括号正确的是( ) A .2(1)21x y x y +-=+- B .2(1)22x y x y --=++ C .2(1)22x y x y --=-+D .2(1)22x y x y --=--9.古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为“三角形数”,而把1,4,9,16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( )A .13=3+10B .25=9+16C .36=15+21D .49=18+31 10.若252A x x =-+,256B x x =--,则A 与B 的大小关系是( ) A .A B > B .A B =C .A B <D .无法确定11.下列说法正确的是( )A .0不是单项式B .25R π的系数是5C .322a 是5次单项式D .多项式2ax +的次数是212.代数式213x -的含义是( ). A .x 的2倍减去1除以3的商的差B .2倍的x 与1的差除以3的商C .x 与1的差的2倍除以3的商D .x 与1的差除以3的2倍13.张师傅下岗后做起了小生意,第一次进货时,他以每件a 元的价格购进了20件甲种小商品,以每件b 元的价格购进了30件乙种小商品(a>b ).根据市场行情,他将这两种小商品都以2a b+元的价格出售.在这次买卖中,张师傅的盈亏状况为( ) A .赚了(25a+25b )元 B .亏了(20a+30b )元 C .赚了(5a-5b )元 D .亏了(5a-5b )元14.如图是按照一定规律画出的“树形图”,经观察可以发现:图A 2比图A 1多出2个“树枝”,图A 3比图A 2多出4个“树枝”,图A 4比图A 3多出8个“树枝”……照此规律,图A 6比图A 2多出“树枝”( )A .32个B .56个C .60个D .64个 15.长方形一边长为2a +b ,另一边为a -b ,则长方形周长为( )A .3aB .6a +bC .6aD .10a -b二、填空题16.已知整数a 1,a 2,a 3,a 4…满足下列条件:a 1=0,a 2=﹣|a 1+1|,a 3=﹣|a 2+2|,a 4=﹣|a 3+3|,…,依此类推,则a 2016的值为_______.17.如图,图1是“杨辉三角”数阵;图2是(a+b )n 的展开式(按b 的升幂排列).若(1+x )45的展开式按x 的升幂排列得:(1+x )45=a 0+a 1x+a 2x 2+…+a 45x 45,则a 2=_____.18.m ,n 互为相反数,则(3m –2n )–(2m –3n )=__________. 19.22223124,4135-=-225146-=,……221012m m -=+m =_____________20.礼堂第一排有 a 个座位,后面每排都比第一排多 1 个座位,则第 n 排座位有________________.21.单项式20.8a h π-的系数是______.22.若单项式322m x y -与3-x y 的差仍是单项式,则m 的值为__________. 23.已知5a b -=,3c d +=,则()()b c a d +--的值等于______.24.多项式223324573x x y x y y --+-按x 的降幂排列是______。
七年级数学上册 期末复习 整式的加减知识点+易错题整式的加减知识点整式知识点1.单项式:在代数式中,若只含有乘法(包括乘方)运算。
或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.3.多项式:几个单项式的和叫多项式.4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:(若a 、b 、c 、p 、q 是常数)ax 2+bx+c 和x 2+px+q 是常见的两个二次三项式.5.整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式.整式分类为:⎩⎨⎧多项式单项式整式 .6.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项.7.合并同类项法则:系数相加,字母与字母的指数不变.8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号.9.整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并.10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列.11. 列代数式列代数式首先要确定数量与数量的运算关系,其次应抓住题中的一些关键词语,如和、差、积、商、平方、倒数以及几分之几、几成、倍等等.抓住这些关键词语,反复咀嚼,认真推敲,列好一般的代数式就不太难了.12.代数式的值根据问题的需要,用具体数值代替代数式中的字母,按照代数式中的运算关系计算,所得的结果是代数式的值.13. 列代数式要注意①数字与字母、字母与字母相乘,要把乘号省略;②数字与字母、字母与字母相除,要把它写成分数的形式;③如果字母前面的数字是带分数,要把它写成假分数。
2015—2016学年度第一学期新课程素质能力测试七年级(上)
数学试题 第二章 整式的加减
时限:100分钟 满分:120分 命题人:吴勇 班级____姓名_____得分_____
一、选择题(本大题共12个小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是满足题目要求的,请把其代号填在答题栏中相应题号的下面)。
题号 1 2 3 4 5 6 7 8 9 10 11 12 答案
1、在0,
12x -, -1, -x, 1x ,1
3
a , 3-x, 中是单项式的有() A .1个 B .2个 C .3个 D .4个 2、下列运算中,正确的是()
A.ab b a 853=+ B .3322=-y y C .6331046a a a =+ D .n m nm n m 2
22235=-
3、若a 为一位数,b 为两位数,把a 置于b 的左边,则所得的三位数可表示为() A.ab B.b a + C.b a +10 D.b a +100
4、若A 是一个七次多项式,B 也是一个七次多项式,则B A +一定是() A .十四次多项式 B .七次多项式 C .不高于七次多项式或单项式 D .六次多项式
5、多项式与多项式的和是,多项式与多项式的和是,那么多项式减去多项式的差是()
A . 2
B . 2
C . 2
D .2
6、已知:a 2+a -1=0,则a 4-2a 2+a -1的值为() A .1 B .-1 C .2 D .-2
7、张大伯从报社以每份0.4元的价格购进了a 份报纸,以每份0.5元的价格售出了b 份报纸,剩余的以每份0.2元的价格退回报社,则张大伯卖报收入()元 A .0.7b-0.6a B .0.5b-0.2a C .0.7b-0.6a D .0.3b-0.2a 8、已知
();=-2
2b a ()
A .22、-6
B . -22、6
C .6、-22
D .-6、22
9、已知轮船在逆水中前进的速度是m 千米/时,水流的速度是2千米/时,则轮船在静水中航行的速度是()千米/时.
A .2m
B .2-m
C .m+2
D .m-2
10、一个多项式加上2
2x x -+-得到12
-x ,则这个多项式是()
A .2x 2-x+1
B .2x 2-x-3
C .-x+1
D .-2x 2
-x+1
11、若单项式4
32y
x π-的系数是m ,次数是n ,则mn 的值为()
A.-3
B.-3π
C.-
49 D. -4
9π 12、一个商店把某件商品按进价加20%作为定价,后来老板按定价8折192元卖出这件商品,
那么老板在销售这件商品的过程中的盈亏情况为() A .盈利16元 B .亏损24元 C .亏损8元 D .不盈不亏
二、填空题(本大题共4个小题,每小题3分,共12分。
请把答案填在题中的横线上)。
13、若-3a 2
+a=2,则5-2a+6a 2
的值为 ; 14、按下列程序输入一个数x
若输入的数1-=x ,则输出结果为 ;
15、如下图,已知a 、b 、c 在数轴上的位置,则|b +c |-|a -b |-|c -b |= ;
16、如图,将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表:
所剪次数 1 2 3 4 … n 正三角形个数
4
7
10
13
…
a n
则a n = (用含n 的代数式表示).
三、解答题(本大题共8个小题,共72分。
解答应写出文字说明、证明过程或演算步骤)。
17、化简(8分)
2237(43)2x x x x ⎡⎤----⎣⎦
18、化简求值(10分)
3x 2
y -[2x 2
y -(2xyz -x 2
y )-4x 2
z ]-(xyz+4x 2z),其中x=-2,y =-3,z=1
19、(共8分)已知多项式32x +m y -8与多项式-n 2
x +2y +7的和中,不含有x 、y ,
求n
m mn +的值.
20、(共9分)有一包长方体的东西,用三种不同的方法打包,哪一种方法使用的绳子最短?哪一种方法使用的绳子最长?(a +b >2c )
21、(共8分)计算某个整式减去多项式23ab bc ac -+时,一个同学误认为是加上此多项式,结果得到的答案是28ab bc ac -++.请你求出原题的正确答案.
22、(共9分)观察下列三行数: 0,3, 8,15,24, …① 2,5,10,17,26, …② 0,6,16,30,48, …③
(1)第①行数按什么规律排列的,请写出来?(3分)
(2)第②、③行数与第①行数分别对比有什么关系?(3分) (3)取每行的第n 个数,求这三个数的和(3分)
23、(共8分)某市一中七年级(8)班的同学乘火车去省外参加夏令营,已知在他们乘坐的卧铺车厢中,出发时有()y x +6人,中途站下车一半人,又上车若干人,到站时车上共有乘客()y x 49+ 人。
请问中途站上车的乘客是多少人?当4=x ,2=y 时,请计算中途站下车与上车的具体人数。
24、(共12分)某农户2007年承包荒山若干亩,投资7800•元改造后,种果树2000棵.今年水果总产量为18000千克,此水果在市场上每千克售a 元,在果园每千克售b 元(b <a ).该农户将水果拉到市场出售平均每天出售1000千克,需8•人帮忙,每人每天付工资25元,农用车运费及其他各项税费平均每天100元.
(1)分别用a ,b 表示两种方式出售水果的收入?
(2)若a =1.3元,b =1.1元,且两种出售水果方式都在相同的时间内售完全部水果,请你通过计算说明选择哪种出售方式较好.
(3)该农户加强果园管理,力争到明年纯收入达到15000元,那么纯收入增长率是多少(纯收入=总收入-总支出),该农户采用了(2)中较好的出售方式出售)?
参考答案
1、D
2、D
3、C
4、C
5、A
6、B
7、D
8、C
9、C 10、A 11、D 12、C 13、1 14、4 15、a+b 16、3n+1
17、5x 2
-3x-3 18、xyz ;6 19、-14
20、第(1)种方法的绳子长为4a+4b+8c ,第(2)种方法的绳子长为4a+4b+4c ,第(3)种方法的绳子长为6a+6b+4c ,从而第(3)种方法绳子最长,第(2)种方法绳子最短。
21、解:设这个多项式为M ,则:
ac bc ab ac bc ab M 82)32(++-=+-+
ac bc ab ac bc ab ac bc ab M 533)32()82(++-=+--++-= ac bc ab ac bc ab ac bc ab 254)32(533++-=+--++-
22、(1)规律是:1102-=,1232-=,1382-=,14152-=,15242
-=…. (2)第②行的数是第①行相应的数+2得到的,第第③行的数是第①行相应数的2倍.
(3)[
]
)1(22)1()1(2
2
2
-++-+-n n n =242
-n
23、6x+2
7
y ;31
24、18000a —13200;18000b —7800;25%。