高一数学必修3、4期末复习
- 格式:doc
- 大小:348.40 KB
- 文档页数:4
必修四复习要点三角函数一、角的概念 1、角的概念角可以看成是平面内一条射线绕着端点O 从一个位置旋转到另一个位置所成的图形.旋转开始时的射线OA 叫做角的始边,旋转结束的射线OB 叫做终边,射线的端点O 叫做角的顶点,按逆时针方向旋转所形成的角叫做正角,按顺时针方向旋转所形成的角叫做负角.若一条射线没有作任何旋转,称它是一个零角. 2、象限角使角的顶点与原点重合,角的始边与x 轴重合的非负半轴重合.角的终边落在第几象限,就说这个角是第几象限的角.α是第一象限的角可表示为:},222|{Z k k k ∈+<<ππαπα},90360360|{000Z k k k ∈+⋅<<⋅ααα是第二象限的角可表示为:},222|{Z k k k ∈+<<+ππαππα},180********|{000Z k k k o ∈+⋅<<+⋅ααα是第三象限的角可表示为:},2322|{Z k k k ∈+<<+ππαππα },270360180360|{0000Z k k k ∈+⋅<<+⋅ααα是第四象限的角可表示为:},22232|{Z k k k ∈+<<+ππαππα },360360270360|{0000Z k k k ∈+⋅<<+⋅αα3、象限界角(即轴上角)终边落在x 轴正半轴上的角:},2|{Z k k ∈=παα;},360|{0Z k k ∈⋅=αα终边落在x 轴负半轴上的角:},2|{Z k k ∈+=ππαα;},180360|{00Z k k ∈+⋅=αα终边落在x 轴上的角:{|,}k k Z ααπ=∈;},180|{0Z k k ∈⋅=αα 终边落在y 轴正半轴上的角:},22|{Z k k ∈+=ππαα;},90360|{00Z k k ∈+⋅=αα终边落在y 轴负半轴的角:},232|{Z k k ∈+=ππαα;},270360|{00Z k k ∈+⋅=αα 终边落在y 轴上的角:{|,}2k k Z πααπ=+∈;},90180|{00Z k k ∈+⋅=αα4、终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合:},360|{Z k k o ∈+⋅=αββ;},2|{Z k k ∈+=απββ直线l 的倾斜角是α,则终边落在直线l 上的角的集合:},180|{Z k k o ∈+⋅=αββ;},|{Z k k ∈+=απββ.5、弧度制:把长度等于半径长的弧所对的圆心角叫1弧度的角. 以弧度作为单位来度量角的单位制,叫做弧度制,它的单位符号是rad ,读作弧度,通常略去不写. 公式:||l r α=(l 表示弧长);换算:180oπ=弧度;1弧度180()o π=度;1180o π=弧度;扇形:弧长||180n Rl r πα==;即弧长等于弧所对的圆心角(弧度数)的绝对值与半径的积.面积2211||22360n R S lr r πα===6、任意角的三角函数的定义以角α的顶点为坐标原点,始边为x 轴正半轴建立直角坐标系,在角α的终边上任取一个异于原点的点),(y x P ,点P 到原点的距离记为22r x y =+,则r y =αsin ,r x =αcos ,xy =αtan . 题型:给点求值7、各象限角的三角函数值的符号如下图所示+ + - + - +- - - + + -αsin αcos αtan三角函数正值歌:Ⅰ全正,Ⅱ正弦,Ⅲ正切,Ⅳ余弦. 8.熟记特殊角度(4π、6π的整数倍)的三角函数值: α 06π 4π3π2π π23π αsin21 22 23 11-αcos123 22 21 01-αtan0 33 13不存在 0 不存在二、同角三角函数基本关系式与诱导公式 1、同角三角函数的基本关系式:()221sin cos 1αα+= ()2222s i n1c o s,c o s 1si n αααα=-=-; ()sin 2tan cos ααα= s i n s i n t a n c o s,c o s t a n αααααα⎛⎫== ⎪⎝⎭. 2、三角函数的诱导公式:()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.口诀:函数名称不变,符号看象限.()5sin cos 2παα⎛⎫-=⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭. ()6sin cos 2παα⎛⎫+= ⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭.口诀:正弦与余弦互换,符号看象限.3、正弦函数、余弦函数和正切函数的图象与性质:sin y x =cos y x = tan y x =图象定义域 R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当22x k ππ=+()k ∈Z 时,max 1y =;当22x k ππ=- 当()2x k k π=∈Z 时,max 1y =;当2x k ππ=+既无最大值也无最小值函数性 质()k ∈Z 时,min 1y =-.()k ∈Z 时,min 1y =-.周期性 2π 2π π奇偶性奇函数偶函数奇函数单调性在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦()k ∈Z 上是增函数;在32,222k k ππππ⎡⎤++⎢⎥⎣⎦()k ∈Z 上是减函数.在[]()2,2k k k πππ-∈Z 上是增函数;在[]2,2k k πππ+()k ∈Z 上是减函数.在,22k k ππππ⎛⎫-+ ⎪⎝⎭()k ∈Z 上是增函数.对称性对称中心()(),0k k π∈Z对称轴()2x k k ππ=+∈Z对称中心(),02k k ππ⎛⎫+∈Z ⎪⎝⎭对称轴()x k k π=∈Z对称中心(),02k k π⎛⎫∈Z ⎪⎝⎭无对称轴4、函数B x A y ++=)sin(ϕω),(其中00>>ωA 的最大值是B A +,最小值是A B -,周期是ωπ2=T ,频率是πω2=f ,相位是ϕω+x ,初相是ϕ. 5、B x A y ++=)sin(ϕω),(其中00>>ωA 的性质:(若0>A ,0>ω不成立,则利用诱导公式化为成立,其他函数类似写出)作图:五点法,依次取30,,,,222x ππωϕππ+=.值域:],[A A - 周期:2||T πω=单调性:增区间:解不等式2222k x k πππωϕπ-≤+≤+;减区间:解不等式32222k x k πππωϕπ+≤+≤+; 奇偶性:)2(2k ⋅=πϕ时,奇函数; )12(2+⋅=k πϕ时,偶函数.最值:当22ππϕω+=+k x 时,y 取最大值A ;当2ππϕω-=+k x 时,y 取最小值A -.对称中心:πϕωk x =+0,)0,(0x 对称轴:2ππϕω+=+k x6、变换作图法作)sin(ϕω+=x A y )0,0(>>ωA 的图象y=sinx 的图象−→−y=sin(x+φ)的图象−→−y=sin(ωx+φ)的图象−→−y=Asin(ωx+φ)的图象.平面向量复习要点一、向量的概念 1、向量的有关概念⑴向量:既有大小又有方向的量叫向量,向量的大小叫做向量的长度(或模). ⑵零向量:长度为0的向量叫做零向量,其方向是任意的. ⑶单位向量:长度等于1个单位长度的向量.⑷平行(共线)向量:方向相同或相反的非零向量,平行向量又叫做共线向量,任一组平行向量都可以移到同一直线上,平移不改变向量的大小和方向.规定:零向量与任一向量平行 ⑸相等向量:长度相等且方向相同的向量 ⑹相反向量:长度相等且方向相反的向量2、向量的表示方法有:字母表示法、几何表示法、坐标表示法3、向量加法运算:⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点.⑶三角形不等式:a b a b a b -≤+≤+.⑷运算性质:①交换律:a b b a +=+;②结合律:()()a b c a b c ++=++;③00a a a +=+=. ⑸坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y +=++.4、向量减法运算:⑴三角形法则的特点:共起点,连终点,方向指向被减向量. ⑵坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y-=--.设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1212,BA x x y y =--. 5、向量数乘运算:⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ.baCBAa b C C -=A -AB =B①a a λλ=;②当0λ>时,a λ的方向与a 的方向相同;当0λ<时,a λ的方向与a 的方向相反;当0λ=时,0a λ=. ⑵运算律:①()()a a λμλμ=;②()a a a λμλμ+=+;③()a b a b λλλ+=+. ⑶坐标运算:设(),a x y =,则()(),,a x y x y λλλλ==.6、向量共线定理:向量()0a a ≠与b 共线,当且仅当有唯一一个实数λ,使b a λ=.设()11,a x y =,()22,b x y =,其中0b ≠,则当且仅当12210x y x y -=时,向量a 、()0b b ≠共线. 7、平面向量基本定理:如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数1λ、2λ,使1122a e e λλ=+.(不共线的向量1e 、2e 作为这一平面内所有向量的一组基底) 8、分点坐标公式:设点P 是线段12P P 上的一点,1P 、2P 的坐标分别是()11,x y ,()22,x y ,当12λP P =PP 时,点P 的坐标是1212,11x x y y λλλλ++⎛⎫⎪++⎝⎭.9、平面向量的数量积:⑴()cos 0,0,0180a b a b a b θθ⋅=≠≠≤≤.零向量与任一向量的数量积为0. ⑵性质:设a 和b 都是非零向量,则①0a b a b ⊥⇔⋅=.②a b a b ⋅=-;22a a a a ⋅==或a a a =⋅.③a b a b ⋅≤.⑶坐标运算:设两个非零向量()11,a x y =,()22,b x y =,则1212a b x x y y ⋅=+.若(),a x y =,则222a x y =+,或22a x y =+.设()11,a x y =,()22,b x y =,则12120a b x x y y ⊥⇔+=.设a 、b 都是非零向量,()11,a x y =,()22,b x y =,θ是a 与b 的夹角,则121222221122cos x x y y a b a bx yx yθ+⋅==++10.两个向量平行与垂直的判断: 设),(11y x a =,),(22y x b =2121,//y y x x b a b a λλλ==⇔=⇔⇔01221=-y x y x ⇔=⋅⇔⊥0b a b a 02121=+y y x x三角恒等变换复习要点1、两角和与差的正弦、余弦、正切公式及变形(变形公式作了解)=±)sin(βαβαβαsin cos cos sin ±; =±)cos(βαβαβαsin sin cos cos ; =±)tan(βαβαβαtan tan 1tan tan ±2、)sin(cos sin 22ϕααα++=+b a b a ,其中辅助角ϕ与点(,)a b 在同一象限,且22cos b a a +=ϕ,22sin b a b +=ϕ,ab =ϕtan 3、倍角公式及变形α2sin =ααcos sin 2;α2cos =αααα2222sin 211cos 2sin cos -=-=-;=α2tan αα2tan 1tan 2-. 22cos 1cos 2αα+=;22cos 1sin 2αα-=;ααα2sin 21cos sin =.2cos 2cos 12αα=+;2sin 2cos 12αα=-.22cos 1sin 2αα-=22cos 2sin sin 1⎪⎭⎫ ⎝⎛±=±ααα必修3第一章:算法 1、算法的概念2、算法的三种基本结构: 顺序结构、选择结构、循环结构3、流程图中的图框:起止框、输入输出框、处理框、判断框、流程线等规范表示方法;4、循环结构中常见的两种结构: 当型循环结构、直到型循环结构5、基本算法语句:输入语句、输出语句、赋值语句、条件语句、循环语句6、算法案例:辗转相除法、更相减损术、秦九韶算法、进位制第二章统计1、从1003个个体抽取50个个体,通常采取的抽样方法是系统抽样,每个个体被抽取的概率是100350,样本容量是50,间隔是202、注意抽样方法的联系与区别 类 别共同点各自特点 相互联系适用范围 简单随 机抽样 抽样过程中每个个体被抽取的概率相等 从总体中逐个抽出总体中的个体数较少 系统抽样将总体均分成几部分,按事先确定的规则在各部分抽取 在起始部分抽样时采用简单随机抽样 总体中的个体数较多 分层 抽样将总体分成几层,分层进行抽取各层抽样采用简单随机抽样或系统抽样 总体由差异明显的几部分组成3、用样本的频率分布估计总体分布的步骤是:(1)计算一组数据中最大值与最小值的差,即求极差(2)决定组距与组数(3)将数据分组(4)列频率分布表(5)画频率分布直方图4、注意频率分布直方图的横坐标与纵坐标;频率=(频率/组距)*组距=频数/样本容量=面积5、茎叶图的画法;众数、中位数、平均数、标准差、方差的求法第三章概率1、事件的包含、并事件、交事件、互斥事件、对立事件.)()()()(B A P B P A P B A P -+=若A ∩B 为不可能事件,即A ∩B=ф,那么称事件A 与事件B 互斥;若A ∩B 为不可能事件,A ∪B 为必然事件,那么称事件A 与事件B 互为对立事件;当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B);若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B).2、古典概型的概率计算公式:总的基本事件个数包含的基本事件个数A A P =)(.几何概型的概率公式:积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A A P =)(。
高一数学必修三知识点笔记归纳(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的教育资料,如幼儿教案、音乐教案、语文教案、知识梳理、英语教案、物理教案、化学教案、政治教案、历史教案、其他范文等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of educational materials for everyone, such as preschool lesson plans, music lesson plans, Chinese lesson plans, knowledge review, English lesson plans, physics lesson plans, chemistry lesson plans, political lesson plans, history lesson plans, and other sample texts. If you want to learn about different data formats and writing methods, please stay tuned!高一数学必修三知识点笔记归纳本店铺为各位同学整理了《高一数学必修三知识点笔记归纳》,希望对你的学习有所帮助!1.高一数学必修三知识点笔记归纳篇一1.定义:用符号〉,=,〈号连接的式子叫不等式。
高一数学必修三知识点重点(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的教育资料,如幼儿教案、音乐教案、语文教案、知识梳理、英语教案、物理教案、化学教案、政治教案、历史教案、其他范文等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of educational materials for everyone, such as preschool lesson plans, music lesson plans, Chinese lesson plans, knowledge review, English lesson plans, physics lesson plans, chemistry lesson plans, political lesson plans, history lesson plans, and other sample texts. If you want to learn about different data formats and writing methods, please stay tuned!高一数学必修三知识点重点本店铺为各位同学整理了《高一数学必修三知识点重点》,希望对你的学习有所帮助!1.高一数学必修三知识点重点篇一映射一般地,设A、B是两个非空的函数,如果按某一个确定的对应法则f,使对于函数A中的任意一个元素x,在函数B中都有确定的元素y与之对应,那么就称对应f:AB为从函数A到函数B的一个映射。
高一数学092 高一 年级 班 教师 方雄飞 学生人教版高中数学必修2、3、4主要知识点汇总1、平均值:nx x x x n+++=212、样本标准差:nx x x x x x s s n 222212)()()(-++-+-==3、(1)如果把一组数据中的每一个数据都加上或减去同一个共同的常数,标准差不变 (2)如果把一组数据中的每一个数据乘以一个共同的常数k ,标准差变为原来的k 倍4、(1)回归直线方程:y b x a ∧∧∧=+(2)回归系数:1221ni i i ni i x y nx yb x nx∧==∑-=∑-,a y b x ∧∧=-5、辗转相除法与更相减损术1、辗转相除法。
用较大的数除以较小的数所得的余数和较小的数构成新的一对数,继续做上面的除法,直到大数被小数除尽,这个较小的数就是最大公约数。
2、更相减损术。
以较大的数减去较小的数,接着把较小的数与所得的差比较,并以大数减小数。
继续这个操作,直到所得的数相等为止,则这个数(等数)就是所求的最大公约数。
6、秦九韶算法概念:f(x)=a n x n+a n-1x n-1+….+a 1x+a 0求值问题f(x)=a n x n+a n-1x n-1+….+a 1x+a 0=( a n x n-1+a n-1x n-2+….+a 1)x+a 0 =(( a n x n-2+a n-1x n-3+….+a 2)x+a 1)x+a 0=......=(...( a n x+a n-1)x+a n-2)x+...+a 1)x+a 0求多项式的值时,首先计算最内层括号内依次多项式的值,即v 1=a n x+a n-1然后由内向外逐层计算一次多项式的值,即v 2=v 1x+a n-2 v 3=v 2x+a n-3 ...... v n =v n-1x+a 0 7、进位制(1)以k 为基数的k 进制换算为十进制:110110()110...nn n n k n n a a a a a k a k a k a k ---=+++(2)十进制换算为k 进制:除以k 取余,倒序排列8、古典概型的解题步骤;①求出总的基本事件数;②求出事件A 所包含的基本事件数,然后利用公式P (A )=总的基本事件个数包含的基本事件数A 几何概型的概率公式:P (A )=积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A 9、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是lrα=.10、弧度制与角度制的换算公式:2360π=,1180π=,180157.3π⎛⎫=≈ ⎪⎝⎭. 11、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=,2C r l =+,21122S lr r α==.12、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距离是()0r r =>,则sin y r α=,cos x r α=,()tan 0yx xα=≠.,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭14、平面向量的坐标表示:平面内的任一向量a 可表示成a xi yj =+,记作a =(x , y ).15、平面向量的坐标运算:(1) 若()()1122,,,a x y b x y == ,则()1212,a b x x y y ±=±±(2) 若()()2211,,,y x B y x A ,则()2121,AB x x y y =--(3) 若a =(x ,y ),则λa=(λx , λy )(4) 若()()1122,,,a x y b x y == ,则1221//0a b x y x y ⇔-=16、两角和与差的正弦、余弦和正切公式:⑴()cos cos cos sin sin αβαβαβ-=+; ⑵()cos cos cos sin sin αβαβαβ+=-; ⑶()sin sin cos cos sin αβαβαβ-=-; ⑷()sin sin cos cos sin αβαβαβ+=+;⑸()tan tan tan 1tan tan αβαβαβ--=+ ⇒ (()()tan tan tan 1tan tan αβαβαβ-=-+);⑹()tan tan tan 1tan tan αβαβαβ++=- ⇒ (()()tan tan tan 1tan tan αβαβαβ+=+-).17、二倍角的正弦、余弦和正切公式: ⑴sin 22sin cos ααα=222)cos (sin cos sin 2cos sin 2sin 1ααααααα±=±+=±⇒或x x x 2sin 21cos sin = ⑵2222cos2cossin 2cos 112sin ααααα=-=-=-⇒升幂公式 2s i n2c o s 1,2c o s 2c o s122αααα=-=+⇒降幂公式 2cos 21cos 2αα+=, 21c o s 2s i n 2αα-=. ⑶22tan tan 21tan ααα=-.18、半角公式⇒(后两个不用判断符号,直接用)19、辅助角公式把两个三角函数的和或差化为“一个三角函数,一个角,一次方”的 B x A y ++=)sin(ϕϖ形式。
期末复习资料之一 必修1 复习题一、选择题1、 下列函数中,在区间()0,+∞不是增函数的是( ) A.xy 2= B. x y lg = C. 3x y = D. 1y x=2、函数y =log 2x +3(x≥1)的值域是( )A.[)+∞,2B.(3,+∞)C.[)+∞,3D.(-∞,+∞)3、若{|2},{|xM y y P y y ====,则M∩P ( )A.{|1}y y >B. {|1}y y ≥C. {|0}y y >D. {|0}y y ≥ 4、对数式2log (5)a b a -=-中,实数a 的取值范围是( )A.a>5,或a<2B.2<a<5C.2<a<3,或3<a<5D.3<a<45、 已知xax f -=)( )10(≠>a a 且,且)3()2(->-f f ,则a 的取值范围是( )A. 0>aB. 1>aC. 1<aD. 10<<a6、函数y =(a 2-1)x在(-∞,+∞)上是减函数,则a 的取值范围是( ) A.|a |>1 B.|a |>2C.a>2D.1<|a |<26、函数)1(log 221-=x y 的定义域为( )A 、[)(]2,11,2 -- B 、)2,1()1,2( -- C 、[)(]2,11,2 -- D 、)2,1()1,2( --8、值域是(0,+∞)的函数是( )A 、125xy -=B 、113xy -⎛⎫= ⎪⎝⎭C、yD9、函数|log |)(21x x f =的单调递增区间是A 、]21,0( B 、]1,0( C 、(0,+∞) D 、),1[+∞10、图中曲线分别表示l g a y o x =,l g b y o x =,l g c y o x =,l g d y o x =的图象,,,,a b c d 的关系是( )A 、0<a<b<1<d<cB 、0<b<a<1<c<dC 、0<d<c<1<a<bD 、0<c<d<1<a<b11、函数f(x)=log 31(5-4x-x 2)的单调减区间为( )A.(-∞,-2)B.[-2,+∞]C.(-5,-2)D.[-2,1]12、a=log 0.50.6,b=log 20.5,c=log 35,则( )A.a <b <cB.b <a <cC.a <c <bD.c <a <b13、已知)2(log ax y a -=在[0,1]上是x 的减函数,则a 的取值范围是( )A.(0,1)B.(1,2)C.(0,2)D.[2,+∞]14、设函数1lg )1()(+=x x f x f ,则f(10)值为( )A .1 B.-1 C.10 D.101 二、填空题 15、函数)1(log 21-=x y 的定义域为 16、.函数y =2||1x -的值域为________ 17、将(61)0,2,log 221,log 0.523由小到大排顺序:x18. 设函数()()()()4242xx f x x f x ⎧≥⎪=⎨<+⎪⎩,则()2log 3f =19、计算机的成本不断降低,如果每隔5年计算机的价格降低31,现在价格为8100元的计算机,15年后的价格可降为20、函数),2[log +∞=在x y a 上恒有|y|>1,则a 的取值范围是 。
必修1数学知识点第一章、集合与函数概念 §1.1.1、集合1、 把研究的对象统称为元素,把一些元素组成的总体叫做集合。
集合三要素:确定性、互异性、无序性。
2、 只要构成两个集合的元素是一样的,就称这两个集合相等。
3、 常见集合:正整数集合:*N 或+N ,整数集合:Z ,有理数集合:Q ,实数集合:R .4、集合的表示方法:列举法、描述法. §1.1.2、集合间的基本关系1、 一般地,对于两个集合A 、B ,如果集合A 中任意一个元素都是集合B 中的元素,则称集合A 是集合B 的子集。
记作B A ⊆.2、 如果集合B A ⊆,但存在元素B x ∈,且A x ∉,则称集合A 是集合B 的真子集.记作:A B.3、 把不含任何元素的集合叫做空集.记作:∅.并规定:空集合是任何集合的子集.4、 如果集合A 中含有n 个元素,则集合A 有n2个子集.§1.1.3、集合间的基本运算1、 一般地,由所有属于集合A 或集合B 的元素组成的集合,称为集合A 与B 的并集.记作:B A .2、 一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集.记作:B A .3、全集、补集?{|,}U C A x x U x U =∈∉且 §1.2.1、函数的概念1、 设A 、B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有惟一确定的数()x f 和它对应,那么就称B A f →:为集合A 到集合B 的一个函数,记作:()A x x f y ∈=,. 2、 一个函数的构成要素为:定义域、对应关系、值域.如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等. §1.2.2、函数的表示法1、 函数的三种表示方法:解析法、图象法、列表法. §1.3.1、单调性与最大(小)值1、 注意函数单调性证明的一般格式:解:设[]b a x x ,,21∈且21x x <,则:()()21x f x f -=… §1.3.2、奇偶性1、 一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f =-,那么就称函数()x f 为偶函数.偶函数图象关于y 轴对称.2、 一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f -=-,那么就称函数()x f 为奇函数.奇函数图象关于原点对称. 第二章、基本初等函数(Ⅰ) §2.1.1、指数与指数幂的运算1、 一般地,如果a x n=,那么x 叫做a 的n 次方根。
2024年高一数学必修三知识点总结一、函数与方程1. 函数的概念与性质- 函数的定义与表示- 函数的自变量和因变量- 函数的定义域和值域- 函数图像与坐标系上的点的对应关系2. 一元一次方程与一元一次不等式- 一元一次方程的定义和解的方法- 一元一次不等式的定义和解的方法- 一元一次方程与一元一次不等式的应用3. 一元二次方程与二次函数- 一元二次方程的定义和解的方法- 二次函数的定义和性质- 一元二次方程与二次函数的关系- 一元二次方程与二次函数的应用4. 分式方程与分式不等式- 分式方程的定义和解的方法- 分式不等式的定义和解的方法- 分式方程与分式不等式的应用5. 指数与对数- 指数的定义和性质- 指数与幂运算的关系- 对数的定义和性质- 对数与指数运算的关系- 指数与对数的应用二、三角函数1. 弧度制与角度制- 弧度制与角度制的定义和换算关系2. 常用三角函数- 正弦函数、余弦函数、正切函数的定义和性质- 正弦函数、余弦函数、正切函数在坐标系上的图像- 正弦函数、余弦函数周期性的特点3. 三角函数的基本关系- 三角函数之间的基本关系式- 三角函数的奇偶性4. 三角函数的图像与性质- 正弦函数、余弦函数的图像特点- 正切函数的图像特点5. 三角函数的应用- 广义正弦定理和广义余弦定理- 三角函数在几何问题中的应用- 三角函数在物理问题中的应用三、数列与数列的和1. 数列的概念与性质- 数列的定义和表示- 数列的有限项和无限项- 数列的公式与递推关系- 数列的等差和等比2. 等差数列与等比数列- 等差数列的定义和性质- 等差数列的通项公式和前n项和公式- 等比数列的定义和性质- 等比数列的通项公式和前n项和公式3. 数列的应用- 数列在数学游戏中的应用- 数列在数学推理中的应用- 数列在等分数列和等比数列中的应用4. 常用数列公式与技巧- 数列求和公式的推导与运用- 常用数列的特殊性质和技巧总结:____年高一数学必修三主要涉及函数与方程、三角函数、数列与数列的和等知识点。
高一必修三数学知识点复习(实用版)编制人:__审核人:__审批人:__编制单位:__编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如教案大全、书信范文、述职报告、合同范本、工作总结、演讲稿、心得体会、作文大全、工作计划、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as lesson plans, letter templates, job reports, contract templates, work summaries, speeches, reflections, essay summaries, work plans, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!高一必修三数学知识点复习本店铺为各位同学整理了《高一必修三数学知识点复习》,希望对你的学习有所帮助!1.高一必修三数学知识点复习篇一1.定义:用符号),=,(号连接的式子叫不等式。
高一数学必修三重点知识点(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如教案大全、书信范文、述职报告、合同范本、工作总结、演讲稿、心得体会、作文大全、工作计划、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as lesson plans, letter templates, job reports, contract templates, work summaries, speeches, reflections, essay summaries, work plans, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!高一数学必修三重点知识点本店铺为各位同学整理了《高一数学必修三重点知识点》,希望对您的学习有所帮助!1.高一数学必修三重点知识点平方关系:sin^2α+cos^2α=11+tan^2α=sec^2α1+cot^2α=csc^2α积的关系:sinα=tanαXcosαcosα=cotαXsinαtanα=sinαXsecαcotα=cosαXcscαsecα=tanαXcscαcscα=secαXcotα倒数关系:tanαcotα=1sinαcscα=1cosαsecα=1商的关系:sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα2.高一数学必修三重点知识点概率的基本性质1、基本概念:(1)事件的包含、并事件、交事件、相等事件(2)若A∩B为不可能事件,即A∩B=ф,那么称事件A与事件B 互斥;(3)若A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件;(4)当事件A与B互斥时,满足加法公式:P(A∪B)=P(A)+P(B);若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B)=P(A)+P(B)=1,于是有P(A)=1—P(B)2、概率的基本性质:1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1;2)当事件A与B互斥时,满足加法公式:P(A∪B)=P(A)+P(B);3)若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B)=P(A)+P(B)=1,于是有P(A)=1—P(B);4)互斥事件与对立事件的区别与联系,互斥事件是指事件A与事件B在一次试验中不会同时发生,其具体包括三种不同的情形:(1)事件A发生且事件B不发生;(2)事件A不发生且事件B发生;(3)事件A与事件B同时不发生,而对立事件是指事件A与事件B有且仅有一个发生,其包括两种情形;1)事件A发生B不发生;2)事件B发生事件A不发生,对立事件互斥事件的特殊情形。
高二数学必修部分测试题一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.0sin 390=()A .21B .21-C .23 D .23- 2.已知2tan()5αβ+=,1tan()44πβ-=,则tan()4πα+的值为() A 1223133A 4.,b 满足:|3a =,|2b =,||a b +=||a b -=()A 3D .105.下面结论正确的是()C.6A C 789、函数⎪⎩⎪⎨⎧+∞∈--∞∈-=--),2(,22]2,(,2211x x y x x 的值域为______________。
A 、),23(+∞- B 、]0,(-∞ C 、23,(--∞ D 、]0,2(- 10.当x>1时,不等式x+11-x ≥a 恒成立,则实数a 的取值范围是 A .(-∞,2] B .[2,+∞) C .[3,+∞) D .(-∞,3]11.已知a,b,c 成等比数列,且x,y 分别为a 与b 、b 与c 的等差中项,则y c x a +的值为() (A )21(B )-2(C )2(D )不确定 12.已知数列{a n }的通项公式为a n =n n ++11且S n =1101-,则n 的值为()(A )98(B )99(C )100(D )101二、填空题(本大题共4小题,每题4分,共16分,把答案填在题中横线上)13141516。
17得到y 1819(本小题满分12分)已知向量a ,b 的夹角为60,且||2a =,||1b =,(1)求a b ;(2)求||a b +.20.已知数列{a n },前n 项和S n =2n-n 2,a n =log 5bn ,其中bn>0,求数列{bn}的前n 项和。
21(本小题满分14分)已知(3sin ,cos )a x m x =+,(cos ,cos )b x m x =-+,且()f x a b =(1)求函数()f x 的解析式;(2)当,63x ππ⎡⎤∈-⎢⎥⎣⎦时,()f x 的最小值是-4,求此时函数()f x 的最大值,并求出相应的x 的值. 22如图如图,在底面是直角梯形的四棱锥S-ABCD ,∠ABC=90°,SA ⊥面ABCD ,SA=AB=BC=1,AD=1/2.ACAD 13.3π171)2-+x ,∴18.19.解:(1)1||||cos602112a b a b ==⨯⨯= (2)22||()a b a b +=+所以||3a b +=20.当n=1时,a 1=S 1=1当n ≥2时,a 1=S n -S n-1=3-2n ∴a n =3-2nb n =53-2n∵25155123)1(23==+-+-n n bn bn b 1=5∴{b n }是以5为首项,251为公比的等比数列。
高一上期数学(必修1+必修4)期末复习培优专题卷附详解高一上学期数学(必修1+必修4)期末复培优专题卷一.选择题1.已知定义域为实数集的函数f(x)的图像经过点(1,1),且对任意实数x1<x2,都有f(x1)≤f(x2),则不等式的解集为()。
A。
(-∞,1)∪(1,+∞) B。
(-∞,+∞)C。
(1,+∞) D。
(-∞,1)2.对任意x∈[0,2π],任意y∈(-∞,+∞),不等式-2cosx≥asinx-x恒成立,则实数a的取值范围是()。
A。
[-3,3] B。
[-2,3] C。
[-2,2] D。
[-3,2]3.定义在实数集上的偶函数f(x)满足f(2-x)=f(x),且当x∈[1,2]时,f(x)=lnx-x+1,若函数g(x)=f(x)+mx有7个零点,则实数m的取值范围为()。
A。
(-∞,-1/2) B。
(-∞,0)C。
(-1,+∞) D。
(0,+∞)4.定义在实数集上的函数y=f(x)为减函数,且函数y=f (x-1)的图像关于点(1,0)对称,若f(x-2x)+f(2b-b)≤0,且-2≤x≤2,则x-b的取值范围是()。
A。
[-2,0] B。
[-2,2] C。
[0,2] D。
[0,4]5.设函数f(x)=x^2-2x+1,当x∈[-1,1]时,恒有f(x+a)<f(x),则实数a的取值范围是()。
A。
(-∞,-1) B。
(-1,+∞)C。
(-∞,1) D。
(-∞,-2)6.定义域为实数集的函数f(x)满足f(x+2)=2f(x),当x∈[0,2)时,f(x)=x^2-x,若当x∈[-4,-2)时,不等式f(x)≥-t+2恒成立,则实数t的取值范围是()。
A。
[2,3] B。
[1,3] C。
[1,4] D。
[2,4]7.已知函数f(x)的定义域为D,若对于∀a,b,c∈D,f(a),f(b),f(c)分别为某个三角形的三边长,则称f (x)为“三角形函数”.给出下列四个函数:①f(x)=lg(x+1)(x>0);②f(x)=4-cosx;③f(x)=|sinx|;④f(x)=|x|+1.其中为“三角形函数”的个数是()。
第三章 函数的概念与性质考试时间120分钟,满分150分.一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数y =x 2+1的值域是( B ) A .[0,+∞) B .[1,+∞) C .(0,+∞)D .(1,+∞)[解析] 由题意知,函数y =x 2+1的定义域为R ,则x 2+1≥1,∴y ≥1. 2.已知f (12x -1)=2x -5,且f (a )=6,则a 等于( B )A .-74B .74C .43D .-43[解析] 设12x -1=t ,则x =2t +2,t ∈R ,∴f (t )=2(2t +2)-5=4t -1,∴f (x )=4x -1.由f (a )=6得4a -1=6,即a =74.3.(2019·山东烟台高一期中测试)已知函数y =f (x )的部分x 与y 的对应关系如下表:则f [f (4)]A .-1 B .-2 C .-3D .3[解析] 由图表可知,f (4)=-3,∴f [f (4)]=f (-3)=3.4.已知幂函数f (x )=x α的图象过点(2,12),则函数g (x )=(x -2)f (x )在区间[12,1]上的最小值是( C )A .-1B .-2C .-3D .-4[解析] 由已知得2α=12,解得α=-1,∴g (x )=x -2x =1-2x 在区间[12,1]上单调递增,则g (x )min =g (12)=-3,故选C .5.(2019·吉林榆树一中高一期中测试)已知函数f (x -1)=x 2-3,则f (2)的值是( B ) A .-2B .6C.1 D.0[解析]解法一:令x-1=2,则x=3,∴f(2)=32-3=6.解法二:令x-1=t,则x=t+1,∴f(t)=(t+1)2-3=t2+2t-2,∴f(2)=22+2×2-2=6.6.(2019·吉林乾安七中高一期测试)已知函数f(x)=(m-1)x2+(m-2)x+m2-7m+12为偶函数,则m的值是(B)A.1 B.2C.3 D.4[解析]由题意得m-2=0,∴m=2.7.“龟兔赛跑”讲述了这样一个故事:领先的兔子看着缓缓爬行的乌龟,骄傲起来,睡了一觉,当它醒来时发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点.用s1和s2分别表示乌龟和兔子所行的路程,t为时间,s为路程,则下列图象中与故事情节相吻合的是(D)[解析]根据题意:s1是匀速运动,路程一直在增加,s2有三个阶段:开始是路程增加,中间睡觉,路程不变;醒来时发现乌龟快到终点了急忙追赶,路程增加;但是乌龟还是先到终点,即s1在s2上方,故选D.8.已知定义在R上的奇函数f(x)满足f(x-4)=-f(x)且在区间[0,2]上是增函数,则(D)A.f(-1)<f(3)<f(4) B.f(4)<f(3)<f(-1)C.f(3)<f(4)<f(-1) D.f(-1)<f(4)<f(3)[解析]因为f(x)是R上的奇函数,所以f(0)=0,又f(x)满足f(x-4)=-f(x),则f(4)=-f(0)=0,又f(x)=-f(-x)且f(x-4)=-f(x),所以f(3)=-f(-3)=-f(1-4)=f(1),又f (x )在区间[0,2]上是增函数,所以f (1)>f (0),即f (1)>0,所以f (-1)=-f (1)<0,f (3)=f (1)>0,可得f (-1)<f (4)<f (3),故选D . 二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得3分)9.下列幂函数中,其图象过点(0,0),(1,1),且为偶函数的是( BD )A .y =x 12B .y =x 2C .y =x-14D .y =x 4[解析] 由题设知该幂函数为偶函数,且幂指数大于0,故选BD .10.若奇函数f (x )在[3,7]上是增函数,且最小值是1,则它在[-7,-3]上( AB ) A .是增函数 B .最大值是-1 C .是减函数D .最小值是-1[解析] ∵奇函数在对称区间上的单调性相同,最值互为相反数.∴y =f (x )在[-7,-3]上有最大值-1且为增函数.故选AB .11.已知f (x )=3-2|x |,g (x )=x 2-2x ,F (x )=⎩⎪⎨⎪⎧g (x )(若f (x )≥g (x ))f (x )(若f (x )<g (x )),则F (x )( BC )A .最小值-1B .最大值为7-27C .无最小值D .无最大值[解析] 作出F (x )的图象,如图实线部分,知有最大值而无最小值,且最大值不是3,故选BC .12.已知f (x )是定义在[0,+∞)上的函数,根据下列条件,可以断定f (x )是增函数的是( CD )A .对任意x ≥0,都有f (x +1)>f (x )B .对任意x 1,x 2∈[0,+∞),且x 1≥x 2,都有f (x 1)≥f (x 2)C .对任意x 1,x 2∈[0,+∞),且x 1-x 2<0,都有f (x 1)-f (x 2)<0D .对任意x 1,x 2∈[0,+∞),且x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0[解析] 根据题意,依次分析选项:对于选项A ,对任意x ≥0,都有f (x +1)>f (x ),不满足函数单调性的定义,不符合题意;对于选项B ,当f (x )为常数函数时,对任意x 1,x 2∈[0,+∞),都有f (x 1)=f (x 2),不是增函数,不符合题意;对于选项C ,对任意x 1,x 2∈[0,+∞),且x 1-x 2<0,都有f (x 1)-f (x 2)<0,符合题意;对于选项D ,对任意x 1,x 2∈[0,+∞),设x 1>x 2,若f (x 1)-f (x 2)x 1-x 2>0,必有f (x 1)-f (x 2)>0,则函数在[0,+∞)上为增函数,符合题意.三、填空题(本大题共4小题,每小题5分,共20分.) 13.(2019·陕西黄陵中学高一期末测试)函数f (x )=4-2x +1x +1的定义域是__{x |x ≤2且x ≠-1}__.[解析] 由题意得⎩⎪⎨⎪⎧4-2x ≥0x +1≠0,解得x ≤2且x ≠-1,∴函数f (x )的定义域为{x |x ≤2且x ≠-1}.14.已知f (x )=⎩⎪⎨⎪⎧2x ,x >0,f (x +1),x ≤0,则f (-43)+f (43)等于__4__.[解析] ∵f (x )=⎩⎪⎨⎪⎧2x ,x >0,f (x +1),x ≤0,∴f (-43)=f (-43+1)=f (-13)=f (-13+1)=f (23)=23×2=43,f (43)=2×43=83,∴f (-43)+f (43)=43+83=4.15.已知幂函数f (x )=x α的图象经过点(9,3),则f (12)=2,函数f (1x -1)的定义域为__(0,1]__.[解析] 幂函数f (x )的图象经过点(9,3),所以3=9α,所以α=12,所以幂函数f (x )=x ,故f (12)=22,故1x-1≥0,解得0<x ≤1.16.设α∈{1,2,3,-1},则使y =x α为奇函数且在(0,+∞)上单调递增的α的值为__1或3__.[解析] 当α=1时,y =x 为奇函数,且在R 上单调递增,满足题意;当α=2时,y =x 2为偶函数不满足题意;当α=3时,y =x 3为奇函数,且在R 上单调递增,满足题意;当α=-1时,y =1x为奇函数,但在(0,+∞)上单调递减,不满足题意.四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知函数f (x )=ax +b ,且f (1)=2,f (2)=-1. (1)求f (m +1)的值;(2)判断函数f (x )的单调性,并用定义证明.[解析] (1)由f (1)=2,f (2)=-1,得a +b =2,2a +b =-1,即a =-3,b =5,故f (x )=-3x +5,f (m +1)=-3(m +1)+5=-3m +2.(2)f (x )在R 上是减函数.证明:任取x 1<x 2(x 1,x 2∈R ),则f (x 2)-f (x 1)=(-3x 2+5)-(-3x 1+5)=3x 1-3x 2=3(x 1-x 2),因为x 1<x 2,所以f (x 2)-f (x 1)<0,即函数f (x )在R 上单调递减. 18.(本小题满分12分)已知函数f (x )=3-axa -1(a ≠1). (1)若a >0,求f (x )的定义域;(2)若f (x )在区间(0,1]上单调递减,求实数a 的取值范围.[解析] (1)当a >0且a ≠1时,由3-ax ≥0得x ≤3a ,即函数f (x )的定义域是(-∞,3a ].(2)当a -1>0,即a >1时,要使f (x )在(0,1]上单调递减,则需3-a ×1≥0,此时1<a ≤3. 当a -1<0,即a <1时,要使f (x )在(0,1]上单调递减,则需-a >0,且3-a ×1≥0,此时a <0.综上所述,所求实数a 的取值范围是(-∞,0)∪(1,3].19.(本小题满分12分)某商品在近30天内每件的销售价格P (元)和时间t (天)的函数关系为P =⎩⎪⎨⎪⎧t +20,0<t <25,-t +100,25≤t ≤30(t ∈N *).设商品的日销售量Q (件)与时间t (天)的函数关系为Q =40-t (0<t ≤30,t ∈N *),求这种商品的日销售金额的最大值,并指出日销售金额最大时是第几天.[解析] 设日销售金额为y 元,则y =PQ ,所以y =⎩⎪⎨⎪⎧-t 2+20t +800(0<t <25,t ∈N *),t 2-140t +4 000(25≤t ≤30,t ∈N *). 当0<t <25且t ∈N *时,y =-(t -10)2+900, 所以当t =10时,y max =900.①当25≤t ≤30且t ∈N *时,y =(t -70)2-900, 所以当t =25时,y max =1 125.②结合①②得y max =1 125.因此这种商品日销售金额的最大值为1 125元,且在第25天日销售金额最大.20.(本小题满分12分)已知二次函数f (x )的最小值为1,且f (0)=f (2)=3. (1)求f (x )的解析式;(2)若f (x )在区间[2a ,a +1]上不单调,求实数a 的取值范围.[解析] (1)由f (0)=f (2)知二次函数f (x )关于直线x =1对称,又函数f (x )的最小值为1, 故可设f (x )=a (x -1)2+1,由f (0)=3,得a =2. 故f (x )=2x 2-4x +3.(2)要使函数不单调,则2a <1<a +1, 则0<a <12.故实数a 的取值范围(0,12).21.(本小题满分12分)如果函数y =f (x )(x ∈D )满足: ①f (x )在D 上是单调函数;②存在闭区间[a ,b ]⊆D ,使f (x )在区间[a ,b ]上的值域也是[a ,b ]. 那么就称函数y =f (x )为闭函数.试判断函数y =x 2+2x 在[-1,+∞)内是否为闭函数.如果是闭函数,那么求出符合条件的区间[a ,b ];如果不是闭函数,请说明理由.[解析] 设x 1,x 2是[-1,+∞)内的任意两个不相等的实数,且-1≤x 1<x 2,则有f (x 2)-f (x 1)=(x 22+2x 2)-(x 21+2x 1)=(x 22-x 21)+2(x 2-x 1)=(x 2-x 1)(x 1+x 2+2). ∵-1≤x 1<x 2,∴x 2-x 1>0,x 1+x 2+2>0. ∴(x 2-x 1)(x 1+x 2+2)>0. ∴f (x 2)>f (x 1).∴函数y =x 2+2x 在[-1,+∞)内是增函数. 假设存在符合条件的区间[a ,b ],则有⎩⎪⎨⎪⎧ f (a )=a f (b )=b ,即⎩⎪⎨⎪⎧a 2+2a =ab 2+2b =b. 解得⎩⎪⎨⎪⎧ a =0b =0或⎩⎪⎨⎪⎧ a =0b =-1或⎩⎪⎨⎪⎧ a =-1b =0或⎩⎪⎨⎪⎧a =-1b =-1.又∵-1≤a <b ,∴⎩⎪⎨⎪⎧a =-1b =0.∴函数y =x 2+2x 在[-1,+∞)内是闭函数,符合条件的区间是[-1,0].22.(本小题满分12分)已知函数y =x +tx 有如下性质:如果常数t >0,那么该函数在(0,t )上是减函数,在[t ,+∞)上是增函数.(1)已知f (x )=4x 2-12x -32x +1,x ∈[0,1],利用上述性质,求函数f (x )的单调区间和值域;(2)对于(1)中的函数f (x )和函数g (x )=-x -2a ,若对任意x 1∈[0,1],总存在x 2∈[0,1],使得g (x 2)=f (x 1)成立,求实数a 的值.[解析] (1)y =f (x )=4x 2-12x -32x +1=2x +1+42x +1-8,设u =2x +1,x ∈[0,1],∴1≤u ≤3,则y =u +4u -8,u ∈[1,3].由已知性质得,当1≤u ≤2,即0≤x ≤12时,f (x )单调递减,所以单调减区间为[0,12];当2≤u ≤3,即12≤x ≤1时,f (x )单调递增,所以单调增区间为[12,1];由f (0)=-3,f (12)=-4,f (1)=-113,得f (x )的值域为[-4,-3].(2)g (x )=-x -2a 为减函数,故g (x )∈[-1-2a ,-2a ],x ∈[0,1].由题意知,f (x )的值域是g (x )的值域的子集,∴⎩⎪⎨⎪⎧-1-2a ≤-4,-2a ≥-3,∴a =32.。
必修3数学知识点第一章:算法1、算法三种语言:自然语言、流程图、程序语言;2、流程图中的图框:起止框、输入输出框、处理框、判断框、流程线等规范表示方法;3、算法的三种基本结构:顺序结构、条件结构、循环结构⎧⎨⎩当型循环结构直到型循环结构⑴顺序结构示意图:(图1)⑵条件结构示意图:①IF-THEN-ELSE格式:(图2)②IF①(图4)②直到型(UNTIL型)循环结构示意图:(图5)4、基本算法语句:(“=”有时也用“←”).④条件语句的一般格式有两种:IF—THEN—ELSE语句的一般格式为:IF—THEN语句的一般格式为:⑤循环语句的一般格式是两种:当型循环(WHILE)语句的一般格式:直到型循环(UNTIL )语句的一般格式:第二章:统计 1、抽样方法:①简单随机抽样(总体个数较少) ②系统抽样(总体个数较多) ③分层抽样(总体中差异明显)注意:在N 个个体的总体中抽取出n 个个体组成样本,每个个体被抽到的机会(概率)均为Nn 。
2、总体分布的估计: ⑴一表二图:①频率分布表——数据详实②频率分布直方图——分布直观③频率分布折线图——便于观察总体分布趋势 注:总体分布的密度曲线与横轴围成的面积为1。
⑵茎叶图:①茎叶图适用于数据较少的情况,从中便于看出数据的分布,以及中位数、众位数等。
②个位数为叶,十位数为茎,右侧数据按照从小到大书写,相同的数据重复写。
3、总体特征数的估计:⑴平均数:nx x x x x n++++= 321;取值为n x x x ,,,21 的频率分别为n p p p ,,,21 ,则其平均数为n n p x p x p x +++ 2211; 注意:频率分布表计算平均数要取组中值。
⑵方差与标准差:一组样本数据n x x x ,,,21 方差:212)(1∑=-=ni ix xns ;标准差:21)(1∑=-=ni ix xns注:方差与标准差越小,说明样本数据越稳定。
高一数学必修3第三章复习整合
教学目标
知识与技能
进一步理解和巩固函数的零点,理解和掌握函数建模的应用。
过程与方法
通过复习使知识再现,典例分析使技能提高。
情感、态度与价值观
体会数学来自于生活,又服务于生活的辩证观点。
重点难点
重点:理清知识脉络
难点:实例建模的应用
教法学法:探讨研究,讲练结合
教学用具:多媒体
教学过程
一、回顾思考知识结构
二、典例解析
例1
2(3)0
(1)x m x m +-+=已知方程若方程的两个根都小于1,求m 的值
(2)若方程的一个根大于1,一个根小于1,求m 的范围。
(3)若两个根在区间(0,2)之间,求m 的范围。
解析:一是两根分布在同一区间,此时需考虑开口方向、判别式、对称轴、区间端点函数值的符号;二是两根分布不在同一区间,此时只需考虑区间端点的函数值的符号即可。
学生解答,教师点评
例2
某家报刊销售点从报社买进报纸的价格是每份0.35元,卖出的价格是每份0.50元,卖不掉的报纸还可以每份0.08远的价格退回报社,在一个月(30)里有20天每天可以卖出400份,其余10天每天只能卖出250份,设每天从报社进报纸的数量相同,则应该从报社买进多少分,才能是每月所的利润最大,并计算该销售点一个月最多能赚多少元?
解析:每月所赚的钱=卖报收入的总价-付给报社的总价。
注意写定义域。
学生解答教师板书
三、练习反馈(鼎尖教案260页3题)
四、小结:引导学生总结
五、布置作业:教材复习题A 组7题
六、板书设计
七、教学反思。
高中数学必修4复习资料⎧⎪⎨⎪⎩正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角. 第一象限角的集合为{}36036090,k k k αα⋅<<⋅+∈Z 二象限{}36090360180,k k k α⋅+<⋅+∈Z 第三象限{}360180360270,k k k αα⋅+<<⋅+∈Z 第四象限{}360270360360,k k k αα⋅+<<⋅+∈Z 终边在x 轴上的角的集合为{}180,k k αα=⋅∈Z 终边在y 轴上的角的集合为{}18090,k k αα=⋅+∈Z 终边在坐标轴上的角的集合为{}90,k k αα=⋅∈Z3、与角α终边相同的角的集合为{}360,k k ββα=⋅+∈Z 4、已知α是第几象限角,确定()*n nα∈N 所在象限的方法:先把各象限均分n 等份,再从x 轴的正半轴的上方起,依次将各区域标上一、二、三、四,则α原来是第几象限对应的标号即为nα终边所落在的区域.5、长度等于半径长的弧所对的圆心角叫做1弧度.6、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是lrα=. 7、弧度制与角度制的换算公式:2360π=,1180π=,180157.3π⎛⎫=≈⎪⎝⎭. 8、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=,2C r l =+,21122S lr r α==.9、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距离是()0r r =,则sin y r α=,cos x r α=,()tan 0yx xα=≠. 10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正.11、三角函数线:sin α=MP ,cos α=OM ,tan α=AT .12、同角三角函数的基本关系:()221sin cos 1αα+=()2222sin 1cos ,cos 1sin αααα=-=-;()sin 2tan cos ααα=sin sin tan cos ,cos tan αααααα⎛⎫== ⎪⎝⎭.13、三角函数的诱导公式:(口诀:奇变偶不变,符号看象限.)()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.()5sin cos 2παα⎛⎫-=⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭. ()6sin cos 2παα⎛⎫+=⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭. 14、函数sin y x =的图象上所有点向左(右)平移ϕ个单位长度,得到函数()sin y x ϕ=+的图象;再将函数()sin y x ϕ=+的图象上所有点的横坐标伸长(缩短)到原来的1ω倍(纵坐标不变),得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数()sin y x ωϕ=A +的图象.函数sin y x =的图象上所有点的横坐标伸长(缩短)到原来的1ω倍(纵坐标不变),得到函数sin y xω=的图象;再将函数sin y x ω=的图象上所有点向左(右)平移ϕω个单位长度,得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数()sin y x ωϕ=A +的图象.函数()()sin 0,0y x ωϕω=A +A >>的性质: ①振幅:A ;②周期:2πωT =;③频率:12f ωπ==T ;④相位:x ωϕ+;⑤初相:ϕ. 函数()sin y x ωϕ=A ++B ,当1x x =时,取得最小值为min y ;当2x x =时,取得最大值为max y ,则()m a x m i n 12y y A =-,()max min 12y y B =+,()21122x x x x T =-<.15、正弦函数、余弦函数和正切函数的图象与性质:siny x=cosy x=tany x=图象定义域R R,2x x k kππ⎧⎫≠+∈Z⎨⎬⎩⎭值域[]1,1-[]1,1-R 最值当22x kππ=+()k∈Z时,max1y=;当22x kππ=-()k∈Z时,min1y=-.当()2x k kπ=∈Z时,max1y=;当2x kππ=+()k∈Z时,min1y=-.既无最大值也无最小值周期性2π2ππ奇偶性奇函数偶函数奇函数单调性在2,222k kππππ⎡⎤-+⎢⎥⎣⎦()k∈Z上是增函数;在32,222k kππππ⎡⎤++⎢⎥⎣⎦()k∈Z上是减函数.在[]()2,2k k kπππ-∈Z上是增函数;在[]2,2k kπππ+()k∈Z上是减函数.在,22k kππππ⎛⎫-+⎪⎝⎭()k∈Z上是增函数.对称性对称中心()(),0k kπ∈Z对称轴()2x k kππ=+∈Z对称中心(),02k kππ⎛⎫+∈Z⎪⎝⎭对称轴()x k kπ=∈Z对称中心(),02kkπ⎛⎫∈Z⎪⎝⎭无对称轴16、向量:既有大小,又有方向的量.数量:只有大小,没有方向的量.有向线段的三要素:起点、方向、长度.零向量:长度为0的向量.单位向量:长度等于1个单位的向量.平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行.相等向量:长度相等且方向相同的向量.17、向量加法运算:⑴三角形法则的特点:首尾相连.函数性质⑵平行四边形法则的特点:共起点.⑶三角形不等式:a b a b a b -≤+≤+.⑷运算性质:①交换律:a b b a +=+;②结合律:()()a b c a b c ++=++;③00a a a +=+=. ⑸坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y +=++. 18、向量减法运算:⑴三角形法则的特点:共起点,连终点,方向指向被减向量.⑵坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y -=--. 设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1212,x x y y A B=--.19、向量数乘运算:⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ. ①a a λλ=;②当0λ>时,a λ的方向与a 的方向相同;当0λ<时,a λ的方向与a 的方向相反;当0λ=时,0a λ=. ⑵运算律:①()()a a λμλμ=;②()a a a λμλμ+=+;③()a b a b λλλ+=+. ⑶坐标运算:设(),a x y =,则()(),,a x y x y λλλλ==.20、向量共线定理:向量()0a a ≠与b 共线,当且仅当有唯一一个实数λ,使b a λ=.设()11,a x y =,()22,b x y =,其中0b ≠,则当且仅当12210x y x y -=时,向量a 、()0b b ≠共线. 21、平面向量基本定理:如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数1λ、2λ,使1122a e e λλ=+.(不共线的向量1e 、2e 作为这一平面内所有向量的一组基底) 22、分点坐标公式:设点P 是线段12P P 上的一点,1P 、2P 的坐标分别是()11,x y ,()22,x y ,当12λP P =PP 时,点P 的坐标是1212,11x x y y λλλλ++⎛⎫⎪++⎝⎭.23、平面向量的数量积:⑴()cos 0,0,0180a b a b a b θθ⋅=≠≠≤≤.零向量与任一向量的数量积为0.⑵性质:设a 和b 都是非零向量,则①0a b a b ⊥⇔⋅=.②当a 与b 同向时,a b a b ⋅=;当a 与b 反向时,a b a b ⋅=-;22a a a a ⋅==或a a a =⋅.③ab a b ⋅≤.⑶运算律:①a b b a ⋅=⋅;②()()()a b a b a b λλλ⋅=⋅=⋅;③()a b c a c b c +⋅=⋅+⋅.baC B Aa b C C -=A -AB =B⑷坐标运算:设两个非零向量()11,a x y =,()22,b x y =,则1212a b x x y y ⋅=+.若(),a x y =,则222a x y =+,或2a x y =+设()11,a x y =,()22,b x y =,则12120a b x x y y ⊥⇔+=.设a 、b 都是非零向量,()11,a x y =,()22,b x y =,θ是a 与b 的夹角,则12cos a b a bx θ⋅==+24、两角和与差的正弦、余弦和正切公式:⑴()cos cos cos sin sin αβαβαβ-=+; ⑵()cos cos cos sin sin αβαβαβ+=-; ⑶()sin sin cos cos sin αβαβαβ-=-; ⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()tan tan tan 1tan tan αβαβαβ--=+(()()tan tan tan 1tan tan αβαβαβ-=-+);⑹()tan tan tan 1tan tan αβαβαβ++=-(()()tan tan tan 1tan tan αβαβαβ+=+-).25、二倍角的正弦、余弦和正切公式:(1)sin 22sin cos ααα=. (2) (3)22tan tan 21tan ααα=-(4)2222cos2cossin 2cos 112sin ααααα=-=-=-(2cos 21cos 2αα+=,21cos 2sin 2αα-=). 26、()sin cos αααϕA +B =+,其中tan ϕB =A. 基础训练题一.选择题1、下列角中终边与330°相同的角是( )A .30° B.-30° C.630° D.-630°2、角α的终边落在区间(-3π,-52 π)内,则角α所在象限是 ( )A .第一象限B .第二象限C .第三象限D .第四象限 3、已知角α的终边过点P (-1,2),cos α的值为 ( ) A .-55 B .- 5 C .552 D .25 4、如果).cos(|cos |π+-=x x 则x 的取值范围是( )A .)(]22,22[Z k k k ∈++-ππππB .)()223,22(Z k k k ∈++ππππ21sin 2(sin cos )ααα±=±2572518257-2518-C .)(]223,22[Z k k k ∈++ππππD .)()2,2(Z k k k ∈++-ππππ5、函数)3x 2sin(3y π+=的图象可看作是函数x 2sin 3y =的图象,经过如下平移得到的,其中正确的是( ).A.向右平移3π个单位 B.向左平移3π个单位 C.向右平移6π个单位 D.向左平移6π个单位 6、与函数tan(2)4y x π=+的图象不相交的一条直线是( ).A .2x π=B .2y π=C .8x π=D .8y π=7、α是第四象限角,则下列数值中一定是正值的是 ( ) A .sin α B .cos α C .tan α D .tan 1α 8、已知sinαcosα = 18 ,则cosα-sinα的值等于 ( )A .±34B .±23C .23D .-239、如果角θ满足2cos sin =+θθ,那么1tan tan θθ+的值是 ( ) A .1- B .2-C .1D .210、sin34π²cos 625π²tan 45π的值是( )A .-43B .43C .-43D .4311、已知,)1514tan(a =-π那么=︒1992sin ( )A .21||aa + B .21aa +C .21a a +-D .211a +-12、已知 53sin )cos(cos )sin(=---αβααβα ,那么cos2β的值为 ( )A. B. C. D. 13、)24tan 1)(20tan 1)(21tan 1(o o o +++的值是( ) A.2 B.4 C.8 D.16 14、函数y = ).A .},222{Z k k x k x ∈+<≤πππ B .},2{},222{Z k k x x Z k k x k x ∈+=∈+<≤πππππC. },222{Z k k x k x ∈+≤<πππ D .|222x k x k πππ⎧≤<+⎨⎩且}2,x k k Z ππ≠+∈ 二.填空题15、函数)42sin(π+-=x y 的周期是________________________. 16、与1991°终边相同的最小正角是_________,绝对值最小的角是__________.17、若3tan =α,则αααα3333cos 2sin cos 2sin -+的值为____________.18、已知sin αtan α≥0,则α的取值集合为 . 19、函数)32sin(2π+=x y 的图象的对称轴方程是20、函数xxy 2tan 1tan 2-=的最小正周期是 21、已知sinθ+cosθ=22(0<θ<π),则cos2θ的值为 22、记4)cos()sin()(++++=βπαπx b x a x f ,(a 、b 、α、β均为非零实数),若2009)2009(=f ,则)2010(f = 1---7:BCACDCB 8---14:BDACABB 15、π4。
高一数学必修三复习知识点归纳1.高一数学必修三复习知识点归纳篇一均匀随机数均匀随机数的产生:我们常用的是[0,1]上的均匀随机数,如果试验的结果是区间[0,1]内的任何一个数,而且出现任何一个实数是等可能的,因此就可以用计算器来产生0~1之间的均匀随机数进行随机模拟,我们常用随机模拟的方法来计算不规则图形的面积。
均匀随机函数:均匀随机函数且只能产生[0,1]区间上均匀随机数。
产生[a,b]区间上均匀随机数:产生[a,b]区间上均匀随机数,如果x是[0,1]区间上的均匀随机数,则x(b-a) +a就是[a,b]区间上的均匀随机数。
计算机通过产生均匀随机数进行模拟实验的思路:(1)根据影响随机事件结果的量的个数确定需要产生的随机数的个数,如长度、角度型只用一组即可;而面积型需要两组随机数,体积型需要三组随机数;(2)根据总体对应的区域确定产生随机数的范围;(3)根据事件A发生的条件确定随机数所应满足的关系式。
2.高一数学必修三复习知识点归纳篇二直线回归方程的应用(1)描述两变量之间的依存关系;利用直线回归方程即可定量描述两个变量间依存的数量关系(2)利用回归方程进行预测;把预报因子(即自变量x)代入回归方程对预报量(即因变量Y)进行估计,即可得到个体Y值的容许区间。
(3)利用回归方程进行统计控制规定Y值的变化,通过控制x的范围来实现统计控制的目标。
如已经得到了空气中NO2的浓度和汽车流量间的回归方程,即可通过控制汽车流量来控制空气中NO2的浓度。
3.高一数学必修三复习知识点归纳篇三直线方程:1.点斜式:y-y0=k(x-x0)(x0,y0)是直线所通过的已知点的坐标,k是直线的已知斜率。
x是自变量,直线上任意一点的横坐标;y是因变量,直线上任意一点的纵坐标。
2.斜截式:y=kx+b直线的斜截式方程:y=kx+b,其中k是直线的斜率,b是直线在y轴上的截距。
该方程叫做直线的斜截式方程,简称斜截式。
此斜截式类似于一次函数的表达式。
0.5 人数(人)
时间(小时)
20 10 5
0 1.0 1.5 2.0
15 高一数学期末复习1
姓名: 学号: 班别: 分数:
1.某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用右侧的条形图表示. 根据条形图可得这50名学生这一天平均每人的课外阅读时间为 ( )
(A)0.6小时 (B)0.9小时 (C)1.0小时 (D)1.5小时
2.图1是某县参加2007年高考的学生身高条形统计图,从左到右
的各条形表示的学生人数依次记为12
10A A A ,,,
图2是统计图1中身高在一定范围内学生人数的一个算法流程
图.现要统计身高在160~180cm (含160cm ,不含180cm )的学生人数,那么在流程图中的判断框内应填写的条件是( ) A.6i <
B.7i <
C.8i <
D.9i <
3.函数
22cos 14y x π⎛
⎫=-- ⎪⎝
⎭是( )
A .最小正周期为π的奇函数
B .最小正周期为π的偶函数
C .最小正周期为2
π的奇函数 D .最小正周期为
2
π的偶函数
4.函数
()cos 22sin f x x x =+的最小值和最大值分别为( )
A. -3,1
B. -2,2
C. -3,
3
2
D. -2,
32
O
A
P
Q
B
a
b
5.在同一平面直角坐标系中,函数])20[)(2
32cos(
ππ,∈+=x x y 的图象和直线21
=y 的交点个数是
A.0
B.1
C.2
D.4
6.如果函数
3cos(2)y x φ=+的图像关于点4(
,0)3
π
中心对称,那么φ的最小值为( )
A.
6
π B.
4π C. 3
π D.
2
π
7. 如图,设点P 、Q 是线段AB 的三等分点,若OA =a ,OB
=
b ,则OP
=( )
A.-2133
a b +
B.2133a b +
C.b a
3
121+ D.b a 3
231- 8.袋中共有6个除了颜色外完全相同的球,其中有1个红球,2个白球和3个黑球,从袋中任取两球,两球颜色为一白一黑的概率等于( ) (A )
15 (B )25 (C )35 (D )45
题号 1
2
3
4
5
6
7
8
答案
8.已知函数
()2sin()f x x ωφ=+的图像如图所示,则712
f π
⎛⎫
=
⎪⎝⎭ 0 。
9.若角α的终边经过点(12)P -,,则tan 2α的值为
4
3
10.若3
sin
)(x
x f π=,则(1)(2)(3)(2003)f f f f ++++ =___
11.若方程sin 3cos x x c -=有实数解,则c 的取值范围是___________.
12.已知k =++α
ααtan 12sin sin 22 )24(π
απ<<,试用k 表示ααcos sin -为_________________
13. 甲、乙两人玩数字游戏,先由甲心中任想一个数字记为a ,再由乙猜甲刚才想的数字,把乙想
的数字记为b ,且{
}6,5,4,3,2,1,∈b a ,若1≤-b a ,则称“甲乙心有灵犀”, 现任意找两个人玩这个游戏,得出他们“心有灵犀”的概率为________. 14.已知4||=a ,2||=b ,且a 与b 夹角为120°求
⑴)()2(b a b a +∙-; ⑵|2|b a -; ⑶a 与b a +的夹角。
15.已知向量)2sin ,2(cos ),23sin ,23(cos x x b x x a -==→→
,且]2
,0[π
∈x 。
⑴化简→→⋅b a 及||→
→+b a ;
⑵求函数||4)(→
→
→
→+-⋅=b a b a x f 的最小值。
16、已知函数()sin()(0,0),f x A x a x R ϕϕπ=+><<∈的最大值是1,其图像经过点1
(,)32
M π。
(1)求
()f x 的解析式;
(2)已知,(0,)2παβ∈,且312
(),(),513
f f αβ==求()f αβ-的值。
17. 已知21()sin(
2)cos(2)cos 2
63
f x x x x π
π
=-+-+-+ .(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)在区间
5
[,]
88
ππ
上的最大值,并求出f(x)取最大值时x的值.
18.某地区有小学21所,中学14所,大学7所,现采取分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查。
(I)求应从小学、中学、大学中分别抽取的学校数目。
(II)若从抽取的6所学校中随机抽取2所学校做进一步数据分析,
(1)列出所有可能的抽取结果;
(2)求抽取的2所学校均为小学的概率。