重庆理工物理质点力学
- 格式:doc
- 大小:418.50 KB
- 文档页数:9
大学物理(一) 力学主讲:刘维一参考书:《大学物理》(新版) 上册,吴百诗主编科学出版社《大学物理(新版)学习指导》,张孝林主编,科学出版社基础知识:矢量:有大小,有方向,加法符合平行四边形法则微积分:导数:求变化率的数学运算积分:求和的数学运算第一章质点运动学第一节质点的概念有质量,没有体积质点是理想模型。
忽略了物体的形状、大小所产生的效果,突出了质量、位置和力三者之间的主要矛盾质点→质点组→刚体→弹性→振动→波,,i j k第二节 位移矢量与运动学方程质点位置的确定方法:1、选定参照点2、从参照点到质点作一矢量r用矢量 r即可确定质点的位置质点的运动学方程当质点在空间移动时,质点的位置矢量随时间发生变化:这就是质点的运动学方程直角坐标系下的运动学方程选择直角坐标系oxyz分量形式:分别表示x ,y ,z 三个方向,其大小为1。
直角坐标系的特点:三个基矢量的方向不变。
由质点的运动学方程可以得到质点的全部运动信息:轨迹、速度、加速度()r r t =()()()()r r t x t i y t j z t k==++()()()x x t y y t z z t ===例:质点的运动学方程为: x=Rcos(t) y=Rsin(t)消去时间 t 即得到轨迹方程:X 2+y 2=R 2第三节 由位移求速度和加速度(重点)位置矢量与位移矢量的方向速度是位移随时间的变化率速度就是运动学方程对时间求导数运算 在直角坐标系下:分量形式为:速度的大小:()()r r t t r t ∆=+∆- 0lim t r dr v tdt ∆→∆==∆x y z dr dx dy dz v i j k v i v j v kdt dt dt dt==++=++()()()x y z dx t v dt dy t v dt dz t v dt===v =例题1、质点的运动学方程为:求:t =0,1秒时的速度。
解:22(10155)101551510d v i tj t k dtd dd i tj t k dt dt dtj tk =++=++=+加速度是速度随时间的变化率加速度就是速度对时间求导数运算也是运动学方程对时间求二阶导数在直角坐标系下速度表示为:222222y x z dv dv dv a i j kdt dt dt d x d y d z i j k dt dt dt =++=++写成分量形式为:210155r i tj t k=++ 22()dv d dr d r a dt dt dt dt ===a =222222x x y y z z dv d x a dt dt dv d y a dt dt dv d z a dt dt ======加速度的大小:书中的例题1.1, 1.4(P.6;P.15) 一质点作匀速圆周运动,半径为r ,角速度为ω,求:直角坐标系中的运动学方程。
大学力学质点系的功能原理大学力学中,质点系是指由多个质点组成的系统。
质点系的功能原理可以通过牛顿第二定律和牛顿的引力定律来阐述。
首先,根据牛顿第二定律,当作用在质点上的合外力不为零时,质点会产生加速度。
这表明质点的运动状态与其所受的外力密切相关。
在质点系中,每个质点都受到诸多作用力,这些作用力可能来自于其他质点的引力、弹簧的弹性力、接触力等。
因此,质点系中每个质点的加速度都与其所受的合外力有关。
其次,对于质点系中的每个质点,根据牛顿的引力定律,其与其他质点之间存在着引力。
牛顿的引力定律表明,两个质点之间的引力与它们的质量和距离有关。
具体而言,两个质点之间的引力与质点质量的乘积成正比,与质点之间的距离的平方成反比。
质点系中的每个质点都会受到其他质点的引力作用,这些引力作用将影响质点系的整体运动状态。
根据以上原理,我们可以得出质点系的功能原理:1. 动力学原理:质点系的运动状态受到作用在每个质点上的合外力的影响。
根据牛顿第二定律,合外力与质点的加速度成正比,质点系中的每个质点都会受到作用力的影响而产生加速度。
因此,通过分析质点系中每个质点所受的外力,可以预测整个质点系的运动状态。
2. 引力相互作用原理:质点系中的每个质点都会受到其他质点的引力作用。
根据牛顿的引力定律,引力与质量的乘积和距离的平方成正比和反比。
因此,质点系中的每个质点都会受到其他质点的引力作用,并产生相应的加速度。
这些引力作用将影响质点系的整体运动状态。
3. 系统的平衡和稳定性分析:质点系中的平衡状态和稳定状态是分析质点系功能的重要内容。
平衡状态是指当质点系内的每个质点都不受合外力的作用时,质点系保持静止或作匀速直线运动的状态。
稳定状态是指当质点系受到微小扰动后能够回到原来的平衡状态。
通过对质点系的平衡和稳定性进行分析,可以了解质点系的功能特性和响应能力。
总的来说,质点系的功能原理可以通过动力学原理和引力相互作用原理进行解释。
质点系中的每个质点受到外力和引力的影响,其运动状态与所受的作用力密切相关。
大学物理质点力学各知识点的能力成分及其支撑强度分析【摘要】本文旨在分析大学物理质点力学各知识点的能力成分及其支撑强度。
引言部分包括背景介绍、研究意义和研究目的;正文部分分别讨论了质点力学基础知识、质点动力学能力成分、质点静力学能力成分、质点运动学能力成分和支撑强度分析;结论部分总结了能力成分与支撑强度的关系,并展望了未来的研究方向。
通过对这些知识点的深入分析,我们可以更好地理解质点力学的本质,为相关领域的研究提供重要参考和指导。
本文的研究将有助于完善质点力学理论体系,推动该领域的发展和进步。
【关键词】大学物理、质点力学、能力成分、支撑强度、动力学、静力学、运动学、能力成分与支撑强度关系、研究展望1. 引言1.1 背景介绍在自然界中,力学是研究物体运动和静止的科学。
作为物理学的重要分支之一,质点力学是力学的基础,它研究单个物体(质点)的运动规律和受力情况。
质点力学是理解和掌握物体运动规律的基础,对于进一步研究物体的力学性质具有重要意义。
随着科学技术的发展和应用领域的拓展,对质点力学的研究和应用需求也日益增加。
在航天航空领域,了解和掌握质点力学知识可以帮助科研人员设计和改进飞行器的结构和性能,提高飞行器的飞行效率和安全性。
在工程领域,质点力学的应用也非常广泛,如建筑结构的设计和施工、交通工具的运行和维护等。
深入研究质点力学的各知识点的能力成分及其支撑强度分析,可以进一步完善质点力学理论体系,推动质点力学在实践中的应用,为推动科学技术的发展提供重要支撑。
本文将从质点力学的基础知识出发,分析质点动力学、静力学和运动学的能力成分,探讨其与支撑强度的关系,为质点力学的研究和应用提供新的思路和方法。
1.2 研究意义研究质点力学的各知识点的能力成分及其支撑强度分析具有重要的意义。
质点力学是物理学的基础,在研究物体的运动规律和相互作用时起着关键作用。
通过深入探讨质点力学的各知识点,能够更好地理解物体运动的规律,并为解决现实生活中的问题提供理论支持。
重庆高一物理所有知识点汇总重庆高一物理是高中物理教育中的重要一环,它涉及到许多基本概念、定理和实验,对于学生打好物理基础、提高学科素养至关重要。
下面将对重庆高一物理的各个知识点进行全面汇总。
一、力学部分1. 运动与力- 牛顿第一定律- 牛顿第二定律- 牛顿第三定律- 质点的平衡条件2. 力的合成与分解- 合力与合力的分解- 两个力的合成与分解3. 动量与冲量- 动量的定义和性质- 冲量的定义和性质- 动量守恒定律4. 万有引力- 万有引力定律- 地球上物体的重力- 行星运动的规律5. 弹力- 弹性力的定义和性质- 弹性力的应用二、热学部分1. 温度与热量- 温度的定义和测量- 热量的传递方式- 热平衡与热传导2. 热力学定律- 热力学第一定律- 热力学第二定律- 热机的效率3. 理想气体- 理想气体状态方程- 理想气体的温度、压力和体积关系- 理想气体的定容定压定温定律三、光学部分1. 光的传播- 光的直线传播- 光的反射和折射定律- 光的速度与介质折射率2. 光的干涉与衍射- 光的干涉现象- 光的衍射现象- 杨氏双缝干涉和衍射3. 透镜与像的成像- 薄透镜成像规律- 凸透镜与凹透镜成像特点- 透镜的焦距与物像距关系四、电学部分1. 电荷与静电场- 电荷守恒定律- 静电场的定义和性质- 高斯定律2. 电场与电势- 电场强度的计算和性质- 电势的定义和性质- 电势差与电势能3. 电流与电阻- 电流的概念和测量- 电阻与电阻率- 欧姆定律4. 电路与电源- 串联和并联电路- 等效电阻- 理想电源与非理想电源五、电磁学部分1. 磁场与磁力- 磁场的概念和表示- 磁场中带电粒子的受力- 洛伦兹力和安培力定律2. 电磁感应- 法拉第电磁感应定律- 楞次定律- 电磁感应现象和应用3. 电磁波- 电磁波的特性和传播规律- 光的电磁波本质- 电磁波谱以上是重庆高一物理的所有知识点的总结,希望能对同学们的学习和复习有所帮助。
质点动力学知识点总结1. 引言质点动力学是物理学中研究质点运动规律的分支,它是经典力学的基础。
本文档旨在总结质点动力学的核心知识点,包括牛顿运动定律、动量、动能、势能、功以及守恒定律等。
2. 牛顿运动定律2.1 牛顿第一定律(惯性定律)一个质点若未受外力,将保持静止状态或匀速直线运动。
2.2 牛顿第二定律(动力定律)质点的加速度与作用在其上的合外力成正比,与质点的质量成反比,加速度的方向与合外力的方向相同。
2.3 牛顿第三定律(作用与反作用定律)两个相互作用的质点之间的作用力和反作用力大小相等、方向相反。
3. 动量3.1 定义动量是质点的质量与其速度的乘积,是矢量量,表示为\( \vec{p} = m\vec{v} \)。
3.2 动量守恒定律在一个封闭系统中,若没有外力作用,系统内所有质点的动量之和保持不变。
4. 动能4.1 定义动能是质点由于运动而具有的能量,计算公式为\( K =\frac{1}{2}mv^2 \)。
4.2 动能定理合外力对质点所做的功等于质点动能的变化量。
5. 势能5.1 定义势能是质点由于位置或状态而具有的能量,与参考点的选择有关。
5.2 重力势能在重力场中,质点的重力势能计算公式为\( U = mgh \),其中\( h \)是质点相对于参考点的高度。
6. 功6.1 定义功是力在物体上作用时,由于物体的位移而对物体所做的工作,计算公式为\( W = \vec{F} \cdot \vec{d} \),其中\( \vec{F} \)是力,\( \vec{d} \)是在力的方向上的位移。
6.2 功的守恒在一个封闭系统中,若没有非保守力做功,系统内所有质点的机械能(动能与势能之和)保持不变。
7. 守恒定律7.1 机械能守恒定律在没有非保守力作用的封闭系统中,机械能守恒。
7.2 角动量守恒定律在一个封闭系统中,若没有外力矩作用,系统内所有质点的角动量之和保持不变。
8. 结论质点动力学是理解和描述宏观物体运动的基础。
质点系的力学系统分析力学是物理学的一个重要分支,研究物体运动的原因和规律。
而质点系则是力学中的一个基本概念,指的是由多个质点组成的系统。
在质点系的力学系统分析中,我们将探讨质点系的运动规律、相互作用以及它们对系统整体运动的影响。
首先,让我们来了解一下质点系的基本概念。
质点是物理学中一个理想化的概念,将物体看作一个质点,忽略其形状和大小,只考虑其质量和位置。
质点系则是由多个质点组成的系统,每个质点都有自己的质量和位置。
质点系可以是任意数量的,可以是同种质点组成的,也可以是不同种质点组成的。
在质点系的力学系统分析中,我们需要考虑质点之间的相互作用。
相互作用可以是引力、电磁力、弹力等等。
这些相互作用力会影响质点的运动状态,使质点系整体呈现出各种不同的运动形式。
例如,当质点系中的质点之间存在引力相互作用时,质点系可能会形成行星系统,质点围绕着质心运动;而当质点系中的质点之间存在弹力相互作用时,质点系可能会出现弹性振动。
质点系的运动规律是力学系统分析的核心内容之一。
根据牛顿第二定律,质点的运动状态取决于施加在其上的合力。
对于质点系来说,我们需要考虑所有质点之间的相互作用力,将它们进行合力分析。
通过合力分析,我们可以得到质点系的总合力,从而确定质点系的整体运动规律。
例如,当质点系中的质点之间的相互作用力平衡时,质点系将保持静止或匀速直线运动;而当质点系中的质点之间的相互作用力不平衡时,质点系将出现加速度,产生各种复杂的运动形式。
除了运动规律,质点系的力学系统分析还需要考虑质点之间的相对位置和相对运动。
质点系中的质点之间可能存在着不同的相对位置关系,如静止、相对运动、相对静止等。
这些相对位置关系会影响质点系的整体运动形式。
例如,当质点系中的质点之间相对静止时,质点系可能呈现出稳定的结构;而当质点系中的质点之间相对运动时,质点系可能会出现碰撞、散射等现象。
在质点系的力学系统分析中,我们还需要考虑能量守恒定律。
能量守恒定律是自然界中的一个重要定律,指的是在一个封闭系统中,能量总量保持不变。
质点动力学知识点总结基本概念:质点:具有质量但没有体积和形状的物体模型。
力:质点动力学研究的核心内容,包括恒力、变力和约束力。
运动方程:描述质点在外力作用下的运动规律的基本方程。
动量:描述质点运动状态的重要物理量,等于质点的质量乘以速度。
动能:描述质点运动状态的另一个重要物理量,等于质点的质量乘以速度的平方再乘以1/2。
势能:描述质点在外力场中的势能状态的物理量,势能的大小与质点所处位置有关。
角动量和角动量定理:与质点的旋转运动相关的物理量和定理。
基本理论:牛顿运动定律:描述了质点在作用力作用下运动的规律,即F=ma,其中F表示合外力,m表示质点的质量,a表示质点的加速度。
动量定理:通过动量的概念揭示了力与运动之间的内在联系,即合外力的冲量等于物体动量的变化量,表达式为Ft=mV-mv。
动能定理:引入动能的概念,建立了力学与能量之间的关系,即合外力做的功等于物体的动能的改变量,表达式为W=1/2mV^2-1/2mv^2。
分析方法:矢量方法:利用矢量运算符对问题进行矢量分析。
微分方程方法:将运动方程化为微分方程,然后求解微分方程获得运动规律。
能量方法:利用能量守恒定律等能量原理分析运动问题。
实际应用:军事方面:应用在导弹、卫星、航天器和飞机等领域,研究其受力情况和运动规律,从而提高军事制式的效率和效果。
经济方面:应用在金融市场和交通运输领域,分析市场变化和流动性,以及货运运输的效益和优化策略。
社会方面:研究城市交通拥堵问题、人口迁移以及城市规律,以提高城市的运作效率和质量。
总的来说,质点动力学涉及到质点的运动规律、动量、动能、势能等基本物理量的研究,以及相关的理论和实际应用。
通过学习和掌握质点动力学的知识,可以更好地理解物体在外力作用下的运动规律,以及如何利用这些规律解决实际问题。
质点动力学知识点总结质点动力学是物理学中非常重要的一个分支,它研究的是质点在力的作用下的运动规律。
在质点动力学中,我们通常假设质点的大小可以忽略不计,只考虑它的位置和速度,这样我们就可以用简单的数学模型描述质点的运动。
在本文中,我们将系统地总结质点动力学的一些基本知识点,包括质点的运动方程、牛顿运动定律、动量和能量等。
希望本文可以帮助读者更好地理解质点动力学的基本概念和原理。
一、质点的运动方程质点的运动可以用位置矢量 r(t) 来描述,它随时间 t 的变化可以用速度矢量 v(t) 来表示。
根据牛顿第二定律 F=ma,质点的运动方程可以写成:m*a = F,其中 m 是质点的质量,a 是质点的加速度,F 是作用在质点上的力。
根据牛顿运动定律,我们可以利用力学原理得到质点在外力作用下的运动规律。
二、牛顿运动定律牛顿运动定律是质点动力学的基础,它包括三条定律:1. 第一定律:物体静止或匀速直线运动时,外力平衡。
这是牛顿运动定律中最基本的一条定律,也是质点动力学的基础。
2. 第二定律:力的大小与加速度成正比,方向与加速度的方向相同。
这条定律描述了质点在外力作用下的加速度与力的关系,是质点动力学的重要定律之一。
3. 第三定律:作用力与反作用力大小相等,方向相反,且作用在不同物体上。
这条定律描述了两个物体之间的相互作用,也是质点动力学中不可或缺的定律之一。
三、动量动量是质点运动的另一个重要物理量,它定义为质点的质量 m 乘以它的速度 v,即 p=m*v。
根据牛顿第二定律 F=dp/dt,我们可以推导出动量的变化率与外力的关系,从而得到动量守恒定律。
动量守恒定律是质点动力学中非常重要的一个定律,它描述了在没有外力作用下,质点的动量将保持不变。
根据动量守恒定律,我们可以在实际问题中很方便地利用动量守恒来解决问题。
四、能量能量是质点动力学中另一个重要的物理量,它定义为质点的动能和势能的总和。
动能是质点由于速度而具有的能量,它和质点的质量和速度有关;势能是质点由于位置而具有的能量,它和质点的位置和作用力有关。
大学物理质点力学各知识点的能力成分及其支撑强度分析
大学物理的质点力学是物理学的重要基硶,在学习物理的过程中,质点力学是一个非
常关键的部分。
质点力学涉及到质点的运动规律、运动学和动力学等内容,是物理学中最
基础、最重要的部分之一。
在学习质点力学的过程中,需要掌握各种知识点和技能,才能
够熟练地运用质点力学知识来解决实际问题。
本文将对大学物理质点力学各知识点的能力
成分及其支撑强度进行分析,帮助学生深入了解质点力学的学习内容和要求。
我们需要了解质点力学的各个知识点,然后分析每个知识点所涉及的能力成分和支撑
强度。
质点力学的知识点主要包括运动学和动力学两部分,其中运动学是研究质点的位置、速度、加速度等运动状态的学科,动力学是研究质点运动的原因和规律的学科。
在运动学
和动力学中,都涉及了各种能力成分,包括数学能力、物理思维能力、实验能力、分析判
断能力等。
我们来分析每个知识点所涉及的能力成分及其支撑强度。
在运动学中,学生需要掌握
数学能力,能够熟练地运用微积分和矢量分析等数学工具来描述和分析质点的运动状态,
这是运动学中数学能力的一个重要成分。
物理思维能力也是运动学中的重要能力成分,学
生需要能够灵活运用物理概念和原理,进行物理问题的分析和解决。
实验能力也是运动学
中的重要能力成分,学生需要具备观察、实验、测量等实验技能,能够进行运动学实验和
数据处理。
分析判断能力是运动学中的另一个重要能力成分,学生需要能够分析问题、进
行推理和判断,根据实际情况和已有知识进行问题的分析和解决。
在动力学中,各种能力
成分的支撑强度也是至关重要的。
课时安排:2课时教学目标:1. 理解质点动力学的基本概念,包括质点、力、加速度等;2. 掌握牛顿运动定律的应用,包括牛顿第一定律、第二定律和第三定律;3. 学会分析质点的受力情况,并能运用牛顿运动定律进行求解;4. 理解动量、冲量、角动量等概念,并能运用相关定律进行计算;5. 掌握功、功率、动能、势能等能量概念,并能运用能量守恒定律进行求解。
教学重点:1. 牛顿运动定律的应用;2. 动量定理和动量守恒定律;3. 角动量定理和角动量守恒定律;4. 功和能量守恒定律。
教学难点:1. 复杂受力情况下的牛顿运动定律应用;2. 动量定理和动量守恒定律的灵活运用;3. 角动量定理和角动量守恒定律的运用;4. 能量守恒定律在复杂情况下的应用。
教学准备:1. 多媒体课件;2. 质点动力学实验器材;3. 相关教材和参考书籍。
教学过程:第一课时一、导入1. 回顾质点运动学的基本概念,如位置、位移、速度、加速度等;2. 引入质点动力学,强调质点动力学在物理学中的重要性。
二、讲授新课1. 质点动力学的基本概念:- 质点:质量集中在一个点上的物体;- 力:使物体发生运动状态改变的原因;- 加速度:物体速度变化率。
2. 牛顿运动定律:- 牛顿第一定律:物体在没有外力作用下,将保持静止状态或匀速直线运动状态;- 牛顿第二定律:物体所受外力与加速度成正比,与质量成反比;- 牛顿第三定律:作用力与反作用力大小相等、方向相反。
3. 动量定理和动量守恒定律:- 动量定理:物体所受冲量等于物体动量的变化;- 动量守恒定律:在没有外力作用下,系统的总动量保持不变。
三、课堂练习1. 分析质点受力情况,运用牛顿运动定律求解;2. 计算动量变化和冲量。
第二课时一、复习1. 复习上一节课所学内容,强调重点和难点;2. 对课堂练习进行讲解和答疑。
二、讲授新课1. 角动量定理和角动量守恒定律:- 角动量定理:物体所受合外力矩等于物体角动量的变化率;- 角动量守恒定律:在没有外力矩作用下,系统的总角动量保持不变。
力学中的质点运动规律研究力学是研究物体受力作用下的运动及其变化规律的学科。
而质点则是力学研究的基本对象,它被假设为没有形状和大小的点。
在力学中,我们需要研究质点的运动规律,从而揭示自然界中普适的物理定律。
1. 启示于牛顿的三大定律牛顿的三大定律是力学研究的基石,对质点运动的规律研究具有重要意义。
第一定律指出,在没有外力作用下,物体将保持静止或匀速直线运动。
这启示我们,当我们观察一个物体运动的时候,需要排除外力的干扰。
第二定律描述了质点运动的加速度与受力之间的关系。
当施加力增加时,质点的加速度也会增加。
此外,第三定律指出,对于任何作用力,总会有一个与之大小相等、方向相反的反作用力。
这些定律给了我们深入研究质点运动的基本思路和方法。
2. 质点的直线运动在力学中,质点的直线运动是最基本的运动形式之一。
质点的直线运动可以分为匀速直线运动和变速直线运动两种情况。
匀速直线运动时,质点的速度保持不变。
而在变速直线运动中,质点的加速度不为零,速度随时间变化。
如何描述并分析这两种情况下质点的运动规律,是质点运动规律研究的关键。
3. 质点的曲线运动除了直线运动,质点还可能进行曲线运动。
曲线运动可以分为平面曲线运动和空间曲线运动。
在平面曲线运动中,质点沿着平面曲线进行运动,如圆周运动和椭圆运动等。
在空间曲线运动中,质点的运动轨迹存在于三维空间中,如螺旋线运动和抛物线运动。
不同曲线运动具有各自的规律和特点,需要通过数学工具和物理定律进行分析和研究。
4. 质点运动规律与实际应用质点运动规律的研究不仅仅是为了满足学术需求,更重要的是为实际生活和科学技术的发展提供支持。
通过对质点运动规律的研究,我们可以预测天体运动、分析机械结构、优化交通运输等实际问题。
力学中的质点运动规律为现实问题的解决提供了有力的数学和物理工具。
总之,力学中质点运动规律的研究是力学学科的核心内容之一。
通过对质点运动的分析和研究,我们可以揭示出自然界中普适的物理定律,并应用于实际生活和科学技术的发展中。
第2章 质点动力学一、基本要求1.理解冲量、动量,功和能等基本概念;2.会用微积分方法计算变力做功,理解保守力作功的特点;3.掌握运用动量守恒定律和机械能守恒定律分析简单系统在平面内运动的力学问题的思想和方法。
二、基本内容(一)本章重点和难点:重点:动量守恒定律和能量守恒定律的条件审核、综合性力学问题的分析求解。
难点:微积分方法求解变力做功。
(二)知识网络结构图:⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧⎩⎨⎧⎪⎪⎩⎪⎪⎨⎧公式只有保守内力做功条件能量守恒定律公式合外力为条件动量守恒定律守恒定律动能定理动量定理基本定理能功冲量动量基本物理量)()0((三)容易混淆的概念: 1.动量和冲量动量是质点的质量与速度的乘积;冲量是合外力随时间的累积效应,合外力的冲量等于动量增量。
2.保守力和非保守力保守力是做功只与始末位置有关而与具体路径无关的力,沿闭合路径运动一周保守力做功为0;非保守力是做功与具体路径有关的力。
(四)主要内容: 1.动量、冲量动量:p mv =u r r冲量:⎰⋅=21t t dt F I ϖϖ2.动量定理:质点动量定理:⎰∆=-=⋅=2112t t v m P P dt F I ϖϖϖϖϖ 质点系动量定理:dtPd F ϖϖ=3.动量守恒定律:当系统所受合外力为零时,即0=ex F ϖ时,或in ex F F u r u r ? 系统的总动量保持不变,即:∑===n i i i C v m P 1ϖϖ4.变力做功:dr F r d F W BAB A⎰⎰=⋅=θcos ϖϖ(θ为)之间夹角与r d F ϖϖ直角坐标系中:)d d d ( z F y F x F W z y BAx ++=⎰5.动能定理:(1)质点动能定理:k1k221222121E E mv mv W -=-=(质点所受合外力做功等于质点动能增量。
)(2)质点系动能定理:∑∑==-=+ni ni E E W W1kio1ki inex(质点系所受外力做功和内力做功之和等于质点系动能增量。
质点系的动量守恒定律一、前言质点系的动量守恒定律是力学中一个非常重要的定律,它描述了质点系在不受外力作用下动量守恒的情况。
本文将从以下几个方面来详细介绍这个定律:定义、公式、证明、应用以及注意事项。
二、定义质点系是指由多个质点组成的系统。
在不受外力作用下,质点系内部的相互作用力使得系统内部各个质点之间的动量发生改变,但是系统整体的动量却保持不变。
这就是质点系的动量守恒定律。
三、公式根据牛顿第二定律,一个物体所受合外力等于物体的质量乘以加速度。
因此,对于一个由N个质点组成的系统,其总动量可以表示为:P = m1v1 + m2v2 + ... + mNvN其中,mi和vi分别表示第i个质点的质量和速度。
如果该系统不受外力作用,则其总动量保持不变:ΣPi = Σmi vi = 常数这就是质点系的动量守恒定律。
四、证明证明该定律可以采用牛顿第三定律和牛顿第二定律。
具体证明过程如下:1. 假设一个由N个质点组成的系统不受外力作用,其总动量为P0。
2. 假设第i个质点受到第j个质点的作用力Fij,根据牛顿第三定律,Fij = -Fji。
3. 根据牛顿第二定律,Fij = mi ai,其中ai是第i个质点的加速度。
4. 对于整个系统来说,Σmi ai = 0。
因此,Σmi vi = P0是一个常数。
5. 如果该系统在某一时刻发生碰撞或者其他内部相互作用力的变化,则会导致其中某些质点的速度发生改变。
但是由于其他质点对这些质点的作用力仍然满足牛顿第三定律,因此整个系统的总动量仍然保持不变。
6. 因此,在不受外力作用下,质点系的总动量守恒。
五、应用1. 碰撞问题在碰撞问题中,可以利用质点系的动量守恒定律求解碰撞前后物体的速度和方向等信息。
例如,在弹性碰撞中,两个物体碰撞前后总动量保持不变,因此可以通过总动量守恒定律求解碰撞后物体的速度和方向。
2. 火箭推进问题在火箭推进问题中,可以利用质点系的动量守恒定律分析火箭的推进效率。
第2章 质点和质点系动力学(复习指南)一、基本要求掌握牛顿三定律及其适用条件,牛顿第二定律的微分形式和惯性系的概念;掌握万有引力(含重力)、弹性力、摩擦力的相关公式,能用微积分方法求解一维变力作用下的质点动力学问题.掌握功的概念和直线运动情况下变力做功的计算方法;掌握势能的概念,会计算重力、弹性力势能;理解保守力做功的特点.二、基本内容1.力、常见力力是物体间的相互作用.力是物体改变运动状态的原因. 常见力有万有引力、重力、弹性力、摩擦力. (1)万有引力、重力万有引力指存在于任何两个物质(质点)之间的吸引力.其数学表达式为r e rm m G F221 2211kg m N 1067.6 G引力的特点为:方向已知,大小与质点间的距离的平方成反比.重力为地球表面附近物体受地球的引力(忽略地球自转的影响).重力的特点为:大小已知,方向竖直向下指向地心.g m P 222EE kg m N 80.9 R Gmg(2)弹性力发生形变的物体,由于要恢复形变而对与它接触的物体产生的力叫弹力.弹力的表现形式有很多种,常见的有正压力、绳中张力、绳对物体的拉力、弹簧的弹力等.弹性力的特点为:方向已知,大小与运动状态有关.弹簧弹力:kx F ,x 为弹簧伸长量,弹力方向指向弹簧原长位置. (3)摩擦力两物体沿相互接触面方向有相对滑动或相对运动趋势时作用于接触面上阻碍物体相对运动的力为摩擦力,摩擦力分滑动摩擦力和静摩擦力.滑动摩擦力在相对滑动的速度不是太大或太小时,其大小与滑动速度无关,而和正压力N成正比,N f,f 的方向与相对滑动方向相反.静摩擦力为变力,其值介于0和最大静摩擦力之间,即max 000f f最大静摩擦力指两个有接触面的物体,沿接触面方向即将产生相对滑动时,通过接触面作用于两物体的摩擦力.在此以前两物体间的相互作用静摩擦力大小可以变化.对物体受力分析的顺序为:重力、弹力、摩擦力.在常见力分析中要特别注意静摩擦力. 2.惯性参考系(惯性系)惯性参考系就是用牛顿第一定律定义的参考系.牛顿定律只有在惯性参考系中才成立.惯性参考系有一个重要性质:相对于惯性参考系作匀速直线运动的任何其它参考系也一定是惯性参考系. 3.基本规律 ﹙1﹚牛顿第一定律第一定律明确了力是改变物体运动状态的原因,并反映出物体有保持原来运动状态不变的特性——惯性,第一定律定义了惯性系.﹙2﹚牛顿第二定律第二定律定量描述了外力作用与所产生的效果的关系,即力的作用与物体状态变化的定量关系.对第二定律应用需注意:①适用于惯性系.②适用于质点.③合外力与物体产生的加速度之间为一瞬时关系,合外力沿加速度方向.④第二定律为一矢量式,应用时常在坐标系中分解.在直角坐标系中有:z iz y iy x x ma F ma F ma F i ,,﹙3﹚牛顿第三定律牛顿第三定律指出力是物体间的相互作用.物体间有相互作用便存在相互作用力.应用第三定律需注意:①作用力,反作用力分别作用在相互作用的物体上,不是平衡力.②作用力、反作用力一定属于同种性质的力,同时产生,同时消失.③不论相互作用的两物体是运动还是静止,第三定律总成立. 4.功功是力的空间累积量:r F Wd d .功等于力和力的作用点位移的点积.功是标量,是一个代数量.当力的作用点没有位移或力与其作用点的位移相互垂直时,此力不做功.保守力做功只取决于相互作用质点的始末相对位置,而与各质点的运动路径无关.非保守力做功与路径有关. 5.势能物体间存在保守力相互作用才能引入相关势能.如地球对地面附近物体间存在重力作用,重力为保守力,引入重力势能.因为势能与物体间相对位置相关,所以,一方面势能属于存在保守力相互作用的系统,另一方面物体的位置描述是相对的,所以势能具有相对性.只有选定势能零点后,系统才有确定的势能值.例如一质量为m 的质点处于地面上h 高度,在没明确势能零点前不能确定m 和地球系统的势能大小,而且重力势能可正、可负、可以为零.但任意两个状态之间系统的势能差是确定的,与势能零点选取无关.势能是状态函数.在讨论涉及势能的功能问题时,必须:①选系统.②选势能零点[弹力势能(原长位置)、万有引力(无穷远)势能零点是确定的].③确定并描述初末状态的能量状态.弹簧弹性势能2k 21kx E ,k 为弹簧倔强系数,x 为相对原长位置(势能零点)的位移.三、例题详解2-1、质量为m 的子弹以速度0v 竖直射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为K ,忽略子弹的重力,求:子弹射入沙土后,速度随时间变化的函数式.解:取竖直向下为y 轴正向.子弹进入沙土后受力为v K ,由牛顿定律t mK d d v v ∴vvd d t m K , v v v v 0d d 0t t m K ∴m Kt /0e v v2-2、物体沿x 轴作直线运动,所受合外力2610x F (SI ).试求该物体运动到m 4 x 处时外力做作的功解:J 168210d )610(d 3424x x x x x F W2-3、一人从10m 深的井中提水.起始时桶中装有10kg 的水,桶的质量为1kg ,由于水桶漏水,每升高1m 要漏去的水.求水桶匀速地从井中提到井口,人所做的功.解:选竖直向上为坐标y 轴的正方向,井中水面处为原点. 由题意知,人匀速提水,所以人所用的拉力F 等于水桶的重量 即:y gy mg ky P P F 96.18.1072.00 (SI )人的拉力所做的功为:J 980d )96.18.107(d d 10y y y F W W H2-4、一个弹簧下端挂质量为0.1kg 的砝码时长度为0.07m ,挂0.2kg 的砝码时长度为.现在把此弹簧平放在光滑桌面上,并要沿水平方向从长度m 10.01 l 缓慢拉长到m 14.02 l ,外力需做功多少解:设弹簧的原长为0l ,弹簧的劲度系数为k ,根据胡克定律: )(0.071.00l k g ,)(0.092.00l k g 解得:m 05.00 l ,N/m 49 k拉力所做的功等于弹性势能的增量:J 14.0)(21)(21201202p1p2l l k l l k E E W 四、习题精选2-1、一质点在力)25(5t m F (SI )的作用下,0 t 时从静止开始作直线运动,式中m 为质点的质量,t 为时间,则当s 5 t 时,质点的速率为(提示:变加速度运动,牛II 定律分离变量积分tmF d d v ) (A )50m·s -1. (B )25m·s -1. (C )0. (D )-50m·s -1.[ ]2-2、已知水星的半径是地球半径的倍,质量为地球的倍.设在地球上的重力加速度为g ,则水星表面上的重力加速度为:(提示:2EER GM g) [ ] (A )g 1.0 (B )g 25.0 (C )g 5.2 (D )g 42-3、质量分别为1m 和2m 的两滑块A 和B 通过一轻弹簧水平连接后置于水平桌面上,滑块与桌面间的摩擦系数均为 ,系统在水平拉力F 作用下匀速运动,如图所示.如突然撤消拉力,则刚撤消后瞬间,二者的加速度A a 和B a 分别为(提示:注意加速度的瞬时性)[ ](A )0B A a a (B )0A a ,0B a (C )0A a ,0B a (D )0A a ,0B a2-4、如图所示,质量为m 的物体用细绳水平拉住,静止在倾角为 的固定的光滑斜面上,则斜面给物体的支持力为(提示:画受力分析图)[ ](A ) cos mg . (B ) sin mg . (C )cos mg . (D )sin mg. 2-5、一物体挂在一弹簧下面,平衡位置在O 点,现用手向下拉物体,第一次把物体由O 点拉到M 点,第二次由O 点拉到N 点,再由N 点送回M 点.则在这两个过程中(A )弹性力做的功相等,重力做的功不相等. (B )弹性力做的功相等,重力做的功也相等. (C )弹性力做的功不相等,重力做的功相等. (D )弹性力做的功不相等,重力做的功也不相等.(提示:弹力和重力都是保守力,做功只与始末位置有关,与路径无关)[ ]2-6、沿水平方向的外力F 将物体A 压在竖直墙上,由于物体与墙之间有摩擦力,此时物体保持静止,并设其所受静摩擦力为0f ,若外力增至F 2,则此时物体所受静摩擦力为_________.(提示:静摩擦力是变力,大小从受力平衡角度分析)2-7、如果一个箱子与货车底板之间的静摩擦系数为0 ,当这货车爬一与水平方向成 角的平缓山坡时,要不使箱子在车底板上滑动,车的最大加速度max a =______________________.(提示:以箱子为对象受力分析,最大加速度时摩擦力方向应沿斜面向上) 2-8、如图,在光滑水平桌面上,有两个物体A 和B 紧靠在一起.它们的质量分别为kg 2 A m ,kg 1 B m .今用一水平力N 3 F 推物体B ,则B 推A 的力等于_____.如用同样大小的水平力从右边推A ,则A 推B 的力等于__________.(提示:先整体,后部分,分析受力和加速度)2-9、质量kg 1 m 的物体,在坐标原点处从静止出发在水平面内沿x 轴运动,其所受合力方向与运动方向相同,合力大小为x F 23 (SI ),那么,物体在开始运动的3m 内,合力所做的功W =_______.(提示:变力做功,用元功定义,再积分)2-10、设作用在质量为1kg 的物体上的力36 t F (SI ).如果物体在这一力的作用下,由静止开始沿直线运动,求:在0到的时间间隔内,这个力对物体做功的大小__________.(提示:力是时间函数,参考教学例题,t F x F W d d d v ,v d d m t F )。
质点力学知识点总结一、质点的运动1、质点的定义质点是一个没有大小、形状和结构,可以看成是质量集中在一点的物体, 即物体的体积可忽略不计,所以质点的运动只需关注其所处的位置即可。
2、质点的位移质点的位移是指质点从一个位置移动到另一个位置的变化,位移可以用矢量来表示,矢量的大小为质点从一个位置到另一个位置的距离,方向为质点的运动方向,位移的大小和方向描述了质点的运动状态。
3、质点的速度质点的速度是指质点在单位时间内所经历的位移,速度可以用标量或矢量来描述,标量速度为质点在单位时间内所经历的距离假, 矢量速度为质点在单位时间内所经历的位移矢量,速度的大小为速率,速度的方向为质点运动的方向。
4、质点的加速度质点的加速度是指单位时间内速度的变化率,即速度随时间的变化率。
加速度可以用标量或矢量来描述,标量加速度为速度变化的大小,矢量加速度为速度变化的矢量,加速度描述了质点的速度变化状态。
5、牛顿第二定律牛顿第二定律规定了质点的运动规律,即力是质量与加速度的乘积,力的方向与加速度的方向一致,力的大小为质点所受合力的大小,牛顿第二定律表达了质点的运动规律和力学定律。
二、质点的力学性质1、质点的质量质点的质量是指质点所具有的惯性量,质量越大,质点的惯性越大,质量是物体的基本属性,质点的质量越大,所需施加的力和加速度越大。
2、质点的重力质点的重力是指质点所受的地球引力,重力的大小为质点的质量与地球引力的大小的乘积,重力的方向为向下,重力是一种基本力,在物体的质量和地球引力的作用下,质点会受到重力的作用而做加速运动。
3、质点的弹力质点的弹力是指质点所受的弹簧力或弹簧样力,弹力的大小为弹簧的弹性系数与弹簧伸长或压缩的长度的乘积,弹力的方向为弹簧的伸长或压缩的方向,弹力是一种非接触力,在弹簧伸长或压缩时物体会受到弹力的作用而产生振动运动。
三、质点的运动方程1、直线运动质点的直线运动是指质点在直线上做运动,即质点所处位置只在直线上变化,质点的直线运动方程为s=vt,质点的速度为v,时间为t,s为质点所处的位移。