TC1187VCT713, 规格书,Datasheet 资料
- 格式:pdf
- 大小:350.59 KB
- 文档页数:17
1.Features•Sensitive Layer Over a 0.35 µm CMOS Array •Image Zone: 0.4 x 14 mm = 0.02" x 0.55"•Image Array: 8 x 280 = 2240 pixels •Pixel Pitch: 50 µm x 50 µm = 500 dpi•Pixel Clock: up to 2 MHz Enabling up to 1780 Frames per Second •Die Size: 1.64 x 17.46 mm •Operating Voltage: 3V to 3.6V•Naturally Protected Against ESD: > 16 kV Air Discharge •Power Consumption: 16 mW at 3.3V , 1 MHz, 25°C •Operating Temperature Range: -40°C to +85°C•Chip-on-Board (COB), Chip-on-Board (COB) with Connector•Complies With the European Directive for Restriction of Hazardous Substances (RoHS Directive)2.Applications•PDA (Access Control, Data Protection)•Notebook, PC-add on (Access Control, e-business)•PIN Code Replacement•Automated Teller Machines, POS •Building Access•Electronic Keys (Cars, Home)•Portable Fingerprint Imaging for Law Enforcement •TV Access2Figure 2-1.FingerChip ® PackagesChip-on-board Package (COB)Chip-on-board Package with connector25364C–BIOM–3/07AT77C102BThe die attach is connected to pins 1, 7 and 21, and must be grounded. The FPL pin must be grounded.Table 2-1.Pin Description for Chip-on-Board Package: AT77C102B-CB01YVPin NumberName Type 1GND GND 2AVE Analog output 3AVO Analog output 4TPP Power 5TPE Digital input 6VCC Power 7GND GND 8RST Digital input 9PCLK Digital input 10OE Digital input 11ACKN Digital output 12De0Digital output 13Do0Digital output 14De1Digital output 15Do1Digital output 16De2Digital output 17Do2Digital output 18De3Digital output 19Do3Digital output 20FPL GND 21GNDGND35364C–BIOM–3/07AT77C102BNote:1.Ref. Connector: FH23-21S-0.3SHW (05) from HIROSE.Table 2-2.Pin Description for COB with Connector Package: AT77C102B-CB02YV (1)Pin NumberName Type 1FPL GND2Not connected 3Not connected4DE3Digital output 5DO3Digital output 6DE2Digital output 7DO2Digital output 8DE1Digital output 9DO1Digital output 10DE0Digital output 11DO0Digital output 12AVE Analog output 13AVO Analog output 14TPP Power 15TPE Digital input 16VCC Power 17GND GND 18RST Digital input 19PCLK Digital input 20OE Digital input 21ACKNDigital output45364C–BIOM–3/07AT77C102BFigure 2-2.COB with Flex (1)Figure 2-3.Flex Output SideNote: 1.Flex is not provided by Atmel.Flex with metallizations upFlex with metallizations down23 1Flex Output(FingerChip Connector Side)Metallizations Up55364C–BIOM–3/07AT77C102B3.DescriptionThe AT77C102B is part of the Atmel FingerChip monolithic fingerprint sensor family for which no optics, no prism and no light source are required.The AT77C102B is a single-chip, high-performance, low-cost sensor based on temperature physical effects for fingerprint sensing.The AT77C102B has a linear shape, which captures a fingerprint image by sweeping the finger across the sensing area. After capturing several images, Atmel proprietary software can recon-struct a full 8-bit fingerprint image.The AT77C102B has a small surface combined with CMOS technology, and a Chip-on-Board package assembly. These facts contribute to a low-cost device.The device delivers a programmable number of images per second, while an integrated analog-to-digital converter delivers a digital signal adapted to interfaces such as an EPP parallel port, a USB microcontroller or directly to microprocessors. No frame grabber or glue interface is there-fore necessary to send the frames. These facts make AT77C102B an easy device to include in any system for identification or verification applications.Table 3-1.Absolute Maximum RatingsParameterSymbol CommentsValue Positive supply voltage V CC GND to 4.6Note: Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolutemaximum rating conditions for extended periods may affect device reliability.T emperature stabilization power TPP GND to 4.6Front plane FPL GND to V CC +0.5Digital input voltage RST PCLKGND to V CC +0.5Storage temperature T stg -50 to +95Lead temperature(soldering, 10 seconds)T leadsDo not solder ForbiddenTable 3-2.Recommended Conditions Of UseParameterSymbol CommentsMin Typ Max Unit Positive supply voltage V CC 3V3.3V 3.6VV Front plane FPLMust be grounded GND V Digital input voltage CMOS levels V Digital output voltage CMOS levelsV Digital load C L 50pF Analog loadC A R A Not connected pF k ΩOperating temperature range T amb V grade-40°C to +85°C°C Maximum current on TPPITPP100mA65364C–BIOM–3/07AT77C102BTable 3-3.ResistanceParameter Min ValueStandard MethodESDOn pins. HBM (Human Body Model) CMOS I/O 2 kV MIL-STD-883 - method 3015.7On die surface (Zapgun) Air discharge±16 kVNF EN 6100-4-2Mechanical AbrasionNumber of cycles without lubricant multiply by an estimated factor of 20 for correlation with a real finger 200 000MIL E 12397BChemical ResistanceCleaning agent, acid, grease, alcohol, diluted acetone4 hours Internal methodTable 3-4.SpecificationsExplanation Of Test LevelsI 100% production tested at +25°CII100% production tested at +25°C, and sample tested at specified temperatures (AC testing done on sample)III Sample tested only IV Parameter is guaranteed by design and/or characterization testing V Parameter is a typical value onlyVI 100% production tested at temperature extremes D100% probe tested on wafer at T amb = +25°CTable 3-5.Physical ParameterParameter Test LevelMinTyp MaxUnit Resolution IV 50µm SizeIV 8 x 280Pixel Yield: number of bad pixels I 5Bad pixelsEquivalent resistance on TPP pinI253045Ω.Note:1.With I OL = 1 mA and I OH = -1 mATable 3-6.3.3V Power supplyThe following characteristics are applicable to the operating temperature -40°C ≤ Ta ≤ +85°C Typical conditions are: V CC = +3.3 V; T amb = 25°C; F PCLK = 1 MHz; Duty cycle = 50% C load 120 pF on digital outputs, analog outputs disconnected unless otherwise specifiedParameterSymbolTest LevelMinTypMaxUnitPower Requirements Positive supply voltageV CC 3.0 3.3 3.6V Active current on V CC pin, 1 MHzCurrent on V CC pin, in static mode C load = 0 pF I CC I IV 5475mA mA Power dissipation on V CC C load = 0P CC I IV 16132518mW mW Current on V CC in NAP mode I CCNAP I10µAAnalog Output Voltage range V AVxIV 0 2.9VDigital Inputs Logic compatibility CMOSLogic “0” voltage V IL I 00.8V Logic “1” voltage V IH I 2.3VCC V Logic “0” current I IL I -100µA Logic “1”current I IH I 010µA TPE logic “0” voltage I IL TPE 1-100µA TPE logic “1” voltage I IH TPE1300µADigital Outputs Logic compatibility CMOSLogic “0” voltage (1)V OL I 0.6V Logic “1” voltage (1)V OHI2.4V75364C–BIOM–3/07AT77C102B85364C–BIOM–3/07AT77C102BFigure 3-1.ResetTable 3-7.Switching PerformancesThe following characteristics are applicable to the operating temperature -40°C ≤ Ta ≤ +85°C Typical conditions are: nominal voltage; T amb = 25°C; F PCLK = 1 MHz; Duty cycle = 50% C load 120 pF on digital and analog outputs unless otherwise specifiedParameter Symbol Test LevelMin Typ Max Unit Clock frequency f PCLK I 0.512MHz Clock pulse width (high)t HCLK I 250ns Clock pulse width (low)t LCLK I 250ns Clock setup time (high)/reset falling edge t Setup I 0ns No data change t NOOE IV 100ns Reset pulse width hight HRSTIV50nsTable 3-8.3.3V ±10% Power SupplyParameterSymbol Test LevelMinTypMax Unit Output delay from PCLK to ACKN rising edge t PLHACKN I 145ns Output delay from PCLK to ACKN falling edge t PHLACKN I 145ns Output delay from PCLK to data output Dxi t PDAT A I 120ns Output delay from PCLK to analog output AVx t P AVIDEO I 250ns Output delay from OE to data high-Z t DAT AZ IV 34ns Output delay from OE to data outputt ZDAT AIV47ns95364C–BIOM–3/07AT77C102BFigure 3-2.Read One Byte/Two PixelsFigure 3-3.Output Enable105364C–BIOM–3/07AT77C102BFigure 3-4.No Data ChangeNote:OE must not change during TNOOE after the PCLK falls. This is to ensure that the output drivers of the data are not driving cur-rent, so as to reduce the noise level on the power supply.Figure 3-5.AT77C102B Block Diagram3.1Functional DescriptionThe circuit is divided into two main sections: sensor and data conversion. One particular column among 280 plus one is selected in the sensor array (1), then each pixel of the selected column sends its electrical information to the amplifiers (2) [one per line], then two lines at a time are selected (odd and even) so that two particular pixels send their information to the input of two 4-bit analog-to-digital converters (3), so two pixels can be read for each clock pulse (4).115364C–BIOM–3/07AT77C102BFigure 3-6.Functional Description3.2SensorEach pixel is a sensor in itself. The sensor detects a temperature difference between the begin-ning of an acquisition and the reading of the information: this is the integration time. The integration time begins with a reset of the pixel to a predefined initial state. Note that the integra-tion time reset has nothing to do with the reset of the digital section.Then, at a rate depending on the sensitivity of the pyroelectric layer, on the temperature varia-tion between the reset and the end of the integration time, and for the duration of the integration time, electrical charges are generated at the pixel level.3.3Analog-to-digital Converter/ Reconstructing an 8-bit Fingerprint ImageAn analog-to-digital converter (ADC) is used to convert the analog signal coming from the pixel into digital data that can be used by a processor.As the data rate for the parallel port and the USB is in the range of 1 MB per second, and at least a rate of 500 frames per second is needed to reconstruct the image with a fair sweeping speed of the finger, two 4-bit ADCs have been used to output two pixels at a time on one byte.3.4Start SequenceA reset is not necessary between each frame acquisition.The start sequence must consist in:1.Setting the RST pin to high.2.Setting the RST pin to low.3.Sending 4 clock pulses (due to pipe-line).4.Sending clock pulses to skip the first frame.Note that after a reset it is recommended to skip the first 200 slices to stabilize the acquisition.Figure 3-7.Start Sequence125364C–BIOM–3/07AT77C102B3.5Reading the FramesA frame consists of 280 true columns plus one dummy column of eight pixels. As two pixels are output at a time, a system must send 281 x 4 = 1124 clock pulses to read one frame.Reset must be low when reading the frames.3.6Read One Byte/Output EnableThe clock is taken into account on its falling edge and data is output on its rising edge.For each clock pulse, after the start sequence, a new byte is output on the Do0-3 and De0-3 pins. This byte contains two pixels: 4-bit on Do0-3 (odd pixels), 4-bit on De0-3 (even pixels).To output the data, the output enable (OE) pin must be low. When OE is high, the Do0-3 and De0-3 pins are in high-impedance state. This facilitates an easy connection to a microprocessor bus without additional circuitry since the data output can be enabled using a chip select signal. Note that the AT77C102B always sends data: there is no data exchange to switch to read/write mode.3.7Power Supply NoiseIMPORTANT: When a falling edge is applied on OE (that is when the Output Enable becomes active), then some current is drained from the power supply to drive the eight outputs, producing some noise. It is important to avoid such noise just after the PCLK clock’s falling edge, when the pixels’ information is evaluated: the timing diagram (Figure 3-2) and time T NOOE define the inter-val time when the power supply must be as quiet as possible.3.8Video OutputAn analog signal is also available on pins AVE and AVO. Note that video output is available one clock pulse before the corresponding digital output (one clock pipe-line delay for the analog to digital conversion).3.9Pixel OrderAfter a reset, pixel 1 is located on the upper left corner, looking at the chip with bond pads to the right. For each column of eight pixels, pixels 1, 3, 5 and 7 are output on odd data Do0-3 pins, and pixels 2, 4, 6 and 8 are output on even data De0-3 pins. The Most Significant Bit (MSB) is bit 3, and the Least Significant Bit is bit 0.Figure 3-8.Pixel Order135364C–BIOM–3/07AT77C102B3.10Synchronization: The Dummy ColumnA dummy column has been added to the sensor to act as a specific pattern to detect the first pixel. Therefore, 280 true columns plus one dummy column are read for each frame.The four bytes of the dummy column contain a fixed pattern on the first two bytes, and tempera-ture information on the last two bytes.Note:x represents 0 or 1The sequence 111X0000 111X0000 appears on every frame (exactly every 1124 clock pulses), so it is an easy pattern to recognize for synchronization purposes.3.11ThermometerThe dummy bytes DB3 and DB4 contain some internal temperature information.The even nibble nnnn in DB3 can be used to measure an increase or decrease of the chip’s tem-perature, using the difference between two measures of the same physical device. The following table gives values in Kelvin.Table 1. Dummy Column DescriptionDummy Byte Odd Even Dummy Byte 1 DB1: 111X 0000 Dummy Byte 2 DB2: 111X 0000 Dummy Byte 3 DB3: rrrr nnnn Dummy Byte 4 DB4:ttttppppTable 1. Temperature Tablennnn Decimal nnnn Binary Temperature differential with code 8in Kelvin151111> 11.21411108.41311017121100 5.6111011 4.2101010 2.891001 1.481000070111-1.460110-2.850101-4.240100-5.630011-720010-8.410001-11.200000< -16.8145364C–BIOM–3/07AT77C102BFor code 0 and 15, the absolute value is a minimum (saturation).When the image contrast becomes faint because of a low temperature difference between the finger and the sensor, it is recommended to use the temperature stabilization circuitry to increase the temperature by two codes (that is from 8 to 10), so as to obtain a sensor increase of at least >1.4 Kelvin. This enables enough contrast to obtain a proper fingerprint reconstruction.3.12Integration Time and Clock JitterThe AT77C102B is not very sensitive to clock jitters (clock variations). The most important requirement is a regular integration time that ensures the frame reading rate is also as regular as possible, so as to obtain consistent fingerprint slices.If the integration time is not regular, the contrast can vary from one frame to another.Note that it is possible to introduce some waiting time between each set of 1124 clock pulses, but the overall time of one frame read must be regular. This waiting time is generally the time needed by the processor to perform some calculation over the frame (to detect the finger, for instance).Figure 3-9.Read One FrameFigure 3-10.Regular Integration Time3.13Power Management 3.14Nap ModeSeveral strategies are possible to reduce power consumption when the device is not in use.The simplest and most efficient is to cut the power supply using external means.A nap mode is also implemented in the AT77C102B. To activate this nap mode, you must:1.Set the reset RST pin to high. By doing this, all analog sections of the device are inter-nally powered down.2.Set the clock PCLK pin to high (or low), thus stopping the entire digital section.3.Set the TPE pin to low to stop the temperature stabilization feature.4.Set the Output Enable OE pin to high, so that the output is forced in HiZ.155364C–BIOM–3/07AT77C102BFigure 3-11.Nap ModeIn nap mode, all internal transistors are in shut mode. Only leakage current is drained in the power supply, generally less than the tested value.3.15Static Current ConsumptionWhen the clock is stopped (set to 1) and the reset is low (set to 0), the device’s analog sections drain some current, whereas, if the outputs are connected to a standard CMOS input, the digital section does not consume any current (no current is drained in the I/O). In this case the typical current value is 5 mA. This current does not depend on the voltage (it is almost the same from 3 to 3.6V).3.16Dynamic Current ConsumptionWhen the clock is running, the digital sections, and particularly the outputs if they are heavily loaded, consume current. In any case, the current should be less than the testing machine (120 pF load on each I/O), and a maximum of 50 pF is recommended.The AT77C102B, running at about 1 MHz, consumes less than 7 mA on the V CC pin.3.17Temperature Stabilization Power Consumption (TPP Pin)When the TPE pin is set to 1, current is drained via the TPP pin. The current is limited by the internal equivalent resistance given in Table 3-4 on page 6 and a possible external resistor. Most of the time, TPE is set to 0 and no current is drained in TPP. When the image contrast becomes low because of a low temperature differential (less than 1 Kelvin), then it is recom-mended to set TPE to 1 for a short time so that the dissipated power in the chip elevates the temperature, allowing contrast recovery. The necessary time to increase the chip’s temperature by one Kelvin depends on the dissipated power, the thermal capacity of the silicon sensor and the thermal resistance between the sensor and its surroundings. As a rule of thumb, dissipating 300 mW in the chip elevates the temperature by 1 Kelvin in one second. With the 30Ω typical value, 300 mW is 3V applied on TPP. If the power supply is 3.6V, an external resistor must be added in the application to limit the current under 100 mA.165364C–BIOM–3/07AT77C102B4.Packaging: Mechanical DataFigure 4-2.Product Reference: AT77C102B-CB01YV — Bottom View (all dimensions in mm)175364C–BIOM–3/07AT77C102BFigure 4-3.Product Reference: AT77C102B-CB02YV4.1Package Information4.1.1Electrical DisturbancesWhen looking at the fingerchip device from the top with the glob top to the right, the right edge must never be in contact with customer casing or any component to avoid electrical disturbances.Figure 4-4.Epoxy OverflowMaximum epoxy overflow width: 0.55 mm on the die edge.Maximum epoxy overflow thickness: 0.33 mm.Note:Refer to Figure 4-1 on page 16.185364C–BIOM–3/07AT77C102B5.Ordering Information5.1Package Device195364C–BIOM–3/07AT77C102BRevision HistoryDoc. Rev.Date Comments5364C 3/2007Equivalent resistance on TPP pin ranges reduced page 6 table 3.55364B 1/2007Connector change in production for CB02: FH18 to FH23.p3 & p17 fig 4-3: Connector reference & Mechanical data plan for CB02 updated.5364AInitial Document Release5364C–BIOM–3/07©2007 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, Everywhere You Are®, FingerChip®, and others are reg-istered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL ’S TERMS AND CONDI-TIONS OF SALE LOCATED ON ATMEL ’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR I NABI LI TY TO USE THI S DOCUMENT, EVEN I F ATMEL HAS BEEN ADVI SED OF THE POSSI BI LI TY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.Atmel CorporationAtmel Operations2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311Fax: 1(408) 487-2600Regional HeadquartersEuropeAtmel SarlRoute des Arsenaux 41Case Postale 80CH-1705 Fribourg SwitzerlandTel: (41) 26-426-5555Fax: (41) 26-426-5500AsiaRoom 1219Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong KongTel: (852) 2721-9778Fax: (852) 2722-1369Japan9F, Tonetsu Shinkawa Bldg.1-24-8 ShinkawaChuo-ku, Tokyo 104-0033JapanTel: (81) 3-3523-3551Fax: (81) 3-3523-7581Memory2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311Fax: 1(408) 436-4314Microcontrollers2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311Fax: 1(408) 436-4314La Chantrerie BP 7060244306 Nantes Cedex 3, France Tel: (33) 2-40-18-18-18Fax: (33) 2-40-18-19-60ASIC/ASSP/Smart CardsZone Industrielle13106 Rousset Cedex, France Tel: (33) 4-42-53-60-00Fax: (33) 4-42-53-60-011150 East Cheyenne Mtn. Blvd.Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300Fax: 1(719) 540-1759Scottish Enterprise Technology Park Maxwell BuildingEast Kilbride G75 0QR, Scotland Tel: (44) 1355-803-000Fax: (44) 1355-242-743RF/AutomotiveTheresienstrasse 2Postfach 353574025 Heilbronn, Germany Tel: (49) 71-31-67-0Fax: (49) 71-31-67-23401150 East Cheyenne Mtn. Blvd.Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300Fax: 1(719) 540-1759Biometrics Product LineAvenue de Rochepleine BP 12338521 Saint-Egreve Cedex, France Tel: (33) 4-76-58-47-50Fax: (33) 4-76-58-47-60Literature Requests/literature。
CC8800系列CMTS产品规格书(CC8800-F-U2)鼎点视讯科技有限公司.资料版本:R02发布日期:2019.01修订记录日期修订版本描述2018.05 R01 初版发布2019.01 R02 更新了上联口规格及支持的光模块规格声明Copyright ©2001~2019北京数码视讯科技集团鼎点视讯科技有限公司版权所有,保留一切权利。
未经本公司书面许可,任何单位和个人不得擅自摘抄、复制本书内容的部分或全部,并不得以任何形式传播。
TOPVISION、Sumavision、、、、、、均为北京数码视讯科技集团的商标。
对于本手册中出现的其它公司的商标、产品标识及商品名称,由各自权利人拥有。
由于产品版本升级或其它原因,本手册内容会不定期进行更新。
除非另有约定,本手册仅作为使用指导。
本手册中的所有陈述、信息和建议不构成任何明示或暗示的担保。
技术支持北京数码视讯科技集团鼎点视讯科技有限公司为客户提供全方位的技术支持。
通过北京数码视讯科技集团代理商购买产品的用户,请直接与销售代理商联系。
向鼎点视讯科技有限公司购买产品的用户,可与就近的数码视讯/鼎点视讯办事处联系,也可直接与鼎点视讯科技有限公司联系。
用户服务热线:联系电话:+86-10-58858351(周一至周五8:30-17:30)传真:+86-10-58858592公司地址:北京海淀区上地东路1号盈创动力大厦A2座6层邮编:100085登录网址:或目录第1章产品简介 (1)1.1 产品介绍 (1)1.2 产品特点 (1)第2章性能与规格 (3)2.1 简介 (3)2.2 整机规格 (4)2.3 DOCSIS模块 (4)2.4 电源模块 (8)2.5 射频模块 (9)2.6 (可选)CWDM组件规格 (10)2.7 (可选)工业级SFP+光模块 (11)2.7.1 10GE以太网光模块 (11)2.7.2 ONU侧10G EPON光模块 (12)2.7.3 ONU侧XG-PON光模块 (12)第1章产品简介DOCSIS定义了一种利用有线同轴网络中传输数据业务的规范,是稳定、可靠的运营级同轴网络国际标准,并且经过了多年的实际运营检验。
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.元器件交易网IMPORTANT NOTICETexas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductorproduct or service without notice, and advises its customers to obtain the latest version of relevant informationto verify, before placing orders, that the information being relied on is current.TI warrants performance of its semiconductor products and related software to the specifications applicable atthe time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques areutilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of eachdevice is not necessarily performed, except those mandated by government requirements.Certain applications using semiconductor products may involve potential risks of death, personal injury, orsevere property or environmental damage (“Critical Applications”).TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTEDTO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHERCRITICAL APPLICATIONS.Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TIproducts in such applications requires the written approval of an appropriate TI officer. Questions concerningpotential risk applications should be directed to TI through a local SC sales office.In order to minimize risks associated with the customer’s applications, adequate design and operatingsafeguards should be provided by the customer to minimize inherent or procedural hazards.TI assumes no liability for applications assistance, customer product design, software performance, orinfringement of patents or services described herein. Nor does TI warrant or represent that any license, eitherexpress or implied, is granted under any patent right, copyright, mask work right, or other intellectual propertyright of TI covering or relating to any combination, machine, or process in which such semiconductor productsor services might be or are used.Copyright © 1995, Texas Instruments Incorporated。
© 2007 Microchip Technology Inc.DS21350D-page 1TC1054/TC1055/TC1186Features•Low Ground Current for Longer Battery Life •Low Dropout Voltage•Choice of 50mA (TC1054), 100mA (TC1055) and 150mA (TC1186) Output •High Output Voltage Accuracy•Standard or Custom Output Voltages:- 1.8V, 2.5V, 2.6V, 2.7V, 2.8V, 2.85V, 3.0V, 3.3V, 3.6V, 4.0V, 5.0V•Power-Saving Shutdown Mode•ERROR Output Can Be Used as a Low Battery Detector or Microcontroller Reset Generator •Overcurrent and Overtemperature Protection •5-Pin SOT-23 Package•Pin Compatible Upgrades for Bipolar RegulatorsApplications•Battery Operated Systems •Portable Computers •Medical Instruments •Instrumentation•Cellular/GSM/PHS Phones•Linear Post-Regulators for SMPS •PagersTypical ApplicationGeneral DescriptionThe TC1054, TC1055 and TC1186 are high accuracy (typically ±0.5%) CMOS upgrades for older (bipolar)low dropout regulators. Designed specifically for battery-operated systems, the devices’ CMOS construction minimizes ground current, extending battery life. Total supply current is typically 50µA at full load (20 to 60 times lower than in bipolar regulators).The devices’ key features include low noise operation,low dropout voltage – typically 85mV (TC1054),180mV (TC1055) and 270mV (TC1186) at full load —and fast response to step changes in load. An error output (ERROR) is asserted when the devices are out-of-regulation (due to a low input voltage or excessive output current). ERROR can be used as a low battery warning or as a processor RESET signal (with the addition of an external RC network). Supply current is reduced to 0.5µA (max), with both V OUT and ERROR disabled when the shutdown input is low. The devices incorporate both over-temperature and over-current protection.The TC1054, TC1055 and TC1186 are stable with an output capacitor of only 1µF and have a maximum output current of 50mA, 100mA and 150mA,respectively. For higher output current regulators,please refer to the TC1173 (I OUT = 300mA) data sheet (DS21632).Package TypeTC1054TC1055TC1186V OUT GND1µF+V IN V IN V OUT15243SHDN Shutdown Control(from Power Control Logic)ERRORERROR1M ΩNOTE: 5-Pin SOT-23 is equivalent to the EIAJ (SC-74A)514235-Pin SOT-23TC1054TC1055TC1186V OUT ERRORSHDN GNDV IN50mA, 100mA and 150mA CMOS LDOs with Shutdownand ERROR OutputTC1054/TC1055/TC1186DS21350D-page 2© 2007 Microchip Technology Inc.1.0ELECTRICALCHARACTERISTICSAbsolute Maximum Ratings †Input Voltage....................................................................6.5V Output Voltage .....................................(-0.3V) to (V IN + 0.3V)Power Dissipation .........................Internally Limited (Note 6)Maximum Voltage on Any Pin ...................V IN +0.3V to -0.3V Operating Junction Temperature Range..-40°C < T J < 125°C Storage Temperature.....................................-65°C to +150°C† Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operation sections of the specifications is not implied.Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.DC CHARACTERISTICSElectrical Specifications: Unless otherwise noted, V IN = V OUT + 1V, I L = 100µA, C L = 3.3µF, SHDN > V IH , T A = +25°C.Boldface type specifications apply for junction temperatures of -40°C to +125°C.ParametersSym Min Typ Max Units ConditionsInput Operating Voltage V IN 2.7— 6.0V Note 8Maximum Output CurrentI OUT MAX50100150——————mATC1054TC1055TC1186Output VoltageV OUT V R – 2.5% V R ±0.5%V R + 2.5%VNote 1V OUT Temperature Coefficient TCV OUT ——2040——ppm/°C Note 2Line Regulation ΔV OUT /ΔV IN —0.050.35%(V R + 1V) ≤ V IN ≤ 6V Load Regulation:TC1054; TC1055TC1186ΔV OUT /V OUT——0.50.523%(Note 3)I L = 0.1mA to I OUT MAX I L = 0.1mA to I OUT MAX Dropout Voltage:TC1055; TC1186TC1186V IN -V OUT—————26585180270——120250400mVI L = 100µA I L = 20mA I L = 50mA I L = 100mAI L = 150mA (Note 4)Supply CurrentI IN —5080µA SHDN = V IH , I L = 0µA (Note 9)Shutdown Supply Current I INSD —0.050.5µA SHDN = 0V Power Supply Rejection Ratio PSRR —64—dB f ≤ 1kHz Output Short Circuit Current I OUT SC —300450mA V OUT = 0V Thermal Regulation ΔV OUT /ΔP D—0.04—V/W Notes 5,6Thermal Shutdown Die TemperatureT SD —160—°C Thermal Shutdown HysteresisΔT SD—10—°CNote 1:V R is the regulator output voltage setting. For example: V R = 1.8V, 2.5V, 2.7V, 2.85V, 3.0V, 3.3V, 3.6V, 4.0V, 5.0V.2:3:Regulation is measured at a constant junction temperature using low duty cycle pulse testing. Load regulation is testedover a load range from 0.1mA to the maximum specified output current. Changes in output voltage due to heating effects are covered by the thermal regulation specification.4:Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its nominalvalue.5:Thermal Regulation is defined as the change in output voltage at a time T after a change in power dissipation is applied,excluding load or line regulation effects. Specifications are for a current pulse equal to I L MAX at V IN = 6V for T = 10ms.6:The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junctiontemperature and the thermal resistance from junction-to-air (i.e., T A , T J , θJA ). Exceeding the maximum allowable power dissipation causes the device to initiate thermal shutdown. Please see Section 5.0 “Thermal Considerations”, “Ther-mal Considerations”, for more details.7:Hysteresis voltage is referenced by V R .8:The minimum V IN has to justify the conditions: V IN ≥ V R + V DROPOUT and V IN ≥ 2.7V for I L = 0.1mA to I OUT MAX .9:Apply for junction temperatures of -40C to +85C.TC V OUT = (V OUT MAX – V OUT MIN )x 106V OUT x ΔT© 2007 Microchip Technology Inc.DS21350D-page 3TC1054/TC1055/TC1186Output Noise eN—260—nV/√Hz I L = I OUT MAXSHDN InputSHDN Input High Threshold V IH 45——%V IN V IN = 2.5V to 6.5V SHDN Input Low Threshold V IL——15%V INV IN = 2.5V to 6.5VERROR OutputMinimum V IN Operating Voltage V IN MIN 1.0——V Output Logic Low Voltage V OL ——400mV 1mA Flows to ERROR ERROR Threshold Voltage V TH —0.95 x V R—V See Figure 4-2ERROR Positive Hysteresis V HYS —50—mV Note 7V OUT to ERROR Delayt DELAY—2.5—msV OUT falling from V R to V R - 10%DC CHARACTERISTICS (CONTINUED)Electrical Specifications: Unless otherwise noted, V IN = V OUT + 1V, I L = 100µA, C L = 3.3µF, SHDN > V IH , T A = +25°C.Boldface type specifications apply for junction temperatures of -40°C to +125°C.ParametersSym Min Typ Max UnitsConditionsNote 1:V R is the regulator output voltage setting. For example: V R = 1.8V, 2.5V, 2.7V, 2.85V, 3.0V, 3.3V, 3.6V, 4.0V, 5.0V.2:3:Regulation is measured at a constant junction temperature using low duty cycle pulse testing. Load regulation is testedover a load range from 0.1mA to the maximum specified output current. Changes in output voltage due to heating effects are covered by the thermal regulation specification.4:Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its nominalvalue.5:Thermal Regulation is defined as the change in output voltage at a time T after a change in power dissipation is applied,excluding load or line regulation effects. Specifications are for a current pulse equal to I L MAX at V IN = 6V for T = 10ms.6:The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junctiontemperature and the thermal resistance from junction-to-air (i.e., T A , T J , θJA ). Exceeding the maximum allowable power dissipation causes the device to initiate thermal shutdown. Please see Section 5.0 “Thermal Considerations”, “Ther-mal Considerations”, for more details.7:Hysteresis voltage is referenced by V R .8:The minimum V IN has to justify the conditions: V IN ≥ V R + V DROPOUT and V IN ≥ 2.7V for I L = 0.1mA to I OUT MAX .9:Apply for junction temperatures of -40C to +85C.TC V OUT = (V OUT MAX – V OUT MIN )x 106OUTTC1054/TC1055/TC1186DS21350D-page 4© 2007 Microchip Technology Inc.2.0TYPICAL PERFORMANCE CURVESNote: Unless otherwise indicated, V IN = V OUT + 1V, I L = 100µA, C L = 3.3µF, SHDN > V IH , T A = +25°C.FIGURE 2-1:Dropout Voltage vs. Temperature (I LOAD = 10mA).FIGURE 2-2:Dropout Voltage vs. Temperature (I LOAD = 100mA).FIGURE 2-3:Ground Current vs. V IN(I LOAD = 10mA).FIGURE 2-4:Dropout Voltage vs. Temperature (I LOAD = 50mA).FIGURE 2-5:Dropout Voltage vs. Temperature (I LOAD = 150mA).FIGURE 2-6:Ground Current vs. V IN(I LOAD = 100mA).Note:The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.TC1054/TC1055/TC1186 Note: Unless otherwise indicated, V IN = V OUT + 1V, I L = 100µA, C L = 3.3µF, SHDN > V IH, T A = +25°C.FIGURE 2-7:Ground Current vs. V IN (I LOAD = 150mA).FIGURE 2-8:V OUT vs. V IN(I LOAD=100mA).FIGURE 2-9:V OUT vs. V IN(I LOAD=150mA).FIGURE 2-10:V OUT vs. V IN(I LOAD=0mA).FIGURE 2-11:Output Voltage (3.3V) vs. Temperature (I LOAD = 10mA).FIGURE 2-12:Output Voltage (5V) vs. Temperature (I LOAD = 10mA).© 2007 Microchip Technology Inc.DS21350D-page 5TC1054/TC1055/TC1186DS21350D-page 6© 2007 Microchip Technology Inc.Note: Unless otherwise indicated, V IN = V OUT + 1V, I L = 100µA, C L = 3.3µF, SHDN > V IH , T A = +25°C.FIGURE 2-13:Output Voltage (5V) vs. Temperature (I LOAD = 10mA).FIGURE 2-14:GND Current vs. Temperature (I LOAD = 10mA).FIGURE 2-15:GND Current vs. Temperature (I LOAD = 150mA).FIGURE 2-16:Output Noise vs. Frequency.FIGURE 2-17:Stability Region vs. LoadCurrent.FIGURE 2-18:Measure Rise Time of 3.3VLDO.DNUTConditions: C IN = 1µF, C OUT = 1µF,= 100mA, V IN = 4.3V, Temp = +25°C,Fall Time = 184µs© 2007 Microchip Technology Inc.DS21350D-page 7TC1054/TC1055/TC1186Note: Unless otherwise indicated, V IN = V OUT + 1V, I L = 100µA, C L = 3.3µF, SHDN > V IH , T A = +25°C.FIGURE 2-19:Measure Rise Time of 5.0VLDO.FIGURE 2-20:Thermal Shutdown Response of 5.0V LDO.FIGURE 2-21:Measure Fall Time of 3.3VLDO.FIGURE 2-22:Measure Fall Time of 5.0VLDO.DNOUT Conditions: C IN = 1µF, C OUT = 1µF,= 100mA, V IN = 6V, Temp = +25°C,Fall Time = 192µsV OUTConditions: V IN = 6V, C IN = 0µF, C OUT = 1µF I LOAD was increased until temperature of die reached about 160°C, at which time integrated ther-mal protection circuitry shuts the regulator off when die temperature exceeds approximately 160°C. The regulator remains off until die temperature drops to approximately 150°C.DNOUTConditions: C IN = 1µF, C OUT = 1µF,= 100mA, V IN = 4.3V, Temp = +25°C,Fall Time = 52µsHDNOUTConditions: C IN = 1µF, C OUT = 1µF,= 100mA, V IN = 6V, Temp = +25°C,Fall Time = 88µsTC1054/TC1055/TC1186DS21350D-page 8© 2007 Microchip Technology Inc.3.0PIN DESCRIPTIONSThe descriptions of the pins are listed in Table 3-1.TABLE 3-1:PIN FUNCTION TABLE3.1Unregulated Supply Input (V IN )Connect unregulated input supply to the V IN pin. If there is a large distance between the input supply and the LDO regulator, some input capacitance is necessary for proper operation. A 1µF capacitor connected from V IN to ground is recommended for most applications.3.2Ground Terminal (GND)Connect the unregulated input supply ground return to GND. Also connect the negative side of the 1µF typical input decoupling capacitor close to GND and the negative side of the output capacitor C OUT to GND.3.3Shutdown Control Input (SHDN)The regulator is fully enabled when a logic-high is applied to SHDN. The regulator enters shutdown when a logic-low is applied to SHDN. During shutdown,output voltage falls to zero, ERROR is open-circuited and supply current is reduced to 0.5µA (max).3.4Out Of Regulation Flag (ERROR)ERROR goes low when V OUT is out-of-tolerance by approximately -5%.3.5Regulated Voltage Output (V OUT )Connect the output load to V OUT of the LDO. Also connect the positive side of the LDO output capacitor as close as possible to the V OUT pin.Pin No.Symbol Description1V IN Unregulated supply input 2GND Ground terminal 3SHDN Shutdown control input 4ERROR Out-of-Regulation Flag (Open-drain output)5V OUTRegulated voltage output© 2007 Microchip Technology Inc.DS21350D-page 9TC1054/TC1055/TC11864.0DETAILED DESCRIPTIONThe TC1054, TC1055 and TC1186 are precision fixed output voltage regulators (If an adjustable version is desired, please see the TC1070/TC1071/TC1187 data sheet (DS21353)). Unlike bipolar regulators, the TC1054, TC1055 and TC1186 supply current does not increase with load current.Figure 4-1 shows a typical application circuit, where the regulator is enabled any time the shutdown input (SHDN) is at or above V IH , and shutdown (disabled)when SHDN is at or below V IL . SHDN may be controlled by a CMOS logic gate or I/O port of a microcontroller. If the SHDN input is not required, it should be connected directly to the input supply. While in shutdown, supply current decreases to 0.05µA (typical), V OUT falls to zero volts, and ERROR is open-circuited.FIGURE 4-1:Typical Application Circuit.4.1ERROR Open-Drain OutputERROR is driven low whenever V OUT falls out of regulation by more than -5% (typical). This condition may be caused by low input voltage, output current limiting or thermal limiting. The ERROR threshold is 5%below rated V OUT , regardless of the programmed output voltage value (e.g. ERROR = V OL at 4.75V (typ.)for a 5.0V regulator and 2.85V (typ.) for a 3.0V regulator). ERROR output operation is shown in Figure 4-2.Note that ERROR is active when V OUT falls to V TH and inactive when V OUT rises above V TH by V HYS .As shown in Figure 4-1, ERROR can be used either as a battery low flag or as a processor RESET signal (with the addition of timing capacitor C 2). R 1 x C 2 should be chosen to maintain ERROR below V IH of the processor RESET input for at least 200ms to allow time for the system to stabilize. Pull-up resistor R 1 can be tied to V OUT , V IN or any other voltage less than (V IN + 0.3V).FIGURE 4-2:Error Output Operation.4.2Output CapacitorA 1µF (minimum) capacitor from V OUT to ground is recommended. The output capacitor should have an effective series resistance greater than 0.1Ω and less than 5.0Ω, with a resonant frequency above 1MHz. A 1µF capacitor should be connected from V IN to GND if there is more than 10 inches of wire between the regulator and the AC filter capacitor or if a battery is used as the power source. Aluminum electrolytic or tantalum capacitor types can be used (Since many aluminum electrolytic capacitors freeze at approxi-mately -30°C, solid tantalums are recommended for applications operating below -25°C.). When operating from sources other than batteries, supply-noise rejection and transient response can be improved by increasing the value of the input and output capacitors and employing passive filtering techniques.or RESETTC1054 TC1055 TC1186V OUTSHDN GNDERROR+V IN V OUTShutdown Control (to CMOS Logic or Tie to V IN if unused)1µF+Battery+0.2µF C 2C 2 Required Only if ERROR is used as a Processor RESET Signal(See Text)R 1 1MW V+BATTLOW 1µF C 1V THV OUT ERRORV IH V OLHYSTERESIS (V H )t DELAYTC1054/TC1055/TC1186DS21350D-page 10© 2007 Microchip Technology Inc.5.0THERMAL CONSIDERATIONS5.1Thermal ShutdownIntegrated thermal protection circuitry shuts the regulator off when die temperature exceeds 160°C.The regulator remains off until the die temperature drops to approximately 150°C.5.2Power DissipationThe amount of power the regulator dissipates is primarily a function of input voltage, output voltage and output current. The following equation is used to calculate worst case actual power dissipation:EQUATION 5-1:The maximum allowable power dissipation (Equation 5-2) is a function of the maximum ambient temperature (T A MAX ), the maximum allowable die temperature (T J MAX ) and the thermal resistance from junction-to-air (θJA ). The 5-Pin SOT-23 package has a θJA of approximately 220°C/Watt.EQUATION 5-2:Equation 5-1 can be used in conjunction with Equation 5-2 to ensure regulator thermal operation is within limits.For example:Actual power dissipation:Maximum allowable power dissipation:In this example, the TC1054 dissipates a maximum of 20.7mW; below the allowable limit of 318mW. In a similar manner, Equation 5-1 and Equation 5-2 can be used to calculate maximum current and/or input voltage limits.5.3Layout ConsiderationsThe primary path of heat conduction out of the packageis via the package leads. Therefore, layouts having a ground plane, wide traces at the pads and wide power supply bus lines combine to lower θJA and, therefore,increase the maximum allowable power dissipation limit.Where:P D V IN MAX V OUT MIN I LOAD MAX= Worst case actual power dissipation = Minimum regulator output voltage = Maximum output (load) current= Maximum voltage on V INP D V INMAX V OUTMIN –()I LOADMAX≈Where all terms are previously defined.P DMAX T JMAX T AMAX –()θJA-------------------------------------------=Given:V IN MAX = 3.0V +5%V OUT MIN = 2.7V – 2.5%I LOAD MAX = 40mA T J MAX = +125°C T A MAX = +55°C Find:1.Actual power dissipation2.Maximum allowable dissipationP D V INMAX V OUTMIN –()I LOADMAX≈ 3.0 1.05×() 2.70.975×()–[]4010-3×=20.7mW=P DMAX T JMAX T AMAX –()θJA-------------------------------------------=12555–()220-------------------------=318mW=© 2007 Microchip Technology Inc.DS21350D-page 11TC1054/TC1055/TC11866.0PACKAGING INFORMATION6.1Package Marking Information(V)TC1054Code TC1055Code TC1186Code 1.8CY DY PY 2.5C1D1P12.6CT DT PV 2.7C2D2P22.8CZ DZ PZ 2.85C8D8P83.0C3D3P33.3C4D4P53.6C9D9P94.0C0D0P05.0C6D6P75142312345-Pin SOT-23represents part number code +temperature range and voltage&12represents year and quarter code 3represents lot ID number4TC1054/TC1055/TC1186DS21350D-page 12© 2007 Microchip Technology Inc.TC1054/TC1055/TC1186 APPENDIX A:REVISION HISTORYRevision D (February 2007)•Corrected standard output voltages on page1and in “Product Identification System”.•Added T DELAY parameter in DC Characteristicstable in “Electrical Characteristics”.•Changes to Figure4-2.• “Packaging Information”: Corrected SOT-23Packaging Informaton.Revision C (March 2003)•Undocumented changes.Revision B (May 2002)•Undocumented changes.Revision A (March 2002)•Original Release of this Document.© 2007 Microchip Technology Inc.DS21350D-page 13TC1054/TC1055/TC1186NOTES:DS21350D-page 14© 2007 Microchip Technology Inc.© 2007 Microchip Technology Inc.DS21350D-page 15TC1054/TC1055/TC1186PRODUCT IDENTIFICATION SYSTEMTo order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office . Device:TC1054: 50mA LDO with Shutdown & Error output TC1055: 100mA LDO with Shutdown & Error output TC1186:150mA LDO with Shutdown & Error outputOutput Voltage *:1.8= 1.8V “Standard”2.5= 2.5V “Standard”2.6= 2.6V “Standard”2.7= 2.7V “Standard”2.8= 2.8V “Standard”2.85= 2.85V “Standard”3.0= 3.0V “Standard”3.3= 3.3V “Standard”3.6= 3.6V “Standard”4.0= 4.0V “Standard”5.0= 5.0V “Standard”*Contact factory for other output voltage options.Temperature Range:V= -40°C to +125°CPackage:CT713=5L SOT-23, Tape and ReelPART NO.X.X XXXXX PackageOutput VoltageDeviceExamples:a)TC1054-1.8VCT713: 1.8V LDO Regulator b)TC1054-2.5VCT713: 2.5V LDO Regulator c)TC1054-2.6VCT713: 2.6V LDO Regulator d)TC1054-2.7VCT713: 2.7V LDO Regulator e)TC1054-2.8VCT713: 2.8V LDO Regulator f)TC1054-2.85VCT713: 2.85V LDO Regulator g)TC1054-3.0VCT713: 3.0V LDO Regulator h)TC1054-3.3VCT713:3.3V LDO Regulator i)TC1054-3.6VCT713: 3.6V LDO Regulator j)TC1054-4.0VCT713: 4.0V LDO Regulator k)TC1054-5.0VCT713: 5.0V LDO Regulator a)TC1055-1.8VCT713: 1.8V LDO Regulator b)TC1055-2.5VCT713: 2.5V LDO Regulator c)TC1055-2.6VCT713: 2.6V LDO Regulator d)TC1055-2.7VCT713: 2.7V LDO Regulator e)TC1055-2.8VCT713: 2.8V LDO Regulator f)TC1055-2.85VCT713: 2.85V LDO Regulator g)TC1055-3.0VCT713: 3.0V LDO Regulator h)TC1055-3.3VCT713: 3.3V LDO Regulator i)TC1055-3.6VCT713: 3.6V LDO Regulator j)TC1055-4.0VCT713: 4.0V LDO Regulator k)TC1055-5.0VCT713: 5.0V LDO Regulator a)TC1186-1.8VCT713: 1.8V LDO Regulator b)TC1186-2.5VCT713: 2.5V LDO Regulator c)TC1186-2.6VCT713: 2.6V LDO Regulator d)TC1186-2.7VCT713: 2.7V LDO Regulator e)TC1186-2.8VCT713: 2.8V LDO Regulator f)TC1186-2.85VCT713: 2.85V LDO Regulator g)TC1186-3.0VCT713: 3.0V LDO Regulator h)TC1186-3.3VCT713: 3.3V LDO Regulator i)TC1186-3.6VCT713: 3.6V LDO Regulator j)TC1186-4.0VCT713: 4.0V LDO Regulator k)TC1186-5.0VCT713: 5.0V LDO RegulatorX Temperature RangeTC1054/TC1055/TC1186NOTES:DS21350D-page 16© 2007 Microchip Technology Inc.Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.TrademarksThe Microchip name and logo, the Microchip logo, Accuron, dsPIC, K EE L OQ, K EE L OQ logo, micro ID, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, PowerSmart, rfPIC, and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. AmpLab, FilterLab, Linear Active Thermistor, Migratable Memory, MXDEV, MXLAB, PS logo, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, , dsPICworks, ECAN, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB,In-Circuit Serial Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, PICkit, PICDEM, , PICLAB, PICtail, PowerCal, PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB, rfPICDEM, Select Mode, Smart Serial, SmartTel, Total Endurance, UNI/O, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.All other trademarks mentioned herein are property of their respective companies.© 2007, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.Printed on recycled paper.Note the following details of the code protection feature on Microchip devices:•Microchip products meet the specification contained in their particular Microchip Data Sheet.•Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.•There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.•Microchip is willing to work with the customer who is concerned about the integrity of their code.•Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.Microchip received ISO/TS-16949:2002 certification for its worldwideheadquarters, design and wafer fabrication facilities in Chandler andTempe, Arizona, Gresham, Oregon and Mountain View, California. TheCompany’s quality system processes and procedures are for its PIC®MCUs and dsPIC® DSCs, K EE L OQ®code hopping devices, SerialEEPROMs, microperipherals, nonvolatile memory and analogproducts. In addition, Microchip’s quality system for the design andmanufacture of development systems is ISO 9001:2000 certified.© 2007 Microchip Technology Inc.DS21350D-page 17AMERICASCorporate Office2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200Fax: 480-792-7277 Technical Support: Web Address: AtlantaDuluth, GATel: 678-957-9614Fax: 678-957-1455BostonWestborough, MATel: 774-760-0087Fax: 774-760-0088 ChicagoItasca, ILTel: 630-285-0071Fax: 630-285-0075DallasAddison, TXTel: 972-818-7423Fax: 972-818-2924DetroitFarmington Hills, MITel: 248-538-2250Fax: 248-538-2260 KokomoKokomo, INTel: 765-864-8360Fax: 765-864-8387Los AngelesMission Viejo, CATel: 949-462-9523Fax: 949-462-9608Santa ClaraSanta Clara, CATel: 408-961-6444Fax: 408-961-6445 TorontoMississauga, Ontario, CanadaTel: 905-673-0699Fax: 905-673-6509ASIA/PACIFICAsia Pacific OfficeSuites 3707-14, 37th FloorTower 6, The GatewayHabour City, KowloonHong KongTel: 852-2401-1200Fax: 852-2401-3431Australia - SydneyTel: 61-2-9868-6733Fax: 61-2-9868-6755China - BeijingTel: 86-10-8528-2100Fax: 86-10-8528-2104China - ChengduTel: 86-28-8665-5511Fax: 86-28-8665-7889China - FuzhouTel: 86-591-8750-3506Fax: 86-591-8750-3521China - Hong Kong SARTel: 852-2401-1200Fax: 852-2401-3431China - QingdaoTel: 86-532-8502-7355Fax: 86-532-8502-7205China - ShanghaiTel: 86-21-5407-5533Fax: 86-21-5407-5066China - ShenyangTel: 86-24-2334-2829Fax: 86-24-2334-2393China - ShenzhenTel: 86-755-8203-2660Fax: 86-755-8203-1760China - ShundeT el: 86-757-2839-5507Fax: 86-757-2839-5571China - WuhanTel: 86-27-5980-5300Fax: 86-27-5980-5118China - XianTel: 86-29-8833-7250Fax: 86-29-8833-7256ASIA/PACIFICIndia - BangaloreTel: 91-80-4182-8400Fax: 91-80-4182-8422India - New DelhiTel: 91-11-4160-8631Fax: 91-11-4160-8632India - PuneTel: 91-20-2566-1512Fax: 91-20-2566-1513Japan - YokohamaTel: 81-45-471- 6166Fax: 81-45-471-6122Korea - GumiTel: 82-54-473-4301Fax: 82-54-473-4302Korea - SeoulTel: 82-2-554-7200Fax: 82-2-558-5932 or82-2-558-5934Malaysia - PenangTel: 60-4-646-8870Fax: 60-4-646-5086Philippines - ManilaTel: 63-2-634-9065Fax: 63-2-634-9069SingaporeTel: 65-6334-8870Fax: 65-6334-8850Taiwan - Hsin ChuTel: 886-3-572-9526Fax: 886-3-572-6459Taiwan - KaohsiungTel: 886-7-536-4818Fax: 886-7-536-4803Taiwan - TaipeiTel: 886-2-2500-6610Fax: 886-2-2508-0102Thailand - BangkokTel: 66-2-694-1351Fax: 66-2-694-1350EUROPEAustria - WelsTel: 43-7242-2244-39Fax: 43-7242-2244-393Denmark - CopenhagenTel: 45-4450-2828Fax: 45-4485-2829France - ParisTel: 33-1-69-53-63-20Fax: 33-1-69-30-90-79Germany - MunichTel: 49-89-627-144-0Fax: 49-89-627-144-44Italy - MilanTel: 39-0331-742611Fax: 39-0331-466781Netherlands - DrunenTel: 31-416-690399Fax: 31-416-690340Spain - MadridTel: 34-91-708-08-90Fax: 34-91-708-08-91UK - WokinghamTel: 44-118-921-5869Fax: 44-118-921-5820 W ORLDWIDE S ALES AND S ERVICE12/08/06DS21350D-page 18© 2007 Microchip Technology Inc.。
TC-336NMS网络管理型频带调制解调器(33.6Kbps)机框式和单台式用户手册北京台康资讯有限公司 北京海淀区文慧园北路8号庆亚大厦A座3层100088 网址目录1 简介 (1)2 特征概述 (3)2.1 控制模块 (3)2.2 TC-336NMS (3)3 机框安装 (7)3.1 机框 (7)3.2 机框式调制解调器 (7)3.3 机框式电源 (8)3.4 机框背板 (8)3.5 安装DTE接口 (9)3.6 安装网络管理系统(NMS) (10)3.7 应用时钟 (13)4 单台式调制解调器安装 (14)4.1 TC-336NMS单台式连接 (14)4.2 TC-336NMS- SA前面板作 (15)5 NMS机框操作 (17)5.1 机框控制面板 (17)5.2 卡式调制解调器前面板 (18)6 机框NMSTC-336调制解调器用户手册 1 简介 随着社会信息化的发展,数据通信业务在国内日益深入社会各个领域NMS系列已开发完成有TC-336NMS系列网络管理型基带调制解调器及正在开发中TC-2000NMS系列HDSL使用者可以根据市场需求单一机框可以同时使用TC-336NMS本使用手册主要说明如何操作诊断和管理TC-336NMS设备机框式调制解调器NMS-CM NMS-SHELFTC-336NMSTC-336NMS是具有2/4专线和同步操作功能的全功能调制解调器V.13V.22V.23V.32bisV.42V.54的规格5和AT命令ITU-T V.25bis命令相容性语音功能以保持劣质线路的高接通率Bell和MNP的数据传输以保证和任何同样标准的调制解调器兼容使用者可不需要外接测试仪器可帮助使用者快速确认故障点使用者可以经由LCD液晶控制面板对近端和远端调制解调器进行设置TC-336NMS调制解调器具有网管功能一块NMS-CM控制卡可控制一个机架上16片调制解调器最多可扩展到250个机框网管程序包括一个SNMP AGENTÕï²â´íÎó¼Ç¼ʹÓúÍЧÂʱ¨¸æÕâÑù¾ÍÄÜͨ¹ý±¾µØDTE接口对远端调制解调器进行检测TC-336NMS使用者可以根据要求单一机框可以同时使用此2种型号调制解调器银行大型企业建设网络时相当经济和实惠设置网上的调制解调器NMS-CMʹÓÃÕß²»ÐèÁí×âרÏßInternetTC-336NMS网络管理型频带调制解调器(33.6Kbps)机框式和单台式用户手册北京台康资讯有限公司 北京海淀区文慧园北路8号庆亚大厦A座3层100088 网址3 机框安装3.1 机框TC-336NMS卡式调制解调器直接安装在19英寸的机框每个机框内可安装双电源和一块控制卡请勿将它直接放置在产生大热量的设备上方环境温度不应超过50摄氏度 16个插槽安装TC-336NMS调制解调器2第二电源插槽, PS24²¢ÓÃÂÝË¿¹Ì¶¨Çë²Î¿¼Í¼3-2安装机框式TC-336NMS 调制解调器卡片4 单台式调制解调器安装4.1 TC-336NMS 单台式连接当您打开TC-336NMS-SA 包装时如果发生缺少或损坏情况时交流电源线 1条 RJ-11电话线 1条 RJ-45专线 1条 接线盒1个 中文使用说明书1本安装单台式调制解调器时脚位定义请参考第3章TC-336NMS-SA 只提供 V.24Êý¾Ý½Ó¿Ú±³°åµÄ接口步骤3 按照下列RJ-45接口说明连接专线步骤4 确定电源开关在的位置电压范围脚位 描述2 4线专线发送端 7 52线专线图4.1TC-336NMS Stand-Alone 线连接图交流电源90V - 260V缆线电话机5 NMS机框操作5.1 机框控制面板1. – 发光二极管PS1NMS-CM控制模块自动初始化显示IP地址和时间以下是开机时显示步骤6 TC-336NMS 命令菜单集 6.1单台式主菜单Model : 33600 bps Version : V2.4V34 336 O AUTO x 1152 AS 2D IDLx = M ( MAIN Menu Tree )STATUS , PROTOCOL, DIAGNOSTIC , PROFILE , MODEM ,AUXILIARY, TERMINAL , LINE SETUP , REGISTERSECURITYKEYLOCK MENUEnter PasswordCALLBACK MENUCallback SecurityCONNECTION MENUConnection Securityx = O ( Originate )x = A ( Answer )x = D ( Dial )Dial Stored (#00 to #09) , Dial Number (Manual Entry) x = R ( Redial )x = H ( Hangup, On-Hook )7 ASCII 终端机操作 NMS-Shelf提供ASCII终端机操作终端机通信接口设置如下并将DB-25数据缆线接好请将NMS-CM复位一次Initialization in progressÇë°´Èκμü½øÈëϵͳ¹ÜÀí³ÌÐòCM程序版本ÖÕ¶Ë»ú»áÏÔʾÈçÏ»-ÃæRACK ID本地和远程设备8 TC-336NMS调制解调器设置 TC-336NMS调制解调器主要设计給各种应用连线的使用.本章主要说明介紹调制解调器的基本概念及常用TC-336NMS的液晶(LCD)面板设置参数,使用者可以很快的了解使用TC-336NMS调制解调器,所有的液晶(LCD)面板设置参数,请参考第7章电话网络”才能达到连接的方式,例如图9.1一般我們上网际网络(Internet)时,使用调制解调器就是采用此方式B. 请在EDIT TEL NUMBER” 选择第0組(#00)电话号码,用左右按钮输入电话号ENTER” 按钮输入电话号分別为两种系統设置: a. 设置为AT命令: 拨号参数包括0 ̄9”, 英文字母, “空白鍵”. b. 设置为V.25bis命令: 拨号参数包括0 ̄9”, 英文字母:”, “#”, “*”, “@”, “<”, “&”, “=, “空白鍵”.(其中的拨号参数电话网络”,只要使用一对专用的线路连接A点及B点两地,就可以达到通讯的目的.此操作方式一般被广泛使用于电信的分組交換网(X.25), DDN网;金融行业,保险行业,邮政……等等专网9 TC-336内置诊断方法 9.1 环路测试Modem 操作的基本部件包括7个连接 DTE 与本地modem 的电缆远端modemÈçÏ´ӱ¾µØDTE 到远端DTE 间任何部件出问题都会导致通讯失败可帮助定位和解决这个问题Modem 环路测试测试 描述LAL测试时10 AT 命令列表(TC-336NMS) 这一节描述标准Modem 命令集例如 0 和 1 n²¢±ê×¢ÓÚϱí×óÁÐ注意:除了和以外AT关于 fax/modem 的命令格式贺氏AT 命令集注释+++ 返回命令模式在数据模式下+++该命令前面没有OA 应答指令在应答模式下,不待调制解调器振铃便强制摘机A/ 重复上一指令重复执行最后命令行Bn 1200bps连接协议0 V.22 模式1 Bell 212A 模式Dstring 拨号指令将调制解调器置为原始模式中并拨一字符集9 和拨号修改符及*;拨号修正:P 脉冲拨号须在数字串之前W 插在数字间与ATX2或ATX4命令一起使用, 插在数字间插在数字间在拨号后返回到命令模式以允许传送更多的拨号命令在此n等于相应的存储器号码0En Echo 命令决定调制解调器是否将字符反馈到屏幕0 不对命令反应1 反馈命令In 标志命令0 显示产品标志代号.1 报告预先计算的检查和.2 报告 OK.11. 设置Date/Time/RTC(NMS,CM) 实时钟(real time clock)提供错误记录表的正确日期时间的依据本设备无2000年问题如果关闭RTC,当电源关闭时RTC停止动作12 S寄存器列表 FAX/MODEM 中S寄存器的值影响机器的各种操作特性每个S寄存器有出厂预设值12.1 读S寄存器之值1 读S寄存器的当前值键入rATS r?S r?[Enter]其中是不同S寄存器的号码例如读S0和S1的值ATS r=n [Enter]其中r 是S寄存器的序号n 是欲写入S寄存器的值12.3 S寄存器详解S0 自动回答铃声设置调制解调器自动回答之前的铃声数.0至255声( 0=禁止, 缺省值=0 )S1 铃声计数在调制解调器回答要求之前计算铃声数, SI增加直至铃声停止0至255 ( 缺省值=0 )S2 逃逸代码字符设置字符用于三字符逃逸代号序列一旦改变了S3值, 命令行和返回终止代码将都被改变.0至127 ASCII数值代码( 缺省值=13 )S4 线路反馈字符设置线路反馈代号线路反馈码才有结果0至127 ASTII数值代码缺省值=0S5 退格字符13 传真命令列表/TC-336NMS 本部分简要列出可用的传真命令1类传真 AT 命令集命令功能+FCLASS=n 服务类别+FAE=n 数据/传真自动应答+FRH=n 以HDLC格式接收数据+FRM=n 接收数据+FRS=n 静音接收+FTH=n 以HDLC格式传输数据+FTM=n 传输数据+FTS=n 停止传输数据并等待2类传真 AT 命令集命令功能+FCLASS=n 服务类别D 发出呼叫A 应答呼叫+FAA=n 适应性应答+FDT 数据传输+FET=n 传输页标+FDR 开始或继续C相接收数据+FK 进程中止+FCON 传真连接回应+FDCS: 报告当前进程+FDIS: 报告远端身份+FCFR: 证实接收+FTSI: 报告接收端身份+FCSI: 报告应答端身份+FPTS: 页传输状态+FET: 后页信息回应+FHNG: 呼叫中止状态+FMFR? 辨别制造商+FMDL? 辨别模式+FREV? 辨别版本+FDCC=n DCE 能力参数+FDIS=n 目前进程参数+FDCS=n 目前进程结果+FLID=n 本地ID 字串+FCR 接收能力+FPTS=n 页传输状态+FCR= 接收能力+FAE 适应性应答+FBUF? 缓冲器大小+FPHCTO C相时间结束+FAXERR 传真错误值+FBOR C相数据位次序14 V.25bis 命令列表/TC-336NMS 本节描述MODEM 可用的 V.25bis 命令V.25bis 命令集说明CRN String 拨号指令使modem进入发送模式并拨号串0-9P 脉冲拨号必须在号码串之前W 数字间插入等待时长由S7定义 数字间插入 闪动使modem合上叉簧0.5秒之后断开²¦Íêºó·µ»ØÃüÁîģʽ功能同W< 功能同= 功能同其中 n 等于0213的电话号码组.PRNx,y 预存电话号码在NVRAM内可达35个字符RLN 显示所储存的电话号码DIC 不做自动应答CIC 自动应答有效CNL 执行AT 命令允许用户发出并执行V.25bis 模式的AT命令.15 响应集/TC-336NMS 当向 fax/modem发命令时例如fax/modem将回应OKÈí¼þÀûÓÃÕâЩÏìÓ¦À´¿ØÖƳÌÐòµÄÁ÷¶¯±¾½ÚÐðÊöµÄfax/modem响应是直接与fax/modem.通讯时的响应024ÏìÓ¦µÄ·ÖÀàÊÇΪÁËÂú×㲻ͬÀàÐ͵IJÙ×÷ºÍÓ¦ÓÃÐèÒª³ýX 响应集外也有扩展响应可回应载波速度可用 Wn 命令使扩展响应生效本 fax/modem 被设为字符响应如果您的fax/modem 处理字符串效率低或者根本不能处理字符串代码响应只跟随着一个响应包可用Q1 命令关掉它下列表格列出了可用的响应代码modem 以0-300240019200bps连线成功校验和错误当X2µ±X3或X4起作用时有效NO ANSWER 08 当拨号命令行含有@时Modem 未检测到静音CONNECT 600 09 Modem 以600bps连线CONNECT 2400 10 Modem 以2400bps连线CONNECT 4800 11 Modem 以4800bps连线CONNECT 9600 12 Modem 以9600bps连线CONNECT 7200 13 Modem 以7200bps连线CONNECT 12000 14 Modem 以12000bps连线CONNECT 14400 15 Modem 以14400bps连线CONNECT 19200 16 Modem 以19200bps连线TC-336调制解调器用户手册 CONNECT 38400 17 Modem 以38400bps连线CONNECT 57600 18 Modem 以57600bps连线CONNECT 115200 19 Modem 以115200bps连线CONNECT 75TX / 1200RX 22 Modem 以75bps连线传送以75bps接收FAX 33 在传真模式下建立了传真连接DATA 35 建立了数据连接CARRIER 300 40 检测到载波速率为300 bps.CARRIER 1200/75 44 检测到V.23 后向通道载波CARRIER 75/1200 45 检测到V.23 前向通道载波CARRIER 1200 46 检测到载波速率为1200 bps.CARRIER 2400 47 检测到载波速率为2400 bps.CARRIER 4800 48 检测到载波速率为4800 bps.CARRIER 7200 49 检测到载波速率为7200 bps.CARRIER 9600 50 检测到载波速率为9600 bps.CARRIER 12000 51 检测到载波速率为12000 bps.CARRIER 14400 52 检测到载波速率为14400 bps.CARRIER 16800 53 检测到载波速率为16800 bps.CARRIER 19200 54 检测到载波速率为19200 bps.CARRIER 21600 55 检测到载波速率为21600 bps.CARRIER 24000 56 检测到载波速率为24000 bps.CARRIER 26400 57 检测到载波速率为26400 bps.CARRIER 28800 58 检测到载波速率为28800 bps.CONNECT 16800 59 Modem 以16800bps连线CONNECT 21600 61 Modem 以21600bps连线CONNECT 24000 62 Modem 以24000bps连线CONNECT 26400 63 Modem 以26400bps连线CONNECT 28800 64 Modem 以28800bps连线COMPRESSION: CLASS 5 66 Modem 以MNP5连线COMPRESSION: V.42bis 67 Modem 以V.42bis连线COMPRESSION: NONE 69 Modem 以没有数据压缩方式连线.PROTOCOL: NONE 70 Modem 以没有任何纠错方式连线PROTOCOL: LAMP 77 Modem 以V.42 LAMP纠错方式连线PROTOCOL: ALT 80 Modem 以MNP纠错方式连线PROTOCOL:81 Modem 以MNP10方式及电平调整开启方式连线ALT-CELLULARFCERROR +FC Modem 在 1 类传真或2 类传真方式时检测到错误TC-336调制解调器用户手册 下面描述不同的fax/modem 响应集不管连接速度是多少对所有的连接都将有连接响应发出拨号指令后无论有无拨号音fax/modem 将等待2秒才自动拨出号码盲拨可在fax/modem检测不到拨号音和拨号音较弱的地方使用此功能当本响应集有效时盲拨X2 X2响应集包括最开始的七个响应及无回应响应和所有的CONNECT xxx响应发出拨号指令后fax/modem 将在拨号前检测拨号音将回应NO DIAL TONE并挂机无回应响应和所有的CONNECT xxx 响应发出拨号指令后fax/modem 将进行呼叫fax/modem将回应 BUSY°üÀ¨ËùÓеÄX2响应W0 扩展响应无效W1 modem 将回应载波及协议W2 modem 将回应载波及协议V.25bis 响应字符代码意义VAL Modem 执行了命令行.INV 命令错振铃ET 线路忙.R T 无应答.CB 本地 modem 忙.NT 无载波.NS 无存储的电话号码.AB 拨号时收到中断LSN 列存储的电话号码.TC-336调制解调器用户手册 16 缺省设置参数 设置 缺 省 值 NVRAM 自动应答 初始化后Disable Yes 退格符 08 No 1200bps Bell/CCITT兼容性 BALL 212A Yes 忙音检测 Enabled Yes *回车符 13 No 换行符 10 No 数据设备就绪选择 Always on Yes 数据终端就绪选择 &D0 Yes 数据终端就绪脉宽 0.5秒 Yes 回波选择 On Yes 脱离符定义 43(+ + +) Yes 保护音 Disabled Yes 长空挂断 Disabled Yes 校验 None Yes 脉冲占空比 39/61 Yes 命令回送 Word Yes 回送使能 All Yes RTS-to-CTS延迟 10 微秒 Yes 扬声器状态 载波检测到后Off Yes 扬声器音量 Low Yes 测试计数器设置 0秒 Yes 拨号后载波等待时间 50秒 Yes 等待拨号音时间 2秒 No 拨号前等待拨号音 Enabled Yes 拨号延迟 2秒 Yes 接受载波检测等待时间 04秒 Yes DTMF音频持续时间 95毫秒 Yes 转拨修正时间 0TC-336调制解调器用户手册 该字符为退格键及将光标后退一个位置的字符.0至32, 127 ASCII数值代码( 缺省值=8 )S6 拨号声音等待时间设置在摘机后最少延迟时间为2秒等待远程调制解调器的载波的时间长度.2至255秒 ( 缺省值= 50 )S8 拨号延时的暂停时间设置当解调器遇到暂停拨号符号时暂停的时间,.2至255秒 ( 缺省值= 2 )S9 载波检测回答时间设置在调制解调器识别载波及打开DCD之前信号须出现的时间长度1至255以0.1秒为单位 ( 缺省值= 14 )S11 DTMF延续时间及空间该寄存器控制DTMF声音的延续时间及空间缺省值缺省值缺省值*K0缺省值*K1ȱʡֵTC-336调制解调器用户手册 位6 Trellis编码模式0 T rellis编码模式开1 T rellis编码模式关位7 开始/ 回答0 应答模式1 开始模式S16 位0 本地模拟环路返回0 禁止1 允许位1 不使用位2 本地数字环路返回0 禁止1 允许位3 根据远程调制解调器标志初始化数字环路返回0 空闲1 过程中位4 初始化远程数字环路返回0 禁止1 允许位5 远端数字环路返回及自我测试0 禁止1 允许位6 本地模拟环路返回及自我测试0 禁止1 允许位7 不使用S18 测试时间设置调制解调器执行诊断的时间长度0至255秒缺省值=0缺省值缺省值缺省值缺省值TC-336调制解调器用户手册 S20 自动同步HDLC地址或BSC同步字符0至255S21 位0 插接类型0 R T-II RJ-45S1 RJ-12ȱʡֵ4 DTR行为0 &D0选择1 &D1选择2 &D2选择3 &D3选择位5ȱʡֵȱʡֵ1 扬声器音量0 关闭1 低2 中3 高位2ȱʡֵ´ò¿ªÖ±ÖÁ¼ì²âµ½Ôز¨位4,5,6 结果代码选择0 X0回答设置4 X1回答设置5 X2回答设置6 X3回答设置7 X4回答设置位7 回铃0 回铃关1 回铃开 S23 位0 允许远程数字环路返回请求0 不允许RDL1 允许RDL位1,2,3 DTE率0 0bps至300bpsTC-336调制解调器用户手册 2 1200bps3 2400bps4 4800bps5 9600bps6 19200bps7 38400bps位4,5 DTE奇偶性0 奇1 空格2 偶3 标志或无位6,7 音频保护0 无1 无2 1800HZS25 数据终端准备延迟为了运行&Dn命令而忽略DTR的时间长度0至255以10毫秒为单位 同步模式缺省值=5µ÷ÖÆ½âµ÷Æ÷ÔÚ¼ì²âµ½Ò»¸öRTS的off-to-on传送后仅用于同步操作缺省值=1缺省值ȱʡֵȱʡֵ缺省值总为0US1 33/67比率于10ppsÏã¸Û2 39/61 比率于20pps3 39/67比率于20pps位5 保留位6,7 MNP联结协商速度0 最高速度1 1200bps2 4800bpsS29 闪动拨号修饰词时间设置当调制解调器在拨号串中遇到闪动拨号修饰词0 禁止, 缺省值=70µ÷ÖÆ½âµ÷Æ÷¶Ï¿ªÁ¬½Ó֮ǰµÄÔÚÏßʱ¼ä0至255以10秒为单位 S31 位0 保留位1 自动线路速度检测0 禁止1 允许位2,3 错误纠正过程信息0 仅DTE速度1 全部报告2 仅DCE速度位40 N3关1 N3开位5至7 保留S32 XON字符0至255的ASCII数字 S33 XOFF字符0至255的ASCII数字 S34-35 保留S36 LAMP故障控制决定当出现一LAPM故障时调制解调器将做什么0 调制解调器挂机1 调制解调器仍在线并且建立一直接模式的连接2 保留3 调制解调器仍在线并建立一正常模式的连接4 尝试V.42转换协议连接MNP2-5Èôʧ°ÜMNP2-5Èôʧ°ÜÔò½¨Á¢Õý³£Ä£Ê½连接S37 理想线路连接速度0 自动检测模式1-3 300bps4 保留5 V.22 1200bps6 V.22bis 2400bps7 V.238 V.32bis或V.32 4800bps9 V.32 bis或V.32 9600bps10 V.32bis 12000bps11 V.32bis 14400bps12 V.32bis 7200bps15 V.FC 1440016 V.34 1680017 V.34 1920018 V.34 2160019 V.34 2440020 V.34 2460021 V.34 28800S38 被强制挂起之前的延时在调制调解器收到H命令和实际断开操作之间的延时0至255秒 S39 位0-3 流控制0 &K01 &K12 &K23 &K34 &K45 &K56 &K67 &K78 &K8位4-5 DSR(Data Set Ready)选择0 选择&S01 选择&S12 选择&S2S40 位0,1 MNP扩展服务0 禁止1 允许2 允许位2 单元用电源水平的调整0 自动调整1 被迫调整位3,5 中断处理0 \K0选择1 \K1选择2 \K2选择3 \K3选择4 \K4选择5 \K5选择位6,7 MNP块尺寸0 641 1282 1923 256S41 位0,1 压缩选择0 禁止1 MNP 52 V.42 bis3 MNP 5及V.42 bis位2,6 自动重取及退回/前进0 禁止位3 调制解调器至调制解调器流控制0 禁止1 允许位4 块模式控制0 流模式1 块模式位5 保留位7 退回至V22 bis/V.220 禁止1 允许S42-45 保留S46 数据压缩控制136 禁止138 允许S47 保留S48 V.42协商行为0 禁止协商缺省值进行S36规定的退回动作S49-79 保留S82 中止处理选项该寄存器无用NO CARRIER»á°ÑÒ»¸öֵдÈë¼Ä´æÆ÷ÖÐÀ´°ïÖúÈ·¶¨Á¬½Óʧ°ÜµÄÔ-ÒòÎÞ´íÎó·¢Éú4 丢失载波5 V.42协议不能在另一端检测到一错误纠正调制解调器9 调制解调器不能发现普通协议12 通过远程调制解调器初始化的正常断开连接13 在同一信息被10次传送之后远程调制解调器不回答14 违反协议S87-90 保留S91 PSTN传送衰减标准0至15代表0至缺省值=1015dBmS93-94 保留S95 扩展回答代号该寄存器可设置去取代一些Wn命令选项 位0 CONNECT结果代号指示DCE速度而不是DTE速度xxx= 比率4 初始化单元电源水平设置 位5 综合平衡 位6--7 保留S211S212TC-336调制解调器用户手册 3 报告软件版本缺省值接收时扬声器关闭(缺省)2 握手及接收时扬声器均打开3 拨号及接收时扬声器关闭命令相互影响并一起使用0 禁止1 允许On 返回数据模式在使用+++字符转到控制命令模式返回到数据模式.0 回到数据模式.1 进行平衡化序列重排重排将对文件传送进行优化,该命令工作在2400bps或更高.P 强制脉冲拨号Qn Modem 应答决定在键入一命令之后解调器是否反馈回答缺省值缺省TC-336调制解调器用户手册 Wn 扩展应答代码0 在EC模式中报告DTE速度1 报告行速度详见第 12 部分0 调制解调器忽略拨号声音及繁忙信号允许0 至 4ÔÊÐí0 至 6ÔÊÐí 0 至 4,7,8及所有 CONNECT xxx 的回答4 Modem 识别拨号音及遇忙信号缺省缺省Wn 命令存贮的两个用户配置值中的一个0 重设置并取配置值 0 .1 重设置并取配置值 1 .2 重设置并取配置值 2 .3 重设置并取配置值 3 .&Cn 载波检测信号状态控制数字载波检测 (DCD) 信号0 强制连续打开1 跟随远端载波信号状态2 DCD 保持亮. 当线路断将灭掉3-5秒之后重亮3 提供V.13 功能调制解调器返回到异步命令模式&Q2/3 挂起禁止自动回答.2 &Q0 to 6 挂起禁止自动回答(缺省)3 &Q0/1/4/5/6 调制解调器进行软重置TC-336调制解调器用户手册 &Gn 警戒音在国际上使用警戒音, 但在美国不使用0 不使用1 不使用2 1800 Hz 警戒音&Kn 流量控制该命令用于控制调制解调器及电脑间的数据流动modem 默许模式只是为了兼容的目的才把它包括进来(缺省值为0, 拨号线路)&Mn 异步/同步模式选择0 直接异步选择1 异步命令模式下的同步连接模式2 异步命令模式下的同步连接模式DTR作为话音/ 数据开关&Pn 脉冲占空比0 在10pps为39/ 61加拿大缺省值UK 2 20 pps 时为39/613 20 pps 时为39/67&Qn 同步/异步模式0 直接异步模式1 同步连接与异步离线命令模式2 同步连接与异步离线命令模式允许DTR作为对话/数据开关4 选择Hayes自动同步模式5 调制解调器处理错误校正连接6 在正常模式下选择异步操作&Rn RTS/CTS 选项0 CTS跟踪RTS»òÿV.25动作一次1 CTS 总是有效&Sn 数据串准备信号状态0 DSR 信号总为开TC-336调制解调器用户手册 1 ʱDSR信号为开当远程载波信号丢失时DST 关闭&Tn 环路测试功能用于诊断的环路测试与 S18 同时使用0 终止任何正在进行的测试1 启动本地模拟环路2 保留3 启动本地数字环路4 允许远程数字环路返回请求5 拒绝远地数字环路请求6 启动远程数字环路返回7 启动带自检远程数字环路返回8 启动带自检本地数字环路返回&U 格码调制/TCM.这一功能仅仅工作在 V.32bis下比V.32bis老的模式如果两边都使用TCM 连接 &U0/&U : 使用格码调制&U1 : 使用非冗余码&V 显示有效的配置&Wn 将 S 寄存器的值写到两个配置中的一个中去储存命令和寄存器到内存储器0 将命令和 S 寄存器的值写入配置01 将命令和 S 寄存器的值写入配置12 将命令和 S 寄存器的值写入配置23 将命令和 S 寄存器的值写入配置3&X n 同步传输时钟源0 内部定时1 外部定时2 接收从时钟&Y n 配置选择加载配置值并设置为开机及重置时的缺省值0 配置 01 配置12 配置23 配置3&Z n=ax存储电话号码在 4 个存储电话号码组中的任何一个可使用D命令快速拨号n 为内存组 a 为T »ò Px 为所存储的电话号码%En 线路质量监测和自动重取或回退/前进TC-336调制解调器用户手册 控制解调器是否将自动监视线路质量;当线路质量不够合格时要求进行重取或后退,线路质量合格时前进0 禁止(缺省值t)1 允许线路质量监测及自动重取.2 允许线路质量监测及后退/前进.3 允许线路质量监测及带快速挂断的自动重取%L报告信号电平0至 255代表 0 至-255 dBm%Q n 报告线路信号质量返回EQM值的较高 byte .\G n Modem 口流控制在正常模式下控制 modem的 DCE 流控制特点, 在可靠模式下该命令无效0 关1 开 XON/XOFF 流控制. 如果modem 从远端系统收到数据的速度比它处理的速度快应用此设置\K n 设置中断控制当调制解调器从DTE端口或调制解调器端口接收到一中断时决定调制解调器执行的动作如下0 4 输入命令模令并发送中断到远程调制解调器1 清除数据缓冲区并发送中断到远程系统3 不清除数据缓冲区并发送中断到远程系统5 与被传送的数据一起发送中断到远程调制解调器命令可靠模式3 不清除数据缓冲区并发送中断到远程系统41 清除数据缓冲区并发送中断到远程系统25 与被传送的数据一起发送中断到远程调制解调器\N n 操作模式选择错误校正模式用于随后的数据联结0 正常速度缓冲模式1 直接模式2 可靠连接模式3 自动一可靠模式4 强制LAMP模式5 强制MNP模式\R 串口振铃指示器控制该命令控制RS-232的第`22脚, 可设为开或在收到振铃音时开\R0^R 在收到振铃音时开,挂机时关\R1 正常关, 在收到振铃音时开% R 回铃当拨叫远端时modem可显示远端modem 的回铃%R0/%R 不显示回铃(缺省值)%R1 显示回铃并代有 “102” 或 “Ring Back” 信息.-R RTS 命令该命令控制 RTS端设置 modem.-R0/-R RTS设置 modem 将随 RTS 设置 RS-232 口而变化(缺省值)-RT1 RTS 将保持 “on”.*K 键盘中断在modem进入待机状态和未完成连线前,任何键入将导致挂机及出现“NOCARRIER”信息,如果操作期间需要数据入口,请用此命令关掉键盘中断,此功能只有AT 命令.*K0/*K 开键盘中断(缺省值)*k1 连线期间忽略所有输入+MS 协议和速度选择(只适用于 28,800 bps models)该命令用于设置需要的协议和最高最低速度.命令格式如下:AT+MS= <协议模式>, <自动模式>, <最低速度>, <最高速度> , <CR>例如 AT+MS=11,1,300,28800 (缺省值)注意,这可能与S37寄存器和ATH命令冲突,这种情况下,最新输入的有效,可用AT+MS? 命令察看当前设置\F 显示存储的电话号码用 “AT\F <CR> 命令显示存储的电话号码\S 显示工作配置用“\S” 命令将显示modem所有当前的工作配置,按任一键显示下一屏,显示完出现“OK”变量定义:协议变量:变量协议速度0 V.21 3001 V.22 12002 V.22bis 2400,12003 V.23 12009 V.32 9600,480010 V.32bis 14400,12000,9600,7200,480011 V.34 33600,31200,28800,26400,24000,21600,19200,16800,14400,12000,9600,7200,4800,240064 Bell 103 30069 Bell 212 120074 V.FC 28800,26400,24000,21600,19200,16800,14400自动模式变量:自动模式内容0 不使用自动速度调整1 使用 V.8或 N1, N3 自动模式注意1 : 14400bps 不支持 AT+MS 命令.要改变协议和连接模式用ATS37=m 和ATNn 命令注意2 : 只有 2.0 EPROM 或更高版本有下列AT命令, S38的值也不同于2.0和以后的EPROM版本2.0版本以前 2.0和更高版本ATZ 2 sets 4 setsAT&F 2 sets 10 setsAT&W 2 sets 4 setsAT&Y 2sets 4setsAT&Z 6 sets 10 setsS38 20 seconds 5 secondsECC 命令设置说明%C n 数据压缩0 禁止数据压缩1 允许MNP 5数据压缩2 允许V.42数据压缩3 允许V.42bis及MNP 5数据压缩\A0 最大MNP块尺寸0 641 1282 1923 256\B n 传送中断至远程在非错误纠正模式中在错误纠正模式中不指明长度0至9以0.1秒为单位MNP 10 命令设置:说明)M n MNP 10连接协商电源调整允许或禁止自动调整传送电源水平缺省值缺省值用于单元连接缺省值但在V42 LAPM应答模拟检测相位期间禁止.-Q n 允许退回到2400bps/V.22bis控制退回到2400bps V.22bis及1200bps V.220 禁止1 允许(缺省值)@M n 初始化单元电源设置设置初始传送电源, 在线路条件可以确定之前用于连接的向上转换30dBm210dBm11至31 31dBm:E n V.32综合平衡0 禁止1 允许( 缺省值)9.2 实现环路测试以下是实现环路测试的方法 慍ONNECT WITH DIRECT MODE项中Disable 数据纠错功能 慏ISABLE ALL COM PRESSION 项中Disable 数据压缩有LAL LDLE. 从连着的计算机或终端上键入任何字符并检查屏幕上是否返回了正确的字符9.3 有关诊断进入诊断模式后上线表示测试类型远端数字环路 Remote digital loopback/RL)下线表示错误计数 Error Counts (EC) 及失掉同步计数 Loss sync Count (LC)所有测试必须在正常或直接模式下实现本modem 备有数据模式发生器和错误信号发生器, 对点到点的环路测试不需要其它装置.如何开始和退出诊断模式:开始:诊断只能在异步下进行且数字测试必须在连线建立后实现.可键入命令“&Tn” 或从LCD进入诊断模式.退出:有几种方法退出诊断模式:1 S18 寄存器自动停止测试(见S18)2 在测试时用“CD”灯将亮XXXXX…… 测试数据接收器返回的数据经解调成数字信号并经RS-232口在PC或终端上显示出OK Modem 回应. 结束测试 .• 注意1ÊäÈë´ËÃüÁîºó, “CD” 灯亮并测试n秒参见S18本地模拟环路自测 “&T8”此测试除modem产生数据格式用于测试外与上个测试相同测试结束将显示错误的bit 数即使实际值超过了255ATS18=0&T8 测试开始. “CD” 灯亮AT&T0 测试结束, CD灯灭它根据ITU-T V.54 之LOOP2 and LOOP3设计回到在线状态远端数字环路自测 “&T7”命令是 “AT&T7<CR>”. 与本地模拟环路自测相同用“&T3” 命令操作说明+++ 退出命令模式(本地 modem)OK Modem 回应 “+++”ATS18=0&T3 测试开始.进入数字模式.XXXXX…… 在远端输入测试数据AT&T0 结束测试OK Modem 回应, 表示测试结束AT0 回到在线状态CONNECT Modem回应。
BATTERY MANAGEMENT Jul 09, 1998 Switch-Mode Battery Charger Delivers 5AThe fast-charge controller IC3 (Figure 1) normally directs current to the battery via an external pnp transistor. In this circuit, the transistor is replaced with a 5A switching regulator (IC1) that delivers equivalent power with higher efficiency.Figure 1. By controlling the PWM duty cycle of switching regulator IC1, the fast-charge controller (IC3) makes efficient delivery of the battery's charging current.IC1 is a 5A buck switching regulator whose output is configured as a current source. Its internal power switch (an npn transistor) is relatively efficient because V CE(SAT) is small in comparison with the 15V-to-40V inputs. (For applications that require 2A or less, the low-saturation, non-Darlington power switch of a MAX726 offers better efficiency.)R6 senses the battery-charging current and enables IC3 to generate an analog drive signal at DRV. The signal is first attenuated by the op amp to assure stability by reducing gain in the control loop. It then drives IC1's compensation pin (VC), which gives direct access to the internal PWM comparator. IC3 thus controls the charging current via the PWM duty cycle of IC1. The Q1 buffer provides current to the DRV input.Loop stability is also determined by the feedback loop's dominant pole, set by C4 at the CC terminal of IC3. If you increase the value of the battery filter capacitor (C5), you should make a proportional increase in the value of C4. Lower values, however, assure good transient response. If your application produces load transients during the fast-charge cycle, check the worst-case response to a load step. To assure proper termination of the charge, battery voltage should settle within 2msec to 5mV times N (where N is the number of battery cells). More InformationMAX713:QuickView-- Full (PDF) Data Sheet-- Free Samples。
© 2007 Microchip Technology Inc.DS22035B-page 1TC1270A/70AN/71AFeatures:•Precision voltage monitor- 2.63V, 2.93V, 3.08V, 4.38V and 4.63V trip points (Typical) •Manual Reset input •Reset Time-out Delay:-Standard: 280ms (Typical)-Optional: 2.19ms, and 35ms (Typical)•Power Consumption ≤ 15µA max•No glitches on outputs during power-up •Active Low Output Options:-Push-Pull Output and Open-Drain Output •Active High Output Option:-Push-Pull Output•Replacement for (Specification compatible with):-TC1270, TC1271 -TCM811, TCM812 •Fully static design•Low voltage operation (1.0V)•ESD protection:-≥ 4kV Human Body Model (HBM)-≥ 400V Machine Model (MM)•Extended (E) Temperature range:-40°C to +125°C •Package Options:-4-lead SOT-143 -5-lead SOT-23-Pb-free DevicePackage TypesFunctional Block DiagramDevice Features1243TC1271ASOT-143V SSV DDRST MR1243TC1270ASOT-143V SSV DD RST MR 12354TC1271ASOT-23-512354SOT-23-5NC NC V DD MRRSTV SS V SSV DDMRRSTTC1270A TC1270AN18.5k ΩV DDMRRST RSTGlitch FilterVoltage Detector PPPP O u t p u t D r i v e rCircuitry(TC1271A)(TC1270A)Reset Generator & Delay Timer (2.19ms,35ms,280ms)ODRST (TC1270AN)DeviceOutputR e s e t D e l a y (m s ) (T y p )(3)R e s e t T r i p P o i n t (V ) (3)V o l t a g e R a n g e (V )T e m p e r a t u r eR a n g ePackagesComment Type Active Level TC1270APush-PullLow 2.19,35,280(1) 4.63, 4.38,3.08, 2.93,2.63(4) 1.0V to 5.5V -40°C to+125°C SOT-143 (2), SOT-23-5Replaces TC1270 andTCM811TC1270AN Open-Drain Low SOT-23-5New Option TC1271A Push-PullHighSOT-143 (2), SOT-23-5Replaces TC1271 andTCM812Note 1:The 280ms Reset Delay time-out is compatible with the TC1270, TC1271, TCM811, and TCM812 devices.2:The SOT-143 package is compatible with the TC1270, TC1271, TCM811, and TCM812 devices.3:Custom Reset Trip Points and Reset Delays available, contact factory.4:The TC1270/1 and TCM811/12 1.75V Trip Point Option is not supported.Voltage Supervisor with Manual Reset InputTC1270A/70AN/71ADS22035B-page 2© 2007 Microchip Technology Inc.1.0ELECTRICALCHARACTERISTICSAbsolute Maximum Ratings †Supply Voltage (V DD to V SS )...............................+7.0V Input Current, V DD ..............................................10mA Output Current, RESET, RESET........................10mA Voltage on all inputs and outputsw.r.t. V SS ............................-0.6Vto (V DD + 1.0V)Storage Temperature Range..............-65°C to +150°C Operating Temperature Range...........-40°C to +125°C Maximum Junction Temperature, T S ...................150°C ESD protection on all pinsHuman Body Model .......................................≥4kV Machine Model ..............................................≥ 400V† Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress ratings only and functional operation of the device at those or any other conditions above those indicated in the operational listing of this specifications is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.ELECTRICAL CHARACTERISTICSElectrical Characteristics: Unless otherwise noted, V DD = 5V for L/M versions, V DD = 3.3V for T/S versions,V DD = 3V for R version, T A = -40°C to +125°C. Typical values are at T A = +25°C.ParameterSym Min Typ (1)Max Units Test ConditionsOperating Voltage Range V DD 1.0— 5.5V Supply CurrentI DD—715µA V DD > V TRIP , for L/M/R/S/T,V DD = 5.5V— 4.7510µA V DD > V TRIP , for R/S/T, V DD = 3.6V —1015µA V DD < V TRIP , for L/M/R/S/T Reset Trip Point Threshold (3)V TRIP4.54 4.63 4.72V TC127xAL:T A = +25°C4.50— 4.75V T A = –40°C to +125°C4.30 4.38 4.46V TC127xAM:T A = +25°C4.25— 4.50V T A = –40°C to +125°C3.03 3.08 3.14V TC127xAT:T A = +25°C3.00— 3.15V T A = –40°C to +125°C2.88 2.93 2.98V TC127xAS:T A = +25°C2.85—3.00V T A = –40°C to +125°C2.72 2.77 2.82V TC127xA:(5)T A = +25°C2.70— 2.85V T A = –40°C to +125°C2.58 2.63 2.68V TC127xAR:T A = +25°C2.55—2.70VT A = –40°C to +125°C Note 1:Data in the Typical (“Typ”) column is at 5V, +25°C, unless otherwise stated.2:RST output for TC1270A, and TC1270AN, RST output for TC1271A.3:TC127XA refers to either the TC1270A, TC1270AN or TC1271A device.4:Hysteresis is within the V TRIP(MIN) to V TRIP(MAX) window.5:Custom ordered Voltage Trip Point. Minimum order volume requirement.6:This specification allows this device to be used in PIC® microcontroller applications that require the In-Circuit Serial Programming™ (ICSP™) feature (see device-specific programming specifications for voltage requirements). The total time that the RST pin can be above the maximum device operational voltage (5.5V) is 100s. Current into the RST pin should be limited to 2 mA. It is recommended that the device operational temperature be maintained between 0°C to +70°C (+25°C preferred). For additional information, refer to Figure 2-41.TC1270A/70AN/71AReset Threshold Tempco—±30—ppm/°CReset Trip PointHysteresis (4)V HYS—0.3—%Percentage of V TRIP VoltageMR Input High Threshold V IH 2.3——V V DD > V TRIP(MAX), L/M only0.7 V DD——V V DD > V TRIP(MAX), R/S/T onlyMR Input Low Threshold V IL——0.8V V DD > V TRIP(MAX), L/M only—— 0.25V DD V V DD > V TRIP(MAX), R/S/T onlyMR Pull-up Resistance1018.540kΩOpen-Drain High Voltage on Output V ODH——13.5V Open-Drain Output pin only.V DD=3.0V, Time voltage > 5.5applied ≤ 100s. Current into pinlimited to 2mA +25°C operationrecommended (Note6)Reset Output Voltage Low (2)TC1270A/TC1270ANV OL——0.3V R/S/T only,I SINK = 1.2mA, V DD = V TRIP(MIN) TC1271A——0.3V R/S/T only,I SINK = 1.2mA, V DD = V TRIP(MAX) TC1270A/TC1270AN——0.4V L/M only,I SINK = 3.2mA, V DD = V TRIP(MIN) TC1271A——0.3V L/M only,I SINK = 3.2mA, V DD = V TRIP(MAX) TC1270A/TC1270AN——0.3V L/M only,I SINK = 50µA, V DD > 1.0VReset Output Voltage High (2)TC1270A V OH0.8 V DD ——V R/S/Tonly,I SOURCE = 500µA, V DD = V TRIP(MAX)TC1270A V DD - 1.5——V L/M only,I SOURCE = 800µA, V DD = V TRIP(MAX)TC1271A0.8 VDD——V I SOURCE = 500µA, V DD ≤ V TRIP(MIN)Input Leakage Current I IL——±1µA V PIN = V DDOpen-Drain RST OutputLeakageI OLOD——1µA Open-Drain configuration only.Capacitive Loading Specification on Output Pins C IO ——50pFELECTRICAL CHARACTERISTICS (CONTINUED)Electrical Characteristics: Unless otherwise noted, V DD = 5V for L/M versions, V DD = 3.3V for T/S versions,V DD = 3V for R version, T A = -40°C to +125°C. Typical values are at T A = +25°C.Parameter Sym Min Typ(1)Max Units Test ConditionsNote1:Data in the Typical (“Typ”) column is at 5V, +25°C, unless otherwise stated.2:RST output for TC1270A, and TC1270AN, RST output for TC1271A.3:TC127XA refers to either the TC1270A, TC1270AN or TC1271A device.4:Hysteresis is within the V TRIP(MIN) to V TRIP(MAX) window.5:Custom ordered Voltage Trip Point. Minimum order volume requirement.6:This specification allows this device to be used in PIC® microcontroller applications that require the In-Circuit Serial Programming™ (ICSP™) feature (see device-specific programming specifications forvoltage requirements). The total time that the RST pin can be above the maximum device operationalvoltage (5.5V) is 100s. Current into the RST pin should be limited to 2 mA. It is recommended that thedevice operational temperature be maintained between 0°C to +70°C (+25°C preferred). For additionalinformation, refer to Figure2-41.© 2007 Microchip Technology Inc.DS22035B-page 3TC1270A/70AN/71ADS22035B-page 4© 2007 Microchip Technology Inc.1.1AC CHARACTERISTICS1.1.1TIMING PARAMETER SYMBOLOGYThe timing parameter symbols have been created following one of the following formats:FIGURE 1-1:TEST LOAD CONDITIONS1. TppS2ppS2. TppS T F Frequency TTimeE ErrorLowercase letters (pp) and their meanings:pp io Input or Output pin oscOscillator rx Receive tx Transmit bitclk RX/TX BITCLK RST Resetdrt Device Reset TimerUppercase letters and their meanings:S F Fall P Period H High R Rise I Invalid (High-impedance)V ValidL LowZ High-impedancePinV SSC L = 50pF© 2007 Microchip Technology Inc.DS22035B-page 5TC1270A/70AN/71A1.1.2TIMING DIAGRAMS AND SPECIFICATIONSFIGURE 1-2:MR PIN AND RESET PIN WAVEFORMTABLE 1-1:RESET AND DEVICE RESET TIMER REQUIREMENTSElectrical Characteristics: Unless otherwise noted, V DD = 5V for L/M versions, V DD = 3.3V for T/S versions,V DD = 3V for R version, T A = -40°C to +125°C. Typical values are at T A = +25°C.ParameterSym Min Typ (1)Max Units Test Conditions V DD to Reset Delay t RD —50—µs V DD = V TRIP(MAX) to V TRIP(MIN) –125mV Reset Active Timeout PeriodTC127XAx B Vyy (3) t RST1.092.19 4.38ms V DD = V TRIP(MAX)TC127XAx C Vyy (3) 17.53570ms V DD = V TRIP(MAX)TC127XAxVyy (3)140280560ms V DD = V TRIP(MAX)MR Minimum Pulse Width t MR 10——µs MR Noise Immunityt MRNI —0.1—µs MR to Reset Propagation Delay t MD —0.2—µsNote 1:Unless otherwise stated, data in the Typical (“Typ”) column is at 5V, +25°C.2:RST output for TC1270A, RST output for TC1271A.3:TC127XA refers to either the TC1270A, TC1270AN or TC1271A device. “x” indicated the selected Voltage Trip Point, while “yy” indicates the package code.MRRSTt RSTt MRRSTt MDt MRNITC1270A/70AN/71ATEMPERATURE CHARACTERISTICSElectrical Specifications: Unless otherwise indicated, V DD=+1.0V to +5.5V, V SS=GND.Parameters Sym Min Typ Max Units Conditions Temperature RangesSpecified Temperature Range T A-40—+125°COperating Temperature Range T A-40—+125°CStorage Temperature Range T A-65—+150°CThermal Package ResistancesThermal Resistance, 5L-SOT-23θJA—256—°C/WThermal Resistance, 4L-SOT-143θJA—426—°C/WDS22035B-page 6© 2007 Microchip Technology Inc.© 2007 Microchip Technology Inc.DS22035B-page 7TC1270A/70AN/71A2.0TYPICAL PERFORMANCE CURVESNote: Unless otherwise indicated, all limits are specified for V DD = 1V to 5.5V, T A = –40°C to +125°C.FIGURE 2-1:I DD vs. Temperature (Reset Power-up Timer Inactive)(TC1270AL, TC1270ANL, TC1271AL - 4.50V min. / 4.63V typ. / 4.75V max.).FIGURE 2-2:I DD vs. Temperature (Reset Power-up Timer Inactive)(TC1270AT, TC1270ANT, TC1271AT - 3.00V min. / 3.08V typ. / 3.15V max.).FIGURE 2-3:I DD vs. Temperature (Reset Power-up Timer Inactive)(TC1270AR, TC1270ANR, TC1271AR - 2.55V min. / 2.63V typ. / 2.70V max.).FIGURE 2-4:I DD vs. Temperature (Reset Power-up Timer Active)(TC1270AL, TC1270ANL, TC1271AL - 4.50V min. / 4.63V typ. / 4.75V max.).FIGURE 2-5:I DD vs. Temperature (Reset Power-up Timer Active)(TC1270AT, TC1270ANT, TC1271AT - 3.00V min. / 3.08V typ. / 3.15V max.).FIGURE 2-6:I DD vs. Temperature (Reset Power-up Timer Active)(TC1270AR, TC1270ANR, TC1271AR - 2.55V min. / 2.63V typ. / 2.70V max.).Note:The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specifiedoperating range (e.g., outside specified power supply range) and therefore outside the warranted range.TC1270A/70AN/71ADS22035B-page 8© 2007 Microchip Technology Inc.Note: Unless otherwise indicated, all limits are specified for V DD = 1V to 5.5V, T A = –40°C to +125°C.FIGURE 2-7:I DD vs. V DD (Reset Power-up Timer Inactive)(TC1270AL, TC1270ANL, TC1271AL - 4.50V min. / 4.63V typ. / 4.75V max.).FIGURE 2-8:I DD vs. V DD (Reset Power-up Timer Inactive)(TC1270AT, TC1270ANT, TC1271AT - 3.00V min. / 3.08V typ. / 3.15V max.).FIGURE 2-9:I DD vs. V DD (Reset Power-up Timer Inactive)(TC1270AR, TC1270ANR, TC1271AR - 2.55V min. / 2.63V typ. / 2.70V max.).FIGURE 2-10:I DD vs. V DD (Reset Power-up Timer Active)(TC1270AL, TC1270ANL, TC1271AL - 4.50V min. / 4.63V typ. / 4.75V max.).FIGURE 2-11:I DD vs. V DD (Reset Power-up Timer Active)(TC1270AT, TC1270AN T, TC1271AT - 3.00V min. / 3.08V typ. / 3.15V max.).FIGURE 2-12:I DD vs. V DD (Reset Power-up Timer Active)(TC1270AR, TC1270ANR, TC1271AR - 2.55V min. / 2.63V typ. / 2.70V max.).TC1270A/70AN/71A Note: Unless otherwise indicated, all limits are specified for V DD = 1V to 5.5V, T A = –40°C to +125°C.FIGURE 2-13:V TRIP and V HYS vs. Temperature(TC1270AL, TC1270ANL, TC1271AL- 4.50V min. / 4.63V typ. / 4.75V max.). FIGURE 2-14:V TRIP and V HYS vs. Temperature(TC1270AT, TC1270ANT, TC1271AT- 3.00V min. / 3.08V typ. / 3.15V max.). FIGURE 2-15:V TRIP and V HYST vs. Temperature(TC1270AR, TC1270ANR, TC1271AR- 2.55V min. / 2.63V typ. / 2.70V max.).FIGURE 2-16:V OL vs. I OL(TC1270AL, TC1270AN L, TC1271AL - 4.50V min. / 4.63V typ. / 4.75V max.). FIGURE 2-17:V OL vs. I OL(TC1270AT, TC1270ANT, TC1271AT - 3.00V min. / 3.08V typ. / 3.15V max.). FIGURE 2-18:V OL vs. I OL(TC1270AR, TC1270ANR, TC1271AR - 2.55V min. / 2.63V typ. / 2.70V max.).© 2007 Microchip Technology Inc.DS22035B-page 9TC1270A/70AN/71ADS22035B-page 10© 2007 Microchip Technology Inc.Note: Unless otherwise indicated, all limits are specified for V DD = 1V to 5.5V, T A = –40°C to +125°C.FIGURE 2-19:V OL vs. Temperature (TC1270AL, TC1270ANL, TC1271AL - 4.50V min. / 4.63V typ. / 4.75V max.).@ V DD = 4.5V).FIGURE 2-20:V OL vs. Temperature (TC1270AT, TC1270ANT, TC1271AT - 3.00V min. / 3.08V typ. / 3.15V max.).@ V DD = 2.7V).FIGURE 2-21:V OL vs. Temperature (TC1270AR, TC1270ANR, TC1271AR - 2.55V min. / 2.63V typ. / 2.70V max.).@ V DD = 1.8V).FIGURE 2-22:V OH vs. I OL(TC1270AL, TC1270ANL, TC1271AL - 4.50V min. / 4.63V typ. / 4.75V max.)@ +25°C).FIGURE 2-23:V OH vs. I OH (TC1270AT, TC1270ANT, TC1271AT - 3.00V min. / 3.08V typ. / 3.15V max.)@ +25°C).FIGURE 2-24:V OH vs. I OH(TC1270AR, TC1270ANR, TC1271AR - 2.55V min. / 2.63V typ. / 2.70V max.)@ +25°C).Note: Unless otherwise indicated, all limits are specified for V DD = 1V to 5.5V, T A = –40°C to +125°C.FIGURE 2-25:V DD Falling to Reset Propagation Delay (t RPD) vs. Temperature (TC1270AL, TC1270ANL, TC1271AL- 4.50V min. / 4.63V typ. / 4.75V max.). FIGURE 2-26:V DD Falling to Reset Propagation Delay (t RPD) vs. Temperature (TC1270AT, TC1270AN T, TC1271AT- 3.00V min. / 3.08V typ. / 3.15V max.). FIGURE 2-27:V DD Falling to Reset Propagation Delay (t RPD) vs. Temperature (TC1270AR, TC1270ANR, TC1271AR- 2.55V min. / 2.63V typ. / 2.70V max.).FIGURE 2-28:Reset Timeout Period (t RST) vs. Temperature(TC1270AL, TC1270ANL, TC1271AL- 4.50V min. / 4.63V typ. / 4.75V max.). FIGURE 2-29:Reset Timeout Period (t RST) vs. Temperature(TC1270AT, TC1270ANT, TC1271AT- 3.00V min. / 3.08V typ. / 3.15V max.). FIGURE 2-30:Reset Timeout Period (t RST) vs. Temperature(TC1270AR, TC1270ANR, TC1271AR- 2.55V min. / 2.63V typ. / 2.70V max.).Note: Unless otherwise indicated, all limits are specified for V DD = 1V to 5.5V, T A = –40°C to +125°C.FIGURE 2-31:Reset Timeout Period (t RST) (C timeout option) vs. Temperature(TC1270AL, TC1270ANL, TC1271AL- 4.50V min. / 4.63V typ. / 4.75V max.). FIGURE 2-32:Reset Timeout Period (t RST) (C timeout option) vs. Temperature(TC1270AT, TC1270ANT, TC1271AT- 3.00V min. / 3.08V typ. / 3.15V max.). FIGURE 2-33:Reset Timeout Period (t RST) (C timeout option) vs. Temperature(TC1270AR, TC1270ANR, TC1271AR- 2.55V min. / 2.63V typ. / 2.70V max.).FIGURE 2-34:Reset Timeout Period (t RST) (B timeout option) vs. Temperature(TC1270AL, TC1270ANL, TC1271AL- 4.50V min. / 4.63V typ. / 4.75V max.). FIGURE 2-35:Reset Timeout Period (t RST) (B timeout option) vs. Temperature(TC1270AT, TC1270ANT, TC1271AT- 3.00V min. / 3.08V typ. / 3.15V max.). FIGURE 2-36:Reset Timeout Period (t RST) (B timeout option) vs. Temperature(TC1270AR, TC1270ANR, TC1271AR- 2.55V min. / 2.63V typ. / 2.70V max.).Propagation Delay (t MD ) vs. Temperature (TC1270AL, TC1270ANL, TC1271AL - 4.50V min. / 4.63V typ. / 4.75V max.).FIGURE 2-38:MR Low to Reset Propagation Delay (t MD ) vs. Temperature (TC1270AT, TC1270ANT, TC1271AT - 3.00V min. / 3.08V typ. / 3.15V max.).Propagation Delay (t MD ) vs. Temperature (TC1270AR, TC1270ANR, TC1271AR - 2.55V min. / 2.63V typ. / 2.70V max.).DD Reset Threshold Overdrive (V TRIP (minimum) - V DD ).FIGURE 2-41:Open-Drain Leakage Current vs. Voltage Applied to RST Pin (TC1270AR, TC1270ANR, TC1271AR - 2.55Vminimum).3.0PIN DESCRIPTIONSThe descriptions of the pins are listed in Table 3-1.TABLE 3-1:PINOUT DESCRIPTIONPin NumberSymPinStandard FunctionTC1270A (Push-Pull, active low)TC1270AN (Open-Drain, active low)TC1271A (Push-Pull, active high)S O T -23-5S O T -143-4S O T -23-5S O T -23-5S O T -143-4Type Buffer/Driver5151V SS —Power Ground 42———RSTOPush-PullReset output (Push Pull), active low H = V DD > V TRIP , Reset pin is inactive(after Reset Timer Delay completes) L = V DD < V TRIP , Reset pin is active Goes active (Low) if one of these conditions occurs:1.If V DD falls below the selected Resetvoltage threshold.2.If the MR pin is forced low.3.During power-up.——4——RSTOOpen-Drain Reset output (Open-Drain), active low Float = V DD > V TRIP , Reset pin is inactive(after Reset Timer Delay completes) L = V DD < V TRIP , Reset pin is activeGoes active (Low) if one of these conditions occurs:1.If V DD falls below the selected Resetvoltage threshold.2.If the MR pin is forced low.3.During power-up.———42RSTOPush-PullReset output (Push Pull), active high H = V DD < V TRIP , Reset pin is active L = V DD > V TRIP , Reset pin is inactive(after Reset Timer Delay completes) Goes active (High) if one of these conditions occurs:1.If V DD falls below the selected Resetvoltage threshold.2.If the MR pin is forced low.3.During power-up.Note 1:The MR pin has an internal weak pull-up (18.5k Ω typical).33—33MRIST (1) Manual Reset input pinThis input allows a push button switch to be directly connected to theTC1270A/70AN/71A’s MR pin, which can then be used to force a system Reset. The input fil-ter (ignores) noise pulses that occur on the MR pin.H = Switch is open (internal pull-up resistorpulls signal high). State of the RST/RST pin determined by other system condi-tions.L = Switch is depressed (shorted to ground).This forces the RST/RST pin Active.24—24V DD —Power Supply Voltage 1——1—NC——No Connection TABLE 3-1:PINOUT DESCRIPTION (CONTINUED)Pin NumberSymPinStandard FunctionTC1270A (Push-Pull, active low)TC1270AN (Open-Drain, active low)TC1271A (Push-Pull, active high)S O T -23-5S O T -143-4S O T -23-5S O T -23-5S O T -143-4Type Buffer/DriverNote 1:The MR pin has an internal weak pull-up (18.5k Ω typical).3.1Ground Terminal (V SS)V SS provides the negative reference for the analog input voltage. Typically, the circuit ground is used. 3.2Supply Voltage (V DD)V DD can be used for power supply monitoring or a voltage level that requires monitoring.3.3Reset Output (RST and RST)There are three types of Reset output pins. These are:1.Push-Pull active-low Reset2.Push-Pull active-high Reset3.Open-Drain active-low Reset, External pull-upresistor required.3.3.1ACTIVE-LOW (RST) - PUSH-PULL The RST push-pull output remains low while V DD is below the reset voltage threshold (V TRIP). The time that the RST pin is held low after the device voltage (V DD) returns to a high level (> V TRIP) is typically 280ms. After the Reset delay timer expires, the RST pin will be driven to the high state.3.3.2ACTIVE-HIGH (RST) - PUSH-PULL The RST push-pull output remains high while V DD is below the reset voltage threshold (V TRIP). The time that the RST pin is held high after the device voltage (V DD) returns to a high level (> V TRIP) is typically 280ms. After the Reset delay timer expires, the RST pin will be driven to the low state.3.3.3ACTIVE-LOW (RST) - OPEN-DRAIN The RST open-drain output remains low while V DD is below the reset voltage threshold (V TRIP). The time that the RST pin is held low after the device voltage (V DD) returns to a high level (> V TRIP) depends on the Reset Timeout selected. After the Reset Delay Timer expires, the RST pin will float.3.4Manual Reset Input (MR)The Manual Reset (MR) input pin allows a push button switch to easily be connected to the system. When the push button is depressed, it forces a system Reset. This pin has circuitry that filters noise that may be present on the MR signal.The MR pin is active-low and has an internal pull-up resistor.4.0DEVICE OPERATION4.1General DescriptionFor many of today’s microcontroller applications, care must be taken to prevent low-power conditions that can cause many different system problems. The most common causes are brown-out conditions, where the system supply drops below the operating level momentarily. The second most common cause is when a slowly decaying power supply causes the microcon-troller to begin executing instructions without sufficient voltage to sustain volatile memory (RAM), thus producing indeterminate results.The TC127XA family (TC1270A, TC1270AN, and TC1271A) are cost-effective voltage supervisor devices designed to keep a microcontroller in Reset until the system voltage has reached and stabilized at the proper level for reliable system operation. These devices also operate as protection from brown-out conditions when the system supply voltage drops below a safe operating level.A Manual Reset input (MR pin) is provided. This allows a push button switch to be directly connected to the TC127XA device, and is suitable for use as a push button Reset. This allows the system to easily be reset from the external control of the push button switch. No external components are required.The Reset pin (RST or RST) will be forced active, if any of the following occur:•During device power up•V DD goes below the device threshold voltage •The Manual Reset input (MR) goes lowFigure4-1 shows a high level block diagram of the devices. The device can be described with three functional blocks. These are:•Voltage Detect circuit•Manual Reset with Glitch Filter circuit•Reset Generator circuitThe Reset Generator circuit controls the reset delay time of the reset output signal.There are three Reset Delay time options. Depending on the option, the reset signal (RST/RST pin) will be held active for a minimum of 1.09ms, 17.5ms, or 140ms.The TC1271A has an active-high RST output while the TC1270A and TC1270AN have an active-low RST output.The TC1270A and TC1271A have a push-pull output driver, while the TC1270AN has an open-drain output.Figure4-2 shows a typical circuit for a push-pull device and Figure4-3 shows a typical circuit for an open-drain device.FIGURE 4-1:TC127XA High Level Block Diagram.FIGURE 4-2:Typical Push-Pull Application Circuit.FIGURE 4-3:Typical Open-Drain Application Circuit.The TC1270A and TC1271A devices are available in a 4-Pin SOT-143 package to maintain footprint compati-bility with the TC1270, TC1271, TCM811, and TCM812 devices, and the SOT-23-5 package. The TC1270AN is only available in the SOT-23-5 package.Low supply current makes these devices suitable for battery powered applications.Device specific block diagrams are shown in Figure4-4 through Figure4-6.V DDMRRSTRST VoltageDetectorResetCircuitManual Resetwith GlitchFilter CircuitGeneratorCircuitorVRSTMRRSTPushButtonMRV SS VSSV DDV DDReset InputTC1270A/1AV DD0.1µFRSTorRSTPushButtonMRV SS VSSV DDV DDRST Reset InputTC1270ANV DD0.1µFFIGURE 4-4:TC1270A Block Diagram.FIGURE 4-5:TC1270AN Block Diagram.FIGURE 4-6:TC1271A Block Diagram.4.2Voltage Detect CircuitThe Voltage Detect Circuit monitors V DD . The device’s Reset voltage trip point (V TRIP ) is selected when the device is ordered. The voltage on the device’s V DD pin determines the output state of the RST/RST pin. V DD voltages above the V TRIP(MAX) force the RST/RST pin inactive. V DD voltages below the V TRIP(MIN) force the RST/RST pin active. The state of the RST/RST pin is unknown for V DD voltages between V TRIP(MAX) and V TRIP(MIN). This is shown in Table 4-1TABLE 4-1:V DD LEVELS TO RST/RST OUTPUT STATESThe term V TRIP will be used as the general term for the trip point voltage where the device actually trips.In the case where V DD is falling (for voltages starting above V TRIP(MAX)):•Voltages above V TRIP(MAX) will never cause the RST/RST output pin to be driven Active.•Voltages below V TRIP(MIN) will always cause the RST/RST output pin to be driven Active.Now in the case where V DD is rising (for voltages starting below V TRIP(MIN)):•Voltages above V TRIP(MAX) will always cause the RST/RST output pin to be driven Inactive, (or floated - TC1270AN) after the Reset Delay Timer (t RST ), times out.V DDComparator+–Output Driver RSTReference Noise FilterMRVoltage Delay(Push-Pull)V DDComparator+–RSTReferenceV SSNoise FilterMRVoltage DelayOutput Driver (Open-Drain)V DDComparator+–RSTReference Noise FilterMRVoltage DelayOutput Driver (Push-Pull)V DD Voltage LevelOutput State RST RST V DD ≥ V TRIP(MAX) H (1, 2)L (1)V TRIP(MIN) < V DD < V TRIP(MAX)U U V DD ≤ V TRIP(MIN)LHLegend:H = Driven High L = Driven LowU = Unknown, driven either High or LowNote 1:The RST/RST pin will be driven inactive after the Reset Delay Timer (t RST ) times out.2:The TC1270AN RST pin will be floated after the Reset Delay Timer (t RST ) times out.Table4-2 shows the various device trip point optionsand their V TRIP(MAX) and V TRIP(MIN) voltages. Also the negative percentage change from common regulated voltages is shown.In the case where V DD is falling from the regulated volt-age, as the V DD crosses the V TRIP voltage the RST/RST pin is driven active. Now the desired circuitry is in reset, or the circuitry has the indication that the V DD is below the selected V TRIP.In the case where V DD is rising. As the V DD crosses the V TRIP voltage, the RST/RST pin is driven inactive after the Reset Delay Timer elapses. Now the desired cir-cuitry is released from reset and will start to operate in its normal mode, or the circuitry has the indication that the V DD is above the selected V TRIP.TABLE 4-2:SELECTING THE TRIP POINT The TC1270A/TC1270AN/TC1271A devices are optimized to reject fast transient glitches on the V DD line. If the low input signal (which is below V TRIP) is not rejected, the Reset output is driven active within 50µsof V DD falling through the Reset voltage threshold. After the device exits the Reset condition, the delay circuitry will hold the RST/RST pin active until the appropriate Reset delay time (t RST) has elapsed. During device power up, the input voltage is below the Trip Point voltage. The device must enter the valid operating range for the device to start operation.4.2.1HYSTERESISThere is also a minimal hysteresis (V HYS) on the trip point. This is so that small noise signals on the device voltage (V DD) do not cause the Reset pin (RST/RST) to “jitter” (change between driving an active and inactive). The characterization graphs shown in Figures2-13 through2-15 shows the device hysteresis as a percent-age of the voltage trip point (V TRIP).The Reset Delay Timer (t RST) gives a time based hys-teresis for the system.4.2.2POWER-UP/RISING V DDAs the device V DD rises, the device’s Reset circuit will remain active until the voltage rises above the “actual”trip point (V TRIP).Figure4-7 shows a power-up sequence and the wave-form of the RST and RST pins. As the device powers up, the voltage will start below the valid operating volt-age of the device. At this voltage, the RST/RST output is not valid. Once the voltage is above the minimum operating voltage (1V) and below the selected V TRIP, the Reset output will be active.Once the device voltage rises above the V TRIP voltage, the Reset delay timer (t RST) starts. When the Reset delay timer times out, the Reset output (RST/RST) is driven inactive.FIGURE 4-7:RST/RST pin Operation Power-up.Trip Voltage Selection V TRIP(MAX)(1)/V TRIP(MIN)(2)- % FromRegulated Voltage5.0V 3.3V 3.0VL 4.75V 5.0%——4.50V10.0%——M 4.50V10.0%——4.25V15.0%——T 3.15V— 4.5%—3.00V—9.2%—S 3.00V—9.2%—2.85V—13.7%—R 2.70V——10.0%2.55V——15.0% Note1:Voltage regulator circuit must have tighter tolerance (%) than V TRIP(MAX) % fromregulated voltage.2:Circuitry being reset must have a wider tolerance (%) than V TRIP(MIN) % fromregulated voltage.。
NCC系列产品说明书V1.1大连理工计算机控制工程有限公司2011年3月目录1产品概述 (2)1.1产品特点 (2)1.2技术指标 (3)1.3产品外观 (3)1.4电路原理 (6)2控制功能 (6)2.1 拨码开关 (6)2.2 探丝器输入 (7)2.3 PU保护输入 (7)2.4 指示灯输出 (8)2.5 切丝器输出 (11)2.6 切丝使能控制 (8)2.7 定时器 (8)3系统功能 (9)3.1 输入防抖 (9)3.2 合股切丝 (9)3.3 通道使能 (9)3.4 模式切换 (10)4通信功能 (10)4.1 MODBUS协议 (10)4.1.1传输格式 (11)4.1.2功能码 (11)4.1.3地址映射 (13)4.2 兼容协议 (14)4.2.1读服务 (14)4.2.2写服务 (15)1产品概述1.1产品特点NCC系列以AT89C55WD为处理器,支持数字量输入,数字量输出,指示灯输出,定时器和485通信接口。
其中数字量输入有探丝器输入和一路PU保护输入,全部采用光耦隔离,可有效的抑制干扰信号;数字量输出可通过继电器控制切丝器输出;定时器可独立的接收用户设臵,在定时结束以后,响应相应的事件。
NCC 系列模块通过RS-485总线接口使用多种通讯协议与主设备相连,主设备可以是计算机,也可以是通用人机界面设备。
通讯协议以MODBUS-RTU为主,开放模块全部功能,可实现全部参数的设臵和读取,另外该模块还兼容特有的通信协议,可以直接替换旧的设备。
本产品的特点如下:1、以工业级单片机为核心,集成电路全部采用CMOS器件,产品全部经过工业级温度考核。
2、输入输出通过光耦进行隔离,具有良好的抗干扰能力。
3、隔离DC-DC变换器和隔离RS485输出,全浮空电路设计。
4、输入和电源加有完善的TVS保护电路,误加几十伏高压不会损坏,可耐受几千伏ESD火花放电。
5、电源监视电路和看门狗电路,保证恶劣环境下可靠运行。
16-Bit LatchesCY74FCT16373T CY74FCT162373TSCCS054C - August 1994 - Revised October 2003Data sheet acquired from Cypress Semiconductor Corporation.Data sheet modified to remove devices not offered.Copyright © 2003, T exas Instruments IncorporatedFeatures•I off supports partial-power-down mode operation •Edge-rate control circuitry for significantly improved noise characteristics•Typical output skew < 250 ps •ESD > 2000V•TSSOP (19.6-mil pitch) and SSOP (25-mil pitch)packages•Industrial temperature range of −40˚C to +85˚C •V CC = 5V ± 10%CY74FCT16373T Features:•64 mA sink current, 32 mA source current•Typical V OLP (ground bounce) <1.0V at V CC = 5V,T A = 25˚C CY74FCT162373T Features:•Balanced 24 mA output drivers •Reduced system switching noise•Typical V OLP (ground bounce) <0.6V at V CC = 5V,T A = 25˚CFunctional DescriptionCY74FCT16373T and CY74FCT162373T are 16-bit D-type latches designed for use in bus applications requiring high speed and low power.These devices can be used as two independent 8-bit latches or as a single 16-bit latch by connecting the Output Enable (OE)and Latch (LE)inputs.Flow-through pinout and small shrink packaging aid in simplifying board layout.This device is fully specified for partial-power-down applications using I off .The I off circuitry disables the outputs,preventing damaging current backflow through the device when it is powered down.The CY74FCT16373T is ideally suited for driving high-capacitance loads and low-impedance backplanes.The CY74FCT162373T has 24-mA balanced output drivers with current limiting resistors in the outputs.This reduces the need for external terminating resistors and provides for minimal undershoot and reduced ground bounce.The CY74FCT162373T is ideal for driving transmission lines.Logic Block DiagramsPin ConfigurationDC1OEFCT162373-11LE 1D 11O 1TO 7OTHER CHANNELSD C2OEFCT162373-22LE 2D 12O 1GND12345678910111233323130292526272836351OE34SSOP/TSSOP/TVSOPTop View1314151617181920212223244544434241373839404847461O 11O 21O 31O 41D 11D 21D 31D 41LE GNDGNDV CC 1O 71O 81O 51O 61D 51D 61D 71D 8V CC GNDGND2O 32O 42O 12O 22D 12D 22D 32D 4GNDGNDV CC 2O 72O 82O 52O 62D 52D 62D 72D 8V CC GND 2OE2LEFCT162373-3TO 7OTHER CHANNELSMaximum Ratings [2, 3](Above which the useful life may be impaired.For user guidelines, not tested.)Storage T ’l −55°C to +125°C Ambient T emperature withPower ’l −55°C to +125°C DC Input Voltage .................................................−0.5V to +7.0V DC Output Voltage ..............................................−0.5V to +7.0VDC Output Current(Maximum Sink Current/Pin)...........................−60 to +120 mA Power Dissipation..........................................................1.0W Static Discharge Voltage............................................>2001V (per MIL-STD-883, Method 3015)Pin DescriptionName DescriptionD Data InputsLE Latch Enable Inputs (Active HIGH)OE Output Enable Inputs (Active LOW)OThree-State OutputsFunction Table [1]InputsOutputsD LE OE O H H L H L H L L X L L Q 0XXHZOperating RangeRange Ambient Temperature V CC Industrial−40°C to +85°C5V ± 10%Electrical Characteristics Over the Operating RangeParameter DescriptionTest ConditionsMin.Typ.[4]Max.Unit V IH Input HIGH Voltage 2.0V V IL Input LOW Voltage 0.8V V H Input Hysteresis [5]100mV V IK Input Clamp Diode Voltage V CC =Min., I IN =−18 mA −0.7−1.2V I IH Input HIGH Current V CC =Max., V I =V CC ±1µA I IL Input LOW CurrentV CC =Max., V I =GND ±1µA I OZH High Impedance Output Current (Three-State Output pins)V CC =Max., V OUT =2.7V ±1µA I OZL High Impedance Output Current (Three-State Output pins)V CC =Max., V OUT =0.5V ±1µA I OS Short Circuit Current [6]V CC =Max., V OUT =GND −80−140−200mA I O Output Drive Current [6]V CC =Max., V OUT =2.5V −50−180mA I OFFPower-Off DisableV CC =0V , V OUT ≤4.5V [7]±1µAOutput Drive Characteristics for CY74FCT16373TParameter DescriptionTest ConditionsMin.Typ.[4]Max.Unit V OHOutput HIGH VoltageV CC =Min., I OH =−3 mA 2.5 3.5V V CC =Min., I OH =−15 mA 2.4 3.5V V CC =Min., I OH =−32 mA2.03.0V V OLOutput LOW VoltageV CC =Min., I OL =64 mA0.20.55VNotes:1.H = HIGH Voltage Level. L = LOW Voltage Level. X = Don’t Care. Z = High Impedance. Q 0=Previous state of flip-flop.2.Operation beyond the limits set forth may impair the useful life of the device.Unless otherwise noted,these limits are over the operating free-air temperaturerange.3.Unused inputs must always be connected to an appropriate logic voltage level, preferably either V CC or ground.4.Typical values are at V CC =5.0V , T A = +25˚C ambient.5.This parameter is specified but not tested.6.Not more than one output should be shorted at a time.Duration of short should not exceed one second.The use of high-speed test apparatus and/or sampleand hold techniques are preferable in order to minimize internal chip heating and more accurately reflect operational values.Otherwise prolonged shorting of a high output may raise the chip temperature well above normal and thereby cause invalid readings in other parametric tests.In any sequence of parameter tests, I OS tests should be performed last.7.Tested at +25˚C.Output Drive Characteristics for CY74FCT162373TParameter Description Test Conditions Min.Typ.[4]Max.Unit I ODL Output LOW Current[6]V CC=5V, V IN=V IH or V IL, V OUT=1.5V60115150mA I ODH Output HIGH Current[6]V CC=5V, V IN=V IH or V IL, V OUT=1.5V−60−115−150mA V OH Output HIGH Voltage V CC=Min., I OH=−24 mA 2.4 3.3V V OL Output LOW Voltage V CC=Min., I OL=24 mA0.30.55VCapacitance[5](T A = +25˚C, f = 1.0 MHz)Parameter Description Test Conditions Typ.[4]Max.Unit C IN Input Capacitance V IN = 0V 4.5 6.0pF C OUT Output Capacitance V OUT = 0V 5.58.0pFPower Supply CharacteristicsParameter Description Test Conditions Typ.[4]Max.Unit I CC Quiescent Power Supply Current V CC=Max.V IN≤0.2V,V IN≥V CC−0.2V5500µA∆I CC Quiescent Power Supply Current(TTL inputs HIGH)V CC=Max.V IN=3.4V[8]0.5 1.5mAI CCD Dynamic Power SupplyCurrent[9]V CC=Max., One InputToggling, 50% Duty Cycle,Outputs Open,OE=GNDV IN=V CC orV IN=GND60100µA/MHzI C Total Power Supply Current[10]V CC=Max., f1=10 MHz,50% Duty Cycle, OutputsOpen, One Bit T oggling,OE=GND, LE=V CC V IN=V CC orV IN=GND0.6 1.5mAV IN=3.4V orV IN=GND0.9 2.3mAV CC=Max., f1=2.5 MHz, 50% Duty Cycle, Outputs Open,Sixteen Bits Toggling, OE=GND, LE=V CC V IN=V CC orV IN=GND2.4 4.5[11]mAV IN=3.4V orV IN=GND6.416.5[11]mANotes:8.Per TTL driven input (V IN=3.4V); all other inputs at V CC or GND.9.This parameter is not directly testable, but is derived for use in Total Power Supply calculations.10.I C=I QUIESCENT + I INPUTS+ I DYNAMICI C=I CC+∆I CC D H N T+I CCD(f0/2 + f1N1)I CC=Quiescent Current with CMOS input levels∆I CC=Power Supply Current for a TTL HIGH input(V IN=3.4V)D H=Duty Cycle for TTL inputs HIGHN T=Number of TTL inputs at D HI CCD=Dynamic Current caused by an input transition pair (HLH or LHL)f0=Clock frequency for registered devices, otherwise zerof1=Input signal frequencyN1=Number of inputs changing at f1All currents are in milliamps and all frequencies are in megahertz.11.Values for these conditions are examples of the I CC formula. These limits are specified but not tested.Switching Characteristics Over the Operating Range [12]CY74FCT16373AT CY74FCT162373ATParameter DescriptionMin.Max.Unit Fig. No.[13]t PLH t PHL Propagation Delay D to O 1.5 5.2ns 1, 3t PLH t PHL Propagation Delay LE to O2.0 6.7ns 1, 5t PZH t PZL Output Enable Time 1.5 6.1ns 1, 7, 8t PHZ t PLZ Output Disable Time1.5 5.5ns 1, 7, 8t SU Set-Up Time HIGH or LOW, D to LE 2.0ns 9t H Hold Time HIGH or LOW, D to LE 1.5ns 9t W LE Pulse Width HIGH 3.3ns 5t SK(O)Output Skew [14]0.5ns—CY74FCT16373CT CY74FCT162373CTParameter DescriptionMin.Max.Unit Fig. No.[13]t PLH t PHL Propagation Delay D to O1.5 4.2ns 1, 3t PLH t PHL Propagation Delay LE to O2.0 5.5ns 1, 5t PZH t PZL Output Enable Time 1.5 5.5ns 1, 7, 8t PHZ t PLZ Output Disable Time1.5 5.0ns 1, 7, 8t SU Set-Up Time HIGH or LOW, D to LE 2.0ns 9t H Hold Time HIGH or LOW,D to LE1.5ns 9t W LE Pulse Width HIGH 3.3ns 5t SK(O)Output Skew [14]0.5ns—Notes:12.Minimum limits are specified but not tested on Propagation Delays.13.See “Parameter Measurement Information” in the General Information section.14.Skew between any two outputs of the same package switching in the same direction. This parameter is ensured by design.Ordering Information CY74FCT16373Speed(ns)Ordering Code PackageName Package TypeOperatingRange4.2CY74FCT16373CTPACT Z4848-Lead (240-Mil) TSSOP IndustrialCY74FCT16373CTPVC/PVCT O4848-Lead (300-Mil) SSOPCY74FCT16373CTVR-48-Lead (173-Mil) TVSOP5.2CY74FCT16373ATP ACT Z4848-Lead (240-Mil) TSSOP IndustrialCY74FCT16373ATPVC/PVCT O4848-Lead (300-Mil) SSOPCY74FCT16373ATVR-48-Lead (173-Mil) TVSOPOrdering Information CY74FCT162373Speed(ns)Ordering Code PackageName Package TypeOperatingRange4.274FCT162373CTPACT Z4848-Lead (240-Mil) TSSOP IndustrialCY74FCT162373CTPVC O4848-Lead (300-Mil) SSOP74FCT162373CTPVCT O4848-Lead (300-Mil) SSOP5.274FCT162373A TP ACT Z4848-Lead (240-Mil) TSSOP IndustrialCY74FCT162373A TPVC O4848-Lead (300-Mil) SSOP74FCT162373A TPVCT O4848-Lead (300-Mil) SSOPPackage Diagrams48-Lead Shrunk Small Outline Package O4848-Lead Thin Shrunk Small Outline Package Z48Addendum-Page 1PACKAGING INFORMATIONOrderable Device Status(1)Package Type PackageDrawingPins Package QtyEco Plan(2)Lead/Ball FinishMSL Peak Temp(3)Samples (Requires Login)74FCT162373ATPACT ACTIVE TSSOP DGG 482000Green (RoHS & no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Purchase Samples 74FCT162373ATPVCG4ACTIVE SSOP DL 4825Green (RoHS & no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Purchase Samples 74FCT162373ATPVCT ACTIVE SSOP DL 481000Green (RoHS & no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Purchase Samples 74FCT162373CTPACT ACTIVE TSSOP DGG 482000Green (RoHS & no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Purchase Samples 74FCT162373CTPVCG4ACTIVE SSOP DL 4825Green (RoHS & no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Purchase Samples 74FCT162373ETPACT OBSOLETE TSSOP DGG 48TBD Call TI Call TI Samples Not Available 74FCT162373ETPVCT OBSOLETE TSSOP DGG 48TBDCall TICall TISamples Not Available 74FCT16373ATPACTE4ACTIVE TSSOP DGG 482000Green (RoHS & no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Purchase Samples 74FCT16373ATPACTG4ACTIVE TSSOP DGG 482000Green (RoHS & no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Purchase Samples 74FCT16373ATPVCG4ACTIVE SSOP DL 4825Green (RoHS & no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Purchase Samples 74FCT16373ATPVCTG4ACTIVE SSOP DL 481000Green (RoHS & no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Purchase Samples 74FCT16373CTPACTE4ACTIVE TSSOP DGG 482000Green (RoHS & no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Purchase Samples 74FCT16373CTPACTG4ACTIVE TSSOP DGG 482000Green (RoHS & no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Purchase Samples 74FCT16373CTPVCG4ACTIVE SSOP DL 4825Green (RoHS & no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Purchase Samples CY74FCT162373ATPVC ACTIVE SSOP DL 4825Green (RoHS & no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Purchase Samples CY74FCT162373CTPVC ACTIVE SSOP DL 4825Green (RoHS & no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Purchase Samples CY74FCT162373ETPAC OBSOLETE TSSOP DGG 48TBD Call TI Call TI Samples Not Available CY74FCT162373ETPVCOBSOLETETSSOPDGG48TBDCall TICall TISamples Not Available芯天下--/Addendum-Page 2Orderable Device Status(1)Package Type PackageDrawingPins Package QtyEco Plan(2)Lead/Ball FinishMSL Peak Temp(3)Samples (Requires Login)CY74FCT16373ATPACT ACTIVE TSSOP DGG 482000Green (RoHS & no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Purchase Samples CY74FCT16373ATPVC ACTIVE SSOP DL 4825Green (RoHS & no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Purchase Samples CY74FCT16373ATPVCT ACTIVE SSOP DL 481000Green (RoHS & no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Purchase Samples CY74FCT16373CTPACT ACTIVE TSSOP DGG 482000Green (RoHS & no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Purchase Samples CY74FCT16373CTPVC ACTIVE SSOP DL 4825Green (RoHS & no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Purchase Samples CY74FCT16373CTVR ACTIVE TVSOP DGV 482000Green (RoHS & no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Purchase Samples CY74FCT16373CTVRE4ACTIVE TVSOP DGV 482000Green (RoHS & no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Purchase Samples CY74FCT16373CTVRG4ACTIVE TVSOP DGV 482000Green (RoHS & no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Purchase Samples CY74FCT16373ETPAC OBSOLETE TSSOP DGG 48TBD Call TI Call TI Samples Not Available CY74FCT16373ETPACT OBSOLETE TSSOP DGG 48TBD Call TI Call TI Samples Not Available CY74FCT16373ETPVC OBSOLETE SSOP DL 48TBD Call TI Call TI Samples Not Available CY74FCT16373ETPVCT OBSOLETE SSOP DL 48TBDCall TICall TISamples Not Available FCT162373ATPACTE4ACTIVE TSSOP DGG 482000Green (RoHS & no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Purchase Samples FCT162373ATPACTG4ACTIVE TSSOP DGG 482000Green (RoHS & no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Purchase Samples FCT162373ATPVCTG4ACTIVE SSOP DL 481000Green (RoHS & no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Purchase Samples FCT162373CTPACTE4ACTIVE TSSOP DGG 482000Green (RoHS & no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Purchase Samples FCT162373CTPACTG4ACTIVETSSOPDGG482000Green (RoHS & no Sb/Br)CU NIPDAU Level-1-260C-UNLIMPurchase Samples(1)The marketing status values are defined as follows:ACTIVE: Product device recommended for new designs.LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.PREVIEW: Device has been announced but is not in production. Samples may or may not be available.芯天下--/OBSOLETE: TI has discontinued the production of the device.(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check /productcontent for the latest availability information and additional product content details.TBD: The Pb-Free/Green conversion plan has not been defined.Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.Addendum-Page 3芯天下--/TAPE AND REELINFORMATION*Alldimensions are nominalDevicePackage Type Package Drawing Pins SPQReel Diameter (mm)Reel Width W1(mm)A0(mm)B0(mm)K0(mm)P1(mm)W (mm)Pin1Quadrant 74FCT162373ATPACT TSSOP DGG 482000330.024.48.615.8 1.812.024.0Q174FCT162373ATPVCT SSOP DL 481000330.032.411.3516.2 3.116.032.0Q174FCT162373CTPACT TSSOP DGG 482000330.024.48.615.8 1.812.024.0Q1CY74FCT16373ATPACT TSSOP DGG 482000330.024.48.615.8 1.812.024.0Q1CY74FCT16373ATPVCT SSOP DL 481000330.032.411.3516.2 3.116.032.0Q1CY74FCT16373CTPACT TSSOP DGG 482000330.024.48.615.8 1.812.024.0Q1CY74FCT16373CTVRTVSOPDGV482000330.016.47.110.21.612.016.0Q1PACKAGE MATERIALS INFORMATION14-Jul-2012Pack Materials-Page 1*Alldimensions are nominalDevicePackage TypePackage DrawingPins SPQ Length (mm)Width (mm)Height (mm)74FCT162373ATPACT TSSOP DGG 482000367.0367.045.074FCT162373ATPVCT SSOP DL 481000367.0367.055.074FCT162373CTPACT TSSOP DGG 482000367.0367.045.0CY74FCT16373ATPACT TSSOP DGG 482000367.0367.045.0CY74FCT16373ATPVCT SSOP DL 481000367.0367.055.0CY74FCT16373CTPACT TSSOP DGG 482000367.0367.045.0CY74FCT16373CTVRTVSOPDGV482000367.0367.038.0PACKAGE MATERIALS INFORMATION14-Jul-2012Pack Materials-Page 2IMPORTANT NOTICETexas Instruments Incorporated and its subsidiaries(TI)reserve the right to make corrections,enhancements,improvements and other changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B.Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.All semiconductor products(also referred to herein as“components”)are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.TI warrants performance of its components to the specifications applicable at the time of sale,in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products.Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty.Except where mandated by applicable law,testing of all parameters of each component is not necessarily performed.TI assumes no liability for applications assistance or the design of Buyers’products.Buyers are responsible for their products and applications using TI components.To minimize the risks associated with Buyers’products and applications,Buyers should provide adequate design and operating safeguards.TI does not warrant or represent that any license,either express or implied,is granted under any patent right,copyright,mask work right,or other intellectual property right relating to any combination,machine,or process in which TI components or services are rmation published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement e of such information may require a license from a third party under the patents or other intellectual property of the third party,or a license from TI under the patents or other intellectual property of TI.Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties,conditions,limitations,and notices.TI is not responsible or liable for such altered rmation of third parties may be subject to additional restrictions.Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.Buyer acknowledges and agrees that it is solely responsible for compliance with all legal,regulatory and safety-related requirements concerning its products,and any use of TI components in its applications,notwithstanding any applications-related information or support that may be provided by TI.Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures,monitor failures and their consequences,lessen the likelihood of failures that might cause harm and take appropriate remedial actions.Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.In some cases,TI components may be promoted specifically to facilitate safety-related applications.With such components,TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements.Nonetheless,such components are subject to these terms.No TI components are authorized for use in FDA Class III(or similar life-critical medical equipment)unless authorized officers of the parties have executed a special agreement specifically governing such use.Only those TI components which TI has specifically designated as military grade or“enhanced plastic”are designed and intended for use in military/aerospace applications or environments.Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk,and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.TI has specifically designated certain components which meet ISO/TS16949requirements,mainly for automotive ponents which have not been so designated are neither designed nor intended for automotive use;and TI will not be responsible for any failure of such components to meet such requirements.Products ApplicationsAudio /audio Automotive and Transportation /automotiveAmplifiers Communications and Telecom /communicationsData Converters Computers and Peripherals /computersDLP®Products Consumer Electronics /consumer-appsDSP Energy and Lighting /energyClocks and Timers /clocks Industrial /industrialInterface Medical /medicalLogic Security /securityPower Mgmt Space,Avionics and Defense /space-avionics-defense Microcontrollers Video and Imaging /videoRFID OMAP Mobile Processors /omap TI E2E Community Wireless Connectivity /wirelessconnectivityMailing Address:Texas Instruments,Post Office Box655303,Dallas,Texas75265Copyright©2012,Texas Instruments Incorporated。
Eaton 171172Eaton Moeller series xEffect - FRCmM-125 Type A RCCB.Residual current circuit breaker (RCCB), 125A, 2p, 300mA, type S/AGeneral specificationsEaton Moeller series xEffect - FRCmM-125 Type A RCCB17117285 mm75.5 mm 36 mm 0.28 kg RoHS conform IEC/EN 610084015081676613FRCMM-125/2/03-S/AProduct NameCatalog Number Product Length/Depth Product Height Product Width Product Weight Compliances Certifications EANModel CodeTwo-pole50 ms delayed, selective switch off Selective switch off125 A10 kA with back-up fuse300 mAPulse-current sensitive5 kA (8/20 μs) surge-proof 240 V AC240 V440 V4 kV0.3 A0.3 A50 Hz125 A (max. admissible back-up fuse) A1250 A80 A gG/gL10 kA5 kA184 V AC - 250 V AC24000 operationsApplicationNumber of polesTripping timeAmperage RatingRated short-circuit strength Fault current rating Sensitivity typeImpulse withstand current Type Voltage rating (IEC/EN 60947-2)Rated operational voltage (Ue) - maxRated insulation voltage (Ui)Rated impulse withstand voltage (Uimp) Rated fault current - minRated fault current - maxFrequency ratingShort-circuit ratingLeakage current typeRated residual making and breaking capacity Admissible back-up fuse overload - max Rated short-time withstand current (Icw) Surge current capacityTest circuit rangePollution degreeLifespan, electricalSwitchgear for industrial and advanced commercial applicationsxEffect - Switchgear for industrial and advanced commercial applicationsFRCmM-125Residual current circuit breakersType S/A45 mm235 mm (2 SU)70.5 mmQuick attachment for DIN-rail EN 50022DIN railAs requiredIP20, IP40 with suitable enclosureIP20Toggle-center postitionTwin-purpose terminals1.5 mm² - 16 mm² (2x)1.5 mm² - 50 mm²1.5 mm²50 mm²1.5 mm² - 5 mm²1.5 mm² - 16 mm² (2x)1.5 mm²16 mm²Finger and hand touch safe, DGUV VS3, EN 50274 Red / green 125 A0 W18 W0 W0 W-25 °C60 °CMeets the product standard's requirements.Meets the product standard's requirements.Meets the product standard's requirements.Meets the product standard's requirements.Meets the product standard's requirements.Does not apply, since the entire switchgear needs to be evaluated.Does not apply, since the entire switchgear needs to be evaluated.Meets the product standard's requirements.Does not apply, since the entire switchgear needs to beFrameWidth in number of modular spacingsBuilt-in width (number of units)Built-in depthMounting MethodMounting positionDegree of protectionStatus indicationTerminals (top and bottom)Terminal capacity (solid wire)Connectable conductor cross section (solid-core) - min Connectable conductor cross section (solid-core) - max Terminal capacity (stranded cable)Connectable conductor cross section (multi-wired) - min Connectable conductor cross section (multi-wired) - max Terminal protectionContact position indicator color Rated operational current for specified heat dissipation (In) Heat dissipation per pole, current-dependentEquipment heat dissipation, current-dependentStatic heat dissipation, non-current-dependentHeat dissipation capacityAmbient operating temperature - minAmbient operating temperature - max10.2.2 Corrosion resistance10.2.3.1 Verification of thermal stability of enclosures10.2.3.2 Verification of resistance of insulating materials to normal heat10.2.3.3 Resist. of insul. mat. to abnormal heat/fire by internal elect. effects10.2.4 Resistance to ultra-violet (UV) radiation10.2.5 Lifting10.2.6 Mechanical impact10.2.7 Inscriptions10.3 Degree of protection of assemblies0.8 mm - 2 mm 10000 operations-25 °C60 °C25-55 °C / 90-95% relative humidity according to IEC 60068-2evaluated.Meets the product standard's requirements.Does not apply, since the entire switchgear needs to be evaluated.Does not apply, since the entire switchgear needs to be evaluated.Is the panel builder's responsibility.Is the panel builder's responsibility.Is the panel builder's responsibility.Is the panel builder's responsibility.Is the panel builder's responsibility.The panel builder is responsible for the temperature rise calculation. Eaton will provide heat dissipation data for the devices.Is the panel builder's responsibility. The specifications for the switchgear must be observed.Is the panel builder's responsibility. The specifications for the switchgear must be observed.The device meets the requirements, provided the information in the instruction leaflet (IL) is observed.Additional equipment possible Selective protectionResidual current circuit breakereaton-rcd-application-guide-br019003en-en-us.pdf eaton-xeffect-frcmm-125-rccb-catalog-ca003020en-en-us.pdfBusbar material thickness Lifespan, mechanical Permitted storage and transport temperature - min Permitted storage and transport temperature - max Climatic proofing10.4 Clearances and creepage distances 10.5 Protection against electric shock10.6 Incorporation of switching devices and components 10.7 Internal electrical circuits and connections 10.8 Connections for external conductors 10.9.2 Power-frequency electric strength 10.9.3 Impulse withstand voltage 10.9.4 Testing of enclosures made of insulating material 10.10 Temperature rise10.11 Short-circuit rating10.12 Electromagnetic compatibility10.13 Mechanical functionFeaturesApplication notesCataloguesEaton Corporation plc Eaton House30 Pembroke Road Dublin 4, Ireland © 2023 Eaton. All rights reserved. Eaton is a registered trademark.All other trademarks areproperty of their respectiveowners./socialmediaInterlocking deviceResidual current circuit breakers FRCmM-125Type S/A eaton-xeffect-industrial-switchgear-range-catalog-ca003002en-en-us.pdf DA-DC-03_FRCmMas_frcmmeaton-frcm-dimensions.jpgIL019140ZUdfs_2.dwgdfs_2.stpeaton-xeffect-frcmm-125-rccb-wiring-diagram-002.jpgFitted with:Special features Used with Certification reports DrawingsInstallation instructions mCAD modelWiring diagramsCurrent test marks as per inscriptionMaximum operating temperature is 60 °C: Starting at 40 °C, the max. permissible continuous current decreases by 2.2% for every 1 °C。