第4章 控制算法
- 格式:pdf
- 大小:499.91 KB
- 文档页数:82
第一章计算机控制系统概述习题及参考答案1.计算机控制系统的控制过程是怎样的?计算机控制系统的控制过程可归纳为以下三个步骤:(1)实时数据采集:对被控量的瞬时值进行检测,并输入给计算机。
(2)实时决策:对采集到的表征被控参数的状态量进行分析,并按已定的控制规律,决定下一步的控制过程。
(3)实时控制:根据决策,适时地对执行机构发出控制信号,完成控制任务。
2.实时、在线方式和离线方式的含义是什么?(1)实时:所谓“实时”,是指信号的输入、计算和输出都是在一定时间范围内完成的,即计算机对输入信息以足够快的速度进行处理,并在一定的时间内作出反应并进行控制,超出了这个时间就会失去控制时机,控制也就失去了意义。
(2)“在线”方式:在计算机控制系统中,如果生产过程设备直接与计算机连接,生产过程直接受计算机的控制,就叫做“联机”方式或“在线”方式。
(3)“离线”方式:若生产过程设备不直接与计算机相连接,其工作不直接受计算机的控制,而是通过中间记录介质,靠人进行联系并作相应操作的方式,则叫做“脱机”方式或“离线”方式。
3.微型计算机控制系统的硬件由哪几部分组成?各部分的作用是什么?由四部分组成。
图1.1微机控制系统组成框图(1)主机:这是微型计算机控制系统的核心,通过接口它可以向系统的各个部分发出各种命令,同时对被控对象的被控参数进行实时检测及处理。
主机的主要功能是控制整个生产过程,按控制规律进行各种控制运算(如调节规律运算、最优化计算等)和操作,根据运算结果作出控制决策;对生产过程进行监督,使之处于最优工作状态;对事故进行预测和报警;编制生产技术报告,打印制表等等。
(2)输入输出通道:这是微机和生产对象之间进行信息交换的桥梁和纽带。
过程输入通道把生产对象的被控参数转换成微机可以接收的数字代码。
过程输出通道把微机输出的控制命令和数据,转换成可以对生产对象进行控制的信号。
过程输入输出通道包括模拟量输入输出通道和数字量输入输出通道。
第 4 章 基本算法和流程控制本章主要介绍基本的算法、Visual Basic 语言的流程控制语句,包括 If 语句、Select Case 语句、 For Next 语句、While Wend 语句和 Do Loop 语句等。
4.1 基本算法对计算机编程语言来说,算法是用于求解某个特定问题的一些指令的集合。
具体地说,用计算机所能 实现的操作或指令,来描述问题的求解过程,就得到了这一特定问题的计算机算法。
4.1.1 算法和算法的描述方法1.什么是算法一般来说,所谓算法是指解决一个特定问题采用的特定的、有限的方法和步骤。
例如,计算 6!的步 骤是: 计算 1×2 的值为 2→计算 2×3 的值为 6→计算6×4 的值为24→计算 24×5 的值为 120, →计算 120 ×6 的值为 720,即 6!=720。
利用计算机来解决问题需要设计程序,在设计程序前要对问题进行充分的分析,设计解题的步骤与方 法,也就是设计算法,然后根据算法设计程序。
例如,计算 6!的值,上面已给出了计算的步骤,要实现上 述计算,需用变量 SUM 存放初值 1,以后存放每次乘积的值和最后的计算结果,用变量N 存放初值 0,用 N=N+1 使 N 依次取整数 1、2、3、4、5 和 6,用 SUM=SUN*N 完成每次的乘法运算。
根据上述算法,设 计计算 6!的程序代码如下。
SUM=1:N=0N=N+1:SUM=SUM*N N=N+1:SUM=SUM*N N=N+1:SUM=SUM*N N=N+1:SUM=SUM*N N=N+1:SUM=SUM*N N=N+1:SUM=SUM*N Print "6!= ";SUM如果使用上述算法计算 15!值,会使程序冗长而繁琐,这显然不是一个好算法。
考虑到程序中多次使 用 N=N+1 和 SUM=SUM+N 语句,可使用循环的方法,循环一次执行一次 N=N+1 和 SUM=SUM+N 语句, 一共循环 15 次。
第四章控制算法与策略按偏差的比例、积分和微分进行控制的控制器(简称为PID控制器、也称PID 调节器),是过程控制系统中技术成熟、应用最为广泛的一种控制器。
它的算法简单,参数少,易于调整,并已经派生出各种改进算法。
特别在工业过程控制中,有些控制对象的精确数学模型难以建立,系统的参数不容易确定,运用控制理论分析综合要耗费很大代价,却不能得到预期的效果。
所以人们往往采用PID控制器,根据经验进行在线整定,一般都可以达到控制要求。
随着计算机特别是微机技术的发展,PID控制算法已能用微机简单实现。
由于软件系统的灵活性,PID算法可以得到修正而更加完善[14]。
在本章中,将着重介绍基于数字PID控制算法的系统的控制策略。
4.1采用周期T的选择采样周期T在微机控制系统中是一个重要参数,它的选取应保证系统采样不失真的要求,而又受到系统硬件性能的限制。
采样定理给出了采样频率的下限,据此采样频率应满足,①'2①,其中①是原来信号的最高频率。
从控制性能Smm来考虑,采样频率应尽可能的高,但采样频率越高,对微机的运行速度要求越高,存储容量要求越大,微机的工作时间和工作量随之增加。
另外,当采样频率提高到一定程度后,对系统性能的改善已不明显[14]。
因此采样频率即采样周期的选择必须综合考虑下列诸因素:(1)作用于系统的扰动信号频率。
扰动频率越高,则采样频率也越高,即采样周期越小。
(2)对象的动态特性。
采样周期应比对象的时间参数小得多,否则采样信号无法反映瞬变过程。
(3)执行器的响应速度。
如果执行器的响应速度比较缓慢,那么过短的采样周期和控制周期将失去意义。
(4)对象的精度要求。
在计算机速度允许的情况下,采样周期越短,系统调节的品质越好。
(5)测量控制回路数。
如果控制回路数多,计算量大,则采样周期T越长,否则越小。
(6)控制算法的类型。
当采用PID算式时,积分作用和微分作用与采样周期T的选择有关。
选择采样周期T太小,将使微分积分作用不明显。
第一章计算机控制系统概述习题及参考答案1.计算机控制系统的控制过程是怎样的计算机控制系统的控制过程可归纳为以下三个步骤:(1)实时数据采集:对被控量的瞬时值进行检测,并输入给计算机。
(2)实时决策:对采集到的表征被控参数的状态量进行分析,并按已定的控制规律,决定下一步的控制过程。
!(3)实时控制:根据决策,适时地对执行机构发出控制信号,完成控制任务。
2.实时、在线方式和离线方式的含义是什么(1)实时:所谓“实时”,是指信号的输入、计算和输出都是在一定时间范围内完成的,即计算机对输入信息以足够快的速度进行处理,并在一定的时间内作出反应并进行控制,超出了这个时间就会失去控制时机,控制也就失去了意义。
(2)“在线”方式:在计算机控制系统中,如果生产过程设备直接与计算机连接,生产过程直接受计算机的控制,就叫做“联机”方式或“在线”方式。
(3)“离线”方式:若生产过程设备不直接与计算机相连接,其工作不直接受计算机的控制,而是通过中间记录介质,靠人进行联系并作相应操作的方式,则叫做“脱机”方式或“离线”方式。
3.微型计算机控制系统的硬件由哪几部分组成各部分的作用是什么—由四部分组成。
图微机控制系统组成框图(1)主机:这是微型计算机控制系统的核心,通过接口它可以向系统的各个部分发出各种命令,同时对被控对象的被控参数进行实时检测及处理。
主机的主要功能是控制整个生产过程,按控制规律进行各种控制运算(如调节规律运算、最优化计算等)和操作,根据运算结果作出控制决策;对生产过程进行监督,使之处于最优工作状态;对事故进行预测和报警;编制生产技术报告,打印制表等等。
(2)输入输出通道:这是微机和生产对象之间进行信息交换的桥梁和纽带。
过程输入通道把生产对象的被控参数转换成微机可以接收的数字代码。
过程输出通道把微机输出的控制命令和数据,转换成可以对生产对象进行控制的信号。
过程输入输出通道包括模拟量输入输出通道和数字量输入输出通道。
第四章级联型多电平中高压变频器的控制算法和控制策略§4-1 PWM技术概述自20世纪60年代开始,人们将通讯领域的调制技术引入到电力电子和交流传动领域,提出了正弦波脉宽调制(Sinusoidal Pulse Width Modulation——SPWM)的概念。
由于PWM技术有效解决了逆变器输出电压调节过程中的低次谐波问题及其具有的方便灵活的特点,在交直流传动领域得到广泛应用,学术界的热情也有增无减,迄今为止,PWM技术仍是变频领域研究热点之一[6]。
PWM的基本依据是面积相等原理,即冲量(面积)相等的不同形状的窄脉冲加到惯性环节上时,其作用效果基本相同。
这样就可以将需要输出的理想波形在时间轴上以相等的步长分解成一系列的等宽不等幅的窄脉冲,再利用面积相等原理将其变换成为一系列等幅不等宽的窄脉冲,通过桥式逆变电路输出到负载,其作用效果与直接输出一个连续的调制波信号到负载的作用基本相同。
但由于经PWM 输出的是一系列的等幅的脉冲,用逆变电路实现极为方便[8] [17]。
4-1-1 PWM的类型PWM的实现一般有两种方法:一种是计算法;另一种是比较法。
所谓计算法就是采用积分的办T)内的调制波的面积计算出来,再除以输出的PWM波的幅值,从而得到PWM 法将一个开关周期(c的占空比;而比较法,则是利用等腰三角形的腰与高成正比的原理,利用三角波或锯齿波作为载波与调制波相比较,在两个波之间的交点处控制逆变桥电力电子器件的状态转换。
比较法以其快速、不占用系统软件资源等优势在模拟时代占据了PWM实现方法的主流;近年来,由于数字技术的迅速发展和计算机功能的提高,计算法以其方便、灵活的特点成为PWM实现方法的主流。
PWM技术在电力电子领域的应用极其广泛,在不同的应用场合,应用不同的电路结构,采用不同的电力电子器件,对PWM的要求不同,相应PWM算法及侧重点也有所不同。
按调制波形的不同PWM可分为正弦波PWM,非正弦波PWM;按波形的生成方式可分为波形调制类PWM,谐波消去PWM,效率最优PWM,最小转矩脉动PWM等;按照载波极性又可分为单极性PWM,双极性PWM;按载波比N变化与否可分为同步调制,异步调制,分段同步调制三种调制方式;按照载波类型可分为对称型PWM和非对称型PWM;按每个载波周期内调制波的取法又可分为规则采样PWM和自然采样PWM[6]。