L4981A 1[1].5kW原理图
- 格式:pdf
- 大小:35.18 KB
- 文档页数:3
采用L4981控制的CCM-PFC电路设计规2006年7月25日发布 2006年7月25日实施深圳市艾默生网络能源有限公司前言本规于2006年7月25日首次发布。
本规起草单位:一次电源部/dc globe本规执笔人:潘诗锋本规主要起草人:潘诗锋本规标准化审查人:本规审核人:强、茹永刚、余时强、吕明海、志宇、首福俊本规批准人:本规修改记录:更改信息登记表规名称: 采用L4981控制的CCM-PFC电路设计规规编码: TS-C010106001目录目录 (5)摘要: (6)关键词: (6)缩略词解释 (6)一.来源 (6)二.适用围 (6)三.规满足的技术指标(特征指标) (6)四.详细的电路图 (7)五.工作原理和参数计算 (9)六.设计调试要点 (9)七.局部PCB图 (17)八.器件容差分析 (17)九.电路FMEA分析 (18)十.附录 (18)十一.参考文献列表 (18)十二.附件 (19)摘要:本规介绍了采用L4981控制的连续型(CCM)PFC的工作原理及设计要点。
关键词:CCM ,PFC,L4981缩略词解释CCM:Continuous Current Mode,电感电流连续模式PFC: Power Factor Correction,功率因数校正一.来源本规中的电路来源于R48-1800(公司部型号为H4413BZ)和R48-1800A(公司部型号为H4413AZ)AC/DC模块的PFC电路,已经在H4413BZ和H4413AZ模块中得到较小批量的使用验证。
二.适用围采用L4981作为主控芯片的CCM-PFC,具有输入电流波形失真度小、功率因数高、输入EMI小,对电流采样信号的干扰不敏感、以及不需要外部补偿谐波等优点。
该芯片与我司通用的UC3854相比,性能和设计方法相近,但增加了输出过压保护、同步信号输入、负载前馈等功能,使用更方便,同时价格比UC3854低,在目前成本压力越来越大的情况下,选用该控制芯片是个不错的选择。
®L4981AL4981B 功率因数校正控制助力PWM高达0.99P.F.限制线电流失真< 5%通用输入主电源饲料前锋线上与负载调节TION平均电流模式的PWM最小的噪声敏感度大电流双极型和DMOS的TO -TEM柱输出低启动电流(0.3mA TYP.)根据与HYS-电压分离磁滞和可编程接通阈值过压,过流的PROTEC -TION精确的芯片参考2%的EX -TERNALLY可供软启动描述该L4981 I.C.提供了必要的功能实现了非常高的功率因数高达0.99.在BCD 60II技术实现这个功率因数(PFC)预调节校正包含所有con-框图MULTIPOWER BCD技术DIP20SO20订购号:L4981X (DIP20)L4981XD (SO20)设计一个高效率的模式trol功能正弦电源线电流con-消耗.该L4981可以很容易地在系统的使用85V电源电压之间没有任何265V行开关.这种新的PFC提供了可能性工作在固定频率或调制(L4981A)频率(L4981B)优化的大小,九月19981/17L4981A - L4981B把过滤器;两个工作频率模式使用平均电流模式PWM con-控制器,保持正弦线电流不斜率补偿.除了功率MOSFET栅极驱动器,精密电压年龄引用(外部可用),误差放大器的fier,欠压分离,电流检测和绝对最大额定值符号V CCI GDRVV GDRVV VA-OUTI ACV CA-OUT V ROSCI COSC I FREQ-MOD V SYNCV IPKP totT opT stg13451711, 181816162针1920.Gate driv. output voltage t = 0.1µs电压在pins 3, 14, 7, 6, 12, 15电压误差放大器AC输入电流引脚电压8, 9电压电流放大器. (Isource = -20mA; Isink = 20mA)电压引脚17引脚电压11, 18输入漏电流调频灌电流(L4981B)同步.电压(L4981A)电压引脚2电压引脚2 t = 1µs功率消耗在T amb= 70°C功率消耗在T amb= 70°C工作环境温度StorageTemperature(DIP20)(SO20)参数电源电压(I CC≤50mA) (*)Gate driv. output 峰值 current (t = 1µs)水槽消息来源价值selflimit21.5-1-0.3到9-0.3到8.55-0.5到7-0.3到8.5-0.3到3-0.3到7155-0.3到7-0.3到5.5-210.6-40到125-55到150单位VΑAVVVmAVVVVmAmAVVVWW°C°C软启动均包括在内.为了限制人数外部元件,该器件集成了亲tections如过压和过流保护.该过电流水平可以使用简单的电阻L4981A.对于一个更好的精度和L4981B外部分压器必须使用.(*)最大包装功耗限制必须得到遵守.引脚连接(顶视图)L4981A L4981B 2/17L4981A - L4981B热数据符号R th j-amb参数热阻结到环境拨2080苏20120单位°C / W各端子的功能N.12名称P-GND IPK电源地.L4981A 峰值电流限制.得到一个电流限制使用单个电阻连接引脚2之间的感应电阻.为了有一个更好的精度之间的另一个引脚电阻2和一个参考电压(管脚11)必须添加.L4981B 峰值电流限制.精确的电流限制为获得使用两个外部电阻只.这些电阻必须连接之间的感应电阻,引脚2和参考电压.3OVP过电压保护.在此输入进行比较精确的内部电压5.1V (typ)参考用的升压输出电压通过一个电阻分压器在获得样本为了限制最大输出电压峰值.为AC 输入电流.输入电流成正比的电压整流电源产生,通过乘数,当前放大器的电流参考.电流放大器的输出.外部RC 网络决定因子的闭环增益.负荷前馈;这个电压输入引脚允许修改乘法器的输出电流比例负载,为了给一个与负载瞬态响应速度.最好工作关 系得到控制1.5V 和5.3V.如果不使用此功能,连接该管脚到参考电压(引脚= 11).输入线电压成正比RMS. compesates 的VRMS 输入线电压的变化.低通之间的连接线与整流7,一DC 电压端子滤波器比例在输入电压线路RMS 得到.达到最佳的控制是使用输入电压之间1.5V 和5.5V.如果不使用此功能连接该引脚的电压基准(引脚= 11).乘法器的输出.该引脚共同的乘数输出和输入电流放大器N.I.像I 高阻抗输入SENSE .的MULT-OUT 引脚必须采取不低于-0.5V.电流放大器的反相输入.必须小心,以避免下来goes 针-0.5V.信号接地.输出参考电压(typ = 5.1V ).电压refence 在±2%外部可用的准确性,它的内部电流限制,并能提供一个输出电流高达10mA.连接到地的电容定义了软启动时间.内部电流产生程序提供100µA (typ)确定收费的外部软启动电容器的时间常数.一个内部MOS 放电时,无论是外部软启动电容电压和UVLO 条件.误差放大器输出,RC 网络修复电压环增益特性.电压误差放大器的反相输入.这种反馈输入是通过一个连接分压器升压输出电压.可编程阈值输入电压下了锁.供求之间分压器电压和GND 可以连接,以方案的阈值打开.这种同步输入/输出引脚CMOS 逻辑兼容.经营中,如一个SYNC矩形波必须适用于该引脚. Opearting 作为同步,一个长方形的时钟脉冲可用于同步其他设备.调频电流输入.一个外部电阻必须连接在引脚16而为了纠正线电压调节振荡器的频率.连接到引脚16地面固定频率R 施加OSC 和C OSC获得.外部电阻连接到地修复了C 恒定充电电流OSC.外部电容连接到GND 修复了开关频率.电源输入电压.输出门驱动器.双极晶体管和DMOS 图腾柱输出级可以提供峰值超过1A 有用的驱动电流MOSFET 或IGBT 功率级.说明456IAC CA-OUT LFF7VRMS89101112MULT-OUT I SENSE S-GND V REF SS13141516VA-OUT VFEED P-UVLO 同步(L4981A)FREQ-MOD (L4981B)17181920R OSC C OSC V CC GDRV3/17L4981A - L4981B电气特性(除另有注明外V CC= 18V, C OSC= 1nF,R OSC= 24KΩ, C SS= 1µF, V CA-OUT= 3.5V, V ISENSE= 0V, V LFF= V号, I AC= 100µA, V RMS= 1V, V饲料= GND, V IPK= 1V, V OVP= 1V, T J= 25°C符号V IOI IB V13HV13L-I13I13V ref∆Vref∆Vref I ref scf oscPrameter输入失调电压电流输入偏置开环增益输出高电压输出低电压输出源电流输出灌电流参考输出电压负载调整线路调整短路电流初始精度频率稳定度V svp I18C I18D V18t W I16-I16V16L V16H 兰普谷峰值充电电流放电电流峰谷电压斜坡输出脉冲宽度灌电流输出低电压源电流输出高电压低输入电压高输入电压 3.580085100747611550%振幅V SYNC= 0.4VV COSC= 0VV SYNC= 4.5VV COSC= 6.7VV COSC= 3.5VV COSC= 3.5V0.90.30.41V FEED= 4.7VI VA-OUT= -0.5mAV FEED= 5.5VI VA-OUT= 0.5mAV FEED= 4.7V; V VA-OUT= 3.5VV FEED= 5.5V; V VA-OUT= 3.5V–25°C < T J< 85°CT j= 25°C I ref= 01mA≤I ref≤10mA–25°C < T J< 85°C12V≤V CC≤19V–25°C < T J< 85°CV ref= 0VT j= 25°C12V≤V CC≤19V–25°C < T J< 85°C244.975.01测试条件–25°C < T J< 85°CV FEED= 0V-500705.5-501006.50.410205.15.1332085804.70.453010010050.5511.51.150.80.860.91.45.235.191510501151205.30.657.51最小.Typ.最大.±8500单位mVnAdBVVmAmAVVmVmVmA千赫千赫VmAmAVµsmAmAVVns千赫千赫千赫误差放大器部分参考部分振荡器部分同步部分(仅适用于L4981A)脉冲同步t d调频功能(仅适用于L4981B)f18max f18min 最大振荡频率振荡器频率最低V FREQ-MOD= 0V(销16) I freq= 0I FREQ-MOD= 360µA(销16)V VRMS= 4V(销7)I FREQ-MOD= 180µA(销16)V VRMS= 2V(销7)软启动第I SS V12sat 软启动电流源输出饱和电压V SS= 3VV3= 6V, I SS= 2mA601000.11400.25µAV4/17L4981中文数据手册第L4981A - L4981B电气特性(续)符号电源电压V CCV thr V 3HysI 3t dV th t d I ipk 工作电源电压阈值电压上升迟滞电流输入偏置传播延迟到输出阈值电压传播延迟到输出电流源产生程序V OCP = Vthr-0.2VV IPK = -0.1V V IPK = -0.1V只有L4981A 只有L4981B650.485V OVP = Vthr+100mV V ref -20mV 1805.12500.05119.5V ref +20mV 32012±300.91055±2-50070686.20.92210100.511.512.5503013160.38122014.59Pin 15到V CC = 220K Pin15到GND = 33KV 6= 1.6V V 6= 5.3VV I输入电压范围1.610.62515.51012150100190.512163016.51113.40.85010090500VV mV µA µsmV µs µA µAmV nA dB dB VV mA mAV Vns ns VmA mA mA VV V V过电压保护比较器参数测试条件最小.Typ.最大.单位过电流保护比较器泄漏电流I L电流放大器部分V offset I 9biasSVR V 5H V 5L -I 5I 5V 20L V 20H t r t f V GDRV I 19start I 19on I 19V CC V th ON V th OFF输入失调电压电流输入偏置开环增益电源电压抑制输出高电压输出低电压输出源电流输出灌电流输出电压低输出电压高输出电压上升时间输出电压下降时间电压钳电源电流启动前打开后,电源电流工作电源电流齐纳电压打开门限关闭阈值可编程启动阈值负荷前馈I LFF偏置电流V MULT OUT = VSENSE= 3.5VV SENSE = 0V 1.1V ≤V CA OUT≤6V12V ≤V CC ≤19V V MULT OUT = 3.5V V SENSE= 3.5VV MULT OUT = 200mV I CA OUT = -0.5mA, VIAC= 0VV MULT OUT = -200mVI CA OUT = 0.5mA, V IAC = 0V V MULT OUT = 200mV,V IAC = 0V, V CA-OUT = 3.5VI SINK = 250mA I SOURCE = 250mA V CC = 15V C OUT = 1nF C OUT = 1nF I SOURCE= 0mAV CC = 14V V IAC = 0V, V COSC= 0,Pin17 =开放Pin20 = 1nF (*)输出部分总待机当前节第欠压分离702001403005.3µA µA V(*)最大包装功耗限制必须得到遵守.5/17L4981A - L4981B电气特性(续)符号乘第Multipler输出电流V VA-OUT= 4V, V RMS= 2V,V MULTOUT= 0, V LFF= 5.1VI AC= 50µA, C OSC= 0VV VA-OUT= 4V, V RMS= 2V,V MULTOUT= 0, V LFF= 5.1VI AC= 200µA, C OSC= 0VV VA-OUT= 2V, V RMS= 2V,V MULTOUT= 0, V LFF= 5.1VI AC= 100µA, C OSC= 0VV VA-OUT= 2V, V RMS= 4V,V MULTOUT= 0, V LFF= 5.1VI AC= 100µA, C OSC= 0VV VA-OUT= 4V, V RMS= 4V,V MULTOUT= 0, V LFF= 5.1VI AC= 100µA, C OSC= 0VV VA-OUT= 4V, V RMS= 2V,V MULTOUT= 0, V LFF= 2.5VC OSC= 0V, I AC= 200µAV VA-OUT= 4V, V RMS= 4VV MULTOUT= 0, V LFF= 5.1VI AC= 200µA, C OSC= 0VV VA-OUT= 2V, V RMS= 4V,V MULTOUT= 0, V LFF= 5.1VI AC= 0, C OSC= 0VK乘法器增益203552µAµAµAµAµAµAµAµAPrameter测试条件最小.Typ.最大.单位1001351701020302 5.511102234203754203954-2020.37I MULT−OUT=K I AC (VVA−OUT−1.28) (0.8VLFF−1.28)(VVRMS)2(VVA−OUT−1.28)(V VRMS)2如果V LFF= V REF;其中:K1 = 1VI MULT−OUT=I AC K1图1:多输出主场迎战I AC(V RMS= 1.7V;V LFFD= 5.1V)图2:多输出主场迎战I AC(V RMS= 2.2V;V LFFD= 5.1V)6/17L4981A - L4981B图3:多输出主场迎战I AC(V RMS= 4.4V;V LFFD= 5.1V)图4:多输出主场迎战I AC(V RMS= 5.3V;V LFFD= 5.1V)图5:多输出主场迎战I AC(V RMS= 1.7V;V LFFD= 2.5V)图6:多输出主场迎战I AC(V RMS= 2.2V;V LFFD= 2.5V)图7:多输出主场迎战I AC(V RMS= 4.4V;V LFFD= 2.5V)图8:多输出主场迎战I AC(V RMS= 5.3V;V LFFD= 2.5V)7/17L4981A - L4981B图9A:L4981A功率因数校正(200W)TR6R14C8R7C12R15D3D4R1C5C9R9D1+Vo=400VC7FUSE Vi BRIDGER87411913R12143D2C11C285VAC-265VAC15C1L4981A1620612 11R13MOS285R21R5C3R4RS 9181017D5R17R2R10R11R3C4R16C6C10-D93IN029B零件列表R S R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R210.07(3 x .22)820kΩ10kΩ1.8kΩ1.8kΩ18kΩ1.2MΩ360kΩ33kΩ1.8MΩ21kΩ402Ω120kΩ27Ω1MΩ120kΩ30kΩ1.8kΩ5.1kΩ1/2W1/4W1/4W1/4W1/4W1/4W1/4W1/4W1/4W1/4W1/4W1/4W1/4W1/4W1/4W1/2W1/4W4W1/4W5%1%1%5%5%5%5%5%5%1%1%1%5%5%1%5%5%1%1%C1C2C3C4C5C6C7C8C9C10C11C12D1D2, D3D4D5MOS470nF100µF2.2nF1nF100µF1µF220nF220nF330nF1µF270pF8.2nFSTTA506D1N414818VBYT11-600STH/STW15NA50保险丝= 4A/250V1/2W16V400V100V25V16V63V63V400V450V 桥= 4 x P600MT= 初级:88的12 x 32 AWG (0.2mm)轮流次级:9化的# 27AWG (0.15mm)核心:B1ET3411A汤姆逊- CSFgap: 1,6mm for a total 初级 inductance of0.9mH8/17f SW= 80kHz P O= 200WV输出= 400V I rms 最大= 2.53A V OVP= 442V I PK 最大= 6.2AL4981A - L4981B图9B:L4981B 功率因数校正(200W)TR22C7R14R7C8D3C5C9R6C12R15D4R1R9D1+Vo=400VFUSE ViBRIDGER87411913R12143C11D2C285VAC-265VAC15C1L4981B16206285R21R5R11R3RSC3R4C4R16C6918101712 11R13MOSD5R17R2R10C10-D95IN220零件列表R S R1R2R3R4R5R6R7R8R9R10R11R12R13R14R15R16R17R21R220.07(3 x .22)820k Ω10k Ω1.8k Ω1.8k Ω18k Ω1.2M Ω360k Ω33k Ω1.8M Ω21k Ω402Ω120k Ω27Ω1M Ω120k Ω24k Ω1.8k Ω5.1k Ω1/2W 1/4W 1/4W 1/4W 1/4W 1/4W 1/4W 1/4W 1/4W 1/4W 1/4W 1/4W 1/4W 1/4W 1/4W 1/2W 1/4W 4W 1/4W 5%1%1%5%5%5%5%5%5%1%1%1%5%5%1%5%5%1%1%1%C1C2C3C4C5C6C7C8C9C10C11C12D1D2, D3D4D5MOS470nF 100µF 2.2nF 1.1nF 100µF 1µF 220nF 220nF 330nF 1µF 270pF 8.2nF STTA506D 1N414818V BYT11-600STH/STW15NA50保险丝= 4A/250V1/2W 16V 400V 100V 25V 16V 63V 63V 400V 450V1.1M Ω1/4W桥= 4 x P600MT= 初级:88的12 x 32 AWG (0.2mm)轮流次级:9化的# 27AWG (0.15mm)核心:B1ET3411A 汤姆逊- CSFgap: 1,6mm for a total 初级 inductance of 0.9mHf SW = 80到92kHz P O = 200W V 输出= 400V I rms 最大= 2.53A V OVP = 442V I PK 最大= 6.2A9/17L4981A - L4981B图10:参考电压与参考源,ence电流图11:参考电压与电源电压图12:参考电压与结Tem-温度图13:开关频率与结温度图14:门驱动器上升和下降时间图15:工作电源电流与电源电压10/17L4981A - L4981B图16:可编程欠压锁定出阈值图17:在调制频率归电源电压的半周期1Vl fsw10.80.8R22 = R23 6.80.40.40.20.2R23 (Kohm)04590135180Electrical degrees表1:可编程欠压分离阈值.V CC ON 11V 12V 13V 14V 14.5V 15V V CC OFF10V10.1V10.5V10.8V10.9V11VR2282kΩ220kΩ430kΩ909kΩ1.36MΩ2.7MΩR2312kΩ33kΩ62kΩ133kΩ200kΩ390kΩ图18:振荡器图11/17L4981A - L4981B图19:200W评估板电路.T= 初级:75的litz线20 x 32 AWG (0.2mm)轮流次级:8化的# 27AWG (0.15mm)核心:B1ET3411A汤姆逊- CSF差距:1.4mm,总初级电感的0.7mHf sw= 100kHz; V O= 400V; P O= 200W注意:启动电路通常V CC电容(C11图. 19)可以收取一个电阻借鉴整流电源电流.在评估板相反,启动电路组成的(Q2+R19+R15+Dz)被设计用来进行快速和有效供给的所有条件.一旦该L4981A / B已开始,参考引脚电压由6和R20 Q3,可确保Q2被打开关闭.可编程欠压分离该PCB允许插入一个电阻(R22, R23)夫妇修改输入电压的阈值.请参考图. 16和table1.12/17L4981A - L4981B 图20:P.C.板和组件的评估板电路(1:1规模布局).13/17L4981A - L4981B该评估板的设计采用了:一快不耗散启动电路,二极管(D2)加快跟进的MOS启动和关闭时间(即使一单个电阻可用于)外部分压器改善过流阈值精确老.此外有可能改变输入阈值电压使用外部分频器(R23和R22),如果出现问题的浪涌电流一NTC电阻器都可以使用.演出的PFC演示板已评估测试以下参数:PF(功率因数),A-THD(当前比例总谐波失真),H3..H9(百分比current’s n th谐波振幅),∆V o(输出电压纹波),V o(输出电压),η(效率).测试配置,设备和结果包括:AC电力消息来源LARCET /3KWPM1200AC电力分析仪EMI过滤器PFCL4981演示负荷D94IN057V i (V rms) 88 110 132 180 220 260f(Hz)606060505050P i(W)222220218217217216PF A-THD(%)H3(%)1.981.401.161.521.681.84H5(%)0.610.400.400.650.831.30H7(%)0.550.310.350.400.570.39H9(%)0.700.280.310.340.480.73V O(V)390392394396398400∆VO(V)888888PO(W)200201202203204205η(%)90.291.692.893.894.295.20.9990.9990.9990.9990.9970.9952.941.791.711.882.253.30EMI/RFI滤波器谐波含量的测定已通过使用一EMI/RFI过滤器之间的中间人在AC源和被测演示板,而没有被计算效率过滤器的贡献.T1线C1T2PFCC地球D94IN052其中:T1 = 1mH T2 = 27mH C1 = 0.33µF, 630V C2 = 2.2nF, 630V14/17L4981A - L4981B SO20 包装机械数据暗淡.最小.AA1BCDEeH h L K100.250.42.350.10.330.2312.67.41.2710.650.751.270.3940.0100.016mmTYP.最大.2.650.30.510.32137.6最小.0.0930.0040.0130.0090.4960.2910.0500.4190.0300.050寸TYP.最大.0.1040.0120.0200.0130.5120.2990(分)8(最大)Lh x 45°AB e KHDA1C2011E110SO20MEC15/17L4981A - L4981BDIP20 包装机械数据暗淡.最小.a1Bbb1DEee3FIL Z3.31.348.52.5422.867.13.930.1300.0530.2541.390.450.2525.40.3350.1000.9000.2800.1551.65mmTYP.最大.最小.0.0100.0550.0180.0101.0000.065寸TYP.最大.16/17L4981A - L4981B 提供的资料被认为是准确和可靠.然而,意法半导体的后果不承担任何责任这类信息也不对任何第三方的专利或可能导致其使用的其他权利的侵犯使用.没有许可证授予暗示或以其他方式意法半导体任何专利或专利的权利.规范本出版物中提到如有变更,恕不另行通知.本刊物并取代以前提供的所有信息.意法半导体产品不授权使用的关键部件寿命支持设备或系统的意法半导体未经明确的书面批准.ST的标志是意法半导体公司的注册商标©1998意法半导体在意大利––印刷版权所有意法半导体公司集团澳大利亚-巴西-加拿大-中国-法国-德国-意大利-日-韩国-马来西亚-马耳他-墨西哥-摩洛哥-荷兰-新加坡-西班牙-瑞典-瑞士-台湾-泰国-英国- U.S.A.17/17。
XR4981___________________________________________________________________________________________________________________ __XySemi Inc - 1 - SYNCHRONOUS BOOST CONTROLLER3V~36V Input 5V~36V Output , Extended NMOSGENERAL DESCRIPTIONXR4981 is a high efficiency synchronous boost controller that converts from 3V ~36V input range and up to 36V output voltage with an outside N-channel MOSFET for the synchronous switch. The XR4981 includes adjustable current limit, adjustable soft-start, adjustable compensation net and thermal shutdown preventing damage in the event of an output overload.For different application we can select suitable compensation net 、current limit 、soft start and select suitable MOSFET to obtain a high efficiency 。
FEATURES● 3V~36V input voltage range● Adjustable output voltage from 5V to36V● 1.21V VFB reference voltage ● Adjustable current limit ● Adjustable soft-start● Adjustable compensation net ● Input under voltage lockout● 400Khz fixed Switching Frequency ● Thermal Shutdown ● QFN3x3-16 Package● Rohs Compliant and Halogen FreeFigure 1. Typical Application Circuit1Figure 2. Typical Application Circuit2(Special for Single Li-Battery Input) APPLICATIONS●Power Bank●QC 2.0 Device●Type C USB Device●Power Amplify Device●Portable Class D Device●5V/9V/12V BUS Power SupplyTypical application for input and output:Input Voltage(V) Output Voltage(V) /Output Current(A) schematic3.3~4.35 5V/5A 9V/3A 12V/2A 14.8V/2A 20V/1.5A Circuit25 9V/4A 12V/3A 14.8V/2A 20V/1.5A Circuit16~8.4 9V/5A 12V/3A 14.8V/2.5A 20V/2A Circuit112~16.8 19V/4A 24V4A 20V/5.5A Circuit1ORDERING INFORMATIONPART NUMBER TEMP RANGESWICHINGFREQUENCYOUTPUTVOLTAGE (V)PACKAGE PINSXR4981 -40°C to 85°C 400KHZ ADJ QFN3x3 16 PIN CONFIGURATIONFigure 2. PIN Configuration (TOP View)PIN DESCRIPTIONPIN NUMBERPINNAMEPIN DESCRIPTION1 VCC Controller inside power logic Power Supply,inside LDO output pin,Must be closelydecoupled to GND with a 22uF MLCC capacitor.2 AVIN Controller Power Supply,inside LDO input pin., Connect this pin with input voltage.Must be closely decoupled to GND with a 1uF MLCC capacitor.3 VISP Input current sense pin1-Positive side4 VISN Input current sense pin1-Negative side5 COMP Loop compensation pin. Connect a RC network across this pin and ground to stabilize the control loop.6 PGOOD Power good indicator. Open drain output, pull low when the output < 90% or >110% of regulation voltage, high impendence otherwise.7 EN Enable Input. Pull high to turn on the IC. Do not let this pin float.8 FB Feedback pin. Connect to the center of resistor voltage divider to program the output voltage: VOUT=1.2V×(R1/R2+1), please place this network close to FB pin9 AGND Analog ground10 SS Soft-start setting pin, Select 10nF~100nF Css to set different soft-start time11 OC Input current setting pin. Connect a resistor Roc from this pin to AGND to program output current limitation threshold. For Example,10A~12A current limit by 100K12 BS Boot-Strap pin. Supply Rectified FET’s gate driver. Decouple this pin to LX with 0.1uFceramic cap .Please select Low VF schottky Diode.13 SW Switching Pin. Connect an inductor from power input to LX pin. Please select low Rdson & Big Enough Id & Isat inductor.14 SDRV High Side Power NMOS gate driver pin, Connect this pin to the gate of the high side synchronous rectifier N-channel MOSFET.15 PGND Power Ground16 MDRV LOW Side Power NMOS gate driver pin, Connect this pin to the gate of the low side N-channel MOSFETEPAD EPAD GND and Thermal Pad, Please connect with mass metal plane for good heat dissipationABSOLUTE MAXIMUM RATINGS(Note: Do not exceed these limits to prevent damage to the device. Exposure to absolute maximum rating conditions for long periods may affect device reliability.)PARAMETER VALUE UNIT AVIN、VISP、VISN、BS、SW、EN 40V V SDRV SW+6 V Other Pins 6V V Operating Ambient Temperature -40 to 85 °C Maximum Junction Temperature 150 °C Storage Temperature -55 to 150 °C Lead Temperature (Soldering, 10 sec) 300 °CELECTRICAL CHARACTERISTICS(V IN = 3.6V, T A= 25 C unless otherwise specified)PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNIT Input Voltage Range V IN 3 36 V Inside LDO output VCC Vin>=5V 4.2 V Boost output voltage range Vout 5 40 V UVLO Threshold V UVLO V HYSTERESIS =100mV 2.7 VOperating Supply CurrentI SUPPLY V FB =1.5V,EN=Vin=3.6V, I Load =0 70µAShutdown Supply Current V EN =0V, V IN =3.6V 10 Regulated FeedbackVoltageV FB 1.18 1.21 1.24 V Peak inductor Current limit(N-MOSFET current limit)Ilim Roc=100K & Rs=3mohm 12.5 A Oscillator Frequency F OSC 0.32 0.4 0.48 MHz Enable Threshold V IN = 2.3V to 5.5V 0.3 1 1.5 V Enable Leakage Current -0.1 0.1 µA Soft Start Time Tss Css=100nF Io=2A 300 msFunctional Block DiagramControl Logic-+Soft StartvrefEA-Current Sesneslope++ICMP4.2V LDO OSCVCCVINVISP VISNVOCCOMPSSFBGNDMDRVSWSDRVBSENPower GoodPGENCONTROLLER CIRCUITThe XR4981 is a constant-frequency ,PWM control , current mode boost controller. In normal operation, the external Main MOSFET is turned on each cycle when the oscillator gives an on-state. and then turned off when the main comparator -ICMP give an off state. The peak inductor current is controlled by the “COMP ” pin, which is the output of the error amplifier EA. The EA compares the signal VFB pin which is the feedback of VOUT , with the internal bandgap reference voltage 1.21V.. Peak inductor current is sensed by a resistor which is connected series with inductor. The inductor current is determined by the output of EA. A slope compensation is added because of the PWM control method. When the load current increases, it causes decrease in VFB, which in turn causes the output of EA increases until the average inductor current matches the new load current.OUTPUT VOLTAGE PROGRAMMINGThe output voltage is set by a resistive divider according to the following equation:Typically we suggest R10=10K or 12K and then determine R9 from the above equation 。
L4981 功率因数校正集成电路的特点及应用1. 简介功率因数校正电路( PFC) 分为有源和无源两。
无源校正电路通常由大容量的电感、电容和工作于工频电源的整流器组成。
有源校正电路往往工作于高频开关状态, 它们的体积小、重量轻, 比无源校正电路效率高。
图1 是功率因数校正电路的三种不同结构形式。
不同的结构形式各有其特点,现分述如下:A 类:●功率因数高;●Vout ≥Vin ;●滤波电路体积小;●无短路保护;●开关电压= Vout ;●门极驱动信号接地。
B 类:●功率因数低;●Vout ≤Vin ;●滤波电路体积大;●有短路保护;●开关电压= Vin ;●门极驱动信号浮地。
C 类:●功率因数高;●Vout 为任意值;●滤波电路体积大;●有短路保护;●开关电压= Vin + Vo●门极驱动信号浮地。
由于Boost 电路简单、实现成本低,是应用最广泛的功率因数校正电路。
除了上述特点以外,与整流桥串联的电感能减少高频噪声, 减少RFI 输入滤波器的体积,降低成本。
由于在电感去磁时输出由电源供电,电感只存储一部分用于输出的能量,因此电感的体积也可以减小。
图2 是此电路的原理框图。
2. 功率因数校正集成电路L 4981 的内部结构若用集成电路实现图2 的控制电路, 可使控制电路更简洁, 可靠性更高。
L4981 是意大利SGS —Thomson 公司生产的功率因数校正电路,其内部结构框图见图3 所示。
它由内部基准稳压器、振荡器、误差放大器、乘法器、峰值电流比较器、驱动和控制逻辑电路等几部分组成。
能完全实现图2 中电路的功能。
2. 1 特点●工作电压范围宽21~25V ;●内含欠压锁定;●内含基准电压源;●具有闭环控制的误差放大器;●具有过压保护电路;●外围控制电路简单;●使用和调节方便;●性价比高。
2. 2 引脚功能L 4981 采用20 引脚双列直插式封装, 图3 给出了L 4981 的内部结构,各引脚功能如下:1 脚:模拟地;2 脚:峰值电流检测端;3 脚:输出电压过压检测端;4 脚:输入侧交流电流检测端;5 脚:电流放大器输出端;6 脚:比例因子;7 脚:输入侧交流电压RMS 值检测端;8 脚:乘法器输出端;9 脚:电流反馈输入端;10 脚:数字地;11 脚:参考电压;12 脚:恒流源;13 脚:电压误差放大器输出端;14 脚:电压反馈输入端;15 脚:欠压反馈输入端;16 脚:同步信号17、18 脚:分别为振荡器外接电阻、电容端;19 脚:电源;20 脚:功率管门极驱动信号3. 应用电路采用L 4981 的功率因数校正电路如图4 所示。
基於L4981控制的無橋PFC控制器的設計L4981 PFC控制器L4981 PFC控制器的應用特性,這是一個高性能器件,它系以平均電流型模式,驅動輸出級可驅動1.5A,這對此應用至關重要.器件細節描述見AN628,功能方框圖見圖1.無整流橋PFC的拓扑描述傳統升壓式拓扑是PFC應用中最有效的,它用於整流橋之后,由整流橋將AC變為DC,然後加Boost拓扑,見圖2.這種結構對中,小功率電源是適宜的,隨著功率的加大,二管極橋的損耗已使散熱更困難.無橋電路拓扑解決了仍舊使用Boost拓扑而節省橋損耗的方法,其簡化電路如圖3所示.從功能點著眼,它很系兩個共地Boost變換器,傳統上電流會流過整流橋的兩支串聯二極管,而在無橋拓扑中,電流僅流過一個功率MOS的體二極管,作回程通路.為分析此電路的工作,將其分成兩個部分,第一部分工作在Boost級,而另一部分則工作在交流AC的返回通路,參見圖4.左邊,在AC正半周時為Boost變換器,右邊在負半周時為電流返回通路.正半周工作周期.當AC.輸入電壓為正時,M1的柵由控制器驅動.電流從輸入經過電感,儲能,M1關斷時,電感中能量通過D1進入電容及負載.而回程經過M2體二極管.回到AC源.(見圖4A) 在MOS關斷時,電感中電流經升壓二極管,至電容及負載.負半周期工作.在負半周.如圖4B所示,M2開啟,電流流經電感,儲存能量.在M2關斷時,能量通過D2釋放,然後經負載並经M1的體二極管返回.注意,兩個功率MOS是同時驅動的,沒有分哪部分為主動升壓,哪部分做電流回路.在每種情況下電流回程的功耗都降低了.電流檢測.PFC部分功能需控制主回路流過電流,它很象電壓波形.根據此需要,要檢測此電流,並將此信號送到控制電路.在平均電流型控制中,檢測此整流電流相當於檢測AC電流.於是可用檢測電阻完成.如圖5A.L4981. A/B的電流環的設計去掌握此信號.這很容易實現.但在大功率時,就必須用電流互感器,以便改善效率.如圖5B.在無橋PFC拓扑中,由於采用整流橋.電流連續變換方面,使電流檢測變得復雜,此外大功率應用時,功耗也大.因此,要用互感器.一個電流互感器磁芯典型為鐵氧體.初級僅1匝.次級一般為50T或100T.電流互感器在低頻下是不能工作的.因此,它必須加在高頻電流開關處,且磁芯還必須能復位.這通常用二極管來完成.為減小升壓拓扑中的電感電流.采用兩個電流互感器共同完成,如圖5b.當檢測變壓器加入無橋的PFC時,也可象圖5b一樣,不要長時間有效.比Boost情況更復雜.這里有一對MOS.(M1.M2)及一對二極管(D1.D2).我們將兩信號合成在一起.檢測二極管電流用互感器法可以簡化.在兩二極管後用一個電流互感器即可.每半周只有一支二極管工作.對於功率MOS部分.則必須用兩個.使用結構見圖6,不用太復雜即可完成.兩個合並在一起,二次側采用中心抽頭方式,加兩個二極管整流即可.由於偶合的兩繞組可不用L1的去磁.用一輔助晶體管Q1在其關斷期間使其開路,對L4981控制器.脫線可確保不少於周期的5%.Q1可以是一小信號晶體管,因為其開關電流很小,互感器二次匝數很多.為電流互感器,要用一高μ值磁芯.( μ≧5000).二次用50T.其它控制電路.輸入電壓檢測,在標準升壓拓扑中,整流輸入電壓波形的檢測采用電阻.並由一個內部電路將其鏡象後進入乘法器.無橋PFC之完整電路見圖7這是基於如下考慮.有用信號之頻率.遠低於開關頻率(KHz)升壓電感在低頻時,如同短路.由於功率MOS漏極開關接至地.(經體二極管)結果其等效電路如圖7B.其電壓關系電流關系如流入I ac端一樣,為代入之後,得:極點必須位於頻率的高端,而沒有使輸入波形畸變.在此同時,低端要濾掉開關頻率.在本應用中,等效電阻選作R eg=324KΩ.它剛好滿足電流放大器的設計.結果是R1為300KΩ,R2為12 KΩ.極點位於開關頻率前面的十倍進位處.實際上,在我們的測試中,2.7nf的標準值被選用.電壓前饋電壓前饋,在寬輸入電壓範圍時有用的功能.它需要與rm3成比例的DC電壓即主輸入電壓值.對於L4981.此值為1.5V~5.5V之間.為此可以鏡象出很寬的變化範圍.由於整流出的主頻率為100~120Hz.我們需要對此頻率有一個大的抑制.由於前饋作用時間正比於帶寬,我們介紹一個第二級的濾波器.它容許在基波頻率与響應時間的衰減之間有很好的折衷.圖8給出與圖7很相象的狀態.定義H LP(S)電感電壓和濾波輸出V LP之间的傳輸函數,我們有如下關系式:時間常數以簡單方式展示出來,極點的位置可以相從計算.常數K LP根據寬範圍定義.V_即88V至264V之間.選擇計算這個值在某中間點上.為滿足這一點,要選擇:對於電容我們設置基頻80db的衰減,使用商用值.此設計在3Hz及4Hz處有兩個極點並在100Hz處有80db衰減.實際例子.本篇應用注意中上述要點所描述的電路拓扑是獨特的,其餘要點對PFC設計都很象.標準模式的PFC升壓式應用采用L4981.從現在開始,我們可以參照設計實例.實際上,為了提升所描述的電路結構的轉換效率,采用了一對MOS,為了評估目的,用PCB板來實現它.讓我們設計一個800W的PFC.目標:1.寬輸入範圍電壓從110V rms到220V rms.2.輸出功率800W.3.輸出電壓400V DC.開關頻率為50KHz.此選擇為平衡磁芯尺寸及MOS開關損耗.升壓電感設計.升壓電感的設計,綜合電流紋波百分比及骨架成本,此部分設計與標準拓扑時相同.在本應用中,放置單一電感接到兩相之一,也可選擇采用兩個電感(兩繞組在同一磁芯上),如圖9所示.這種模式改善了共模抑制,並防止兩個功率MOS的漏電容之間的差異.為簡化模型假設接近1的耦合因子,導致電路示於圖9.電感量正比於匝數的平方,對兩個繞組有(整個)所需匝數,由給定的電感量,根據在同一磁心上,同樣的兩個繞組感量相同.其差別僅在於兩個繞組分成各自獨立的兩部分.為簡化,我們可以設計一個耦合電感,用同樣的準則同樣的匝數及同樣的導線制作的標準電感.對磁芯,要設計成一個有空氣隙的裝置.磁芯尺寸可選擇在最大I pk之下,對800W的目標參數可超過14A.(含I pk=15A)對於800W,正常電流紋波選擇25%,升壓電感為450μH.磁芯需要可選E66/33/27,它的關鍵參數如下:氣隙大小要防止其飽和,並將磁芯尺寸最佳化,選3mm使用方式如下:此結果確認此磁芯為最小尺寸.用下面公式求匝數,需設計整個的感量L.結果求出N=38T,在我們的方案中為19T+19T.為了減少高頻損耗,繞組采用多根導線並繞,可以估算出低頻電流的損耗.用下面的公式.此處用20根並聯,每根直徑0.4mm.輸出濾波電容對輸出的大電解電容,我們考慮100Hz可行的電壓紋波.此處f為輸入頻率.選用10Vac峰,電壓變化(在400V上疊加).Co值應為>318μF,選330μF.功率器件選擇的功率器件,取決於拓扑及應用環境的空間尺寸.工作在連續電流型帶快速恢復二極管的品種.在STM系列中600V電壓兩升壓二極管選為STTH8R06FP,為TO-220封裝,很易加裝散熱片.功率MOS需要500V擊穿電壓,為找到最佳方案.必須考慮全部影響功耗的參數及成本性能比.對比800W應用選擇STY34NB50F.共計用四支功率MOS,不用附加驅動器.L4981即可驅動.800W無整流橋評估電路如下(圖10)材料單如下:注:對於評估電路及外部耦合電感,EMC.此處使用共模電感30T+30T,導線0.8mm.(40×17×9mm.磁芯). 磁化電感.L m=8mH.漏感小於50μH.下面給出600W無橋PFC的目標參數.1.輸入電壓110V~220V rms2.P O=600W3.V O=400V.開關頻率75KHz.減小磁芯尺寸及功率MOS電流.升壓電感.L=440μH,電流紋波22%,磁芯E55/28/21.气隙2.5mm.N=42, 采用21T+21T . 仍用多根並聯.P cu≦3.8W. 14根並聯,導線0.4mm,直徑.輸出電容330μF/450V.功率器件.升壓二極管與800W同.STTH 8R06FP.功率MOSFET.改為2支.STW26NM50F. 600W無整流橋PFC電路如下(圖11).材料單如下:結論革命性的無整流橋PFC,電路拓扑成功地提升了效率.圖12給800W的效率曲線. 評估結果.(表格).。
led屏专用5V40A开关电源,用TL494、KA7500等集成块,通用设计TL494电路图的工作原理,主要是各元件的功能整流器之前的不用说了吧?494 脉宽调制输出至V3、V4。
494 的各脚功能请看其pdf资料。
1 脚是比较器+输入端,接电压监测。
如图,VR1 是输出电压调整。
V3、V4 是功率推动三极管。
T2是推动变压器,将推动电压提高以驱动末级功率管,末级工作在开关状态。
V2、V3 接成推挽功率放大。
VD5、VD6是反峰保护二极管。
R3、C8是尖峰吸收网络。
VD9、VD10、C9 组成全波整流滤波,给494供电。
T1 的右部分就是低压部分了。
整流滤波输出,没什么特别的。
220V交流电经VD1整流,C5,C6滤波得到300V左右直流电。
此电压经R1,R2分压后约150V给C7充电,经T1高压8,9脚绕组,T2绕组8,6脚,V2等形成启动电流。
T2反馈绕组7,9绕组,10,6绕组产生感应电压,使V1,V2轮流导通。
因此在T1低压供电绕组(6,7,13)产生电压,经VD9,VD10整流,C9滤波,给TL494,,V3,V4等供电。
此时输出电压较低。
TL494启动后其8脚,11脚轮流输出脉冲,推动V3,V4,经T2反馈给绕组(,)激励V1,V2。
使V1,V2,由自激状态转入受控状态。
T2输出绕组电压上升,此电压经R31,R29,R30,VR1分压后反馈给TL494的1脚(电压反馈)使输出电压稳定。
J1,J2是电流取样电阻,充电或输出时J1,J2产生压降。
此电压经R36反馈给TL494的15脚(电流反馈)使充电或输出电流恒定。
大体原理已经说清楚了,具体原理还有什么不明白追问,我就不一一说明每个元件的作用了。
R8,R9,R40 是V2的偏置电阻,VD8反馈整流,经R10,R11到V2基极,加速V2导通,C11是加速电容,可以加速V2的导通和截止。
V1的元件功能同V2。
其他的应该没有什么问题了吧。
LM4981Ground-Referenced,80mW Stereo Headphone Amplifier with Digital Volume ControlGeneral DescriptionThe LM4981is a stereo,ground-referenced,output capacitor-less headphone amplifier capable of delivering 83mW of continuous average power into a 16Ωload with less than 1%THD+N while operating from a single 3V supply.The LM4981features a new circuit technology that utilizes a charge pump to generate a negative reference voltage.This allows the outputs to be biased about ground,thereby elimi-nating output-coupling capacitors typically used with normal single-ended loads.The LM4981provides high quality audio reproduction with minimal external components.A ground referenced output eliminates the output coupling capacitors typically required to drive single-ended loads such as headphones.The ground reference architecture reduces components count,cost and board space consumption,making the LM4981ideal for handheld MP3players,mobile phones and other portable equipment where board space is at a premium.Eliminating the output capacitors also improves low fre-quency response.The LM4981operates from a single 2.0V –4.2V supply,and features a 2-wire,up/down volume control that sets the gain of the amplifier between -33dB to +12dB in 16discrete steps.Selectable (active high/low)low power shutdown mode provides flexible shutdown control.Superior click and pop suppression eliminates audible transients during start-up and shutdown.The LM4981features an Automatic Standby Mode circuitry (patent pending).In the absence of an input signal,after approximately 12seconds,the LM4981goes into low cur-rent standby mode.The LM4981recovers into full power operating mode immediately after a signal is applied to either the left or right input pins.This feature saves power supply current in battery operated applications.Key Specificationsj Improved PSRR at 217Hz 67dB (typ)j THD+N at 1kHz,50mWinto 32ΩSE (3V)1.0%(typ)j Single Supply Operation (V DD )2.0to 4.2V j Power Output at VDD =3V,RL =16Ω,THD ≤1%83mW (typ)j Shutdown Current0.01µA (typ)Featuresn Ground Referenced Outputs n No Output Coupling Capacitors n 16-Step Volume Control n Auto-Standby Mode n High PSRRn Available in Space Saving LLP package n Low Power Shutdown ModenImproved Click and Pop Suppression Eliminates Noises During Turn-on and Turn-off Transients n 2.0V to 4.2V Operationn 83mW Per Channel Into 16Ωn Selectable Shutdown Controls (Active High/Low)Applicationsn Portable MP3Players n Mobile Phones n PDAsBoomer ®is a registered trademark of National Semiconductor Corporation.November 2005LM4981Ground-Referenced,80mW Stereo Headphone Amplifier with Digital Volume Control©2005National Semiconductor Corporation Connection DiagramsLLP Package20147338Top ViewOrder Number LM4981SQSee NS Package Number SQA16ALLP Marking20147321Top View U =Plant Code ZX =Date Code X =Die Traceability Bottom Line =Part NumberL M 4981 2Typical ApplicationPin Name Function1CP VDD Charge Pump Power Supply2CCP+Positive Terminal-charge pump flying capacitor3PGND Power Ground4CCP-Negative Terminal-charge pump flying capacitor5VCP_OUT Charge Pump Output6CLOCK Clock 7UP/DN Up /Down 8INR Right Input9AV DD Positive Power Supply -Amplifier10OUT R Right Output11AV SS Negative Power Supply -Amplifier12OUT L Left Output 13IN L Left Input 14SGND Signal Ground 15SD Shutdown 16SD MODEShutdown Mode Pin20147337FIGURE 1.Typical Audio Amplifier Application CircuitLM49813Absolute Maximum Ratings (Note 2)If Military/Aerospace specified devices are required,please contact the National Semiconductor Sales Office/Distributors for availability and specifications.Supply Voltage 4.5VStorage Temperature −65˚C to +150˚C Input Voltage−0.3V to V DD +0.3V Power Dissipation(Note 3)Internally LimitedESD Susceptibility (Note 4)2500VESD Susceptibility (Note 5)250V Junction Temperature150˚COperating RatingsTemperature Range T MIN ≤T A ≤T MAX −40˚C ≤TA≤85˚CSupply Voltage (V DD )2.0V ≤V CC ≤4.2VElectrical Characteristics V DD =3V (Notes 1,2)The following specifications apply for V DD =3V,AV =1V/V R L =32Ω,f =1kHz,unless otherwise specified.Limits apply to T A =25˚C.SymbolParameterConditionsLM4981Units (Limits)Typical (Note 6)Limit (Note 7)I DD Quiescent Power Supply Current V IN =0V,R L =∞710mA I DD Standby Power Supply Current 2.3mA I SD Shutdown Current V SD =GND0.13.5µA V IH Logic Input Voltage High SHDN,SDM,CLOCK,U/D 0.7V DD V V ILLogic Input Voltage Low SHDN,SDM,CLOCK,U/D 0.3V DD V Digital Volume Input Referred Maximum Gain 12dB Input Referred Minimum Gain–33dB Volume Step Size 3dB Step Size Error±0.3dB Channel-to-Channel Volume Tracking ErrorAll gain settings 0.15dB T WU Wake Up Time 300µsV OSOutput Offset VoltageR L =32Ω15mV P OOutput PowerTHD+N =1%(max);f =1kHz,R L =16Ω,one channel 83mW THD+N =1%(max);f =1kHz,R L =32Ω,one channel75mWTHD+N =1%(max);f =1kHz,R L =16Ω,(two channels in phase)4033mW (min)THD+N =1%(max);f =1kHz,R L =32Ω,(two channels in phase)4743mW (min)THD+N Total Harmonic Distortion P O =60mW,f =1kHz,R L =16Ωsingle channel0.03%P O =50mW,f =1kHz,R L =32Ωsingle channel0.02PSRRPower Supply Rejection RatioV RIPPLE =200mV P-P Sine,f RIPPLE =1kHz,Inputs AC GND,Cl =1µF65dBV RIPPLE =200mV P-P Sine,f RIPPLE =10kHz,Inputs AC GND,Cl =1µF50dBV RIPPLE =200mV P-P Sine,f RIPPLE =217Hz67dB ∈OSOutput NoiseA-Weighted Filter 11µVL M 4981 4LM4981 Electrical Characteristics V=3V(Notes1,2)(Continued)DDNote1:All voltages are measured with respect to the GND pin unless other wise specifiedNote2:Absolute Maximum Ratings indicate limits beyond which damage to the device may occur.Operating Ratings indicate conditions for which the device is functional but do not guarantee specific performance limits.Electrical Characteristics state DC and AC electrical specifications under particular test conditions which guarantee specific performance limits.This assumes that the device is within the Operating Ratings.Specifications are not guaranteed for parameters where no limitis given,however,the typical value is a good indication of device performance.Note3:The maximum power dissipation must be derated at elevated temperatures and is dictated by T JMAX,θJA,and the ambient temperature,T A.The maximum allowable power dissipation is P DMAX=(T JMAX–T A)/θJA or the number given in Absolute Maximum Ratings,whichever is lower.For the LM4917,see powerderating currents for more information.Note4:Human body model,100pF discharged through a1.5kΩresistor.Note5:Machine Model,220pF-240pF discharged through all pins.Note6:Typical specifications are specified at+25˚C and represent parametric norm.Note7:Limits are guaranteed to National’s AOQL(Average Outgoing Quality Level).5Typical Performance CharacteristicsTHD+N vs FrequencyV DD =1.8V,R L =16Ω,P O =5mWTHD+N vs FrequencyV DD =1.8V,R L =32Ω,P O =5mW2014733920147340THD+N vs FrequencyV DD=3V,R L =16Ω,P O =50mWTHD+N vs FrequencyV DD=3V,R L =32Ω,P O =50mW2014734120147342THD+N vs FrequencyV DD =3.6V,R L =16Ω,P O =100mW THD+N vs FrequencyV DD =3.6V,R L =32Ω,P O =100mW2014734320147345L M 4981 6Typical Performance Characteristics(Continued)THD+N vs FrequencyV DD =4.2V,R L =16Ω,P O =150mWTHD+N vs FrequencyV DD =4.2V,R L =32Ω,P O =150mW2014734620147347THD+N vs Output PowerV DD=1.8V,R L =16Ω,f =1kHz,one channelTHD+N vs Output PowerV DD=1.8V,R L =16Ω,f =1kHz,two channels2014734820147349THD+N vs Output PowerV DD=1.8V,R L =32Ω,f =1kHz,one channelTHD+N vs Output PowerV DD=1.8V,R L =32Ω,f =1kHz,two channels2014735220147353LM49817Typical Performance Characteristics(Continued)THD+N vs Output PowerV DD =3V,R L =16Ω,f =1kHz,one channelTHD+N vs Output PowerV DD =3V,R L =16Ω,f =1kHz,two channels2014735420147355THD+N vs Output PowerV DD=3V,R L =32Ω,f =1kHz,one channelTHD+N vs Output PowerV DD=3V,R L =32Ω,f =1kHz,two channels2014735620147367THD+N vs Output PowerV DD=3.6V,R L =16Ω,f =1kHz,one channelTHD+N vs Output PowerV DD=3.6V,R L =16Ω,f =1kHz,two channels2014736820147369L M 4981 8Typical Performance Characteristics(Continued)THD+N vs Output PowerV DD =3.6V,R L =32Ω,f =1kHz,one channelTHD+N vs Output PowerV DD =3.6V,R L =32Ω,f =1kHz,two channels2014737020147371THD+N vs Output PowerV DD =4.2V,R L =16Ω,f =1kHz,one channel THD+N vs Output PowerV DD =4.2V,R L =16Ω,f =1kHz,two channels2014737220147373THD+N vs Output PowerV DD=4.2V,R L =32Ω,f =1kHz,one channelTHD+N vs Output PowerV DD=4.2V,R L =32Ω,f =1kHz,two channels2014737420147375LM49819Typical Performance Characteristics(Continued)Output Power vs Supply Voltage R L =16Ω,f =1kHz,one channelOutput Power vs Supply Voltage R L =16Ω,f =1kHz,two channels2014737620147377Output Power vs Supply Voltage R L =32Ω,f =1kHz,one channel Output Power vs Supply Voltage R L =32Ω,f =1kHz,two channels2014737820147379Supply Current vs Supply VoltagePower Dissipation vs Output PowerR L =16Ω,V DD =3V2014738020147381L M 4981 10Typical Performance Characteristics(Continued)Power Dissipation vs Output PowerR L =32Ω,V DD =3VPSRR vs Frequency V DD =3V,R L =32ΩV ripple =200mVp-p2014738220147383LM498111Application InformationDIGITAL VOLUME CONTROLThe LM4981’s gain is controlled by the signals applied to the CLOCK and UP/DN inputs.An external clock is required to drive the CLOCK pin.At each rising edge of the clock signal,the gain will either increase or decrease by a 3dB step depending on the logic voltage level applied to the UP/DN pin.A logic high voltage level applied to the UP/DN pin causes the gain to increase by 3dB at each rising edge of the clock signal.Conversely,a logic low voltage level applied to the UP/DN pin causes the gain to decrease 3dB at each rising edge of the clock signal.For both the CLOCK and UP/DN inputs,the trigger point is 1.4V minimum for a logic high level,and 0.4V maximum for a logic low level.There are 16discrete gain settings ranging from +12dB maximum to −33dB minimum.Upon device power on,the amplifier’s gain is set to a default value of 0dB.However,when coming out of shutdown mode,the LM4981will revert back to its previous gain setting.The LM4981’s CLOCK and UP/DN pins should be de-bounced in order to avoid unwanted state changes during transitions between V IL and V IH .This will ensure correct operation of the digital volume control.A microcontroller or microprocessor output is recommended to drive the CLOCK and UP/DN pins.ELIMINATING THE OUTPUT COUPLING CAPACITOR The LM4981features a low noise inverting charge pump that generates an internal negative supply voltage.This allows the outputs of the LM4981to be biased about GND instead of a nominal DC voltage,like traditional headphone amplifi-ers.Because there is no DC component,the large DC blocking capacitors (typically 220µF)are not necessary.The coupling capacitors are replaced by two,small ceramic charge pump capacitors,saving board space and cost.Eliminating the output coupling capacitors also improves low frequency response.In traditional headphone amplifiers,the headphone impedance and the output capacitor form a high pass filter that not only blocks the DC component of the output,but also attenuates low frequencies,impacting the bass response.Because the LM4981does not require the output coupling capacitors,the low frequency response of the device is not degraded by external components.In addition to eliminating the output coupling capacitors,the ground referenced output nearly doubles the available dy-namic range of the LM4981when compared to a traditional headphone amplifier operating from the same supply volt-age.SUPPLY VOLTAGE SEQUENCINGIt is a good general practice to first apply the supply voltage to a CMOS device before any other signal or supply on other pins.This is also true for the LM4891audio amplifier which is a CMOS device.Before applying any signal to the inputs or shutdown pins of the LM4891,it is important to apply a supply voltage to the V DD pins.After the device has been powered,signals may be applied to the shutdown pins (see MICRO POWER SHUTDOWN)and input pins.POWER SUPPLY BYPASSINGAs with any power amplifier,proper supply bypassing is critical for low noise performance and high power supply rejection.Applications that employ a 3V power supply typi-cally use a 4.7µF capacitor in parallel with a 0.1µF ceramic filter capacitor to stabilize the power supply’s output,reduce noise on the supply line,and improve the supply’s transient response.Keep the length of leads and traces that connect capacitors between the LM4981’s power supply pin and ground as short as possible.POWER DISSIPATIONPower dissipation is a major concern when using any power amplifier and must be thoroughly understood to ensure a successful design.Equation 1states the maximum power dissipation point for a single-ended amplifier operating at a given supply voltage and driving a specified output load.P DMAX =(V DD )2/(2π2R L )(1)Since the LM4981has two operational amplifiers in one package,the maximum internal power dissipation point is twice that of the number which results from Equation 1.Even with the large internal power dissipation,the LM4981does not require heat sinking over a large range of ambient tem-perature.From Equation 1,assuming a 5V power supply and a 32Ωload,the maximum power dissipation point is 40mW per amplifier.Thus the maximum package dissipation point is 80mW.The maximum power dissipation point obtained must not be greater than the power dissipation predicted by Equation 2:P DMAX =(T JMAX −T A )/θJA(2)For a given ambient temperature,T A ,of the system sur-roundings,Equation 2can be used to find the maximum internal power dissipation supported by the IC packaging.If the result of Equation 1is greater than that of Equation 2,then either the supply voltage must be decreased,the load impedance increased,or T A reduced.SHUTDOWN FUNCTIONIn order to reduce power consumption while not in use,the LM4981contains shutdown circuitry that is used to turn off the amplifier’s bias circuitry.In addition,the LM4981con-tains a Shutdown Mode pin,allowing the designer to desig-nate whether the part will be driven into shutdown with a high level logic signal or a low level logic signal.This allows the designer maximum flexibility in device use,as the Shutdown Mode pin may simply be tied permanently to either V DD or GND to set the LM4981as either a "shutdown-high"device or a "shutdown-low"device,respectively.The device may then be placed into shutdown mode by toggling the Shut-20147384FIGURE 2.Timing DiagramL M 498112Application Information(Continued) down pin to the same state as the Shutdown Mode pin.For simplicity’s sake,this is called"shutdown same",as the LM4981enters shutdown mode whenever the two pins are in the same logic state.The trigger point for either shutdown high or shutdown low is shown as a typical value in the Supply Current vs Shutdown Voltage graphs in the Typical Performance Characteristics section.It is best to switch between ground and supply for maximum performance. While the device may be disabled with shutdown voltages in between ground and supply,the idle current may be greater than the typical value of0.1µA.In either case,the shutdown pin should be tied to a definite voltage to avoid unwanted state changes.In many applications,a microcontroller or microprocessor output is used to control the shutdown circuitry,which pro-vides a quick,smooth transition to shutdown.Another solu-tion is to use a single-throw switch in conjunction with an external pull-up resistor(or pull-down,depending on shut-down high or low application).This scheme guarantees that the shutdown pin will not float,thus preventing unwanted state changes.AUTOMATIC STANDBY MODEThe LM4981features Automatic Standby Mode circuitry (patent pending).In the absence of an input signal,after approximately12seconds,the LM4981goes into low cur-rent standby mode.The LM4981recovers into full power operating mode immediately after a signal,which is greater than the input threshold voltage,is applied to either the left or right input pins.The input threshold voltage is not a static value,as the supply voltage increases,the input threshold voltage decreases.This feature reduces power supply cur-rent consumption in battery operated applications.Please see also the graph entitled Representation of Automatic Standby Mode Behavior in the Typical Performance Charac-teristics section.To ensure correct operation of Automatic Standby Mode, proper layout techniques should be implemented.Separat-ing PGND and SGND can help reduce noise entering the LM4981in noisy environments.Auto Standby mode works best when output impedance of the audio source driving LM4981is equal or less than50Ohms.While Automatic Standby Mode reduces power consumption very effectively during silent periods,maximum power saving is achieved by putting the device into shutdown when it is not in use. OUTPUT TRANSIENT(’CLICK AND POPS’) ELIMINATEDThe LM4981contains advanced circuitry that virtually elimi-nates output transients(’clicks and pops’).This circuitry prevents all traces of transients when the supply voltage is first applied or when the part resumes operation after coming out of shutdown mode.EXPOSED-DAP PACKAGE PCB MOUNTING CONSIDERATIONThe LM4981’s exposed-dap(die attach paddle)package (LD)provides a low thermal resistance between the die and the PCB to which the part is mounted and soldered.This allows rapid heat transfer from the die to the surrounding PCB copper traces,ground plane,and surrounding air.The LD package should have its DAP soldered to a copperpad on the PCB.The DAP’s PCB copper pad may be con-nected to a large plane of continuous unbroken copper.Thisplane forms a thermal mass,heat sink,and radiation areaHowever,since the LM4981is designed for headphone ap-plications,connecting a copper plane to the DAP’s PCBcopper pad is not required.The DAP on the LM4981shouldbe connected to GND to ensure correct functionality.SELECTING PROPER EXTERNAL COMPONENTSOptimizing the LM4981’s performance requires properly se-lecting external components.Though the LM4981operateswell when using external components with wide tolerances,best performance is achieved by optimizing component val-uesCharge Pump Capacitor SelectionUse low ESR(equivalent series resistance)(<100mΩ)ce-ramic capacitors with an X7R dielectric for best perfor-mance.Low ESR capacitors keep the charge pump outputimpedance to a minimum,extending the headroom on thenegative supply.Higher ESR capacitors result in reducedoutput power from the audio amplifiers.Charge pump load regulation and output impedance areaffected by the value of the flying capacitor(C C).A largervalued C C(up to3.3uF)improves load regulation and mini-mizes charge pump output resistance.Beyond3.3uF,theswitch-on resistance dominates the output impedance forcapacitor values above2.2uF.The output ripple is affected by the value and ESR of theoutput capacitor(C SS).Larger capacitors reduce outputripple on the negative power supply.Lower ESR capacitorsminimize the output ripple and reduce the output impedanceof the charge pump.The LM4981charge pump design is optimized for2.2uF,lowESR,ceramic,flying,and output capacitors.Input Capacitor Value SelectionAmplifying the lowest audio frequencies requires high valueinput coupling capacitors(C in A and C in B in Figure1).A highvalue capacitor can be expensive and may compromisespace efficiency in portable designs.In many cases,how-ever,the speakers used in portable systems,whether inter-nal or external,have little ability to reproduce signals below150Hz.Applications using speakers with this limited fre-quency response reap little improvement by using high valueinput and output capacitors.Besides affecting system cost and size,the input capacitorhas an effect on the LM4981’s click and pop performance.The magnitude of the pop is directly proportional to the inputcapacitor’s size.Thus,pops can be minimized by selectingan input capacitor value that is no higher than necessary tomeet the desired−3dB frequency.As shown in Figure1,the internal input resistor,R i and theinput capacitor,C i,produce a-3dB high pass filter cutofffrequency that is found using Equation(3).Conventionalheadphone amplifiers require output capacitors;Equation(3)can be used,along with the value of R L,to determine to-wards the value of output capacitor needed to produce a–3dB high pass filter cutoff frequency.f i-3dB=1/2πR i C i(3)LM498113Application Information(Continued)Also,careful consideration must be taken in selecting a certain type of capacitor to be used in the system.Differenttypes of capacitors (tantalum,electrolytic,ceramic)have unique performance characteristics and may affect overall system performance.(See the section entitled Charge Pump Capacitor Selection.)20147389Demo Board SchematicFIGURE 3.L M 4981 14Application Information(Continued)LM4981DEMO BOARD ARTWORKTop Layer20147390Mid Layer 120147391LM498115Application Information(Continued)Mid Layer 220147392Bottom Layer20147393L M 4981 16LM4981 Revision HistoryRev Date Description1.08/29/05Added the Typ Perf curves.1.19/02/05Added the Apps Information section andmore Typ Perf curves.1.29/06/05Added the LLP Marking and the table.1.39/23/05Input some text edits and also edited theApplication ckt dg(pg3).1.411/9/05Added the demo boards and Fig3.1.511/9/051st WEB released.17Physical Dimensionsinches (millimeters)unless otherwise notedOrder Number LM4981SQ NS Package Number NSQAL016National does not assume any responsibility for use of any circuitry described,no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.For the most current product information visit us at .LIFE SUPPORT POLICYNATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION.As used herein:1.Life support devices or systems are devices or systems which,(a)are intended for surgical implant into the body,or (b)support or sustain life,and whose failure to perform when properly used in accordance with instructions for use provided in the labeling,can be reasonably expected to result in a significant injury to the user.2.A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system,or to affect its safety or effectiveness.BANNED SUBSTANCE COMPLIANCENational Semiconductor manufactures products and uses packing materials that meet the provisions of the Customer Products Stewardship Specification (CSP-9-111C2)and the Banned Substances and Materials of Interest Specification (CSP-9-111S2)and contain no ‘‘Banned Substances’’as defined in CSP-9-111S2.Leadfree products are RoHS compliant.National Semiconductor Americas Customer Support CenterEmail:new.feedback@ Tel:1-800-272-9959National SemiconductorEurope Customer Support CenterFax:+49(0)180-5308586Email:europe.support@Deutsch Tel:+49(0)6995086208English Tel:+44(0)8702402171Français Tel:+33(0)141918790National Semiconductor Asia Pacific Customer Support CenterEmail:ap.support@National SemiconductorJapan Customer Support Center Fax:81-3-5639-7507Email:jpn.feedback@ Tel:81-3-5639-7560L M 4981G r o u n d -R e f e r e n c e d ,80m W S t e r e o H e a d p h o n e A m p l i f i e r w i t h D i g i t a l V o l u m e C o n t r o l。
®L4981AL4981B 功率因数校正控制助力PWM高达0.99P.F.限制线电流失真< 5%通用输入主电源饲料前锋线上与负载调节TION平均电流模式的PWM最小的噪声敏感度大电流双极型和DMOS的TO -TEM柱输出低启动电流(0.3mA TYP.)根据与HYS-电压分离磁滞和可编程接通阈值过压,过流的PROTEC -TION精确的芯片参考2%的EX -TERNALLY可供软启动描述该L4981 I.C.提供了必要的功能实现了非常高的功率因数高达0.99.在BCD 60II技术实现这个功率因数(PFC)预调节校正包含所有con-框图MULTIPOWER BCD技术DIP20SO20订购号:L4981X (DIP20)L4981XD (SO20)设计一个高效率的模式trol功能正弦电源线电流con-消耗.该L4981可以很容易地在系统的使用85V电源电压之间没有任何265V行开关.这种新的PFC提供了可能性工作在固定频率或调制(L4981A)频率(L4981B)优化的大小,九月19981/17L4981A - L4981B把过滤器;两个工作频率模式使用平均电流模式PWM con-控制器,保持正弦线电流不斜率补偿.除了功率MOSFET栅极驱动器,精密电压年龄引用(外部可用),误差放大器的fier,欠压分离,电流检测和绝对最大额定值符号V CCI GDRVV GDRVV VA-OUTI ACV CA-OUT V ROSCI COSC I FREQ-MOD V SYNCV IPKP totT opT stg13451711, 181816162针1920.Gate driv. output voltage t = 0.1µs电压在pins 3, 14, 7, 6, 12, 15电压误差放大器AC输入电流引脚电压8, 9电压电流放大器. (Isource = -20mA; Isink = 20mA)电压引脚17引脚电压11, 18输入漏电流调频灌电流(L4981B)同步.电压(L4981A)电压引脚2电压引脚2 t = 1µs功率消耗在T amb= 70°C功率消耗在T amb= 70°C工作环境温度StorageTemperature(DIP20)(SO20)参数电源电压(I CC≤50mA) (*)Gate driv. output 峰值 current (t = 1µs)水槽消息来源价值selflimit21.5-1-0.3到9-0.3到8.55-0.5到7-0.3到8.5-0.3到3-0.3到7155-0.3到7-0.3到5.5-210.6-40到125-55到150单位VΑAVVVmAVVVVmAmAVVVWW°C°C软启动均包括在内.为了限制人数外部元件,该器件集成了亲tections如过压和过流保护.该过电流水平可以使用简单的电阻L4981A.对于一个更好的精度和L4981B外部分压器必须使用.(*)最大包装功耗限制必须得到遵守.引脚连接(顶视图)L4981A L4981B 2/17L4981A - L4981B热数据符号R th j-amb参数热阻结到环境拨2080苏20120单位°C / W各端子的功能N.12名称P-GND IPK电源地.L4981A 峰值电流限制.得到一个电流限制使用单个电阻连接引脚2之间的感应电阻.为了有一个更好的精度之间的另一个引脚电阻2和一个参考电压(管脚11)必须添加.L4981B 峰值电流限制.精确的电流限制为获得使用两个外部电阻只.这些电阻必须连接之间的感应电阻,引脚2和参考电压.3OVP过电压保护.在此输入进行比较精确的内部电压5.1V (typ)参考用的升压输出电压通过一个电阻分压器在获得样本为了限制最大输出电压峰值.为AC 输入电流.输入电流成正比的电压整流电源产生,通过乘数,当前放大器的电流参考.电流放大器的输出.外部RC 网络决定因子的闭环增益.负荷前馈;这个电压输入引脚允许修改乘法器的输出电流比例负载,为了给一个与负载瞬态响应速度.最好工作关 系得到控制1.5V 和5.3V.如果不使用此功能,连接该管脚到参考电压(引脚= 11).输入线电压成正比RMS. compesates 的VRMS 输入线电压的变化.低通之间的连接线与整流7,一DC 电压端子滤波器比例在输入电压线路RMS 得到.达到最佳的控制是使用输入电压之间1.5V 和5.5V.如果不使用此功能连接该引脚的电压基准(引脚= 11).乘法器的输出.该引脚共同的乘数输出和输入电流放大器N.I.像I 高阻抗输入SENSE .的MULT-OUT 引脚必须采取不低于-0.5V.电流放大器的反相输入.必须小心,以避免下来goes 针-0.5V.信号接地.输出参考电压(typ = 5.1V ).电压refence 在±2%外部可用的准确性,它的内部电流限制,并能提供一个输出电流高达10mA.连接到地的电容定义了软启动时间.内部电流产生程序提供100µA (typ)确定收费的外部软启动电容器的时间常数.一个内部MOS 放电时,无论是外部软启动电容电压和UVLO 条件.误差放大器输出,RC 网络修复电压环增益特性.电压误差放大器的反相输入.这种反馈输入是通过一个连接分压器升压输出电压.可编程阈值输入电压下了锁.供求之间分压器电压和GND 可以连接,以方案的阈值打开.这种同步输入/输出引脚CMOS 逻辑兼容.经营中,如一个SYNC矩形波必须适用于该引脚. Opearting 作为同步,一个长方形的时钟脉冲可用于同步其他设备.调频电流输入.一个外部电阻必须连接在引脚16而为了纠正线电压调节振荡器的频率.连接到引脚16地面固定频率R 施加OSC 和C OSC获得.外部电阻连接到地修复了C 恒定充电电流OSC.外部电容连接到GND 修复了开关频率.电源输入电压.输出门驱动器.双极晶体管和DMOS 图腾柱输出级可以提供峰值超过1A 有用的驱动电流MOSFET 或IGBT 功率级.说明456IAC CA-OUT LFF7VRMS89101112MULT-OUT I SENSE S-GND V REF SS13141516VA-OUT VFEED P-UVLO 同步(L4981A)FREQ-MOD (L4981B)17181920R OSC C OSC V CC GDRV3/17L4981A - L4981B电气特性(除另有注明外V CC= 18V, C OSC= 1nF,R OSC= 24KΩ, C SS= 1µF, V CA-OUT= 3.5V, V ISENSE= 0V, V LFF= V号, I AC= 100µA, V RMS= 1V, V饲料= GND, V IPK= 1V, V OVP= 1V, T J= 25°C符号V IOI IB V13HV13L-I13I13V ref∆Vref∆Vref I ref scf oscPrameter输入失调电压电流输入偏置开环增益输出高电压输出低电压输出源电流输出灌电流参考输出电压负载调整线路调整短路电流初始精度频率稳定度V svp I18C I18D V18t W I16-I16V16L V16H 兰普谷峰值充电电流放电电流峰谷电压斜坡输出脉冲宽度灌电流输出低电压源电流输出高电压低输入电压高输入电压 3.580085100747611550%振幅V SYNC= 0.4VV COSC= 0VV SYNC= 4.5VV COSC= 6.7VV COSC= 3.5VV COSC= 3.5V0.90.30.41V FEED= 4.7VI VA-OUT= -0.5mAV FEED= 5.5VI VA-OUT= 0.5mAV FEED= 4.7V; V VA-OUT= 3.5VV FEED= 5.5V; V VA-OUT= 3.5V–25°C < T J< 85°CT j= 25°C I ref= 01mA≤I ref≤10mA–25°C < T J< 85°C12V≤V CC≤19V–25°C < T J< 85°CV ref= 0VT j= 25°C12V≤V CC≤19V–25°C < T J< 85°C244.975.01测试条件–25°C < T J< 85°CV FEED= 0V-500705.5-501006.50.410205.15.1332085804.70.453010010050.5511.51.150.80.860.91.45.235.191510501151205.30.657.51最小.Typ.最大.±8500单位mVnAdBVVmAmAVVmVmVmA千赫千赫VmAmAVµsmAmAVVns千赫千赫千赫误差放大器部分参考部分振荡器部分同步部分(仅适用于L4981A)脉冲同步t d调频功能(仅适用于L4981B)f18max f18min 最大振荡频率振荡器频率最低V FREQ-MOD= 0V(销16) I freq= 0I FREQ-MOD= 360µA(销16)V VRMS= 4V(销7)I FREQ-MOD= 180µA(销16)V VRMS= 2V(销7)软启动第I SS V12sat 软启动电流源输出饱和电压V SS= 3VV3= 6V, I SS= 2mA601000.11400.25µAV4/17L4981中文数据手册第L4981A - L4981B电气特性(续)符号电源电压V CCV thr V 3HysI 3t dV th t d I ipk 工作电源电压阈值电压上升迟滞电流输入偏置传播延迟到输出阈值电压传播延迟到输出电流源产生程序V OCP = Vthr-0.2VV IPK = -0.1V V IPK = -0.1V只有L4981A 只有L4981B650.485V OVP = Vthr+100mV V ref -20mV 1805.12500.05119.5V ref +20mV 32012±300.91055±2-50070686.20.92210100.511.512.5503013160.38122014.59Pin 15到V CC = 220K Pin15到GND = 33KV 6= 1.6V V 6= 5.3VV I输入电压范围1.610.62515.51012150100190.512163016.51113.40.85010090500VV mV µA µsmV µs µA µAmV nA dB dB VV mA mAV Vns ns VmA mA mA VV V V过电压保护比较器参数测试条件最小.Typ.最大.单位过电流保护比较器泄漏电流I L电流放大器部分V offset I 9biasSVR V 5H V 5L -I 5I 5V 20L V 20H t r t f V GDRV I 19start I 19on I 19V CC V th ON V th OFF输入失调电压电流输入偏置开环增益电源电压抑制输出高电压输出低电压输出源电流输出灌电流输出电压低输出电压高输出电压上升时间输出电压下降时间电压钳电源电流启动前打开后,电源电流工作电源电流齐纳电压打开门限关闭阈值可编程启动阈值负荷前馈I LFF偏置电流V MULT OUT = VSENSE= 3.5VV SENSE = 0V 1.1V ≤V CA OUT≤6V12V ≤V CC ≤19V V MULT OUT = 3.5V V SENSE= 3.5VV MULT OUT = 200mV I CA OUT = -0.5mA, VIAC= 0VV MULT OUT = -200mVI CA OUT = 0.5mA, V IAC = 0V V MULT OUT = 200mV,V IAC = 0V, V CA-OUT = 3.5VI SINK = 250mA I SOURCE = 250mA V CC = 15V C OUT = 1nF C OUT = 1nF I SOURCE= 0mAV CC = 14V V IAC = 0V, V COSC= 0,Pin17 =开放Pin20 = 1nF (*)输出部分总待机当前节第欠压分离702001403005.3µA µA V(*)最大包装功耗限制必须得到遵守.5/17L4981A - L4981B电气特性(续)符号乘第Multipler输出电流V VA-OUT= 4V, V RMS= 2V,V MULTOUT= 0, V LFF= 5.1VI AC= 50µA, C OSC= 0VV VA-OUT= 4V, V RMS= 2V,V MULTOUT= 0, V LFF= 5.1VI AC= 200µA, C OSC= 0VV VA-OUT= 2V, V RMS= 2V,V MULTOUT= 0, V LFF= 5.1VI AC= 100µA, C OSC= 0VV VA-OUT= 2V, V RMS= 4V,V MULTOUT= 0, V LFF= 5.1VI AC= 100µA, C OSC= 0VV VA-OUT= 4V, V RMS= 4V,V MULTOUT= 0, V LFF= 5.1VI AC= 100µA, C OSC= 0VV VA-OUT= 4V, V RMS= 2V,V MULTOUT= 0, V LFF= 2.5VC OSC= 0V, I AC= 200µAV VA-OUT= 4V, V RMS= 4VV MULTOUT= 0, V LFF= 5.1VI AC= 200µA, C OSC= 0VV VA-OUT= 2V, V RMS= 4V,V MULTOUT= 0, V LFF= 5.1VI AC= 0, C OSC= 0VK乘法器增益203552µAµAµAµAµAµAµAµAPrameter测试条件最小.Typ.最大.单位1001351701020302 5.511102234203754203954-2020.37I MULT−OUT=K I AC (VVA−OUT−1.28) (0.8VLFF−1.28)(VVRMS)2(VVA−OUT−1.28)(V VRMS)2如果V LFF= V REF;其中:K1 = 1VI MULT−OUT=I AC K1图1:多输出主场迎战I AC(V RMS= 1.7V;V LFFD= 5.1V)图2:多输出主场迎战I AC(V RMS= 2.2V;V LFFD= 5.1V)6/17L4981A - L4981B图3:多输出主场迎战I AC(V RMS= 4.4V;V LFFD= 5.1V)图4:多输出主场迎战I AC(V RMS= 5.3V;V LFFD= 5.1V)图5:多输出主场迎战I AC(V RMS= 1.7V;V LFFD= 2.5V)图6:多输出主场迎战I AC(V RMS= 2.2V;V LFFD= 2.5V)图7:多输出主场迎战I AC(V RMS= 4.4V;V LFFD= 2.5V)图8:多输出主场迎战I AC(V RMS= 5.3V;V LFFD= 2.5V)7/17L4981A - L4981B图9A:L4981A功率因数校正(200W)TR6R14C8R7C12R15D3D4R1C5C9R9D1+Vo=400VC7FUSE Vi BRIDGER87411913R12143D2C11C285VAC-265VAC15C1L4981A1620612 11R13MOS285R21R5C3R4RS 9181017D5R17R2R10R11R3C4R16C6C10-D93IN029B零件列表R S R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R210.07(3 x .22)820kΩ10kΩ1.8kΩ1.8kΩ18kΩ1.2MΩ360kΩ33kΩ1.8MΩ21kΩ402Ω120kΩ27Ω1MΩ120kΩ30kΩ1.8kΩ5.1kΩ1/2W1/4W1/4W1/4W1/4W1/4W1/4W1/4W1/4W1/4W1/4W1/4W1/4W1/4W1/4W1/2W1/4W4W1/4W5%1%1%5%5%5%5%5%5%1%1%1%5%5%1%5%5%1%1%C1C2C3C4C5C6C7C8C9C10C11C12D1D2, D3D4D5MOS470nF100µF2.2nF1nF100µF1µF220nF220nF330nF1µF270pF8.2nFSTTA506D1N414818VBYT11-600STH/STW15NA50保险丝= 4A/250V1/2W16V400V100V25V16V63V63V400V450V 桥= 4 x P600MT= 初级:88的12 x 32 AWG (0.2mm)轮流次级:9化的# 27AWG (0.15mm)核心:B1ET3411A汤姆逊- CSFgap: 1,6mm for a total 初级 inductance of0.9mH8/17f SW= 80kHz P O= 200WV输出= 400V I rms 最大= 2.53A V OVP= 442V I PK 最大= 6.2AL4981A - L4981B图9B:L4981B 功率因数校正(200W)TR22C7R14R7C8D3C5C9R6C12R15D4R1R9D1+Vo=400VFUSE ViBRIDGER87411913R12143C11D2C285VAC-265VAC15C1L4981B16206285R21R5R11R3RSC3R4C4R16C6918101712 11R13MOSD5R17R2R10C10-D95IN220零件列表R S R1R2R3R4R5R6R7R8R9R10R11R12R13R14R15R16R17R21R220.07(3 x .22)820k Ω10k Ω1.8k Ω1.8k Ω18k Ω1.2M Ω360k Ω33k Ω1.8M Ω21k Ω402Ω120k Ω27Ω1M Ω120k Ω24k Ω1.8k Ω5.1k Ω1/2W 1/4W 1/4W 1/4W 1/4W 1/4W 1/4W 1/4W 1/4W 1/4W 1/4W 1/4W 1/4W 1/4W 1/4W 1/2W 1/4W 4W 1/4W 5%1%1%5%5%5%5%5%5%1%1%1%5%5%1%5%5%1%1%1%C1C2C3C4C5C6C7C8C9C10C11C12D1D2, D3D4D5MOS470nF 100µF 2.2nF 1.1nF 100µF 1µF 220nF 220nF 330nF 1µF 270pF 8.2nF STTA506D 1N414818V BYT11-600STH/STW15NA50保险丝= 4A/250V1/2W 16V 400V 100V 25V 16V 63V 63V 400V 450V1.1M Ω1/4W桥= 4 x P600MT= 初级:88的12 x 32 AWG (0.2mm)轮流次级:9化的# 27AWG (0.15mm)核心:B1ET3411A 汤姆逊- CSFgap: 1,6mm for a total 初级 inductance of 0.9mHf SW = 80到92kHz P O = 200W V 输出= 400V I rms 最大= 2.53A V OVP = 442V I PK 最大= 6.2A9/17L4981A - L4981B图10:参考电压与参考源,ence电流图11:参考电压与电源电压图12:参考电压与结Tem-温度图13:开关频率与结温度图14:门驱动器上升和下降时间图15:工作电源电流与电源电压10/17L4981A - L4981B图16:可编程欠压锁定出阈值图17:在调制频率归电源电压的半周期1Vl fsw10.80.8R22 = R23 6.80.40.40.20.2R23 (Kohm)04590135180Electrical degrees表1:可编程欠压分离阈值.V CC ON 11V 12V 13V 14V 14.5V 15V V CC OFF10V10.1V10.5V10.8V10.9V11VR2282kΩ220kΩ430kΩ909kΩ1.36MΩ2.7MΩR2312kΩ33kΩ62kΩ133kΩ200kΩ390kΩ图18:振荡器图11/17L4981A - L4981B图19:200W评估板电路.T= 初级:75的litz线20 x 32 AWG (0.2mm)轮流次级:8化的# 27AWG (0.15mm)核心:B1ET3411A汤姆逊- CSF差距:1.4mm,总初级电感的0.7mHf sw= 100kHz; V O= 400V; P O= 200W注意:启动电路通常V CC电容(C11图. 19)可以收取一个电阻借鉴整流电源电流.在评估板相反,启动电路组成的(Q2+R19+R15+Dz)被设计用来进行快速和有效供给的所有条件.一旦该L4981A / B已开始,参考引脚电压由6和R20 Q3,可确保Q2被打开关闭.可编程欠压分离该PCB允许插入一个电阻(R22, R23)夫妇修改输入电压的阈值.请参考图. 16和table1.12/17L4981A - L4981B 图20:P.C.板和组件的评估板电路(1:1规模布局).13/17L4981A - L4981B该评估板的设计采用了:一快不耗散启动电路,二极管(D2)加快跟进的MOS启动和关闭时间(即使一单个电阻可用于)外部分压器改善过流阈值精确老.此外有可能改变输入阈值电压使用外部分频器(R23和R22),如果出现问题的浪涌电流一NTC电阻器都可以使用.演出的PFC演示板已评估测试以下参数:PF(功率因数),A-THD(当前比例总谐波失真),H3..H9(百分比current’s n th谐波振幅),∆V o(输出电压纹波),V o(输出电压),η(效率).测试配置,设备和结果包括:AC电力消息来源LARCET /3KWPM1200AC电力分析仪EMI过滤器PFCL4981演示负荷D94IN057V i (V rms) 88 110 132 180 220 260f(Hz)606060505050P i(W)222220218217217216PF A-THD(%)H3(%)1.981.401.161.521.681.84H5(%)0.610.400.400.650.831.30H7(%)0.550.310.350.400.570.39H9(%)0.700.280.310.340.480.73V O(V)390392394396398400∆VO(V)888888PO(W)200201202203204205η(%)90.291.692.893.894.295.20.9990.9990.9990.9990.9970.9952.941.791.711.882.253.30EMI/RFI滤波器谐波含量的测定已通过使用一EMI/RFI过滤器之间的中间人在AC源和被测演示板,而没有被计算效率过滤器的贡献.T1线C1T2PFCC地球D94IN052其中:T1 = 1mH T2 = 27mH C1 = 0.33µF, 630V C2 = 2.2nF, 630V14/17L4981A - L4981B SO20 包装机械数据暗淡.最小.AA1BCDEeH h L K100.250.42.350.10.330.2312.67.41.2710.650.751.270.3940.0100.016mmTYP.最大.2.650.30.510.32137.6最小.0.0930.0040.0130.0090.4960.2910.0500.4190.0300.050寸TYP.最大.0.1040.0120.0200.0130.5120.2990(分)8(最大)Lh x 45°AB e KHDA1C2011E110SO20MEC15/17L4981A - L4981BDIP20 包装机械数据暗淡.最小.a1Bbb1DEee3FIL Z3.31.348.52.5422.867.13.930.1300.0530.2541.390.450.2525.40.3350.1000.9000.2800.1551.65mmTYP.最大.最小.0.0100.0550.0180.0101.0000.065寸TYP.最大.16/17L4981A - L4981B 提供的资料被认为是准确和可靠.然而,意法半导体的后果不承担任何责任这类信息也不对任何第三方的专利或可能导致其使用的其他权利的侵犯使用.没有许可证授予暗示或以其他方式意法半导体任何专利或专利的权利.规范本出版物中提到如有变更,恕不另行通知.本刊物并取代以前提供的所有信息.意法半导体产品不授权使用的关键部件寿命支持设备或系统的意法半导体未经明确的书面批准.ST的标志是意法半导体公司的注册商标©1998意法半导体在意大利––印刷版权所有意法半导体公司集团澳大利亚-巴西-加拿大-中国-法国-德国-意大利-日-韩国-马来西亚-马耳他-墨西哥-摩洛哥-荷兰-新加坡-西班牙-瑞典-瑞士-台湾-泰国-英国- U.S.A.17/17。
工作原理220V 交流电经 LF1 双向滤波.VD1-VD4 整流为脉动直流电压,再经 C3 滤波后形成约 300V 的直流电压,300V 直流电压经过启动电阻 R4 为脉宽调制集成电路 IC1 的7 脚提供启动电压,IC1 的 7 脚得到启动电压后,7 脚电压高于 14V 时,集成电路开始工作,6 脚输出 PWM 脉冲,驱动电源开关管场效应管 VT1 工作在开关状态,流通过 VT1 的 S 极-D 极-R7-接地端.此时开关变压器 T1 的 8-9绕产生感应电压,经 VD6,R2 为IC1 的 7 脚提供稳定的工作电压,4 脚外接振荡阻 R10 和振荡电容 C7 决定 IC1 的振荡频率, IC2TL431为精密基准压源,IC4光耦合器 4N35配合用来稳定充电压,调整RP1510 欧半可调电位器可以细调充电器的电压,LED1 是电源指示灯.接通电源后该指示灯就会发出红色的光;VT1 开始工作后,变压器的次级 6-5 绕组输出的电压经快速恢复二极管 VD60 整流,C18 滤波得到稳定的电压约 53V.此电压一路经二极管 VD70该二极管起防止电池的电流倒灌给充电器的作用给电池充电,另一路经限流电阻 R38,稳压二极管 VZD1,滤波电容 C60,为比较器 IC3LM358提供 12V 工作电源,VD12 为 IC3 提供基准压,经 R25,R26,R27 分压后送到 IC3 的 2 脚和 5 脚;正常充电时,R33 上端有-的电压,此电压经 R10 加到 IC3 的 3 脚,从 1 脚输出高电平;1 脚输出的高电平信号分三路输出,第一路驱动 VT2 导通,散热风扇得开始工作,第二路经过电阻 R34 点亮双色二极管 LED2 中的红色发光二极管,第三路输入到IC3 的 6 脚,此时 7 脚输出低电平,双色发光二极管 LED2 中的绿色发光二极管熄灭,充电器进入恒流充电阶段;当电池压升到左右时,充电器进入恒压充电阶段,流逐渐减小;当充电流减小到 200MA-300MA 时,R33 上端的电压下降,IC3 的 3 脚电压低于 2 脚,1 脚输出低电平,双色发光二极管 LED2 中的红色发光二极管熄灭,三极管 VT2 截止,风扇停止运转,同时 IC3 的 7 脚输出高电平,此高电平一路经过电阻 R35 点亮双色发光二极管 LED2 中的绿色发光二极管指示电已经充满,此时并没有真正充满,实际上还得一两小时才能真正充满,另一路经 R52,VD18,R40,RP2 到达 IC2 的 1 脚,使输出电压降低,充电器进入 200MA-300MA 的涓流充电阶段浮充,改变 RP2 的电阻值可以调整充电器由恒流充电状态转到涓流充电状态的转折流200-300MA;常见故障这种类型充电器的常见故障有下面几种情况:1、高压电路故障:该部分路出现问题的主要现象是指示灯不亮;通常还伴有保险丝烧断,此时应检查整流二极管 VD1-VD4 是否击穿, 电容 C3 是否炸裂或者鼓包, VT2 是否击穿, R7,R4 是否开路, 此时更换损坏的元件即可排除故障, 若经常烧 VT1,且 VT1 不烫手,则应重点检查 R1,C4,VD5 等元器件,若 VT1 烫手,则重点检查开关变压器次级路中的元器件有无短路或者漏电;若红色指示灯闪烁,则故障多数是由 R2 或者 VD6 开路,变压器 T1 线脚虚焊引起;2、低压电路故障:低压电路中最常见的故障就是电流检测电阻 R33 烧断, 此时的故障现象是红灯一直亮, 绿灯不亮, 输出电压低,电瓶始终充不进电,另外,若 RP2 接触不良或者因振动导致阻值变化充电器注明不可随车携带就是怕 RP2 因振动而改变阻值,就会导致输出电压移;若输出电压偏高,电瓶会过充,严重时会失水-发烫,最终导致充爆,若输出电压偏低,会导致电瓶欠充,缩短其寿命;。