5.2 长方体和正方体的体积
- 格式:ppt
- 大小:4.88 MB
- 文档页数:18
长方体与正方体了解长方体和正方体的特点长方体与正方体是几何学中两个常见的立体图形,它们分别由不同的面、边和顶点构成。
长方体是一个拥有六个矩形面的立体图形,而正方体则是一个所有面都是正方形的特殊的长方体。
本文将对长方体和正方体的特点进行详细的了解和分析。
一、长方体的特点长方体具有以下几个特点:1. 面:长方体有六个面,每个面都是矩形。
这些面两两相对,并且相邻两个面的边长相等,因此长方体的面积由所有面的面积之和组成。
2. 边:长方体有12条边,每个面有四条边。
相邻两个面之间的边称为变截线,这些边的长度是长方体的尺寸。
3. 顶点:长方体有8个顶点,每个顶点都是三条边的交汇点。
每个顶点相邻的三条边都会在该点交汇,因此顶点是长方体最重要的几何特征之一。
4. 对角线:长方体的对角线是连接两个相对顶点的线段。
长方体共有四条对角线,它们的长度可以通过勾股定理计算。
5. 体积:长方体的体积是指长方体所能容纳的空间大小。
长方体的体积可以通过三条边的长度相乘来计算,即体积=长×宽×高。
二、正方体的特点正方体是长方体的一种特殊形式,具有以下特点:1. 面:正方体有六个面,每个面都是正方形。
这意味着正方体的所有面积相等。
2. 边:正方体有12条边,每个面有四条边,且每条边的长度相等。
由于正方体的边长相等,所以正方体的周长等于6倍的边长。
3. 顶点:正方体有8个顶点,每个顶点都是三条边的交汇点。
4. 对角线:正方体的对角线是连接两个相对顶点的线段。
正方体共有四条对角线,且每条对角线的长度相等。
5. 体积:正方体的体积可以通过边长的立方来计算,即体积=边长×边长×边长。
长方体和正方体的比较尽管长方体和正方体有许多相似之处,如面、边、顶点和对角线等,但它们也有一些重要的区别。
1. 形状:长方体的面可以是矩形,而正方体的面都是正方形。
2. 边长:长方体的边长可以不相等,而正方体的边长必须相等。
五年级奥数《长方体与正方体的表面积与体积》长方体和正方体的表面积和体积方法讲解:长方体和正方体是我们研究的基本几何图形,利用它们的表面积和体积公式可以解决简单的问题。
但对于较复杂的立体图形问题,我们需要注意以下几点:1.必须以基本概念和方法为基础,将构成几何图形的诸多条件融合贯通起来。
2.依赖已经积累的空间观念,观察经过割、补后物体的表面积或体积所发生的变化。
3.对于一些不规则的物体的体积求解,可以通过变形的方法来解决。
例题讲解:1.一个零件形状大小如右图所示:求它的体积和表面积。
(单位:厘米)2.有一个长方体形状的零件,中间挖去一个正方体的孔(如图所示),你能算出它的体积和表面积吗?(单位:厘米)3.一个长方体沿着长的方向切掉一个小正方体,剩下的长方体的表面积比原来减少24平方厘米,求所切下的正方体的表面积是多少平方厘米?4.长方体不同的三个面的面积分别为10平方厘米、15平方厘米和6平方厘米。
这个长方体的体积是多少立方厘米?5.一个边长为6厘米的正方体木块,如果把它锯成边长为2厘米的正方体若干块,表面积增加多少平方厘米?达标练:1.一个长5厘米、宽1厘米、高3厘米的长方体,被切去一块后(如图所示),剩下部分的表面积和体积各是多少?2.把一根长2米的长方体木料锯成1米长的两段,表面积增加了2平方分米,求这根木料原来的体积。
3.有一个长8厘米、宽1厘米、高3厘米的长方体,在它的左右两个角各切掉一个正方体(如图所示),求切掉正方体后的表面积和体积各是多少?4.有一个形状如上图所示的零件,求它的体积和表面积。
(单位:厘米)5.如果把上题中挖下的小正方体粘在另一个面上,(如图所示)那么得到的物体的体积和表面积各是多少?6.一个正方体和一个长方体刚好拼成新的长方体,其表面积比原来的长方体的表面积增加了60平方厘米,原来正方体的表面积是多少平方厘米?7.一根长1米,宽和高都是8厘米的长方体钢材,从钢材的一端锯下一个最大的正方体后,它的表面积减少了多少平方厘米?8.把两个完全相同的长方体木块拼成一个正方体,表面积比原来两个长方体的表面积的和减少了40平方厘米,求原来每个长方体的表面积是多少平方厘米?9.一个长方体,不同的三个面的面积分别是25平方厘米、18平方厘米和8平方厘米。
五年级数学下册《长方体正方体体积》知识点及重点习题【知识点】1.体积:在这里,我们把一个物体(如土豆)所占空间的大小,叫做这个物体的体积。
2.棱长为1厘米的正方体的体积为1立方厘米。
通常用cm³表示立方厘米。
棱长为1分米的正方体的体积是1立方分米。
通常用dm³表示立方分米。
棱长为1米的正方体的体积是1立方米。
通常用m³表示立方米。
3.相邻两个体积单位的进率是1000。
4.容积:箱子、油桶、仓库等所能容纳物体的体积,通常叫做他们的容积。
常用的容积单位有升和毫升也可以写成L和ml。
1升=1立方分米;1毫升=1立方厘米;1升=1000毫升长方体和正方体的体积计算1.长方体的体积=长×宽×高, V=a×b×c;长=体积÷宽÷高,a=V÷b÷h ;宽=体积÷长÷高,b=V÷a÷h。
2.正方体体积=棱长×棱长×棱长;V=a×a×a=a³。
3.长(正)方体的体积=底面积×高,V=S(a×b)×h高=体积÷底面积 ,h=V÷S(a×b)4.计算某样东西的体积时,可以直接用体积公式,也可以先算出底面的面积,然后乘高。
【练习题及答案】1.一个长方体,它的长是2米,宽和高都是0.6米。
它的体积是(0.72)立方米。
2.一块正方体石料,棱长为0.6米。
这块石料的体积是(0.216)立方米。
3.一个长方体的饼干盒,长10cm,宽6cm,高12cm,如果围着它贴一圈商标纸(上、下面不贴),这张商标纸的面积至少有多少平方厘米?(10×12+6×12)×2=384(平方厘米)答:这张商标纸的面积至少有384平方厘米。
4.一个长方体的无盖水族箱,长是6m,宽是60cm,高是1.5m,这个水族箱占地面积多大?需要用多少平方米的玻璃?它的体积是多少?60厘米=0.6米 6×0.6=3.6(平方米)6×0.6+6×1.5×2+0.6×1.5×2=23.4(平方米)0.6×6×1.5=5.4(立方米)答:这个水族箱占地面积是3.6平方米,需要用23.4平方米的玻璃,它的体积是5.4立方米。
正方体和长方体的相同点和不同点正方体和长方体作为几何学中最基本的三维图形之一,都是我们日常生活中经常出现的形状。
它们在外观和性质上各有不同,下面将从相同点和不同点两方面来对它们进行比较。
相同点:1. 表面积的计算方式相同:无论是正方体还是长方体,它们的表面积都可以通过将所有的面积加起来来计算。
而在计算表面积时,它们的面积都可以通过长、宽、高三个方向上的长度来计算。
2. 体积的计算方式相同:正方体和长方体的体积计算方式都是将长、宽、高三个方向上的长度相乘。
因此,无论是正方体还是长方体,它们的体积都可以通过公式V=L×W×H来计算。
3. 对称性相同:正方体和长方体都具有一些对称性质。
正方体在三维空间中具有四条对称轴,而长方体则具有三条对称轴。
它们都具有中心对称和面对称等性质,从而让它们具有更高的美感和可塑性。
4. 有利于空间利用:由于正方体和长方体的结构具有对称性和规则性,所以它们在提高空间利用率方面具有独到的优势。
因为可以将它们放置在空间的任何一个角落,而不必担心空间的浪费问题。
不同点:1. 外形不同:正方体和长方体在外形上存在明显的差异。
正方体所代表的形状是一个等边长的立方体,而长方体则代表了一个长度、宽度和高度都不同的长条形状。
2. 结构不同:正方体的六个面都是方形,而长方体的六个面分别是矩形,包括一个长边和一个短边。
这也是导致它们性质不同的重要原因。
3. 比例不同:正方体的三条边长是相等的,每个顶点的角度都是90度,具有等比例和均匀形态的特征。
而长方体的三条边长不相等,也许更符合人们所需要的特定形态。
4. 构造不同:正方体由6个正方形拼接而成,构造简单易懂,而长方体由4个矩形和2个对称矩形拼接而成,需要更复杂的构造方式。
总结:因此,从相同点和不同点的比较来看,正方体和长方体有很多相似之处,但它们还是有很多不同之处,无论是从外形、结构、比例还是构造方面。
这些特点都给它们在使用和应用中带来了不同的方便和限制。
人教版小学五年级数学下册同步复习与测试讲义第三章长方体和正方体【知识点归纳总结】1. 长方体的特征1.长方体有6个面.有三组相对的面完全相同.一般情况下六个面都是长方形,特殊情况时有两个面是正方形,其他四个面都是长方形,并且这四个面完全相同.2.长方体有12条棱,相对的四条棱长度相等.按长度可分为三组,每一组有4条棱.3.长方体有8个顶点.每个顶点连接三条棱.三条棱分别叫做长方体的长,宽,高.4.长方体相邻的两条棱互相垂直.【经典例题】1.长方体中至少有()条棱的长度相等.A.2B.4C.6D.8【分析】根据长方体的特征,长方体的6个面多少长方形(特殊情况有两个相对的面是正方形),一般情况长方体的12条棱分为互相平行的3组,每组4条棱的长度相等.据此解答.【解答】解:长方体的12条棱分为互相平行的3组,每组4条棱的长度相等.答:长方体中至少有4条棱的长度相等.故选:B.【点评】此题考查的目的是理解掌握长方体的特征及应用.2. 正方体的特征①8个顶点.②12条棱,每条棱长度相等.③相邻的两条棱互相垂直.【经典例题】2.在一个正方体中,最多能找到()组互相垂直的线段.A.12B.18C.24【分析】根据互相垂直的定义:在同一平面内,当两条直线相交成90度时,这两条直线互相垂直;据此进行解答.【解答】解:据分析解答如下:垂直:AB⊥AD AB⊥BC AB⊥AE AB⊥BF;BC⊥CD BC⊥BF BC⊥CG;CD⊥AD CD⊥DH CD⊥CG;AD⊥DH AD⊥AEBF⊥FG BF⊥FEAE⊥FE AE⊥EH;CG⊥FG CG⊥GH;DH⊥GH DH⊥HE;FG⊥GH GH⊥EHHE⊥EF EF⊥FG.故选:C.【点评】本题考查的是垂线的定义,熟知正方体的性质是解答此题的关键.3. 长方体和正方体的表面积长方体表面积:六个面积之和.公式:S=2ab+2ah+2bh.(a表示底面的长,b表示底面的宽,h表示高)正方体表面积:六个正方形面积之和.公式:S=6a2.(a表示棱长)【经典例题】3.如下图,用三个完全相同的正方体拼成一个长方体后,表面积减少了100dm2,原来每个正方体的表面积是150dm2,长方体的表面积是350dm2.【分析】三个正方体一拼成一个长方体减少了4个面,减少的面积就是100dm2,可以求出一个面的面积,即100dm2除以4等于25dm2,再根据正方体的表面积公式S=6a2进行计算,再用一个正方体的表面积乘以3减去100dm2可求长方体的表面积.【解答】解:100÷4=25(dm2)25×6=150(dm2)150×3﹣100=450﹣100=350(dm2)答:原来每个正方体的表面积是150dm2,长方体的表面积350dm2.故答案为:150,350.【点评】本题是一道关于立体图形的拼接问题,考查了学生长方体的表面积公式及正方体的表面积公式的灵活运用.4. 长方体、正方体表面积与体积计算的应用(1)长方体:底面是矩形的直平行六面体,叫做长方体.长方体的性质:六个面都是长方形,(有时有两个面是正方形);相对的面面积相等;12条棱相对的4条棱长相等;8个顶点;相交于一个顶点的三条棱的长度分别叫长、宽、高;两个面相交的边叫做棱;三条棱相交的点叫做顶点.长方体的表面积:等于它的六个面的面积之和.如果长方体的长、宽、高、表面积分别用a、b、h、S表示,那么:S表=2(ab+ah+bh)长方体的体积:等于长乘以宽再乘以高.如果把长方体的长、宽、高、体积分别用a、b、h、V表示,那么:V=abh(2)正方体:长宽高都相等的长方体,叫做正方体.正方体的性质:六个面都是正方形;六个面的面积相等;有12条棱,棱长都相等;有8个顶点;正方体可以看做特殊的长方体.正方体的表面积:六个面积之和.如果正方体的棱长、表面积分别用a、S表示,那么:S表=6a2正方体的体积:棱长乘以棱长再乘以棱长.如果把正方体的棱长、体积分别用a、V表示,那么:V=a3【经典例题】4.礼堂里有一根用作支撑的长方体柱子,底面是一个边长为0.4米的正方形,柱子高4.5米.油漆这根柱子,求总共油漆面积的算式是0.4×4.5×4.√.(判断对错)【分析】要油漆这根柱子,两个底面接触地面和楼层,只求出每根柱子的4个侧面即可,侧面的长就是高4.5米,宽是底面的边长0.4米,代入长方形面积公式“长×宽”,然后乘4个面,即可得解.【解答】解:0.4×4.5×4=1.8×4=7.2(平方米).答:油漆面积是7.2平方米.故答案为:√.【点评】解答有关长方体计算的实际问题,一定要搞清所求的是什么,再进一步选择合理的计算方法进行计算解答问题.5. 长方体和正方体的体积长方体体积公式:V=abh.(a表示底面的长,b表示底面的宽,h表示高)正方体体积公式:V=a3.(a表示棱长)【经典例题】5.计算下面图形的体积和表面积.【分析】(1)长方体的长、宽、高均已知,根据长方体的体积计算公式“V=abh”即可求出这个长方体的体积;根据长方体的表面积计算公式“S=2(ah+bh+ab)”即可求出这个长方体的表面积.(2)这个正方体的棱长已知,根据正方体的体积计算公式“V=a3”即可求出这个正方体的体积;根据正方体的表面积计算公式“S=6a2”即可求出这个正方体的表面积.【解答】解:(1)15×8×7=120×7=840(15×7+8×7+15×8)×2=(105+56+120)×2=281×2=562答:这个长方体的体积是840,表面积是562.(2)3×3×3=9×3=2732×6=9×6=54答:这个正方体的体积是27,表面积是54.【点评】解答此题的关键是记住并会运用长方体、正方体的体积、表面积计算公式.【同步测试】单元同步测试题一.选择题(共10小题)1.一个正方体的棱长总和是24cm,每条棱长()A.1cm B.2cm C.3cm2.如图是用边长1cm的小正方体拼成的长方体.下列图形()是这个长方体中的一个面.A.B.C.3.用一根72厘米的铁丝正好可以焊成一个长8厘米、宽()厘米、高4厘米的长方体框架.A.4B.5C.64.正方体有___个面,相对应的两个面______.()A.6个,大小不同,形状一样B.6,大小相同形状一样C.6,大小不同形状不同5.一种长方体盒装牛奶,从包装盒的外面量,长6厘米,宽3厘米,高12厘米.它标注的净含量可能是()毫升.A.200B.220C.2506.一个长方体的集装箱,从里面测量长12m、宽4m、高3m,如果要装一批棱长2m的正方体货箱,最多能装()个.A.12B.18C.367.一团橡皮泥,妙想第一次把它捏成长方体,第二次把它捏成正方体.捏成的两个物体体积()A.长方体大B.正方体大C.一样大D.无法确定8.一张长方形纸板长80厘米,宽10厘米,把它对折、再对折.打开后,围成一个高10厘米的长方体纸箱的侧面.如果要为这个长方体纸箱配一个底面,这个底面的面积是()A.200平方厘米B.400平方厘米C.800平方厘米9.有两个表面积都是60平方厘米的正方体,把它们拼成一个长方体.这个长方体的表面积是()平方厘米.A.90B.100C.110D.12010.把一根长2m的长方体木材平均截成3段,表面积增加了100dm2,原来木材体积是()dm3.A.50B.100C.500D.1000二.填空题(共8小题)11.小军在一个无盖的长方体玻璃容器内摆了一些棱长1分米的小正方体(如图).做这个玻璃容器至少要用玻璃平方分米,它的容积是立方分米.(玻璃的厚度忽略不计)12.长方体和正方体都有个面,条棱.长方体最多有个面是正方形.13.粉笔盒的形状是,红领巾的形状是.14.在如图的长方体中,和a平行的棱有条,和a垂直的棱有条.15.手工课上,小辉把三块小正方体方木粘在一起,如图:表面积比原来减少16平方厘米,原来1个小正方体的表面积是平方厘米.16.把一根长48厘米的铁丝焊成一个宽2厘米,高1厘米的长方体框架,这个框架的长是厘米.17.一个长方体的上面是面积为25平方厘米的正方形,前面是面积为30平方厘米的长方形,这个长方体的表面积是平方厘米.18.有一个长12厘米,宽8厘米,高4厘米的长方体,把高增加3厘米,则体积增加立方厘米,表面积增加平方厘米.三.判断题(共5小题)19.长方体长和宽可以相等,长、宽、高也可以相等.(判断对错)20.长方体和正方体的表面积就是求它6个面的面积之和,也就是它所占空间的大小.(判断对错)21.加工一个油箱要用多少铁皮,是求这个油箱的体积.(判断对错)22.正方体是长、宽、高都相等的长方体.(判断对错)23.两个长方体体积相等,底面积不一定相等.(判断对错)四.操作题(共1小题)24.一个无盖纸盒的长、宽、高分别是4厘米、3厘米和2厘米.图中画出的是纸盒展开图的后面和右面,请在方格纸上画出另外3个面.这个纸盒的容积是立方厘米.五.应用题(共6小题)25.五(二)班要做一个长1.5米、宽0.6米、高0.8米的长方体书架,现要在书架各边都安上装饰木条,做这个书架要多少米的装饰木条?26.两个棱长和均为18厘米的正方体拼成一个长方体,这个长方体的表面积是多少平方厘米?27.在长40厘米、宽30厘米的长方形铁皮的四个角上,分别剪去一个边长5厘米的正方形后,正好折成一个无盖的铁盒.如果每毫升汽油重0.75克,那么这个铁盒最多能装多少克汽油?28.用铁丝悍接一个正方体框架,一共用了180分米长的铁丝,这个正方体的棱长是多少分米?29.一个房间长8米,宽6米,高4米.除去门窗22平方米,房间的墙壁和房顶都贴上墙纸,这个房间至少需要多大面积的墙纸?30.明明家有一个长方体金鱼缸,长6分米,宽5分米,高4.5分米.他不小心把鱼缸的右侧面的玻璃打碎了,需要重配一块.(1)重新配上的这块玻璃的面积是多少平方分米?(2)玻璃配好后,他往鱼缸内倒入54升水,水深多少分米?参考答案与试题解析一.选择题(共10小题)1.【分析】正方体的棱长总和=棱长×12,用24除以12即可.【解答】解:24÷12=2(厘米),答:它的每条棱长是2厘米.故选:B.【点评】此题考查的目的是掌握正方体以及棱长总和公式.2.【分析】如图是用边长1cm的小正方体拼成的长方体,它的长是4cm,宽是3cm,高是2cm;据此解答.【解答】解:因为拼成的长方体的长是4cm,宽是3cm,高是2cm;所以只有选项C是这个长方体中的一个面.故选:C.【点评】此题考查了长方体面的认识,确定出长宽高是关键.3.【分析】用一根72厘米长的铁丝正好可以焊成长方体,这个长方体的棱长总和就是72厘米,长方体的棱长总和=(长+宽+高)×4,用棱长总和除以4减去长和高,即可求出宽.据此解答.【解答】解:72÷4﹣(8+4)=18﹣12=6(厘米)答:宽6厘米.故选:C.【点评】此题主要考查长方体的棱长总和公式的灵活运用.4.【分析】正方体有6个面,6个面都是完全相同的正方形;据此解答.【解答】解:正方体有6个面,相对应的两个面大小相同形状一样.故选:B.【点评】此题考查了对正方体特征的掌握.5.【分析】根据同一个容器的体积一定大于它的容积,首先根据长方体的体积公式:V=abh,把数据代入公式求出这个牛奶盒的体积,进而确定它的容积.【解答】解:6×3×12=18×12=216(立方厘米)216立方厘米=216毫升所以它标注的净含量一定小于216毫升.答:它标注的净含量可能是200毫升.故选:A.【点评】此题主要考查长方体的体积(容积)公式的灵活运用,关键是熟记公式.6.【分析】用长方体集装箱的每条棱的长除以正方体的棱长,然后用去尾法取整数,再相乘就是最多能装的个数.据此解答.【解答】解:12÷2=6,4÷2=2,3÷2≈1,6×2×1=12(个).答:最多能装12个.故选:A.【点评】本题的关键是让学生走出用长方体的体积除以正方体的体积就是能装个数的误区.7.【分析】根据体积的意义,物体所占空间的大小叫做物体的体积.由此可知:一团橡皮泥,第一次捏成长方体,第二次捏成正方体.这两次捏成的物体的体积相比较一样大.【解答】解:一团橡皮泥,第一次捏成长方体,第二次捏成正方体.只是形状变了,但体积不变,所以这两次捏成的物体的体积相比较一样大.故选:C.【点评】此题考查的目的是理解掌握体积的意义.8.【分析】根据题意可知,把这张长80厘米,宽10厘米的纸板对折、再对折.打开后,围成一个高10厘米的长方体纸箱的侧面,也就是这个长方体纸箱的底面边长是2厘米,根据正方形的面积公式:S=a2,把数据代入公式解答.【解答】解:80÷4=20(厘米)20×20=400(平方厘米)答:这个底面的面积是400平方厘米.故选:B.【点评】此题考查的目的是理解掌握长方体的特征、长方体表面积的意义,以及正方形面积公式的灵活运用.9.【分析】两个表面积都是60平方厘米的正方体拼成一个长方体,长方体的表面积就比原来两个正方体减少了2个面,那么长方体的表面积等于正方体10个面的面积,所以先求出正方体一个面的面积,然后即可求出长方体的表面积.【解答】解:60÷6=10(平方厘米)10×10=100(平方厘米)答:这个长方体的表面积是100平方厘米.故选:B.【点评】此题解答关键是理解两个正方体拼成长方体后,表面积会减少2个面,由此即可解决问题.10.【分析】根据题意可知:把这根长方体木材平均截成3段,表面积增加的是4个截面的面积,由此可以求出长方体的底面积,再根据长方体的体积公式:V=sh,把数据代入公式解答.【解答】解:2米=20分米,100÷4×20=25×20=500(立方分米),答:原来木材的体积是500立方分米.故选:C.【点评】此题主要考查长方体的表面积公式、体积公式的灵活运用,关键是熟记公式,注意长度单位相邻单位之间的进率及换算.二.填空题(共8小题)11.【分析】通过观察图形可知,这个玻璃容器的长是4分米,宽是3分米,高是5分米,根据长方体的表面积公式:S=(ab+ah+bh)×2,由于玻璃容器无盖,所以只求它的5个面的总面积,根据长方体体积(容积)公式:V=abh,把数据代入公式解答.【解答】解:4×3+4×5×2+3×5×2=12+40+30=82(平方分米)4×3×5=60(立方分米)答:做这个玻璃容器至少要用玻璃82平方分米,它的容积是60立方分米.故答案为:82、60.【点评】此题主要考查长方体的表面积公式、体积(容积)公式在实际生活中的应用,关键是熟记公式.12.【分析】根据长方体和正方体的共同特征,长方体和正方体都有6个面、12条棱、8个顶点,长方体的6个面都是长方形(特殊情况下有两个相对的面是正方形),当长方体有两个相对的面是正方形时,其余四个面的面积相等,形状完全相同.【解答】解:根据分析可得:长方体和正方体都有6个面,12条棱.长方体最多有2个面是正方形.故答案为:6,12,2.【点评】此题主要考查了长方体的特征,要正确理解和掌握长方体的特征,平时注意基础知识的积累.13.【分析】长方体的特征:长方体有6个面,相对的面完全相同,一般情况下六个面都是长方形,特殊情况时有两个面是正方形,其他四个面都是长方形,并且这四个面完全相同,所以粉笔盒的形状是长方体;三角形的含义:由三条边首尾相连围城的图形,所以红领巾的形状是三角形;据此解答即可.【解答】解:粉笔盒的形状是长方体,红领巾的形状是三角形.故答案为:长方体,三角形.【点评】明确长方体和三角形的特征,是解答此题的关键.14.【分析】根据长方体的特征,长方体有12条棱分为三组,每组4条棱的长度相等且互相平行,据此解答.【解答】解:如图:和a平行的棱有3条,和a垂直的棱有4条.故答案为:3、4.【点评】此题考查的目的是理解掌握长方体的特征及应用.15.【分析】通过观察图形可知,把三个小正方体拼成一个长方体,表面积比原来减少了16平方厘米,表面积减少是小正方体4个面的面积,由此可以求出小正方体一个的面的面积,根据正方体的表面积公式:S=6a2,把数据代入公式解答.【解答】解:16÷4=4(平方厘米)4×6=24(平方厘米)答:原来1个小正方体的表面积是24平方厘米.故答案为:24.【点评】此题考查的目的是理解掌握长方体、正方体表面积的意义,以及正方体表面积公式的灵活运用,关键是熟记公式.16.【分析】长方体所有的棱长之和就等于铁丝的长,再根据长方体的棱长和=(长+宽+高)×4,用棱长和除以4,求出长宽高的和,再减去宽和高,即可求出长方体的长,列式解答即可.【解答】解:48÷4﹣2﹣1=12﹣2﹣1=9(厘米)答:这个框架的长是9厘米.故答案为:9.【点评】此题考查了长方体棱长和公式的灵活运用,知道长方体所有的棱长之和就等于铁丝的长是解题的关键.17.【分析】一个上面是正方形的长方体,它的上面面积是25平方厘米,可求出这个正方形的边长是5厘米,用30除以5,可求出这个长方体的高,再根据长方体表面积公式S=2(ab+ah+bh)计算即可.【解答】解:因这个长方体的上面是正方形,且面积是25平方厘米,可知这个正方形的边长是5厘米.30÷5=6(厘米)5×5×2+5×6×4=50+120=170(平方厘米)答:这个长方体的表面积是170平方厘米.故答案为:170.【点评】本题的关键是求出这个长方体底面的边长和它的高.然后再根据表面积公式进行计算.18.【分析】根据长方体的体积公式:V=abh,表面积公式:S=(ab+ah+bh)×2,高增加3米,体积增加部分是以原来的长、宽为长、宽高是3厘米的长方体的体积,即(12×8×3)立方厘米,表面积增加部分是长12厘米、宽8厘米,高3厘米的长方体的4个侧面的面积,即(12×3×2+8×3×2)平方厘米.【解答】解:12×8×3=288(立方厘米)12×3×2+8×3×2=72+48=120(平方厘米)答:体积增加288立方厘米,表面积增加120平方厘米.故答案为:288、120.【点评】此题主要考查长方体的体积公式、表面积公式的灵活运用,关键是熟记公式.三.判断题(共5小题)19.【分析】长方体有6个面,有三组相对的面完全相同,一般情况下六个面都是长方形,特殊情况时有两个面是正方形,其它四个面都是长方形,并且这四个面完全相同.据此解答.【解答】解:由长方体的特征可知,长方体发的长、宽、高三个量中可以有两个量相等,不能三个量都相等;所以原题说法错误.故答案为:×.【点评】解答此题的关键:根据正方体和长方体的特征进行解答即可.20.【分析】根据长方体的表面积、体积的意义,长方体的6个面总面积叫做长方体的表面积;物体所占空间的大小叫做物体的体积.据此解答即可.【解答】解:长方体的6个面的面积之和叫做长方体的表面积;物体所占空间的大小叫做物体的体积.题干的说法是错误的.故答案为:×.【点评】此题考查的目的是理解掌握立体图形的表面积、体积的意义及应用.21.【分析】根据油箱的特点,加工一个长方体油箱要用多少铁皮,是求这个长方体的表面积,由此判断.【解答】解:加工一个油箱要用多少铁皮,是求这个油箱的表面积,而不是体积;原题说法错误.故答案为:×.【点评】根据物体表面积、体积、容积的含义可知:加工一个长方体油箱要用多少铁皮,是求这个长方体的表面积;油箱所占空间的大小是指油箱的体积,油箱内能容纳油的体积是指油箱的容积.22.【分析】根据长方体和正方体的共同特征:它们都有6个面,12条棱,8个顶点.正方体可以看作长、宽、高都相等的长方体.【解答】解:长方体和正方体都有6个面,12条棱,8个顶点.因此正方体可以看作长、宽、高都相等的长方体.故答案为:√.【点评】此题主要考查长方体和正方体的特征,以及长方体和正方体之间的关系,长方体包括正方体,正方体是特殊的长方体.23.【分析】根据长方体的体积公式:V=sh,长方体的体积是由底面积和高两个条件决定的,由此可知:虽然两个长方体的体积相等,但是这两个长方体的底面积不一定相等.据此判断.【解答】解:长方体的体积是由底面积和高两个条件决定的,虽然两个长方体的体积相等,但是这两个长方体的底面积不一定相等.所以,两个长方体体积相等,底面积不一定相等.这种说法是正确的.故答案为:√.【点评】此题考查的目的是理解掌握长方体的体积公式及应用.四.操作题(共1小题)24.【分析】根据长方体的特征,长方体相对面的面积相等,据此画出其他三个面.根据长方体的容积(体积)公式:V=abh,把数据代入公式解答.【解答】解:作图如下:4×3×2=24(立方厘米)答:这个纸盒的容积是24立方厘米.故答案为:24.【点评】此题考查的目的是理解掌握长方体展开图的特征,以及长方体的容积(体积)公式的灵活运用,关键是熟记公式.五.应用题(共6小题)25.【分析】根据长方体的特征,12条棱分为互相平行的3组,每组4条棱的长度相等.由题意可知,求做这个书架要多少米的装饰木条,也就是求这个长方体的棱长总和.长方体的棱长总和=(长+宽+高)×4,由此列式解答.【解答】解:(1.5+0.6+0.8)×4=2.9×4=11.6(米)答:做这个书架要11.6米的装饰木条.【点评】此题属于长方体的棱长总和的实际应用,根据长方体的棱长总和的计算方法解决问题.26.【分析】根据正方体的棱长总和=棱长×12,已知正方体的棱长总和是18厘米,由此可以求出正方体的棱长,根据正方体的表面积公式:S=6a2,把数据代入公式求出两个正方体的表面积和,拼成的长方体的表面积比两个正方体的表面积和减少了正方体的两个面的面积,据此解答即可.【解答】解:18÷12=1.5(厘米)1.5×1.5×6×2﹣1.5×1.5×2=2.25×6×2﹣2.25×2=13.5×2﹣4.5=27﹣4.5=22.5(平方厘米)答:这个长方体的表面积是22.5平方厘米.【点评】此题主要考查正方体的棱长总和公式、表面积公式的灵活运用,关键是熟记公式.27.【分析】求铁皮盒的容积,需知道长方体的长、宽、高,长方形铁皮的长与宽各减去2个正方形边长即长方体的长与宽,高是5厘米,根据长方体的体积=长×宽×高,代入公式列式解答求得铁皮盒的容积,再乘0.75就是铁盒最多能装多少克汽油.【解答】解:(40﹣5×2)×(30﹣5×2)×5=30×20×5=3000(立方厘米)=3000(毫升)3000×0.75=2250(克)答:这个铁盒最多能装2250克汽油.【点评】此题主要考查长方体的体积公式及其计算,关键要理解铁皮盒的长与宽.28.【分析】根据正方体的特征,正方体的12条棱的长度都相等,由此可知:用焊这个正方体需要铁丝的长度除以12即可求出正方体的棱长,据此列式解答.【解答】解:180÷12=15(分米)答:这个正方体的棱长是15分米.【点评】此题考查的目的是理解掌握正方体的特征,以及正方体棱长总和公式的灵活运用.29.【分析】长方体有6个面,在房间的墙壁和房顶都贴上墙纸,贴墙纸的面是上面,前后面和左右面,就是求这5个面的面积和是多少,然后再减去门窗的面积就是这个房间至少需要多大面积的墙纸.长方体的长、宽、高已知,用长×宽=上面的面积,用长×高×2=前、后面的面积,用宽×高×2=左、右面的面积,然后相加再减去门窗的面积即可解答.【解答】解:8×6+8×4×2+6×4×2﹣22=48+64+48﹣22=138(平方米)答:这个房间至少需要138平方米大面积的墙纸.【点评】解答有关长方体计算的实际问题,一定要搞清所求的是什么,再进一步选择合理的计算方法进行计算解答问题.30.【分析】(1)根据题意可知,打碎右侧玻璃的长是5分米,宽是4.5分米,可用长方形的面积公式:S =长×宽进行解答即可;(2)根据长方体体积公式:长方形体积=长×宽×高,因此可用鱼缸内的水的体积除以分别除以长方体的长、宽即可得到水深.【解答】解:(1)5×4.5=22.5(平方分米)答:重新配上的这块玻璃的面积是22.5平方分米;(2)54升=54立方分米54÷6÷5=1.8(分米)答:水深1.8分米.【点评】此题主要考查的是长方形面积公式和长方体体积公式的灵活应用,解答时分清右侧面长方形的长、宽,然后再利用长方形的面积公式解答.。
人教版小学数学五年级下册第三单元《长方体和正方体》教材分析1.通过观察、操作,学生能够认识长方体和正方体的特征以及它们的展开图。
2.学生能够理解体积(包括容积)的含义,并能够使用常用的度量单位(立方米、立方分米、立方厘米、升、毫升)建立1立方米、1立方分米、1立方厘米以及1升、1毫升的表象,并能够进行简单的换算。
3.学生能够掌握长方体、正方体的体积和表面积的计算方法,并能够解决一些简单的实际问题。
4.学生能够探索某些实物体积的测量方法。
长方体和正方体的认识本小节介绍了长方体和正方体的特征和形状,学生需要理解长方体各部分的名称,面、棱、顶点,并能够形成长方体和正方体的概念。
长方体一般是由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形,而正方体是由6个完全相同的正方形围成的立体图形,所有的棱长度相等。
长方体和正方体的体积和表面积计算本小节介绍了长方体和正方体的体积和表面积的计算方法,学生需要掌握体积计算公式的推导和体积单位间的进率及名数的换算。
同时,学生需要理解表面积的含义,并能够计算出长方体和正方体的表面积。
容积和容积单位本小节介绍了容积和容积单位的概念,学生需要理解容积的含义,并能够使用常用的容积单位(升、毫升)进行换算。
不规则物体的体积本小节介绍了如何测量不规则物体的体积,学生需要探索并掌握测量不规则物体体积的方法。
总体来说,本单元的教学目标是让学生通过观察、操作,认识长方体和正方体的特征以及它们的展开图,理解体积(包括容积)的含义,掌握长方体、正方体的体积和表面积的计算方法,并能够解决一些简单的实际问题。
同时,学生需要探索某些实物体积的测量方法。
同。
第二个价值是通过操作让学生深入理解长、宽、高的概念。
建议在活动中引导学生思考:为什么要把12条棱分成三组?为什么这三组棱分别叫长、宽、高?通过思考和操作,学生会逐渐理解长、宽、高的概念和它们之间的关系。
练五是应用题,要求学生根据长方体的特征计算面积、体积等。
第二单元长方体和正方体总结一、长方体和正方体的特征:形体相同点不同点关系面棱顶点面的形状面的大小棱长长方体 6 12 8一般六个面都是长方形(也有两个相对的面是正方形)。
相对的面面积相等平行的四条棱长度相等正方体是特殊的长方体正方体 6 12 8六个面都是正方形六个面的面积相等十二条棱长都相等长方体:①有6个面,相对的面完全相同;长方体放桌面上,最多只能看到3个面。
②有12条棱,相对的棱长长度相等,而且相对的棱互相平行;12条棱可以分为3组(分别为长、宽、高),每组的4条棱一样长;长方体的棱长总和=长×4+宽×4+高×4=(长+宽+高)×4③有8个顶点,每个顶点上的三条棱分别称为长方体的长、宽、高。
正方体:①有6个完全相同的面;正方体放桌面上,最多只能看到3个面。
②有12条长度相等的棱,每条棱的长度称为正方体的棱长;正方体的总棱长=棱长×12。
上下左后右前③有8个顶点。
练一练:1.一个长方体长、宽、高分别是10cm、7 cm、4 cm ,这个长方体的棱长和是多少厘米?(提示:根据长方体的总棱长公式计算)2.一个长方体的棱长和是160dm,其中,长是20dm,宽是8dm,它的高是多少?从一个顶点引出的三条棱的长度总和是多少?3.将一根铁丝长720厘米做成正方体,则正方体的棱长是多少厘米?二、长方体和正方体的表面积定义:长方体或正方体6个面的总面积,叫做它的表面积。
1.法一:(1)长方体的表面积(有六个面)=长×宽×2+长×高×2+宽×高×2=(长×宽+长×高+宽×高)×2(因为长方体相对的面完全相同)法二:前、后面:长×高×2=X左、右面:长×高×2=Y上、下面:长×宽×2=Z则长方体的表面积(有六个面)= X + Y + Z2.正方体的表面积(有六个面)=棱长×棱长×6(因为正方体的六个面完全相同)在解决一些问题时,要充分考虑实际情况,想清楚要算几个面。
长方体和正方体长方体和正方体是几何学中常见的两种立体图形,它们在形状和性质上存在一些明显的区别。
本文将介绍长方体和正方体的定义、特点以及它们在现实生活中的应用。
一、长方体长方体是一种由六个矩形面组成的立体图形。
它的特点是六个面都是矩形,相邻的面之间是平行相等的。
除此之外,长方体的八个顶点、十二个棱和六个面对角线也有其特有的性质。
如图1所示,长方体可以用三个互相垂直的矩形的边长表示,分别为长(a)、宽(b)和高(c)。
长方体的体积(V)可以通过公式V = a * b * c计算得到。
它的表面积(S)为S = 2(ab + ac + bc),其中2ab表示上下两个面的面积,2ac 表示前后两个面的面积,2bc表示左右两个面的面积。
长方体在日常生活中有着广泛的应用。
例如,我们常见的电视机、冰箱、书架等都是长方体的形状。
在运输和堆放物体时,了解长方体的特性可以更好地利用和管理空间。
二、正方体正方体是一种各边相等且六个面都是正方形的立体图形。
它的特点是六个面都相等且互相平行。
除此之外,正方体的八个顶点、十二条棱和对角线也具有其特定的性质。
如图2所示,正方体每个面的边长均为a。
正方体的体积可以通过公式V = a^3计算得到。
它的表面积为S =6a^2,其中6a^2表示六个面的总面积。
正方体在工程学、建筑学等领域有着广泛的应用。
例如,立方体砖块、工艺品等都是以正方体为基本形状制作的。
此外,在几何学的推理和证明中,正方体也经常被用作基本元素。
长方体和正方体的比较:长方体和正方体在几何形状上存在着差异。
长方体的六个面是矩形,而正方体的六个面是正方形。
长方体的三个边长可以各不相等,而正方体的边长必须相等。
此外,长方体的体积和表面积的计算公式与正方体也有所不同。
总结:长方体和正方体是几何学中常见的两种立体图形。
它们在形状和性质上存在明显的区别。
长方体由六个矩形面组成,而正方体由六个正方形面组成。
长方体的边长可以不相等,正方体的边长必须相等。
五年级数学《长方体和正方体的体积》教案五年级数学《长方体和正方体的体积》教案作为一名老师,总不可避免地需要编写教案,教案是实施教学的主要依据,有着至关重要的作用。
如何把教案做到重点突出呢?下面是小编为大家整理的五年级数学《长方体和正方体的体积》教案,希望能够帮助到大家。
五年级数学《长方体和正方体的体积》教案1教学内容教科书第51--52页的例1、例2,课堂活动及练习十二的1--3题。
教学目标1.知识与技能:引导学生通过实验发现并探究出长方体和正方体体积的计算公式,理解长方体和正方体体积的计算方法。
2.过程与方法:会运用公式正确计算长方体和正方体的体积。
3.情感、态度与价值观:渗透"猜测--实验探究--验证"的学习方法,发挥学生的主体性,为今后学习其他立体图形体积的计算打下基础。
教具学具学生准备12个体积是1cm3的小正方体木块。
教师准备多媒体课件,及表格一和表格二。
教学重点1.理解长方体和正方体的体积公式的推导过程。
2.会计算长方体和正方体的体积。
教学难点长方体、正方体的体积计算的推导过程。
教学过程一、问题引入1.师:小朋友,你们喜欢搭积木游戏吗?这是老师用1cm3的正方体拼成的积木,(课件出示)你能说说它们的体积吗?师:你是怎样想的?教师:我们要计量一个物体的体积,就要看这个物体中含有多少个体积单位。
2.师(出示一个长方体模型):要知道它的体积是多少,你有什么办法?生1:可以将这个长方体切成小的体积单位,看它包含着多少个这样的体积单位,就可以知道它的体积是多少。
生2:将这个长方体浸没在水中,根据水面上升的刻度读出长方体的体积。
生3:量出长方体的长、宽、高,用长×宽×高。
教师:比较一下,哪种方法更适用呢?在生活中,有许多长方体是不能切开来数的。
把什么物体都浸没在水中,看水面上升的刻度也比较麻烦。
那么,生3的方法是否成立?这就是我们这节课要学习的内容。
(板书课题:长方体和正方体的体积计算)[简评:从学生熟悉的搭积木游戏开始,沟通学生已有知识连接点:要计量一个物体的体积,就要看这个物体中含有多少个体积单位。
长方体和正方体介绍完整长方体和正方体是几何学中常见的两种立体图形,它们在数学、物理、建筑等领域都有广泛的应用。
本文将分别介绍长方体和正方体的定义、特点、性质以及应用。
一、长方体长方体是一种具有六个矩形面的立体图形,其中相对的面是相等的。
长方体的特点是长、宽、高分别是三个不同的边长,可以用公式计算体积和表面积。
长方体的体积等于长度、宽度和高度的乘积,而表面积等于每个面的面积之和。
长方体在日常生活中有着广泛的应用。
例如,我们所熟悉的电视机、冰箱、书柜等都是长方体的形状。
这些物体的设计和制造都需要考虑到长方体的特点,以便满足实际使用的需求。
二、正方体正方体是一种具有六个正方形面的立体图形,它的特点是边长相等。
正方体的体积和表面积与长方体类似,可以使用相应的公式进行计算。
正方体的体积等于边长的立方,表面积等于每个面的面积之和。
正方体在几何学中有着重要的地位,也有着广泛的应用。
在建筑领域中,正方体的形状常常用于设计建筑物的柱子、墙体等。
在数学中,正方体是学习立体几何的基础,也是许多数学问题的基础。
长方体和正方体的区别主要在于它们的形状和边长的关系。
长方体的边长可以不相等,而正方体的边长必须相等。
此外,长方体的面可以是矩形,而正方体的面必须是正方形。
长方体和正方体是两种常见的立体图形,它们在几何学和实际生活中都有着重要的地位。
长方体的特点是六个面都是矩形,边长可以不相等;而正方体的特点是六个面都是正方形,边长必须相等。
长方体和正方体的体积和表面积可以使用相应的公式计算,这些公式在实际应用中有着广泛的应用。
无论是在建筑设计、数学学习还是物理实验中,我们都可以看到长方体和正方体的身影。
通过深入了解和研究长方体和正方体,我们可以更好地理解和应用它们,为实际问题的解决提供更多的思路和方法。
五年级数学《长方体和正方体的体积》教案优秀10篇五年级数学《长方体和正方体的体积》教案篇一目标在理解底面积的基础上,使学生掌握长方体和正方体体积的统一计算公式,提高学生综合运用知识的能力,发展学生的空间概念。
教学及训练重点理解底面积。
仪器教具投影仪教学内容和过程教学札记一、创设情境1、指出下图中长方体的长、宽、高和正方体的棱长。
(投影显示)2、填空。
(1)长、正方体的体积大小是由确定的。
(2)长方体的体积=。
(3)正方体的体积=。
二、探索研究1.观察。
(1)长方体体积公式中的“长×宽”和正方体体积公式中的“棱长×棱长”各表示什么?(将复习题中的'图用投影显示出“底面积”)结论:长方体的体积=底面积×高正方体的体积=底面积×棱长2.思考。
(1)这条棱长实际上是特殊的什么?(2)正方体的体积公式又可以写成什么?结论:长方体(或正方体)的体积=底面积×高,用字母表示:V=sh三、巩固练习1.做第20页的“练一练”。
学生独立做后,学生讲评。
2.补充:一段长方体方铜,长1.2米,横截面是一个边长1厘米的正方形。
这段方铜的体积是多少立方厘米?首先帮助学生理解:什么是横截面?再让学生做后学生讲评。
3.做练习三的第9、10题,学生独立解答,老师个别辅导,集体订正。
四、课堂学生今天学习的内容五、课后练习做练习三的第11、12、13题。
长方体和正方体统一的体积公式长方体的体积=底面积×高正方体的体积=底面积×棱长长(正)方体的体积=底面积×高,用字母表示:V=sh五年级数学《长方体和正方体的体积》教案篇二教学目标1、进一步掌握体积、容积单位之间的进率,并能比较熟练地进行化聚。
2、能根据有关体积、容积的计算方法,解答实际问题。
教学重点、难点重难点:能比较熟练地进行化聚,并能根据有关体积、容积的计算方法,解答实际问题。
教学过程一、体积、容积单位之间的化聚、转换练习。
五年级下册数学长方体与正方体的体积长方体与正方体(二)体积的含义及单位体积是指物体所占空间的大小,或者占据一定容积的物质的量。
常用的体积单位有立方米、立方分米和立方厘米,其中1立方米也可以简称为1方。
体积单位之间的进率是1m³=1000dm³,1dm³=1000cm³。
长方体和正方体的体积公式长方体的体积公式为V=abh(长方体体积=长×宽×高),而正方体的体积公式为V=a³(正方体体积=棱长×棱长×棱长)。
在一个题目中,应该保证单位统一。
比如在计算长方体的体积时,长、宽和高的单位必须相同,如果题目中给出的单位不同,应该将其转换为相同的单位。
长方体和正方体的统一公式长方体和正方体的统一公式为V=sh(体积=底面积×高),其中底面积是长方体和正方体底面的面积,横截面定义为垂直于梁的轴向的截面形状。
此外,长方体或正方体的体积等于任意一个面的面积乘以和这个面有交点的边的边长。
容积的意义以及运算容积是指物体所能容纳其他物体的体积,也就是物体的容积。
容积的单位有升和毫升,分别用字母L和ml表示。
容积单位之间的进率是1L=1000ml,而容积单位和体积单位之间的换算是1L=1dm³,1ml=1cm³。
计算长方体、正方体等规则容积的方法和体积方法相同,但是要从里面测量长、宽和高。
物体的切割与合成对一个物体进行切割,切割后的所有小物体的表面积和要大于切割前的物体表面积,但是体积不变。
而几个物体合成一个物体,表面积会减少,但原来几个物体的体积和要等于合成后的物体体积。
例题精讲例1】单位换算4.07立方米=4070立方分米,9.08立方分米=0.升=9.08毫升,7.9立方分米=0.0079升,980立方分米=0.98立方米。
巩固】3.2立方分米=3200立方厘米,500立方分米=0.5立方米,9立方米500立方分米=9.5立方米,500立方分米=立方毫米,3.6升=3600毫升=3600立方厘米,1700平方厘米=17平方分米=0.0017平方米,3升=3000毫升,2700毫升=2.7升,2.57升=2570毫升,640毫升=0.64升,2.8立方分米=2800立方厘米,0.8升=800毫升,720立方分米=0.72立方米,毫升=51升。
五年级下册数学长方体与正方体的体积长方体与正方体(二)体积知识框架一、体积的含义及单位体积:物体所占空间的大小;或占据一特定容积的物质的量。
常用的体积单位:立方米、立方分米、立方厘米。
1立方米也简称1方。
体积单位间的进率:1m³=1000dm³1dm³=1000cm³二、长方体和正方体的体积公式长方体:V=abh(长方体体积=长×宽×高)正方体:V=a³(正方体体积=棱长×棱长×棱长)。
a³读a 的立方,或a的三次方。
在一个题目中,应该单位统一。
比如在算长方体的体积中,长宽高的单位必须是相同的,如果题目中给的不相同,应该转换成一样的单位。
三、长方体和正方体的统一公式V=sh(体积=底面积×高)底面积:长方体和正方体底面的面积。
横截面:定义为垂直于梁的轴向的截面形状。
扩展:长方体或正方体的体积,等于随便一个面的面积,乘以和这个面有交点的边的边长。
1四、容积的意义和运算容积的意义:物体所能容纳其他物体的体积,就是物体的容积。
容积单位的单位:升和毫升,字母透露表现为L和ml容积单位间的进率:1L=1000ml容积单位和体积单位间的换算:1L=1dm³1ml=1cm³容积的计较办法:长方体、正方体等规则容积的计较办法和体积办法相同,可是要从里丈量长、宽、高。
五、物体的切割与合成对一个物体举行切割,切割后的所有小物体的外表积和,要大于切割前的物体外表积,但体积稳定;几个物体合成一个物体,表面积减少,但原来几个物体的体积和,要等于合成后的物体体积。
例题精讲【例1】单位换算4.07立方米=(。
)立方米(。
)立方分米9.08立方分米=(。
)升(。
)毫升7.9立方分米=()升980立方分米=()立方米【巩固】3.2立方分米=()立方厘米500立方分米=()立方米9立方米500立方分米=()立方米=()立方分米3.6升=()毫升=()立方厘米1700平方厘米=()平方分米=()平方米3升=()毫升2700毫升=()升2.57升=()毫升640毫升=()升2.8立方分米=()立方厘米0.8升=()毫升720立方分米=()立方米毫升=()升2【例2】下面长方体和正方体的表面积和体积.单位:厘米.【巩固】1)一个正方体,它们棱的总长是24厘米,这个正方体的体积是()A.2立方厘米B.8立方厘米C.12立方厘米2)棱长是5厘米的正方体的外表积比体积大。
长方体和正方体的特点长方体和正方体是几何学中两种常见的立体形状,它们都具有一些显著的特点和属性。
本文将详细介绍长方体和正方体的特点,包括形状、面数、边长、表面积和体积等方面的描述。
一、长方体的特点长方体是一种立方体的特例,它的六个面都是矩形。
以下是长方体的一些特点:1. 形状:长方体具有矩形的形状,所有的面都是矩形,且相邻的面两两平行。
2. 面数:长方体有六个面,分别是上底面、下底面和四个侧面。
3. 边长:长方体的六条边都是直线段,相邻的边相等。
4. 右角:长方体的所有顶点都是直角。
5. 表面积:长方体的表面积可以通过计算每个矩形面的面积并相加得到。
假设长方体的长、宽和高分别为l、w和h,其表面积可以表示为2lw+2lh+2wh。
6. 体积:长方体的体积等于底面积乘以高,即V=lwh。
二、正方体的特点正方体是一种特殊的立方体,它具有一些独特的性质和特点。
下面是正方体的特点:1. 形状:正方体具有六个相等的正方形面,相邻面两两平行。
2. 面数:正方体共有六个面,都是正方形。
3. 边长:正方体的六条边相等,每条边都是直线段。
4. 右角:正方体的所有顶点都是直角。
5. 表面积:正方体的表面积可以通过计算每个正方形面的面积并相加得到。
假设正方体的边长为a,则其表面积可以表示为6a^2。
6. 体积:正方体的体积等于边长的立方,即V=a^3。
三、长方体和正方体的比较长方体和正方体在形状和特征上有一些相似之处,但也存在一些明显的区别。
首先,在面的形状上,长方体的面都是矩形,而正方体的面都是正方形。
其次,在边长上,长方体的六条边可以不相等,而正方体的六条边都是相等的。
另外,长方体的体积可以使用l、w和h三个变量来表示,而正方体的体积只需使用一个变量a即可。
最后,长方体和正方体的表面积计算公式也有所不同,前者为2lw+2lh+2wh,后者为6a^2。
综上所述,长方体和正方体作为常见的立体形状,具有各自独特的特点和属性。