方差与标准差--浙教版
- 格式:ppt
- 大小:405.50 KB
- 文档页数:14
《方差和标准差》教课设计〖教课目的〗◆、认识方差、标准差的观点.◆、会求一组数据的方差、标准差,并会用他们表示数据的失散程度.◆、能用样本的方差来预计整体的方差.◆、经过实质情形,提出问题,并追求解决问题的方法,培育学生应用数学的意识和能力.〖教课要点与难点〗◆教课要点:本节教课的要点是方差的观点和计算。
.◆教课难点:方差如何表示数据的失散程度,学生不简单理解,是本节教课的难点.〖教课过程〗一、创建情形,提出问题甲、乙两名射击手的测试成绩统计以下表:第一次第二次第三次第四次第五次甲命中环数乙命中环数①请分别算出甲、乙两名射击手的均匀成绩;②请依据这两名射击手的成绩在图中画出折线图;二、合作沟通,感知问题请依据统计图,思虑问题:①、甲、乙两名射击手他们每次射击成绩与他们的均匀成绩比较,哪一个偏离程度较低?②、射击成绩偏离均匀数的程度与数据的失散程度与折线的颠簸状况有如何的联系?③、用如何的特点数来表示数据的偏离程度?能否用各个数据与均匀的差的累计数来表示数据的偏离程度?④、能否可用各个数据与均匀数的差的平方和来表示数据的偏离程度?⑤、数据的偏离程度还与什么有关?要比较两组样本容量不同样的数据的偏离均匀数的程度,应如何比较?三、归纳总结,得出观点1、依据以上问题情形,在学生议论,教师增补的基础上得出方差的观点、计算方法、及用方差来判断数据的定性。
2、方差的位和数据的位不一,引出准差的观点。
(注意:在比两数据特点,取同样的本容量,算程可借助数器)3、要挑一名射手参加比,你挑哪一位比适合?什么?(个没有准答案,要依据比的详细状况来剖析,作出)四、用观点,稳固新知1、已知某本的方差是,个本的准差是。
2、已知一个本,,,,,其均匀数是,个本的准差是。
3、甲、乙两名士在射中,打靶的次数同样,且中的均匀数甲乙,假如甲的射成比定,那么方差的大小关系是甲乙14、已知一个本的方差是[ (—)(—)⋯(—)] ,个本的均匀数是,本的容量5是。
2023年浙教版数学八年级下册3.3 方差和标准差同步测试一、单选题(每题3分,共30分)1.(2022八上·淄川期中)在一次射击练习中,甲、乙两人前后5次射击的成绩如下表(单位:环):则这次练习中,甲、乙两人成绩的方差大小()A.S甲2>S乙2B.S甲2=S乙2C.S甲2<S乙2D.无法确定2.(2022八下·上虞期末)如图是甲、乙两名运动员正式比赛前的5次训练成绩的折线统计图,你认为成绩较稳定的是()A.甲B.乙C.甲、乙的成绩一样稳定D.无法确定3.(2020八上·砀山期末)下列命题中是真命题的是()A.中位数就是一组数据中最中间的一个数B.这组数据0,2,3,3,4,6的方差是2.1C.一组数据的标准差越大,这组数据就越稳定D.如果x1,x2,x3…x n的平均数是x,那么(x1- x̅) + (x2- x̅)…+ (x n- x̅) =04.(2022八上·莱州期中)在5轮“中国汉字听写大赛”选拔赛中,甲乙两位同学的平均分都是90分,甲的成绩方差是16,乙的成绩方差是8,下列说法正确的是()A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定甲、乙的成绩谁更稳定5.(2021八上·沂源期中)一城市准备选购一千株高度大约为2m的某种风景树来进行街道绿化,•有四个苗圃生产基地投标(单株树的价格都一样).•采购小组从四个苗圃中都任意抽查了20株树苗的高度,得到的数据如下:请你帮采购小组出谋划策,应选购()A.甲苗圃的树苗B.乙苗圃的树苗;C.丙苗圃的树苗D.丁苗圃的树苗6.甲、乙两台包装机同时包装质量为500克的物品,从中各抽出10袋,测得其实际质量分别如下(单位:克)借助计算器判断,包装机包装的10袋物品的质量比较稳定的是().A.甲B.乙C.一样稳定D.无法判断7.求一组数据的方差时,如果有重复出现的数据,比如有10个数据是11,那么输入时可按().A.10 MODE : 11 DA TA B.11 MODE : 10 DA TAC.10 SHIFT : 11 DA TA D.11 SHIFT : 10 DA TA8.(2022九上·苍南开学考)在绣山中学某次“数学讲坛”比赛中,有9名学生参加决赛,他们的决赛成绩各不相同,其中一名学生想要知道自己是否能进入前5名,他不仅要知道自己的成绩,还要知道这9名学生成绩的()A.平均数B.众数C.方差D.中位数9.(2022九上·拱墅开学考)某校六一活动中,10位评委给某个节目的评分各不相同,去掉1个最高分和1个最低分,剩下的8个评分与原始的10个评分相比一定不发生变化的是()A.平均数B.中位数C.方差D.众数10.(2022·大连模拟)甲、乙两班学生举行1分钟跳绳比赛,参赛学生每分钟跳绳个数的统计结果如下表:某同学分析上表后得出如下结论:①甲、乙两班学生的平均成绩相同;②乙班优秀的人数多于甲班优秀的人数(每分钟跳绳的个数≥190为优秀);③甲班成绩的波动比乙班大.上述结论中,正确的是()A.①②B.②③C.①③D.①②③二、填空题(每题4分,共24分)11.(2022八下·长兴期中)下列五个数:11,12,13,14,15的标准差为12.(2021八上·桓台期中)已知一组数据5,2,x,6,4,它们的平均数是4,则这组数据的标准差为.13.(2022九上·长沙期中)农科院计划为某地选择合适的水果玉米种子,通过实验,甲、乙、丙、丁四种水果玉米种子每亩平均产量都是1500kg,方差分别为S甲2=0.02,S乙2=0.02,S丙2=0.03,S丁2= 0.01,则这四种水果玉米种子产量最稳定的是.(填“甲”“乙”“丙”“丁”)14.(2022九上·信阳开学考)有甲、乙两组数据,如下表所示:甲、乙两组数据的方差分别为S甲2,S乙2,则S甲2S乙2(填“>”,“<”或“=”).15.(2020·邵阳)据统计:2019年,邵阳市在教育扶贫方面,共资助学生91.3万人次,全市没有一名学生因贫失学,其中,某校老师承担了对甲,乙两名学生每周“送教上门”的任务,以下是甲、乙两名学生某十周每周接受“送教上门”的时间(单位:小时):甲:7,8,8,9,7,8,8,9,7,9;乙:6,8,7,7,8,9,10,7,9,9.从接受“送教上门”的时间波动大小来看,学生每周接受送教的时间更稳定.(填“甲”或“乙”)16.(2022八下·青羊开学考)商店销售同一品牌的型号分别为35,36,37,38,39的女式凉鞋,调查销售情况,其销量分别为8%,14%,34%,29%和15%,你认为应该多进型号的鞋,商店经理最关注的应该是这组数据的.(填“众数”“中位数”或“平均数”)三、解答题(共8题,共66分)17.(2022七上·咸阳月考)学校运动会开设了“抢收抢种”项目,八(5)班甲,两个队伍都想代表班级参赛,为了选择一个比较好的队伍,八(5)班的班委组织了一次选拔赛,甲,乙两队各5人的比赛成绩如下表(单位:分):经计算,甲队比赛成绩的平均数为8分,方差为1.2,请计算乙队比赛成绩的方差,并根据计算结果,帮助班委选择一个成绩比较稳定的队伍代表班级参赛.18.(2020八下·平桂期末)为了从甲、乙两名学生中选拔一人参加今年六月份中学生数学竞赛,每个月对他们的学习水平进行一次测验,下图是两人赛前5次测验成绩的折线统计图.谁的成绩较稳定,请说明理由.19.(2020八上·龙口期末)某市举行学科知识竞赛,A校、B校各派出5名选手组成代表队参加决赛,两校派出选手的决赛成绩如图所示.计算两校决赛成绩的方差,并判断哪个学校代表队选手成绩较为稳定.20.(2023八上·榆林期末)某校举办国学知识竞赛,设定满分10分,学生得分均为整数.在初赛中,甲、乙两组(每组10人)学生成绩如下(单位:分)甲组:5,6,6,6,6,6,7,9,9,10.乙组:5,6,6,6,7,7,7,7,9,10.(1)以上成绩统计分析表中a=,b=,c=;(2)小明同学说:“这次竞赛我得了7分,在我们小组中属中游略偏上!”观察上面表格判断,小明可能是组的学生;(3)从平均数和方差看,若从甲、乙两组学生中选择一个成绩较为稳定的小组参加决赛,应选哪个组?并说明理由.21.(2022九上·晋州期中)甲、乙两名队员参加射击选拔赛,射击成绩见下列统计图:根据以上信息,整理分析数据如下:(1)直接写出表格中a,b,c的值;(2)求出d的值;(3)若从甲、乙两名队员中选派其中一名队员参赛,你认为应选哪名队员?请结合表中的四个统计量,作出简要分析.22.(2022八下·遂昌期中)某校八年级开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间每人踢100个以上(含100个)为优秀,下列是成绩最好的甲班和乙班5名学生的比赛数据(单位:个),经统计发现两班总分相等,此时有学生建议,可通过考查数据中的其他信息作为参考,请你回答下列问题:(1)计算甲、乙两班的优秀率.(2)求两班比赛成绩的中位数.(3)计算两个比赛数据的方差.(4)根据以上信息,你认为应该把冠军奖状发给哪一个班级?简述你的理由.23.(2022八下·乐清月考)某中学举行“中国梦”校园好声音歌手比赛,初、高中部根据初赛成绩各选出5名选手组成初中代表队和高中代表队参加学校决赛,根据这10人的决赛成绩(满分为100分),制作了如图统计图:(1)根据上图提供的数据填空:a的值是,b的值是;(2)结合两队的平均数和中位数,分析哪个队的决赛成绩好;(3)根据题(1)中的数据,试通过计算说明,哪个代表队的成绩比较稳定?24.(2022九上·龙亭月考)为了提高农副产品的国际竞争力,我国一些行业协会对农副产品的规格进行了划分.某外贸公司要出口一批规格为75g的鸡腿,现有两个厂家提供货源,它们的价格相同,鸡腿的品质相近,质检员分别从两厂的产品中抽样调查了20只鸡腿,它们的质量(单位:g)如下:甲厂:76,74,74,76,73,76,76,77,78,74,76,70,76,76,73,70,77,79,78,71;乙厂:75,76,77,77,78,77,76,71,74,75,79,71,72,74,73,74,70,79,75,77.甲厂鸡腿质量频数统计表分析上述数据,得到下表:请你根据图表中的信息完成下列问题:(1)a=;b=;c=;(2)补全频数分布直方图;(3)如果只考虑出口鸡腿规格,请结合表中的某个统计量,为外贸公司选购鸡腿提供参考建议;(4)某外贸公司从甲厂采购了20000只鸡腿,并将质量(单位:g)在71≤x<77的鸡腿加工成优等品,请估计可以加工成优等品的鸡腿有多少只?答案解析部分1.【答案】A 【知识点】方差【解析】【解答】解:甲的平均成绩为10+7+10+8+105=9,乙的平均成绩为7+10+9+10+95=9;甲的方差S 甲2=15[(10−9)2+(8−9)2+(10−9)2+(10−9)2+(7−9)2]=85, 乙的方差S 乙2=15[(7−9)2+(10−9)2+(9−9)2+(9−9)2+(10−9)2]=65. 故甲,乙两人方差的大小关系是:S 甲2>S 乙2.故答案为:A .【分析】先求出甲、乙的方差,再利用方差的性质:方差越大,数据波动越大求解即可。
方差和标准差一、教学目标:理解随机变量的方差和标准差的含义,会求随机变量的方差和标准差,并能解决有关实际问题。
二、教学重点:随机变量的方差和标准差难点:比较两个随机变量的期望与方差的大小,从而解决实际问题三、教学过程:1、离散型随机变量X 的方差:V (X )=i ni i p x 21)(∑=-μ=212μ-∑=ni i i p x = E(X 2)- E 2(X)2、离散型随机变量X 的标准差σ=)(X V3、例题:例1、求超几何分布H (5,10,30)的方差V(X)和标准差)(X V小结:(1)超几何分布的方差:V(X)= 例2、求二项分布B (10,0.05)的方差和标准差小结:(2)服从二项分布的方差:V(X)=例3、甲、乙两射手在同一条件下进行射击,分布列如下:射手甲击中环数8,9,10的概率分别为0.2,0.6,0.2;射手乙击中环数8,9,10的概率分别为0.4,0.2,0.24用击中环数的期望与方差比较两名射手的射击水平 解:180.290.6100.29E ξ=⨯+⨯+⨯=221(89)0.2(99)0.6D ξ=-⨯+-⨯+(10-9)4.02.02=⨯; 同理有8.0,922==ξξD E由上可知,21ξξE E =,12D D ξξ<所以,在射击之前,可以预测甲、乙两名射手所得的平均环数很接近,均在9环左右,但甲所得环数较集中,以9环居多,而乙得环数较分散,得8、10环地次数多些.例4、A 、B 两台机床同时加工零件,每生产一批数量较大的产品时,出次品的概率如下表所示:A 机床B 机床问哪一台机床加工质量较好解: E ξ1=0×0.7+1×0.2+2×0.06+3×0.04=0.44,E ξ2=0×0.8+1×0.06+2×0.04+3×0.10=0.44.它们的期望相同,再比较它们的方差D ξ1=(0-0.44)2×0.7+(1-0.44)2×0.2+(2-0.44)2×0.06+(3-0.44)2×0.04=0.6064,D ξ2=(0-0.44)2×0.8+(1-0.44)2×0.06+(2-0.44)2×0.04+(3-0.44)2×0.10=0.9264. ∴D ξ1< D ξ2 故A 机床加工较稳定、质量较好.课堂练习:1 .已知()~,,8, 1.6B n p E D ξξξ==,则,n p 的值分别是( )A .1000.08和;B .200.4和;C .100.2和;D .100.8和 答案:1.D2. 一盒中装有零件12个,其中有9个正品,3个次品,从中任取一个,如果每次取出次品就不再放回去,再取一个零件,直到取得正品为止.求在取得正品之前已取出次品数的期望.分析:涉及次品率;抽样是否放回的问题.本例采用不放回抽样,每次抽样后次品率将会发生变化,即各次抽样是不独立的.如果抽样采用放回抽样,则各次抽样的次品率不变,各次抽样是否抽出次品是完全独立的事件.解:设取得正品之前已取出的次品数为ξ,显然ξ所有可能取的值为0,1,2,3 当ξ=0时,即第一次取得正品,试验停止,则P (ξ=0)=43129=当ξ=1时,即第一次取出次品,第二次取得正品,试验停止,则P (ξ=1)=449119123=⨯当ξ=2时,即第一、二次取出次品,第三次取得正品,试验停止,则P (ξ=2)=2209109112123=⨯⨯当ξ=3时,即第一、二、三次取出次品,第四次取得正品,试验停止,则P (ξ=3)=220199101112123=⨯⨯⨯ 所以,E ξ=10322013220924491430=⨯+⨯+⨯+⨯ 3. 有一批数量很大的商品的次品率为1%,从中任意地连续取出200件商品,设其中次品数为ξ,求E ξ,D ξ分析:涉及产品数量很大,而且抽查次数又相对较少的产品抽查问题.由于产品数量很大,因而抽样时抽出次品与否对后面的抽样的次品率影响很小,所以可以认为各次抽查的结果是彼此独立的.解答本题,关键是理解清楚:抽200件商品可以看作200次独立重复试验,即ξ B (200,1%),从而可用公式:E ξ=np ,D ξ=npq(这里q=1-p)直接进行计算解:因为商品数量相当大,抽200件商品可以看作200次独立重复试验,所以ξ B (200,1%)因为E ξ=np ,D ξ=npq ,这里n=200,p=1%,q=99%,所以,E ξ=200×1%=2,D ξ=200×1%×99%=1.984. 设事件A 发生的概率为p ,证明事件A 在一次试验中发生次数ξ的方差不超过1/4 分析:这是一道纯数学问题.要求学生熟悉随机变量的期望与方差的计算方法,关键还是掌握随机变量的分布列.求出方差D ξ=P(1-P)后,我们知道D ξ是关于P(P ≥0)的二次函数,这里可用配方法,也可用重要不等式证明结论证明:因为ξ所有可能取的值为0,1且P (ξ=0)=1-p,P(ξ=1)=p, 所以,E ξ=0×(1-p)+1×p=p则 D ξ=(0-p )2×(1-p)+(1-p) 2×p=p(1-p) 412)p 1(p 2=⎪⎭⎫ ⎝⎛-+≤A B 120,试比较A 、B 两种钢筋哪一种质量较好分析: 两个随机变量ξA 和ξB &都以相同的概率0.1,0.2,0.4,0.1,0.2取5个不同的数值.ξA 取较为集中的数值110,120,125,130,135;ξB 取较为分散的数值100,115,125,130,145.直观上看,猜想A 种钢筋质量较好.但猜想不一定正确,需要通过计算来证明我们猜想的正确性解:先比较ξA 与ξB 的期望值,因为E ξA =110×0.1+120×0.2+125×0.4+130×0.1+135×0.2=125, E ξB =100×0.1+115×0.2+125×0.4十130×0.1+145×0.2=125.所以,它们的期望相同.再比较它们的方差.因为D ξA =(110-125)2×0.1+(120-125) 2 ×0.2+(130-125) 2×0.1+(135-125) 2×0.2=50, D ξB =(100-125)2×0.1+(110-125) 2 ×0.2+(130-125) 2×0.1+(145-125) 2×0.2=165.所以,D ξA < D ξB .因此,A 种钢筋质量较好6. 在有奖摸彩中,一期(发行10000张彩票为一期)有200个奖品是5元的,20个奖品是25元的,5个奖品是100元的.在不考虑获利的前提下,一张彩票的合理价格是多少元?分析:这是同学们身边常遇到的现实问题,比如福利彩票、足球彩票、奥运彩票等等.一般来说,出台各种彩票,政府要从中收取一部分资金用于公共福利事业,同时也要考虑工作人员的工资等问题.本题的“不考虑获利”的意思是指:所收资金全部用于奖品方面的费用解:设一张彩票中奖额为随机变量ξ,显然ξ所有可能取的值为0,5,25,100依题2.02000100500255054000E =⨯+⨯+⨯+⨯=ξ答:一张彩票的合理价格是0.2元. 课后作业:1.设ξ~B(n 、p)且E ξ=12 D ξ=4,求n 、p解:由二次分布的期望与方差性质可知E ξ=np ,D ξ= np (1-p )∴⎩⎨⎧=-=4)1(12p np np ∴⎪⎩⎪⎨⎧==3218p n2.已知随机变量ξ服从二项分布即ξ~B(6、31)求b (2;6,31)解:p(ξ=2)=c 62(31)2(32)43.已知甲、乙两名射手在一次射击中的得分为两个相互独立的随机变量ξ和η,已知ξ和η的分布列如下:(注得分越大,水平越高)试分析甲、乙技术状况0.3+0.3+b=1⇒a=0.4 ∴E ξ=2.3 , E η=2.0 D ξ=0.81 , D η=0.6 作业:课课练P57-58 1、 2、。
方差和标准差——知识讲解【学习目标】1. 了解方差和标准差的概念,会计算简单数据的方差,体会它们刻画数据离散程度的意义;2. 知道可以通过样本的方差来推断总体的方差.能解释统计结果,根据结果作出简单的判断和预测;3. 能综合运用统计知识解决一些简单的实际问题. 【要点梳理】要点一、方差和标准差 1.方差在一组数据12,,n x x x …,中,设它们的平均数是x ,各数据与平均数的差的平方的平均数()[]222212)(...)(1x x x x x x nS n -++-+-=叫做这组数据的方差. 方差越大,说明数据的波动越大,越不稳定. 要点诠释:(1)方差反映的是一组数据偏离平均值的情况. 方差越大,稳定性越差;反之,则稳定性越好.(2)一组数据的每一个数都加上(或减去)同一个常数,所得的一组新数据的方差不变. (3)一组数据的每一个数据都变为原来的k 倍,则所得的一组新数据的方差变为原来的2k 倍.2.标准差一般地,一组数据的方差的算术平方根称为这组数据的标准差. 要点诠释:(1)标准差的数量单位与原数据一致.(2)一组数据的方差或标准差越小,这组数据的离散程度越小,这组数据就越稳定. 要点二、方差和标准差的联系与区别联系:方差和标准差都是用来衡量一组数据偏离平均数的大小(即波动大小)的指标,常用来比较两组数据的波动情况.区别:方差是用“先平均,再求差,然后平方,最后再平均”的方法得到的结果,主要反映整组数据的波动情况,是反映一组数据与其平均值离散程度的一个重要指标,每个数据的变化都将影响方差的结果,是一个对整组数据波动情况更敏感的指标.在实际使用时,往往计算一组数据的方差,来衡量一组数据的波动大小. 方差的单位是原数据单位的平方,而标准差的单位与原数据单位相同.【典型例题】类型一、方差和标准差1. 一组数据-2,-1,0,1,2的方差是( )A .1B .2C .3D .4【思路点拨】按照“先平均,再求差,然后平方,最后再平均”的方法,利用求方差的公式:()[]222212)(...)(1x x x x x x nS n -++-+-=计算. 【答案】B【解析】该组数据的平均数是0,所以215s =2222(2)(1)12⎡⎤-+-++⎣⎦=2. 【总结升华】此类题关键是掌握求方差的步骤,记准求方差的公式.举一反三:【变式】学校篮球队五名队员的年龄分别为1715171615,,,,,其方差为0.8,则3年后这五名队员年龄的方差为______. 【答案】0.8.2.已知某样本的标准差是2,则这个样本的方差是( )C.2D.4【思路点拨】根据标准差的概念计算.标准差是方差的算术平方根. 【答案】D ;【解析】解:由于方差的算术平方根就是标准差,所以样本的方差=22=4.故选D .【总结升华】正确理解标准差的概念,是解决本题的关键.标准差是方差的算术平方根. 举一反三:【变式】下列说法:其中正确的个数有( ) (1)方差越小,波动性越小,说明稳定性越好; (2)一组数据的众数只有一个;(3)数据2,2,3,2,2,5的众数为4; (4)一组数据的标准差一定是正数.A .0个B .1个C .2个D .4个 【答案】B.提示:(1)正确.类型二、方差和标准差的实际应用3.甲、乙两班举行汉字输入比赛,•参赛学生每分钟输入汉字的个数经统计计算后,填入下表:(1)甲、乙两班学生成绩的平均水平相同;(2)乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字150个为优秀) (3)甲班学生成绩的波动情况比乙班成绩波动大. A .(1)(2) B .(1)(2)(3) C .(2)(3) D .(1)(3) 【思路点拨】理清表格中所列数据代表的含义,以及数据差异而导致的不同. 【答案】B【解析】甲、乙两班学生的平均字数都是135个/分钟,所以平均水平相同;从中位数上看,乙班的151大于甲班的149,表明乙班优秀的人数多于甲班优秀的人数;从方差上看,甲班的方差大于乙班的方差,所以甲班学生成绩的波动情况比乙班成绩波动大.因此,(1)(2)(3)都正确,选B. 【总结升华】此类题关键是要能从表格中筛选出所需要的信息,理解每个数据所代表的含义. 举一反三: 【变式】(2015•崇左)甲、乙、丙、丁四位同学在三次数学测验中,他们成绩的平均分是x 甲=85,x 乙=85,x 丙=85,x 丁=85,方差是2S 甲=3.8,2S 乙=2.3,2S 丙=6.2,2S 丁=5.2,则成绩最稳定的是( )A .甲B .乙C .丙D .丁 【答案】B.解:∵2S 甲=3.8,2S 乙=2.3,2S 丙=6.2,2S 丁=5.2,∴2S 乙<2S 甲<2S 丁<2S 丙, ∴成绩最稳定的是乙. 故选B .4.(2016春•商水县期末)甲、乙两种水稻试验田连续5年的平均单位面积产量如下:(单位:吨/公顷)(1)哪种水稻的平均单位面积产量比较高? (2)哪种水稻的产量比较稳定.【思路点拨】首先求得平均产量,然后求得方差,比较方差,越小越稳定. 【答案与解析】 解:(1)()19.89.910.11010.2105=++++=x 甲, ()19.410.310.89.7105=++++9.8=x 乙, 所以甲、乙两种水稻的平均产量一样高; (2)甲中水稻产量的方差是:[(9.8﹣10)2+(9.9﹣10)2+(10.1﹣10)2+(10﹣10)2+(10.2﹣10)2]=0.02, 乙种水稻产量的方差是:[(9.4﹣10)2+(10.3﹣10)2+(10.8﹣10)2+(9.7﹣10)2+(9.8﹣10)2]=0.244. ∴0.02<0.244,∴产量比较稳定的水稻品种是甲.【总结升华】此题考查了方差,用到的知识点是方差和平均数的计算公式,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.举一反三: 【变式】为了比较甲、乙两种水稻的长势,农技人员从两块试验田中,分别随机抽取5棵植株,将测得的苗高数据绘制成下图:请你根据统计图所提供的数据,计算平均数和方差,并比较两种水稻的长势. 【答案】5.85.2x x ==乙甲∵,, ∴甲种水稻比乙种水稻长得更高一些.222.160.56S S ==乙甲∵,,∴乙种水稻比甲种水稻长得更整齐一些.5.(2015春•安达市期末)甲、乙两台机床同时加工直径为10mm 的同种规格零件,为了检查两台机床加工零件的稳定性,质检员从两台机床的产品中各抽取5件进行检测,结果(1(2)根据所学的统计知识,你认为哪一台机床生产零件的稳定性更好一些,说明理由. 【思路点拨】(1)根据所给的两组数据,分布求出两组数据的平均数,再利用方差公式求两组数据的方差即可.(2)根据甲的方差大于乙的方差,即可得出乙机床生产的零件稳定性更好一些. 【答案与解析】 解:(1)∵甲机床所加工零件直径的平均数是:(10+9.8+10+10.2+10)÷5=10,乙机床所加工零件直径的平均数是:(9.9+10+10+10.1+10)÷5=10,∴甲机床所加工零件直径的方差=[(10﹣10)2+(9.8﹣10)2+(10﹣10)2+(10.2﹣10)2+(10﹣10)2]=0.013,乙机床所加工零件直径的方差=[(9.9﹣10)2+(10﹣10)2+(10﹣10)2+(10.1﹣10)2+(10﹣10)2]=0.004,(2)∵S 2甲>S 2乙,∴乙机床生产零件的稳定性更好一些.【总结升华】本题考查了平均数和方差,一般地设n 个数据,x 1,x 2,…x n 的平均数为,则方差S 2=[(x 1﹣)2+(x 2﹣)2+…+(x n ﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大. 举一反三:【变式】某工厂甲、乙两名工人参加操作技能培训.现分别从他们在培训期间参加的若干次(2)现要从中选派一人参加操作技能比赛,从统计学的角度考虑,你认为选派哪名工人参加合适?请说明理由. 【答案】解:1(9582888193798478)858x =+++++++=甲(分), 1(8375808090859295)858x =+++++++=乙(分).甲、乙两组数据的中位数分别为83分、84分. (2)由(1)知85x x ==甲乙分,所以22221[(9585)(8285)(7885)]35.58s =-+-++-=甲, 22221[(8385)(7585)(9585)]418s =-+-++-=乙.①从平均数看,甲、乙均为85分,平均水平相同; ②从中位数看,乙的中位数大于甲,乙的成绩好于甲;③从方差来看,因为x x =甲乙,22s s <乙甲,所以甲的成绩较稳定;④从数据特点看,获得85分以上(含85分)的次数,甲有3次,而乙有4次,故乙的成绩好些;⑤从数据的变化趋势看,乙后几次的成绩均高于甲,且呈上升趋势,因此乙更具潜力. 综上分析可知,甲的成绩虽然比乙稳定,但从中位数、获得好成绩的次数及发展势头等方面分析,乙具有明显优势,所以应派乙参赛更有望取得好成绩.。
方差和标准差教材分析本节课选自浙教版八年级数学上册第四章第四节,主要内容是方差和标准差。
是在学习了如何抽样与抽样调查中所涉及到的概念,和用平均数,中位数,众数来表示数据集中程度的统计量后的另一种反映数据离散程度的统计量。
节课是七年纪上册“数据与图表”内容的延续,用统计量来反映数据的特征和变化,在日常生活和实际生产中有着广泛的应用。
学情分析本节课的授课对象是八年级学生,他们正处于形象思维向抽象思维的过渡阶段,注意力水平不高,在教学中需要采用启发式教学。
在知识上,我们已经接触过统计方面的知识,有助于本节课的学习。
教学目标知识与技能:1、了解方差,标准差的公式的产生过程。
2、掌握方差和标准差的计算方法及其运用。
3、能通过实例学会用样本方差分析总体方差,用方差公式来分析数据离散程度。
情感态度价值观:1、通过合作交流,以面对面的互动形式,培养良好的团队合作精神,感受集体的力量。
2、以具体的例子出发,体会数学来源于生活,生活离不开数学,从来增加学习数学的兴趣。
教学重难点重点:方差和标准差的概念、计算及其运用。
难点:方差和标准差的计算及运用。
方差是各变量值相对于平均数的离差平方的平均数。
教学方法采用情景探究、小组合作,实施启发式教学。
教学手段以“教师为主导,学生为主体,探索为主线,思维为核心”的教学思路,采用矛盾冲突教学方法,加以多媒体的使用,充实了教学内容,通过师生合作,生生合作以及学生自身的独立思考,探索获得方差的公式和标准差的合理出现。
教学过程一、创设情景引出课题师:同学们,谁看过射击实况转播?相信绝大多数同学都看过,今天老师要让你们自己想办法解决有关射击的问题。
问题一、为了从甲、乙两名学生中选拔一人参加射击比赛,学校决定对选拔方案进行招标。
如果你参与竞标,那么你将设计什么方案?生:让甲、乙二人在相同的条件下各射靶10次,选拔平均环数较多的学生。
师:这个方案不错。
可是如果两人的平均环数一样,怎么办?生:再比一次。