启职船概12稳性
- 格式:doc
- 大小:175.00 KB
- 文档页数:4
船舶稳性第二章我们学习了船舶的浮性,知道船舶在静水中平衡时受到重力和浮力两个力的作用,这两个力方向相反、大小相等、作用点(重心和浮心)在同一铅垂线上,那么当船受到另外一个倾斜力的作用后,船能否在倾斜力消失后恢复到平稳状态呢?这就是我们今天要学习的“船的稳性”问题。
本节课我们的主要内容有:稳性的概述,讨论稳性问题的关键知识点(也就是初稳性公式推导的准备和过程),初稳性公式及应用。
下面我们先看一下“稳性的概述”,这一部分主要有三个知识点:稳性概念、稳性分类、倾斜力矩和复原力矩。
一、稳性:船舶在外力作用下偏离其平衡位置而倾斜,当外力消失后,能自行回复到原来平衡位置的能力,称为船舶稳性。
或者说:是船舶在外力作用消失后保持其原有位置的能力。
二、稳性分类:按作用力矩性质分为:静稳性和动稳性,静稳性:假若倾斜力矩的作用是从零开始逐渐增加,使船舶倾斜时的角速度很小,可忽略不计,因此船舶在倾斜过程中不计角加速度和惯性矩;动稳性:若倾斜力矩是突然作用在船上,使船舶倾斜有明显的角速度的变化,则这种倾斜下的稳性称为动稳性。
船舶在倾斜过程中计角加速度和惯性矩。
按倾斜方向分:横倾和纵倾,船舶的横向倾斜,即向左舷或右舷一侧的倾斜(简称横倾);纵向的倾斜,即向船首或船尾的倾斜(简称纵倾);倾斜力矩的作用平面平行于中横剖面时称为横倾力矩;倾斜力矩的作用平面平行于中纵剖面时称为纵倾力矩;按倾斜角度分:初稳性(或称小倾角稳性):倾斜角度小于10度~15度或上甲板边缘开始入水前的稳性;大倾角稳性:一般指倾角大于10度~15度或上甲板边缘开始入水后的稳性。
因为在研究船舶小倾角稳性时可以引入某些假定,既使浮态的计算简化,又能较明确地获得影响初稳性的各种因素之间的规律。
所以小倾角稳性即初稳性的研究具有重要意义。
三、力矩:船舶在停泊或航行过程中会受到各种外力,这些外力作用对船施加一个力矩,即倾斜力矩;倾斜力矩的来源有:1)风浪的作用;2)船上货物的移动;3)旅客集中于某一船舷;4)拖船的急牵、火箭的发射、船舶回转等,倾斜力矩大小取决于这些外界条件的作用,是外因。
航海概论航海概论复习资料名词解释1.排⽔量(displacement,D):排⽔量是指船体在⽔中的部分所排开⽔的重量。
1)满载排⽔量(Full load displacement,D F):指船舶的吃⽔达到规定的满载⽔线(通常指夏季载重线)时的排⽔量。
2)装载排⽔量(Loaded displacement,D L):指船舶装载⼀定货物的排⽔量。
(其⼤⼩可根据船舶的装载状态确定)2.载重量:1)总载重量(Dead weight,DW):载重量是指船舶在某⼀吃⽔情况下所能装载的货物、燃润料、淡⽔、供应品及其他物品的总重量,该值等于装载排⽔量与空船排⽔量之差,即DW= D F—D L。
(作为船舶载重能⼒记⼊船舶资料中的总载重量(DW)是指吃⽔达到夏载重线时的载重量,也称为船舶最⼤载重量、满载载重量。
)2)净载重量(Net dead weight,NDW):净载重量是船舶具体航次所能装载货物的最⼤重量,等于载重量减去该航次总储备量(包括航次所需的燃润料、淡⽔、粮⾷、供应品、船员、⾏李等重量)及船舶常数,即NDW=DW—ΣG—C3.货仓容积(capacity of cargo hold):1)散货容积(grain capacity):是指舱内实际能够装载货物的空间。
2)包装容积(bale capacity):是指舱内实际能够装载包装或成件货物的空间。
4.登记吨位(registered tonnage):1)总吨位(gross gonnage,GT):是指船舶所以围蔽处所的总容积,按丈量公约或规范规定的测算公式求出的船舶容积吨位。
(表⽰船舶⼤⼩,区别船舶等级,计算船舶建造、买卖、租船费⽤,以及处理海事赔偿的依据)2)净吨位(net tonnage,NT):是指船舶各载货处所的总容积,按丈量公约或规范规定的测算公式求出的船舶容积吨位。
(计算船舶各种港⼝使费,如引航费、灯塔费、停泊费等各项费⽤的依据)5.浮性(buoyancy):船舶在⼀定载重情况下的漂浮能⼒叫做船舶浮性。
船舶安全管理十二防航行中的船舶面临着种种安全隐患,如天气恶劣、船体老化、船员疲劳等。
而航海风险本质上是一种把握与管理的过程,在船舶安全管理上,需要十分注意以下十二点防范措施。
一、船舶维护保养船舶维护保养需要定期进行检查和维修,包括涂漆、腐蚀措施、甲板结构以及设备维护保养等。
定期对船舶进行外观和内部结构的检查,确保船舶在航行中不会发生破损或其他损坏。
二、安全设备检查安全设备是船舶安全管理中的重要因素,包括救生艇、救生圈、救生衣以及其他安全装备的检查,确保其可以在紧急情况下起到应有的作用。
三、船舶稳定性船舶的稳定性是其安全航行的基础,包括有水交界面稳定性和船体结构稳定性两个方面。
船舶稳定性需要定期进行检查,并对不定期的灌水修理和装载变化等进行测试。
四、天气预报与应变计划天气对航行影响巨大,正确预测天气变化可以最大程度上减少航行风险。
一般应按规定发制定天气预报分析、应变计划、渔区安全通报等,确保船员及船只的安全。
五、船员配备在船舶安全管理中,船员配备决不能忽视。
必须严格按照规定搭配足够的工作和管理人员,并保证船员具有相关证书和资格以及船员的健康状况。
六、环境保护环保意识越来越强,特别是在船舶行业。
船舶在海上行驶,需要做好油污染、化学品排放等方面的环保预防工作。
对配备环境保护设施,对船舶集中控制采取必要的监测措施。
七、内部管理内部管理包括船舶管理、财务管理、人事管理等方面,加强内部管理,使得船舶安全性得到更大的提升,为船舶的安全运行提供保障。
八、院士与新技术航海技术的发展一直是提高船舶安全性的重要因素,如卫星定位系统和电子航图等技术的引进,可以提高航行的精确性和安全性。
而院士和科学家的研发工作,也在船舶安全性方面做出了重要贡献。
九、行业自律指出行业自律对于船舶安全的提高非常有帮助,需要相关人员严格遵守行业规范,提高行业氛围,在航海事故频发时能够及时行动协调。
十、危险物品管理船舶在装卸危险货物时,需要遵守国际法规及各国立法的有关规定,贯彻实施高度危险品的装卸安全操作规程,路线、停靠、申报及应急措施等实现了可持续发展。
第一节 稳性的基本概念 一、稳性概述1. 概念:船舶稳性(Stability)是指船舶受外力作用发生倾斜,当外力消失后能够自行回复到原来平衡位置的能力。
2. 船舶具有稳性的原因1)造成船舶离开原来平衡位置的是倾斜力矩,它产生的原因有:风和浪的作用、船上货物的移动、旅客集中于一舷、拖船的急牵、火炮的发射以及船舶回转等,其大小取决于这些外界条件。
2)使船舶回复到原来平衡位置的是复原力矩,其大小取决于排水量、重心和浮心的相对位置等因素。
S M GZ =∆⋅ (9.81)kN m ⋅式中:GZ :复原力臂,也称稳性力臂,重力和浮力作用线之间的距离。
◎船舶是否具有稳性,取决于倾斜后重力和浮力的位置关系,而排水量一定时,船舶浮心的变化规律是固定的(静水力资料),因此重心的位置是主观因素。
3. 横稳心(Metacenter)M :船舶微倾前后浮力作用线的交点,其距基线的高度KM 可从船舶资料中查取。
4. 船舶的平衡状态1)稳定平衡:G 在M 之下,倾斜后重力和浮力形成稳性力矩。
2)不稳定平衡:G 在M 之上,倾斜后重力和浮力形成倾覆力矩。
3)随遇平衡:G 与M 重合,倾斜后重力和浮力作用在同一垂线上,不产生力矩。
如下图所示例如:1)圆锥在桌面上的不同放置方法;2)悬挂的圆盘5. 船舶具有稳性的条件:初始状态为稳定平衡,这只是稳性的第一层含义;仅仅具有稳性是不够的,还应有足够大的回复能力,使船舶不致倾覆,这是稳性的另一层含义。
6. 稳性大小和船舶航行的关系1)稳性过大,船舶摇摆剧烈,造成人员不适、航海仪器使用不便、船体结构容易受损、舱内货物容易移位以致危及船舶安全。
2)稳性过小,船舶抗倾覆能力较差,容易出现较大的倾角,回复缓慢,船舶长时间斜置于水面,航行不力。
二、稳性的分类1. 按船舶倾斜方向分为:横稳性、纵稳性2. 按倾角大小分为:初稳性、大倾角稳性3. 按作用力矩的性质分为:静稳性、动稳性4. 按船舱是否进水分为:完整稳性、破舱稳性三、初稳性1. 初稳性假定条件:1)船舶微倾前后水线面的交线过原水线面的漂心F;2)浮心移动轨迹为圆弧段,圆心为定点M(稳心),半径为BM(稳心半径)。
第三章船舶稳性1.某轮某航次出港时的初稳性高度GM=0.56米,临界稳性高度GMc=0.75米,则该轮的不满足《船舶与海上设施法定检验规则》对普通货船的基本稳性要求。
A 初稳性B 动稳性C 大倾角稳性D B、C均有可能2.某轮某航次出港时的初稳性高度GM=0.56米,临界稳性高度GMc=0.75米,该轮的一定满足《船舶与海上设施法定检验规则》对普通货船的基本稳性要求。
A 初稳性B 动稳性C 大倾角稳性D 以上都是3.要使船舶处于不稳定平衡状态,必须满足的条件是。
A GM = OB GM < 0C GM > OD GM ≥ 04.要使船舶处于不稳定平衡范畴,必须满足的条件是。
A GM = OB GM < 0C GM > OD GM ≤ 05.我国《船舶与海上设施法定检验规则》中规定:船舶受稳定横风作用时的风压倾侧力矩可用公式M W=P W A W Z W 来计算,其中Z W是指。
A A W的中心至水下侧面积中心的垂直距离B A W的中心至船舶水线的垂直距离C A W的中心至船舶吃水的一半处的垂直距离D A或C6. 将增加船舶的浮心高度。
A 由舱内卸货B 向甲板上装货C 将货物上移D 将货物下移7.GM是船舶初稳性的度量,因为。
A 当船舶倾角为大倾角时稳心基本不随船舶倾角改变而改变B 当船舶倾角为大倾角时稳心随船舶倾角改变而改变C 当船舶倾角为小倾角时稳心基本不随船舶倾角改变而改变D 当船舶倾两为小倾角时稳心随船舶倾角改变而改变8.初稳性是指。
A 船舶在未装货前的稳性B 船舶在小角度倾斜时的稳性C 船舶在开始倾斜时的稳性D 船舶在平衡状态时的稳性9.船舶舱室破损后仍浮在水面并保持一定浮态和稳性的能力称为船舶。
A 浮性B 稳性C 抗沉性D 储备浮力10.船舶侧向受风面积。
A 随吃水的增加而减小B 随吃水的增加而增大C 与吃水大小无关D 与吃水的关系不能确定11.船舶的稳心半径BM与成反比。
第一节稳性的基本概念船舶平衡的3种状态:1 .船舶的平衡状态船舶漂浮于水面上,其重力为W,浮力为△, G为船舶重心,B为船舶初始位置的浮心。
在某一性质的外力矩作用下船舶发生倾斜,由于倾斜后水线下排水体积的几何形状改变,浮心由B移至B i点,当外力矩消失后船舶能否恢复到初始平衡位置,取决于它处在何种平衡状态(下图)。
(1)稳定平衡。
如图(a)所示,船舶倾斜后在重力W0浮力△作用下产生一稳性力矩,在此力矩作用下,船舶将会恢复到初始平衡位置,称该种船舶初始平衡状态为稳定平衡状态。
(2)随遇平衡。
如图2-1所示,船舶倾斜后重力W和浮力△仍然作用在同一垂线上而不产生力矩,因而船舶不能恢复到初始平衡位置,则称该种船舶初始平衡状态为随遇平衡状态。
(3)不稳定平衡。
如图2-1(c)所示,船舶倾斜后重力W和浮力△作用下产生一倾覆力矩,在此力矩作用下船舶将继续倾斜,称称该种船舶初始平衡状态为不稳定平衡状态。
2 .船舶平衡状态的判别为对船舶的平衡状态进行判别,将船舶正浮时浮力作用线和倾斜后浮力作用线的交点定义为稳心,以M表示。
由于船舶倾斜后的浮心位置或浮力作用线与船舶吃水(或排水量)、船舶倾角有关,稳心位置也随船舶吃水(或排水量)、船舶倾角不同而变化。
进一步分析表明,船舶处于何种平衡状态与重心G和稳心M的相对位置有关。
船舶稳定平衡时,重心G位于稳心M之下;船舶不稳定平衡时,重心G位于稳心M 之上;船舶随遇平衡时,重心G和稳心M重合。
因此,为了使船舶在受到一外力矩作用下具有一定的复原能力从而保证船舶安全,船舶重心必须在相应倾角时的稳心之下。
处于稳定平衡状态的船舶,其复原能力的大小取决于倾斜后产生的稳性力矩或复原力矩M s的大小。
由图(a)可见,该稳性力矩大小为式中:GZ——静稳性力臂(m)是船舶重心G至倾斜后浮力作用线的垂直距离,通常简称作稳性力臂或复原力臂。
船舶稳性的分类:船舶在外力矩作用下偏离其初始平衡位置而倾斜,当外力矩消失后船体能自行恢复到初始平衡状态的能力称为船舶稳性。
第三章稳性第三章稳性第⼀节稳性的基本概念(⼀)船舶平衡的3种状态1、稳定平衡>0G点在M点之下,GM>0,MR2、随遇平衡G点与M点重合,GM=0,M=0R3、不稳定平衡<0G点在M点之上,GM<0,MR(⼆)稳性的定义船舶稳性是指船舶受给定的外⼒作⽤后发⽣倾侧⽽不致倾覆,当外⼒消失后仍能回复到原来的平衡位置的能⼒。
(三)稳性分类分类⽅法: 按倾斜⽅向、倾⾓⼤⼩、倾斜⼒矩性质、船舱是否进⽔┏破舱稳性稳性┫┏初稳性(⼩倾⾓稳性)┃┏横稳性┫┏静稳性┗完整稳性┫┗⼤倾⾓稳性┫┗纵稳性┗动稳性其中,倾⾓⼩于等于10-15度称为⼩倾⾓,否则称为⼤倾⾓。
倾斜⼒矩性质指静⼒或动⼒,或者说有⽆⾓速度、⾓加速度。
第⼆节稳性指标的计算(⼀)船舶初稳性的基本标志 1.稳⼼M 与稳⼼距基线⾼度KM船舶⼩倾⾓横倾前、后其浮⼒作⽤线交点称为横稳⼼,简称稳⼼。
稳⼼M 距基线的垂向坐标称为稳⼼距基线⾼度。
2.初稳性的衡准指标稳⼼M ⾄重⼼G 的垂距称为初稳性⾼度GM 。
初稳性⾼度GM 是衡准船舶是否具有初稳性的指标。
初稳性⾼度⼤于零,即船舶重⼼在稳⼼之下,船舶就有初稳性。
3.初稳性中的假设(对于任⼀给定的吃⽔或排⽔量)(1)⼩倾⾓横倾(微倾);(2)在微倾过程中稳⼼M 和重⼼G 的位置固定不变;(3)在微倾过程中浮⼼B 的移动轨迹是⼀段以稳⼼为圆⼼的圆弧;(4)在微倾过程中倾斜轴过漂⼼。
(⼆)初稳性⾼度GM 的表达式GM=KB+BM-KG=KM-KG (三)初稳性⾼度的求取1、 KM 可在静⽔⼒曲线图、静⽔⼒参数表或载重表中查取。
2、 KG 的计算式中,P i —— 组成船舶总重量(含空船重量等)的第i 项载荷,tZ i —— 载荷P i 的重⼼距基线⾼度,m3、Z i 确定(1)舱容曲线图表查取法船舶资料中通常有各个货舱和液舱的舱容曲线图或数据表,利⽤舱容曲线图表,可⽅便确定舱内散货或液货的重⼼⾼度Z i ,⽅法如下:i )对于匀质散货或液货,已知货堆表⾯距基线⾼度,在图中左纵轴上对应点做⽔平线交舱容中⼼距基线⾼度曲线得B 点,过B 点做垂线交上横轴得C 点,对应值即为该舱货物重⼼距基线⾼度Z i 。