第七章单方程计量经济学应用模型
- 格式:doc
- 大小:288.50 KB
- 文档页数:26
第七章单方程计量经济学应用模型在第一章中已经介绍过,计量经济学模型主要用于结构分析、政策评价、经济预测、理论检验与发展理论,这是从作用的角度讲的。
从计量经济学模型的应用领域来讲,可以说无所不在。
举例说,一般人们认为,在制度经济学领域,例如经济史的研究,是很难应用计量经济学模型的。
然而,1993年诺贝尔经济学奖获得者R.福格尔和D.诺思就是研究经济史的,属新制度经济学派,其获奖原因恰恰是“在经济史研究中的定量研究领域所作出的贡献”。
但是,计量经济模型的主要应用领域仍然是生产、需求、消费、投资、货币需求与供给、就业、福利以及宏观经济,本章与下一章将选择其中几个领域作为例子,介绍一些计量经济学应用模型。
其目的,一方面是使读者了解在这些应用领域的比较成熟的应用模型;另一方面,也是更重要的,是试图通过这些应用模型的介绍,使读者了解它们是如何发展而来的,即掌握建立与发展计量经济学应用模型的方法论。
时代在变,研究对象在变,同一研究对象的自身变化规律在变。
已有的模型,有的已经完全没有应用价值了,有的需要发展与改进。
但是,那些在模型发展与应用实践中形成的方法论,其价值是永存的。
掌握了这些方法论,我们可以去研究新问题,发展新模型。
§5.1生产函数模型在西方经济学中,生产理论是最重要内容之一;同样,在西方的计量经济学中,生产函数模型的研究与发展始终是一个重要的、最活跃的领域。
在我国也是这样。
一、几个重要概念⒈生产函数⑴定义生产函数是描述生产过程中投入的生产要素的某种组合同它可能的最大产出量之间的依存关系的数学表达式。
即(7.1.1)Y f A K L(,,,)其中Y为产出量,A、K、L分别为技术、资本、劳动等投入要素。
这里“投入的生产要素”是生产过程中发挥作用、对产出量产生贡献的生产要素;“可能的最大产出量”指这种要素组合应该形成的产出量,而不一定是实际产出量。
生产要素对产出量的作用与影响,主要是由一定的技术条件决定的,所以,从本质上讲,生产函数反映了生产过程中投入要素与产出量之间的技术关系。
生产函数单方程计量经济学应用模型引言生产函数单方程模型是计量经济学中常用的模型之一,用于分析生产输入和产出之间的关系。
通过生产函数模型,经济学家可以研究不同生产要素的组合如何影响产出,并预测生产力的变化对经济增长的影响。
理论背景生产函数是描述产出与输入之间关系的函数。
在生产函数单方程模型中,通常使用柯布-道格拉斯生产函数:\[ Y = K{\alpha}L{\beta}E{\gamma}M{\delta} \]其中,Y表示产出,K表示资本,L表示劳动,E表示技术进步,M表示其他影响产出的要素,而α、β、γ、δ是生产函数的弹性指数,表示各要素对产出的贡献。
模型假设生产函数单方程模型基于以下假设:1.函数形式:生产函数遵循柯布-道格拉斯生产函数的形式。
2.要素弹性:各要素的弹性指数α、β、γ、δ是已知的常数。
3.无限制要素:模型假设存在无限可获得的资本、劳动、技术进步和其他要素。
4.稳定技术:技术进步对生产函数没有影响,即技术进步的变化不会改变生产函数的形式。
模型应用生产函数单方程模型可以应用于许多经济问题的分析和预测。
资本和劳动的替代关系生产函数模型可以帮助经济学家分析资本和劳动之间的替代关系。
通过观察生产函数中资本和劳动的弹性指数,可以了解当资本和劳动的价格发生变化时,如何调整要素的组合来最大化产出。
这对于制定合理的政策和经济政策决策具有重要意义。
技术进步对经济增长的影响生产函数单方程模型还可以研究技术进步对经济增长的影响。
通过改变技术进步的弹性指数,可以观察到技术变革对产出的影响。
这有助于评估技术进步的潜在效应以及相关政策对经济增长的可能影响。
生产要素的效率分析生产函数模型还可以用于分析生产要素的效率。
通过观察生产函数中各要素的弹性指数,可以了解到各要素对产出的贡献程度。
这有助于确定生产要素的合理配置方式,并找到可能的生产效率改进途径。
模型评估为了验证生产函数单方程模型的有效性和准确性,经济学家通常使用计量经济学方法进行评估。
建立经典单方程计量经济学模型的步骤第一步:明确研究问题和目标在建立计量经济学模型之前,需要明确研究问题和目标。
这可以是一个经济学理论或假设的测试,也可以是对一些经济变量之间关系的探索性研究。
明确研究问题和目标有助于确定模型的范围和方向。
第二步:选择适当的模型类型根据研究问题和目标,选择适当的模型类型。
单方程计量经济学模型可以分为线性回归模型和非线性回归模型。
线性回归模型常用于描述两个或多个变量之间的线性关系。
非线性回归模型则更适合于描述复杂的非线性关系。
第三步:收集数据选择恰当的数据集并收集所需的数据。
计量经济学模型的建立需要依赖观测数据进行估计和验证。
数据的质量和可用性对模型的准确性和可解释性具有重要影响,因此需要注意选择合适的数据源并进行数据清洗和处理。
第四步:制定理论模型借助经济学理论和假设,建立起理论模型。
理论模型可以是一个经济关系的数学表达式,用来解释和预测经济变量之间的关系。
理论模型是建立计量模型的基础,它提供了对经济变量之间关系的初步认识和解释。
第五步:确定函数形式在建立经济计量模型时,需要确定函数形式。
函数形式决定了模型的线性或非线性特征,以及变量之间的函数关系形式。
常见的函数形式包括线性、对数线性、半对数线性等,根据实际情况选择最适合的函数形式。
第六步:估计参数利用最小二乘法等估计方法,对模型中的参数进行估计。
最小二乘法是一种常用的估计方法,通过最小化残差平方和来确定参数估计值。
除了最小二乘法,还可以使用极大似然估计等方法对参数进行估计和假设检验。
第七步:模型诊断和检验对建立的模型进行诊断和检验,以确定模型的有效性和适用性。
常见的模型诊断和检验方法包括残差分析、异方差性检验、多重共线性检验等。
模型诊断和检验是验证模型合理性和可解释性的重要步骤。
第八步:模型解释和预测根据估计得到的模型参数和结果,进行模型解释和预测分析。
根据模型的解释能力,评估模型对经济变量之间关系的解释能力。
通过模型的预测能力,对未来经济变量的走势进行预测和分析。
单方程计量经济学应用模型引言单方程计量经济学应用模型是经济学中常用的一种分析工具,它通过建立和估计单个经济变量〔即单方程模型〕的数学关系,来研究经济现象之间的因果关系。
本文将介绍单方程计量经济学应用模型的根本原理和常见的应用案例。
模型根本原理单方程计量经济学应用模型的根本原理是建立一个经济变量Y与其他相关变量X之间的数学关系。
这个数学关系通常采用线性回归模型来表示,即:Y = β0 + β1X1 + β2X2 + … + βnXn + ε其中,Y是被解释变量〔也称为因变量〕,X1, X2, …, Xn是解释变量〔也称为自变量〕,β0, β1, β2, …, βn是回归系数,ε是误差项。
通过对经济数据进行统计分析,我们可以估计出这些回归系数的值,从而得到关于经济现象之间的因果关系的量化结果。
应用案例消费者支出模型消费者支出是宏观经济中的一个重要变量,在经济政策制定和预测分析中起着重要的作用。
通过建立消费者支出模型,我们可以研究消费者支出与其他经济变量之间的关系,并预测未来的消费者支出水平。
消费者支出模型常常包括收入、利率、通货膨胀等变量作为解释变量,以消费者支出作为被解释变量。
通过对历史数据进行回归分析,我们可以估计出这些变量对消费者支出的影响,并进行预测。
投资决策模型投资是经济中的另一个重要变量,对经济增长和资源配置起着重要作用。
通过建立投资决策模型,我们可以研究投资与其他经济变量之间的关系,并预测未来的投资水平。
投资决策模型常常包括利率、企业利润、经济增长等变量作为解释变量,以投资作为被解释变量。
通过对历史数据进行回归分析,我们可以估计出这些变量对投资的影响,并进行预测。
价格影响模型价格影响模型是研究价格与其他经济变量之间的关系的重要工具。
通过建立价格影响模型,我们可以研究价格与供应、需求等因素之间的关系,并分析价格变动对经济的影响。
价格影响模型常常包括供应量、需求量、生产本钱等变量作为解释变量,以价格作为被解释变量。
第七章单方程计量经济学应用模型一、内容题要本章要紧介绍了假设干种单方程计量经济学模型的应用模型。
包括生产函数模型、需求函数模型、消费函数模型以及投资函数模型、货币需求函数模型等经济学领域常见的函数模型。
本章所列举的内容更多得关注了相关函数模型自身的开展状况,而不是计量模型估量本身。
其目的,是使学习者了解各函数模型是如何开展而来的,即掌握建立与开展计量经济学应用模型的方法论。
生产函数模型,首先介绍生产函数的几个全然咨询题,包括它的定义、特征、开展历程等,并对要素的替代弹性、技术进步的相概念进行了回纳。
然后分不以要素之间替代性质的描述为线索与以技术要素的描述这线索介绍了生产函数模型的开展,前者包括从线性生产函数、C-D生产函数、不变替代弹性〔CES〕生产函数、变替代弹性〔VES〕生产函数、多要素生产函数到超越对数生产函数的介绍;后者包括对技术要素作为一个不变参数的生产函数模型、革新的C-D、CES生产函数模型、含表达型技术进步的生产函数模型、边界生产函数模型的介绍。
最后对各种类型的生产函数的估量以及在技术进步分析中的应用进行了了讨论。
与生产函数模型相仿,需求函数模型仍是从全然概念、全然特性、各种需求函数的类型及其估量方法等方面进行讨论,尤其是对线性支出系统需求函数模型的开展及其估量咨询题进行了较具体的讨论。
消费函数模型局部,要紧介绍了几个重要的消费函数模型及其参数估量咨询题,包括尽对收进假设消费函数模型、相对收进假设消费函数模型、生命周期假设消费函数模型、持久收进假设消费函数模型、合理预期的消费函数模型习惯预期的消费函数模型。
并对消费函数的一般形式进行了讨论。
在其他常用的单方程应用模型中要紧介绍了投资函数模型与货币需求函数模型,前者要紧讨论了加速模型、利润决定的投资函数模型、新古典投资函数模型;后者要紧讨论了古典货币学讲需求函数模型、Keynes货币学讲需求函数模型、现代货币主义的货币需求函数模型、后Keynes货币学讲需求函数模型等。
计量经济学习题第7章单方程回归模型的几个专题第7章单方程回归模型的几个专题一、名词解释1、虚拟变量2、模型设定误差3、工具变量4、工具变量法5、变参数模型6、分段线性回归模型7、虚拟变量模型二、简答题1、模型中引入虚拟变量的作用是什么?2、虚拟变量引入的原则是什么?3、虚拟变量引入的方式及每种方式的作用是什么?4、判断计量经济模型优劣的基本原则是什么?5、模型设定误差的类型有那些?6、工具变量选择必须满足的条件是什么?7、滞后变量模型包括哪几种类型?写出各自的模型形式。
8、设定误差产生的主要原因是什么?9、在建立计量经济学模型时,什么时候,为什么要引入虚拟变量?三、单项选择题1、设某地区消费函数i i i x c c y μ++=10中,消费支出不仅与收入x 有关,而且与消费者的年龄构成有关,若将年龄构成分为小孩、青年人、成年人和老年人4个层次。
假设边际消费倾向不变,则考虑上述构成因素的影响时,该消费函数引入虚拟变量的个数为()A.1个B.2个C.3个D.4个2、当质的因素引进经济计量模型时,需要使用()A. 外生变量B. 前定变量C. 内生变量D. 虚拟变量3、.由于引进虚拟变量,回归模型的截距或斜率随样本观测值的改变而系统地改变,这种模型称为()A. 系统变参数模型B.系统模型C. 变参数模型D. 分段线性回归模型4、.假设回归模型为i i i x y μβα++=,其中Xi 为随机变量,Xi 与Ui 相关则β的普通最小二乘估计量( )A.无偏且一致B.无偏但不一致C.有偏但一致D.有偏且不一致5、假定正确回归模型为i i i i x x y μββα+++=2211,若遗漏了解释变量X2,且X1、X2线性相关则1β的普通最小二乘法估计量( )A.无偏且一致B.无偏但不一致C.有偏但一致D.有偏且不一致6、对于误差变量模型,模型参数的普通最小二乘法估计量是( )A.无偏且一致的B.无偏但不一致C.有偏但一致D.有偏且不一致7、系统变参数模型分为( )A.截距变动模型和斜率变动模型B.季节变动模型和斜率变动模型C.季节变动模型和截距变动模型D.截距变动模型和截距、斜率同时变动模型8、虚拟变量( )A.主要来代表质的因素,但在有些情况下可以用来代表数量因素B.只能代表质的因素C.只能代表数量因素D.只能代表季节影响因素9、. 分段线性回归模型的几何图形是( )A.平行线B.垂直线C.光滑曲线D.折线10、如果一个回归模型中不包含截距项,对一个具有m 个特征的质的因素要引入虚拟变量数目为( )A.mB.m-1C.m-2D.m+111、设某商品需求模型为Yt=β0+β1Xt+Ut ,其中Y 是商品的需求量,X 是商品的价格,为了考虑全年12个月份季节变动的影响,假设模型中引入了12个虚拟变量,则会产生的问题为()A .异方差性B .序列相关C .不完全的多重共线性D .完全的多重共线性四、多项选择题1、系统变参数模型中,参数变化是( )A.随机的B.离散的C.非随机的D.连续的E.系统的2、在包含有随机解释变量的回归模型中,可用作随机解释变量的工具变量必须具备的条件有,此工具变量( )A.与该解释变量高度相关B.与其它解释变量高度相关C.与随机误差项高度相关D.与该解释变量不相关E.与随机误差项不相关3、关于虚拟变量,下列表述正确的有()A .是质的因素的数量化B .取值为l 和0C .代表质的因素D .在有些情况下可代表数量因素E .代表数量因素4、虚拟变量的取值为0和1,分别代表某种属性的存在与否,其中()A 、0表示存在某种属性B 、0表示不存在某种属性C 、1表示存在某种属性D 、1表示不存在某种属性E 、0和1代表的内容可以随意设定5、在截距变动模型i i i x D y μβαα+++=10中,模型系数()A 、0α是基础类型截距项B 、1α是基础类型截距项C 、0α称为公共截距系数D 、1α称为公共截距系数E 、01αα-为差别截距系数6、对于线性回归模型i i i i Dx x D y μββαα++++=)(2110,其中D 为虚拟变量,有()A 、其图形是两条平行线B 、基础类型的截距项是0αC 、基础类型的截距为1βD 、差别截距系数为1αE 、差别斜率系数为12ββ-7、对于分段线性回归模型t t t t D x x x y μβββ+-++=)(*210,其中()A 、虚拟变量D 代表品质因素B 、虚拟变量D 代表数量因素C 、以*x x t =为界,前后两段回归直线的斜率不同D 、以*x x t =为界,前后两段回归直线的截距不同E 、该模型是系统变参数模型的一种特殊形式五、计算题1、家庭消费C ,除依赖于收入Y 之外,还同下列因素有关:(1)民族:汉、蒙、满、回、藏(2)家庭小孩数:没有孩子、1-2个孩子、3个及以上孩子(3)户主的文化程度:高中以下、高中、大专以上试设定该家庭消费函数的回归模型。
第7章含有定性信息的多元回归分析:二值(或虚拟)变量在前面几章中,我们的多元回归模型中的因变量和自变量都具有定量的含义。
就像小时工资率、受教育年数、大学平均成绩、空气污染量、企业销售水平和被拘捕次数等。
在每种情况下,变量的大小都传递了有用的信息。
在经验研究中,我们还必须在回归模型中考虑定性因素。
一个人的性别或种族、一个企业所属的产业(制造业、零售业等)和一个城市在美国所处的地理位置(南、北、西等)都可以被认为是定性因素。
本章的绝大部分内容都在探讨定性自变量。
我们在第7.1节介绍了描述定性信息之后,又在第7.2、7.3和7.4节中说明了,如何在多元回归模型中很容易地包含定性的解释变量。
这几节几乎涵盖了定性自变量用于横截面数据回归分析的所有流行方法。
我们在第7.5节讨论了定性因变量的一种特殊情况,即二值因变量。
这种情形下的多元回归模型具有一个有趣的含义,并被称为线性概率模型。
尽管有些计量经济学家对线性概率模型多有中伤,但其简洁性还是使之在许多经验研究中有用武之地。
虽然我们在第7.5节将指出其缺陷,但在经验研究中,这些缺陷常常都是次要的。
7.1 对定性信息的描述定性信息通常以二值信息的形式出现:一个人是男还是女;一个人有还是没有一台个人计算机;一家企业向其一类特定的雇员提供还是不提供退休金方案;一个州实行或不实行死刑。
在所有这些例子中,有关信息可通过定义一个二值变量(binary variable)或一个0-1变量来刻画。
在计量经济学中,对二值变量最常见的称呼是虚拟变量(dummy variable),尽管这个名称并不是特别形象。
在定义一个虚拟变量时,我们必须决定赋予哪个事件的值为1和哪个事件的值为0。
比如,在一项对个人工资决定的研究中,我们可能定义female为一个虚拟变Array量,并对女性取值1,而对男性取值0。
这种情形中的变量名称就是取值1的事件。
通过定义male在一个人为男性时取值1并在一个人为女性时取值0,也能刻画同样的信息。
目 录第1章 绪 论第2章 经典单方程计量经济学模型:一元线性回归模型第3章 经典单方程计量经济学模型:多元线性回归模型第4章 经典单方程计量经济学模型:放宽基本假定的模型第5章 经典单方程计量经济学模型:专门问题第6章 联立方程计量经济学模型:理论与方法第7章 扩展的单方程计量经济学模型第8章 时间序列计量经济学模型第9章 计量经济学应用模型第1章 绪 论1什么是计量经济学?计量经济学方法与一般经济数学方法有什么区别?答:(1)计量经济学是经济学的一个分支学科,以揭示经济活动中客观存在的数量关系为主要内容,是由经济理论、统计学和数学三者结合而成的交叉学科。
(2)计量经济学方法通过建立随机的数学方程来描述经济活动,并通过对模型中参数的估计来揭示经济活动中各个因素之间的定量关系,是对经济理论赋予经验内容;而一般经济数学方法是以确定性的数学方程来描述经济活动,揭示的是经济活动中各个因素之间的理论关系。
2计量经济学的研究对象和内容是什么?计量经济学模型研究的经济关系有哪两个基本特征?答:(1)计量经济学的研究对象是经济现象,主要研究的是经济现象中的具体数量规律,即是利用数学方法,依据统计方法所收集和整理到的经济数据,对反映经济现象本质的经济数量关系进行研究。
(2)计量经济学的内容大致包括两个方面:一是方法论,即计量经济学方法或理论计量经济学;二是应用计量经济学。
任何一项计量经济学研究和任何一个计量经济学模型赖以成功的三要素是理论、方法和数据。
(3)计量经济学模型研究的经济关系的两个基本特征是随机关系和因果关系。
3为什么说计量经济学在当代经济学科中占据重要地位?当代计量经济学发展的基本特征与动向是什么?答:(1)计量经济学自20世纪20年代末30年代初形成以来,无论在技术方法还是在应用方面发展都十分迅速,尤其是经过20世纪50年代的发展阶段和60年代的扩张阶段,使其在经济学科占据重要的地位,主要表现在:①在西方大多数大学和学院中,计量经济学的讲授已成为经济学课程表中最具有权威的一部分;②从1969~2003年诺贝尔经济学奖的53位获奖者中有10位是与研究和应用计量经济学有关;③计量经济学方法与其他经济数学方法结合应用得到了长足的发展。
第七章单方程计量经济学应用模型一、内容题要本章主要介绍了若干种单方程计量经济学模型的应用模型。
包括生产函数模型、需求函数模型、消费函数模型以及投资函数模型、货币需求函数模型等经济学领域常见的函数模型。
本章所列举的内容更多得关注了相关函数模型自身的发展状况,而不是计量模型估计本身。
其目的,是使学习者了解各函数模型是如何发展而来的,即掌握建立与发展计量经济学应用模型的方法论。
生产函数模型,首先介绍生产函数的几个基本问题,包括它的定义、特征、发展历程等,并对要素的替代弹性、技术进步的相概念进行了归纳。
然后分别以要素之间替代性质的描述为线索与以技术要素的描述这线索介绍了生产函数模型的发展,前者包括从线性生产函数、C-D生产函数、不变替代弹性(CES)生产函数、变替代弹性(VES)生产函数、多要素生产函数到超越对数生产函数的介绍;后者包括对技术要素作为一个不变参数的生产函数模型、改进的C-D、CES生产函数模型、含体现型技术进步的生产函数模型、边界生产函数模型的介绍。
最后对各种类型的生产函数的估计以及在技术进步分析中的应用进行了了讨论。
与生产函数模型相仿,需求函数模型仍是从基本概念、基本特性、各种需求函数的类型及其估计方法等方面进行讨论,尤其是对线性支出系统需求函数模型的发展及其估计问题进行了较详细的讨论。
消费函数模型部分,主要介绍了几个重要的消费函数模型及其参数估计问题,包括绝对收入假设消费函数模型、相对收入假设消费函数模型、生命周期假设消费函数模型、持久收入假设消费函数模型、合理预期的消费函数模型适应预期的消费函数模型。
并对消费函数的一般形式进行了讨论。
在其他常用的单方程应用模型中主要介绍了投资函数模型与货币需求函数模型,前者主要讨论了加速模型、利润决定的投资函数模型、新古典投资函数模型;后者主要讨论了古典货币学说需求函数模型、Keynes货币学说需求函数模型、现代货币主义的货币需求函数模型、后Keynes货币学说需求函数模型等。
二、典型例题分析例1:某工业企业资料如下表。
试估计该企业的生产函数解答:先估计C-D 生产函数。
方法1:对数线性形式的OLS 估计K L Y ln ln ln 210βββ++=Eviews 的估计结果如下:Variable Coefficient Std. Error t-Statistic Prob. C -4.032674 2.877252 -1.401571 0.1946 LOG(K) 0.323668 0.107627 3.007311 0.0148 R-squared0.853757 Mean dependent var 6.433934 Adjusted R-squared 0.821259 S.D. dependent var 0.257981 S.E. of regression 0.109069 Akaike info criterion -1.381358 Sum squared resid 0.107064 Schwarz criterion -1.260132 Log likelihood11.28815 F-statistic26.27080 Durbin-Watson stat1.511124 Prob(F-statistic)0.000175即:6315.13237.0018.0K L Y=方法2:强度形式的OLS 估计)/ln()/ln(10L K L Y ββ+=Eviews 的估计结果如下:Variable Coefficient Std. Error t-Statistic Prob. C 0.982678 0.049113 20.00840 0.0000 LOG(K/L) 0.4339440.0955424.5419330.0011 R-squared0.673514 Mean dependent var 1.141232 Adjusted R-squared 0.640865 S.D. dependent var 0.199696 S.E. of regression 0.119674 Akaike info criterion -1.257086 Sum squared resid0.143218 Schwarz criterion-1.176268Log likelihood9.542515 F-statistic20.62916 Durbin-Watson stat 1.883136 Prob(F-statistic) 0.001072即:5661.04339.0672.2K LY =由参数的显著性看,方法二得到的生产函数更好一些。
再估计CES 形式的生产函数:Eviews 的估计结果如下:Variable Coefficient Std. Error t-Statistic Prob. C -4.187104 1.420270 -2.948104 0.0185 LOG(K) -0.690555 0.195834 -3.526219 0.0078 LOG(L) 2.700212 0.363696 7.424357 0.0001 (LOG(K/L))^2 0.8962690.1665725.3806760.0007 R-squared0.968339 Mean dependent var 6.433934 Adjusted R-squared 0.956466 S.D. dependent var 0.257981 S.E. of regression 0.053828 Akaike info criterion -2.744861 Sum squared resid 0.023179 Schwarz criterion -2.583226 Log likelihood20.46917 F-statistic81.55796 Durbin-Watson stat1.018731 Prob(F-statistic)0.000002由此可计算各参数:m=2.0097,δ1= -0.3436,δ2=1.3436,ρ=0.4118由于分配系数δ1<0,因此这一估计结果的经济含义不正确,需进一步修正。
例2、使用中国某年的截面家计调查资料,求恩格尔曲线。
假定恩格尔曲线为线性函数Y C i i i 10ββ+=其中,i C 为第种商品人均消费量,即需求量,Y 为人均生活费支出,通过OLS 法,可分别得出食品、衣着、燃料、用品和非商品五个类别的恩格尔曲线:例3、利用例2中的资料,求扩展的线性支出系统模型 解答:第1步,估计 μ++=bI a V 中的参数:aˆ=1.874, b ˆ=0.9096 第2步,计算 )ˆ1/(ˆ1b a I I --= )ˆ1/(ˆ1b aI I --==I-20.73 第3步,逐次回归,求各商品的需求函数1*0I q p q p i i i i i α+=估计结果如下:如对食品的扩展的消费支出需求函数为:)73.20(504.054.1411-+=I q p线性支出系统可用来分析收入变化,物价变化对消费需求结构的影响。
如消费支出构成为:∑iii i qp q p /例如,如果月均收入有所变化,如分别为80元,100元,120元,各项消费结构变化如下:三、习题7-1.解释下列概念: 1) C —D 生产函数2) CES 生产函数3)VES生产函数4)要素替代弹性5)要素的产出弹性6)技术进步7)需求函数8)需求的价格弹性9)需求的收入弹性10)需求的交叉弹性11)效用函数12)消费函数13)投资函数14)货币需求函数7-2.为什么要讨论计量经济分析的应用?体会经济理论与实际建模之间的关系。
7-3.试写出需求函数的常见形式,并对影响需求的主要因素进行分析。
7-4.以投入要素之间替代性质的描述和对技术要素的描述为线索对已有的生产函数模型进行综述,并从中体会经济研究的方法论。
7-5.在选择模型类型、变量和函数形式时,各应考虑哪些因素?7-6.解释ELES 模型中各个组成部分及整个模型的经济含义,试根据《中国统计年鉴》提供的城乡居民消费支出和收入的横截面统计资料,建立ELES 模型并进行消费需求分析。
7-7.简述C —D 生产函数和CES 生产函数的特点以及各自的估计方法,熟练应用C —D 、CES 生产函数模型及其改进型。
7-8.技术进步有哪些类型?如何利用生产函数进行纵向技术进步分析和横向技术进步比较研究?7-9.消费函数与需求函数的研究内容有何不同?熟悉消费者行为理论的几种基本假说及由其导出的消费函数模型,能够解释各种消费函数的理论模型并推导出模型的一般形式。
7-10.弹性分析的意义和在经济分析中的作用是什么?7-11.总投资由哪两部分组成?投资函数主要用于研究什么问题? 7-12.投资的加速模型有哪些形式?解释各自的原理及模型的推导过程。
7-13.理解确定型统计边界生产函数及其COLS 估计。
7-14.在估计生产函数模型时,为什么样本数据的可比性显得尤其重要和突出? 7-15.理解需求弹性和需求函数的齐次性条件;如何应用它们检验需求函数模型参数估计量?7-16.指出下列模型中所要求的待估参数的经济含义和数值范围:⑴ 城镇居民食品类需求函数 μ 中的、、(V 为人均购买食品支出额、Y 为人均收入、为食品类价格、为其它商品类价格)。
⑵ 消费函数t t t t u C a Y a a C +++=-1210 中的、。
(C 为人均消费额、Y 为人均收入) ⑶ 两要素CES 生产函数的近似形式中的γ、ρ、m 。
(Y 为产出量,K 、L 分别为投入的资本和劳动数量,t 为时间变量) 7-17.设t C 为当期消费,1-t C 为上期消费,Y 为可支配收入,P 为物价指数。
试由相对收入假说构造消费函数。
7-18.当我们说消费者无货币幻觉时,是指需求函数具有哪一种性质? 7-19.已知某城市1985年城市居民家庭人均收支抽样调查资料如下表所示:要求:推导出该市居民人均消费的线性支出系统。
7-20.设有两种商品,价格分别为1P 和2P 。
效用函数为i a i i i X X U )(021-=∏=其中:i X ——第i 种商品需求量0i X ——第i 种商品基本需求量10<<i a ,121=∑=i i a设总预算支出为C 。
要求:推导出线性支出系统。
7-21.已知某企业1980~1990年有关统计资料如下表所示:要求:试参照C —D 生产函数形式和CES 生产函数形式分别确定模型,对模型进行估计,并说明哪一个模型更适当?7-22.某市纺织工业总产值、固定资产、职工人数统计资料如下表所示:要求:(1)估计该市纺织工业部门的C —D 生产函数βαK L e A Y mt 0=(2)求1987~1996年10年间平均的技术进步贡献率。