遗传学复习资料
- 格式:doc
- 大小:686.50 KB
- 文档页数:17
遗传学复习资料遗传学复习资料第⼀章绪论1、遗传:亲代与⼦代之间同⼀性状相似的现象。
2、变异:亲代与⼦代、⼦代与⼦代之间出现性状差异的现象。
3、遗传学模式⽣物——果蝇①只有野⽣型基因存在时,果蝇才长出红眼,该基因突变后,不再长出红眼。
②野⽣型发⽣突变后,出现黄体,则称该突变基因为黄体基因4、孟德尔的豌⾖杂交试验——选择豌⾖的原因:稳定的,可以区分的性状;⾃花(闭花)授粉,没有外界花粉的污染;⼈⼯授粉也能结实。
易栽培,⽣长周期短;种⼦多,便于收集数据;具有许多稳定易区分的性状。
豌⾖花冠各部分结构较⼤,便于操作,易于控制。
成熟后,豌⾖种⼦保留在⾖荚内不会脱落,每粒种⼦的性状不会丢失。
第⼆章、第三章1、减数分裂过程1)减数分裂:是在配⼦形成过程中进⾏的⼀种特殊的有丝分裂。
包括两次连续的核分裂⽽染⾊体只复制⼀次,每个⼦细胞核中只有单倍数的染⾊体的细胞分裂形式。
2)过程:①减数分裂Ⅰ(最复杂最长)A、前期Ⅰ:细线期——出现姐妹染⾊单体,但染⾊质浓缩为细长线状,看不出染⾊体的双重性,核仁依然存在。
在细线期和整个的前期中染⾊体持续地浓缩。
偶线期——同源染⾊体开始联会,出现联会复合体。
(联会复合体=四联体=⼆价体)。
粗线期——染⾊体完全联会,联会配对完毕,缩短变粗,但核仁仍存在。
⼀对配对的同源染⾊体称⼆价体或四联体。
⾮姐妹染⾊单体间可能发⽣交换。
双线期——染⾊体继续变短变粗,双价体中的两条同源染⾊体彼此分开。
在⾮姐妹染⾊单体间可见交叉结构,交叉结构的出现是发⽣过交换的有形结果。
交叉数⽬逐渐减少,在着丝粒两侧的交叉向两端移动,这种现象称为交叉端化。
终变期——染⾊体进⼀步收缩变粗变短,便于分裂移动,分裂进⼊中期。
B、中期Ⅰ:核仁、核膜消失,各个双价体排列在⾚道板上,着丝粒分居于⾚道板的两侧,附着在纺缍丝上,⽽有丝分裂的中期着丝粒位于⾚道板上。
中期I 着丝粒并不分裂。
C、后期Ⅰ:双价体中的同源染⾊体彼此分开,移向两极,但同源染⾊体的各个成员各⾃的着丝粒并不分开。
遗传学复习资料遗传学是一门研究生物遗传和变异规律的科学,它涵盖了从分子层面到整个生物体的遗传信息传递机制。
以下是一些遗传学复习资料的要点:1. 遗传物质的基础- DNA和RNA的结构和功能- 核苷酸的组成和遗传密码- 基因的基本概念和基因组的结构2. 孟德尔遗传定律- 分离定律和组合定律- 显性和隐性性状- 基因型和表现型的关系3. 染色体和细胞分裂- 染色体的形态和功能- 有丝分裂和减数分裂的过程- 性染色体和性别决定机制4. 分子遗传学- DNA复制、转录和翻译- 基因表达调控- 突变和修复机制5. 遗传重组和连锁- 遗传重组的机制- 连锁和基因定位- 遗传图谱的构建6. 群体遗传学- 遗传多样性和种群结构- 遗传漂变和自然选择- 群体遗传平衡和进化7. 遗传工程和基因组学- 基因克隆和表达- 基因编辑技术如CRISPR-Cas9- 基因组测序和比较基因组学8. 遗传疾病和遗传咨询- 单基因遗传病、多基因遗传病和染色体异常- 遗传疾病的筛查和预防- 遗传咨询的原则和实践9. 遗传学在农业和医学中的应用- 作物改良和遗传育种- 遗传病的诊断和治疗- 个性化医疗和精准医学10. 伦理和社会问题- 遗传信息的隐私和保护- 遗传学研究的伦理问题- 遗传学技术的社会影响这些要点可以作为复习遗传学时的参考框架,帮助系统地理解和记忆遗传学的关键概念和原理。
在实际复习时,建议结合教材、课堂笔记和相关文献,以获得更深入的理解。
同时,通过解决遗传学问题和案例分析,可以提高应用遗传学知识的能力。
《遗传学》复习资料集《遗传学》复习资料集第二章孟德尔定律1、为什么分离现象比显、隐性现象有更重要的意义?答:因为(1)分离规律是生物界普遍存在的一种遗传现象,而显性现象的表现是相对的、有条件的;(2)只有遗传因子的分离和重组,才能表现出性状的显隐性。
可以说无分离现象的存在,也就无显性现象的发生。
2、在番茄中,红果色(R)对黄果色(r)是显性,问下列杂交可以产生哪些基因型,哪些表现型,它们的比例如何?(1)RR×rr (2)Rr×rr (3)Rr×Rr (4) Rr×RR (5)rr×rr解:序号杂交基因型表现型1 RR×rr Rr 红果色2 Rr×rr 1/2Rr,1/2rr 1/2红果色,1/2黄果色3 Rr×Rr 1/4RR,2/4Rr,1/4rr 3/4红果色,1/4黄果色4 Rr×RR 1/2RR,1/2Rr 红果色5 rr×rr rr 黄果色3、下面是紫茉莉的几组杂交,基因型和表型已写明。
问它们产生哪些配子?杂种后代的基因型和表型怎样?(1)Rr × RR (2)rr × Rr (3)Rr × Rr粉红红色白色粉红粉红粉红解:序号杂交配子类型基因型表现型1 Rr × RR R,r;R 1/2RR,1/2Rr 1/2红色,1/2粉红2 rr × Rr r;R,r 1/2Rr,1/2rr 1/2粉红,1/2白色3 Rr × Rr R,r 1/4RR,2/4Rr,1/4rr 1/4红色,2/4粉色,1/4白色4、在南瓜中,果实的白色(W)对黄色(w)是显性,果实盘状(D)对球状(d)是显性,这两对基因是自由组合的。
问下列杂交可以产生哪些基因型,哪些表型,它们的比例如何?(1)WWDD×wwdd (2)XwDd×wwdd(3)Wwdd×wwDd (4)Wwdd×WwDd解:序号杂交基因型表现型1 WWDD×wwdd WwDd 白色、盘状果实2 WwDd×wwdd 1/4WwDd,1/4Wwdd,1/4wwDd,1/4wwdd, 1/4白色、盘状,1/4白色、球状,1/4黄色、盘状,1/4黄色、球状2 wwDd×wwdd 1/2wwDd,1/2wwdd 1/2黄色、盘状,1/2黄色、球状3 Wwdd×wwDd 1/4WwDd,1/4Wwdd,1/4wwDd,1/4wwdd, 1/4白色、盘状,1/4白色、球状,1/4黄色、盘状,1/4黄色、球状4 Wwdd×WwDd 1/8WWDd,1/8WWdd,2/8WwDd,2/8Wwdd,1/8wwDd,1/8wwdd 3/8白色、盘状,3/8白色、球状,1/8黄色、盘状,1/8黄色、球状5.在豌豆中,蔓茎(T)对矮茎(t)是显性,绿豆荚(G)对黄豆荚(g)是显性,圆种子(R)对皱种子(r)是显性。
第一章绪论二、填空题1、①(拉马克)提出用进废退与获得性遗传假说;②(魏斯曼)提出种质论,支持选择理论但否定后天获得性遗传;③(孟德尔)提出分离规律和独立分配规律;④(摩尔根)提出遗传的染色体学说;⑤(贝特森)用“Genetics”一词命名遗传学;⑥(约翰森)提出“Gene”一词,代替遗传因子概念,首先提出了基因型和表现型概念;⑦(摩尔根)提出了连锁交换规律及伴性遗传规律;⑧(比德尔、泰特姆)提出了“一个基因一种酶”的学说;⑨(沃森、克里克)提出了DNA双螺旋结构模型;2、(1900)年由(狄·弗里斯)、(科伦斯)、(冯·切尔迈克)三个人重新发现了孟德尔规律,该年被定为遗传学诞生之年。
3、1910年,摩尔根用(果蝇)作为实验材料,创立了基因理论,证明基因位于(染色体)上,而成为第一个因在遗传学领域的突出贡献获得诺贝尔奖金的科学家。
4、(沃森)和(克里克)于1953年提出了DNA分子结构模型。
5、(遗传)与(变异)是生物界最普遍和最根本的两个特征。
6、(遗传)、(变异)和(选择)是生物进化和新品种选育的三大因素。
三、选择题1、1900年(B)规律的重新发现标志着遗传学的诞生。
A.达尔文B.孟德尔C.拉马克D.克里克2、遗传学这一学科名称是由英国遗传学家(A)于1906年首先提出的。
A.贝特森B.孟德尔 C、魏斯曼 D、摩尔根3、遗传学中将细胞学研究和孟德尔遗传规律结合,提出了遗传的染色体学说,这是(C)的特征。
A.分子遗传学B.个体遗传学C.细胞遗传学D.微生物遗传学4、遗传学中以微生物为研究对象,采用生化方法探索遗传物质的本质及其功能,这是(D)的特征。
A.分子遗传学B.个体遗传学C.细胞遗传学D.微生物遗传学5、荻.弗里斯(de Vris, H.)、柴马克(Tschermak, E.)和柯伦斯(Correns, C.)三人分别重新发现孟德尔(Mendel, G. L.)遗传规律,标志着遗传学学科建立的年份是(B)年。
遗传学复习整理资料绪论遗传学:是研究生物遗传和变异的科学。
遗传学经历了两个阶段;经典遗传学,现代遗传学遗传学经历了三个水平;个体遗传学、细胞遗传学,分子遗传学1866孟德尔,豌豆,发表“植物杂交试验”论文1910.摩尔根。
果蝇,创办了基因论,证明了基因就是在染色体上而且呈圆形线性排序1953,沃森(美)和克里克(英),提出了著名的dna双螺旋结构,三大定律:分离定律,独立分配定律,连锁遗传定律遗产研习和林木遗传改进在林业生产上的促进作用答:1.直接指导作用,如杂交引种,种子园的建立,加速育种的进程。
2.引发世界森林增加的两大因素。
不合理的砍伐制度;不合理的唐日制3.林木遗传的改进促进作用。
导致成活率低,产量提升,品质提升。
1.什么是遗传,什么是变异,有何区别与联系?答遗传――是指亲代与子代之间相似的现象。
变异――就是指亲代与子代之间、子代个体之间存有差异的现象。
遗传与与变异的辩证关系:既对立又统一,在一定条件下相互转化。
一方面,遗传使生物的性状得到继承和积累,这种继承和积累相对稳定;另一方面,变异产生新的性状,是物种不断发展演化,适应不断变化的环境。
因此,遗传不单是消极、保守的,同时也是积极的、创新的。
变异不单是负面的、消失的,也是进取的,创造的。
孟德尔遗传理论的精髓就是什么?遗传因子是独立的,呈颗粒状,互不融合,互补影响,独立分离,自由组合2.遗传学有几个主要分支,研究内容及手段?请问:经典遗传学、细胞遗传学、分子遗传学、生物统计数据遗传学3.遗传学在社会生产生活中的促进作用?答:1.在生产实践上,遗传学对农林业科学有着直接的指导作用。
2.遗传学在医学中同样起至着关键的指导作用。
人类疾病的产生及其遗传机制都须要遗传学科学知识做为指导。
3.遗传学就是人类计划生育,优生优育的理论基石。
4.遗传学在社会法制问题化解中也起著不可忽视的促进作用。
第一章形成染色体的结构单位:核小体原核细胞:只有拟核,没有细胞核和细胞器,结构较简单。
医学遗传学复习资料一、名词解释1.交叉遗传;2。
非整倍体;3.常染色质和异染色质:4.易患性:5。
亲缘系数:6。
遗伟性酶病:7.不完全显性8。
易位9.基因治疗10.结构基因11.遗传异质性12.断裂基因13.等位基因14. 不规则显性15.移码突变16、延迟显性17、.交叉遗传18、.嵌合体19、遗传学二.填空题1。
根据染色体着丝粒位置的不同,可将人类染色体分为类。
2。
分子病是指由于造成的结构或合成量异常所引起的病毒.3。
和是同一物质在细包周期的不同时期中所表现的两种不同存在形式.4.一个体的某种性状态是受一对相同的基因控制。
则对这种性状而言,该个体为。
如控制性状的基因为一对相对基因,则该个体称为。
5.基因频率等于相应基因型的频率加上1/2 基因的频率。
6.在光学显微镜下可见,人类初级精母细胞前期Ⅰ粗线期中,每个二阶体具有条染色单体,称为 .7.通过直接或间接的方法,在胎儿出生前诊断其是否患有某种疾病叫做。
8。
45,X和47,XXX的女性个体的期间细胞核中具有个和个X染色质。
9.表现正常带有致病遗伟物质的个体称为。
他可以将这一有害的遗传信息传递给下一代.10.倒位染色体的携带者在进行减数分裂联会时,其体内的倒位染色体通常会形成一个特殊的结构,即 .11。
一个生物体所表现出来的遗传性状称为 ,与此性状相关的遗传组成称为。
12。
在早期卵裂过程中若发生或,可造成嵌合体。
13.DNA分子是的载体。
其复制方式是。
14。
基因突变可导致蛋白质发生或变化.15.在血红蛋白病中,因珠蛋白异常引起的是异常血红蛋白病,因珠蛋白异常引起的是地中海贫血。
16.如果女性是红绿色盲(XR)患者,男性正常,所生子女中,女性是携带者的可能性是 ,男性是携带者的可能性是 .17.在真核生物中,一个成熟生殖细胞(配子)所含的全部染色体称为一个,其上所含的全部基因称为一个。
18.近亲的两个个体的亲缘程度用表示,近亲婚配后代基因纯合的可能性用表示。
遗传学复习提纲刘庆昌绪言1、遗传学研究的对象,遗传、变异、选择2、遗传学的发展,遗传学的发展阶段,主要遗传学家的主要贡献3、遗传学在科学和生产发展中的作用第一章遗传的细胞学基础1、细胞的结构和功能:原核细胞、真核细胞、染色质、染色体2、染色体的形态和数目:染色体的形态特征、大小、类别,染色质的基本结构、染色体的结构模型,染色体的数目,核型分析3、细胞的有丝分裂:细胞周期、有丝分裂过程及遗传学意义4、细胞的减数分裂:减数分裂过程及遗传学意义5、配子的形成和受精:生殖方式、雌雄配子的形成、受精、直感现象、无融合生殖6、生活周期:生活周期、世代交替、低等植物的生活周期、高等植物的生活周期、高等动物的生活周期第二章遗传物质的分子基础1、DNA作为主要遗传物质的证据:间接证据、直接证据(细菌的转化、噬菌体的侵染与繁殖、烟草花叶病毒的感染与繁殖)2、核酸的化学结构:DNA和RNA及其分布、DNA和RNA的分子结构3、DNA的复制:DNA复制的一般特点、原核生物DNA合成、真核生物DNA合成的特点以及与原核生物DNA合成的主要区别4、RNA的转录及加工:三种RNA分子、RNA合成的一般特点、原核生物RNA的合成、真核生物RNA的转录及加工5、遗传密码与蛋白质翻译:遗传密码及其特征、蛋白质的合成过程、中心法则及其发展第三章孟德尔遗传1、分离规律:孟德尔的豌豆杂交试验、性状分离、分离现象的解释、表现型和基因型、分离规律的验证(测交法、自交法、F1花粉鉴定法)、分离比例实现的条件、分离规律的应用2、独立分配规律:两对相对性状的遗传及其分离比、独立分配现象的解释、独立分配规律的验证(测交法、自交法)、多对基因的遗传、独立分配规律的应用,某2测验3、孟德尔规律的补充和发展:显隐性关系的相对性、复等位基因、致死基因、非等位基因间的相互作用、多因一效和一因多效第四章连锁遗传和性连锁1、连锁和交换:连锁遗传的发现及解释、完全连锁和不完全连锁、交换及其发生机制2、交换值及其测定:交换值、交换值的测定(测交法、自交法)3、基因定位与连锁遗传图:基因定位(两点测验、三点测验、干扰与符合)、连锁遗传图4、真菌类的连锁与交换:着丝点作图5、连锁遗传规律的应用6、性别决定与性连锁:性染色体、性别决定、性连锁、限性遗传、从性遗传第五章基因突变1、基因突变的时期和特征:基因突变的时期、基因突变的一般特征2、基因突变与性状表现:显性突变和隐性突变的表现、大突变和微突变的表现3、基因突变的鉴定:植物基因突变的鉴定(真实性、显隐性、突变频率)、生化突变的鉴定(营养缺陷型及其鉴定)、人类基因突变的鉴定24、基因突变的分子基础:突变的分子机制(碱基替换、缺失、插入)、突变的修复(光修复、暗修复、重组修复、SOS修复),转换与颠换,DNA防护机制(简并性、回复突变、抑制突变、多倍体、致死突变)5、基因突变的诱发:物理因素诱变(电离辐射与非电离辐射)、化学因素诱变(碱基类似物、DNA诱变剂)第六章染色体结构变异1、缺失:类型、细胞学鉴定、遗传效应2、重复:类型、细胞学鉴定、遗传效应3、倒位:类型、细胞学鉴定、遗传效应4、易位:类型、细胞学鉴定、遗传效应5、染色体结构变异的应用:基因定位、果蝇的CIB测定法、利用易位制造玉米核不育系的双杂合保持系、易位在家蚕生产上的利用、利用易位疏花疏果防治害虫第七章染色体数目变异1、染色体的倍数性变异:染色体组及其整倍性、整倍体与非整倍体(名称、染色体组成、联会方式)2、同源多倍体的形态特征、同源多倍体的联会和分离(染色体随机分离、染色单体随机分离)3、异源多倍体、多倍体的形成与应用、同源联会与异员源联会(烟草、小麦)、单倍体4、非整倍体:亚倍体(单体、缺体)、超倍体(三体、四体),三体的基因分离5、非整倍体的应用:单体测验、三体测验、染色体替换第八章数量遗传1、数量性状的特征:数量性状的特征、多基因假说、超亲遗传2、数量性状遗传研究的基本统计方法:均值、方差、标准差3、遗传模型:加性-显性-上位性效应及其与环境的互作,显性3表现形式4、遗传率的估算及其应用(广义遗传力和狭义遗传力)5、数量性状基因定位,单标记分析法,区间定位法,复合区间定位法,应用(3方面)第九章近亲繁殖和杂种优势1、近交与杂交的概念、自交和回交的遗传效应,纯合率2、纯系学说3、杂种优势的表现和遗传理论(显性假说、超显性假说、上位性假说)4、杂种优势利用与固定第十章细菌和病毒的遗传1、细菌和病毒遗传研究的意义:细菌、病毒、细菌和病毒在遗传研究中的优越性2、噬菌体的遗传分析:噬菌体的结构(烈性噬菌体、温和性噬菌体)、噬菌体的基因重组与作图3、细菌的遗传分析转化:转化的概念与过程、转化和基因重组作图接合:接合的概念与过程、U型管实验、F因子及其存在状态、中断杂交试验及染色体作图性导:性导的概念与过程、性导的作用转导:转导的概念与过程、利用普遍性转导进行染色体作图第十一章细胞质遗传1、细胞质遗传的概念和特点:细胞质遗传的概念、细胞质遗传的特点2、母性影响:母性影响的概念及其与母性遗传的区别3、叶绿体遗传:叶绿体遗传的表现、叶绿体遗传的分子基础4、线粒体遗传:线粒体遗传的表现、线粒体遗传的分子基础5、共生体和质粒决定的染色体外遗传:共生体的遗传(卡巴粒)、4质粒的遗传6、植物雄性不育的遗传:雄性不育的类别及其遗传特点(核不育型和质核不育型、孢子体不育和配子体不育、单基因不育和多基因不育、不育基因的多样性)、雄性不育的发生机理、雄性不育的利用(三系法、二系法)第十二章基因工程1、基因工程概述4、重组DNA分子5、将目的基因导入受体细胞(常用导入方法)、转基因生物的鉴定、基因工程的应用、转基因生物(食品)的安全问题第十三章基因组学1、基因组学的概念与概述、C值、N值2、基因组学的研究内容:结构基因组学、功能基因组学、蛋白质组学3、基因组图谱的构建(遗传图谱与标记种类、物理图谱)4、基因组测序策略:鸟枪法、重叠克隆群法5、基因组图谱的应用(5个方面)6、生物信息学与蛋白质组学第十四章基因表达的调控1、基因的概念及其发展、基因的微细结构、顺反测验、基因的作用与性状的表达2、原核生物的基因调控:转录水平的调控,乳糖操纵元、色氨酸操纵元;翻译水平的调控3、真核生物的基因调控:DNA水平、染色质水平(组蛋白、非组蛋白)、转录水平(顺式作用元件、反式作用因子)、翻译水平的调5控、蛋白质加工4、原核生物与真核生物在基因调控上的区别第十五章遗传与发育1、细胞核和细胞质在个体发育中的作用:细胞质在细胞生长分化中的作用、细胞核在细胞生长分化中的作用、细胞核与细胞质在个体发育中的相互依存、环境条件的影响2、基因对个体发育的控制:个体发育的阶段性、基因与发育模式、基因与发育过程3、细胞的全能性第十六章群体遗传与进化1、群体的遗传平衡:等位基因频率和基因型频率、哈迪-魏伯格定律及其应用2、改变基因平衡的因素:突变、选择、遗传漂变、迁移3、达尔文的进化学说及其发展:生物进化的概念、达尔文的进化学说及其发展、分子水平的进化4、物种的形成:物种概念、物种形成的方式(渐变式、爆发式)6。
遗传学名词解释1.等位基因:位于同源染色体对等部位上的基因叫等位基因。
2.数量性状:表现型变异是连续的一类遗传性状。
3.转导:以噬菌体为媒介将供体菌部分DNA转移到受体菌内的细菌遗传物质重组的过程。
4.遗传力;可遗传变异占变异总量的百分比。
5.F’因子:F因子因为不正确环出而携带有细菌染色体一些基因,这种携带有细菌染色体片段的F因子称为F’因子。
6.胚乳直感:如果在3n胚乳的性状上由于精核的影响而直接表现父本的某些性状,这种现象称为胚乳直感或花粉直感。
7.广义遗传力:通常定义为遗传方差占表现型方差的比率。
8.孟德尔群体:通过个体间的交配结果孟德尔的遗传因子以各种不同方式从一代传递到下一代。
9.杂种优势:是生物界的普遍现象,它是指杂合体在一种或多种性状上表现优于两个亲本的现象。
10.复等位基因:是指在同源染色体的相同位点上,存在三个或三个以上的等位基因,这种等位基因在遗传学上称为复等位基因。
11.基因突变:是指染色体上某一基因位点内部发生了化学性质的变化,与原来基因形成对性关系。
12.交换值:是指同源染色体的非姊妹染色单体间有关基因的染色体片段发生交换的频率。
13.母性影响:由于母本基因型的影响,使子代表现母本性状的现象叫做母性影响14.性导;是指接合时由F’因子所携带的外源DNA转移到细菌染色体的过程。
15.狭义遗传力:通常定义为加性遗传方差占表现型方差的比率。
16.同源染色体;形态结构彼此相同,遗传性质相似的一对染色体,其中一条来自母本,一条来自父本。
17.基因:在DNA分子链上,具有遗传效应的特定的核苷酸序列。
18.质量性状:表现型和基因型具有不连续的变异。
19.细菌的接合:是指供体细胞的遗传物质通过细胞质桥单向地转移到受体细胞中,并通过交换而发生重组的过程。
20.雄性不育:即雄蕊或雄花发育不正常,不能产生花粉,但雌蕊和雌花发育正常,能接受外来花粉受精结实的现象。
21.保持系:雄蕊,雌蕊发育正常,将它的花粉授给不育系,使不育性得到保持。
遗传复习资料遗传复习资料遗传学是生物学中的一个重要分支,研究的是物种遗传信息的传递和变异。
在生物进化和物种多样性的形成中,遗传学起着至关重要的作用。
本文将为大家提供一些遗传学的复习资料,帮助大家更好地理解和掌握这一学科的知识。
一、基本概念1. 遗传物质:DNA是细胞中的遗传物质,它携带了生物体的遗传信息,并通过遗传过程传递给后代。
2. 基因:基因是DNA分子中的一个特定片段,它编码了一个特定的蛋白质或RNA分子。
3. 染色体:染色体是DNA和蛋白质组成的复杂结构,它们携带了基因,并通过有丝分裂和减数分裂进行遗传。
二、遗传的模式1. 显性遗传:当一个基因突变后,表现出来的性状会完全覆盖掉正常基因的表达。
2. 隐性遗传:当一个基因突变后,只有在两个突变基因都存在时,才会表现出来。
3. 部分显性遗传:当一个基因突变后,表现出来的性状介于正常基因和突变基因之间。
三、遗传的机制1. 遗传变异:遗传变异是指在基因水平上的改变,包括基因突变、基因重组和基因转移等。
2. 基因突变:基因突变是指DNA序列发生改变,包括点突变、插入突变和缺失突变等。
3. 基因重组:基因重组是指染色体上的基因位置发生改变,导致基因的组合方式发生变化。
4. 基因转移:基因转移是指基因从一个个体传递到另一个个体,可以通过性繁殖和细胞分裂实现。
四、遗传的规律1. 孟德尔定律:孟德尔通过对豌豆杂交实验的观察,提出了遗传的基本规律,包括隔离定律、自由组合定律和优势定律。
2. 隔离定律:孟德尔指出,在杂交过程中,两个纯合子基因会在子代中分离,并独立地传递给后代。
3. 自由组合定律:孟德尔认为,在杂交过程中,不同基因的组合方式是独立的,互不影响。
4. 优势定律:孟德尔观察到,在杂交过程中,某些基因表现得比其他基因更为突出。
五、遗传的应用1. 人类遗传病:遗传学的研究可以帮助我们了解人类遗传病的发生机制,并寻找相应的治疗方法。
2. 作物改良:通过遗传学的知识,可以培育出适应不同环境条件、产量更高、品质更好的作物品种。
一:名词解释1.同源染色体:是指形态,大小,结构,功能和来源都相同的染色体。
在二倍体生物中,每对同源染色体的两个成员一个来自父方,另一个来自母方。
2.显性基因:基因型处于杂合状态时,能够表现其表型效应的基因。
3.真实遗传:子代性状与亲代性状相同的遗传方式。
4.测交:杂交一代与相应隐性纯合类型进行的杂交。
5.完全显性:是指具有一对相对性状差异的两个纯合亲本杂交后,F1只表现出其中一个亲本的性状,而另一个亲本的性状没有得到表现。
6.不完全显性:具有一对相对性状差异的两个纯合亲本杂交后,F1表现双亲性状的中间类型的现象。
7.复等位基因:在群体中,同源染色体的相同座位上存在的三个或三个以上的等位基因。
这种现象叫复等位现象。
8.表现度:指杂合体在不同的遗传背景和环境因素的影响下,个体间基因表达的变化程度。
9.连锁遗传:同一染色体上的某些基因以及它们所控制的性状结合在一起传递的现象。
10.相引相:一亲本的两对等位基因均为显性,另一亲本的两对等位基因均为隐性,这样的杂交组合称为相引相。
11.两点测交:两点测交是测定基因间距离的基本方法。
它是以两个基因为基本单位,通过一次杂交和一次测交的试验结果来计算两个基因间的重组值,从而对基因进行定位的方法。
12.三点测交:三点测交是基因定位的常用方法。
它只通过一次杂交和一次测交,就可以同时确定三个基因在染色体上的顺序和位置。
三点测交比两点测交简便,且可以测出双交换的数值,因此,能更准确地确定连锁基因间的相对距离和位置。
13.接合:通过供体细菌与受体细胞之间的直接接触而发生的单向遗传物质转移的过程。
14.中断杂交技术:根据基因进入受体细胞的顺序和时间绘制连锁图的技术。
15.转导:以噬菌体为媒介,将遗传信息从一个细菌〔供体〕转移到另一个细菌〔受体〕的过程。
16.广义遗传率〔力〕:指遗传型方差占表型方差的百分比,可作为杂种后代进行选择的一个指标。
用h2B表示。
17.杂种优势:两个遗传组成不同的亲本杂交产生的杂种F1在生长势,生活力,繁殖力,抗逆性,产量和品质等方面优于双亲的现象。
第一章学水平,造福人类。
孟德尔年从事豌豆杂交试验,首次提出别离和独立分配两个遗传根本规律。
贝特生年提出遗传学作为一个学科的名称。
约翰生于年发表『纯系学说』,并且首先提出『基因』一词,以代替孟德尔遗传因子概念。
摩尔根等用果蝇试验发现性状连锁现象。
年阿委瑞用试验方法直接证明是转化肺炎的遗传物质。
年瓦特森和克里克通过份子结构模式理论。
第二章态分析的过程。
形态特征:必备:主缢痕、着丝粒随体。
不同物种和同一物种染色体大小〔长度〕差异都很大,宽度上同一物种的染色体大致一样。
数目:各种生物的染色体数目都是恒定的,在体细胞中是成对的,性细胞那末是成单的。
和蛋白质构成,其形态数目有种系的特性。
第三章验证别离定律的方法:测交法,自交法,花粉鉴定法。
形成配子时,每对同源染色上的每一对基因发生别离,而位于非同源染色上的非等位基因之间自由组合。
个体表现出来,即一对等位基因的两个成员在杂合体中都表达。
因。
基因互作:由于不同对基因间相互作用共同决定同一单位性状表现的遗传现象。
两对基因中惟独一对基因为显性或者两对基因均为隐性时,个体表现为另一种性状, 这种基因互作类型称为基因互补作用。
发生互补作用的基因称为互补基因。
现越明显的现象,这种基因互作类型称为基因累加作用。
第四章间的交换与重组。
换的频率。
交换型子囊数x x —型〔雄杂合型〕;型〔雌型型杂合型〕又称伴性遗传。
穿插遗传:父亲的性状传给女儿,母亲的性状传给儿子的遗传现象。
人类的性连锁,例:血友病、色盲。
鸡的性连锁,例:芦花鸡的毛色遗传。
第五章份子中发生碱基对的添加,缺失或者替换而引起的基因结构的改变。
修复的方式包括:错配修复,直接修复,切除修复,双链断裂修复,重组修复。
基因突变的诱发因素:物理诱变,化学诱变。
基因突变的普通特征:①突变的重演性②突变的可逆性③突变的多方向性④突变的有害性和有利性⑤突变的平行性和独立性。
论述化学诱变的因素有哪些?作用又是什么?① 碱基类似物。
是与正常碱基结构相似, 能在制过程中可代替正常碱基掺入到份子中的化合物,如和等。
第一章绪论第一章 绪论1.遗传学:研究生物遗传和变异的科学。
2.遗传与变异:遗传是亲子代个体间存在相似性。
变异是亲子代个体之间存在差异。
遗传的细胞学基础第二章第二章 遗传的细胞学基础3.同源染色体:同源指形态、结构、大小和功能相似的一对染色体,他们一条来自父本,一条来自母本。
4.非同源染色体:指形态和结构等不同的各种染色体。
5.联会:在减数分裂前期I,同源染色体建立联系的配对过程。
6.染色质:染色质是指染色体在细胞分裂的间期所表现的形态,呈纤细的丝状结构,含有许多基因的自主复制核酸分子。
7.染色体组型分析:对生物细胞核内全部染色体的形态特征所进行的分析,称为染色体组性分析或核型分析。
8.胚乳直感:在3n胚乳(或2n花粉)上由于精核的影响而直接表现父本的某些性状,这种现象称为胚乳直感或花粉直感。
9.果实直感:种皮或果皮组织在发育过程中由于花粉影响而表现父本的某些性状,则称为果实直感。
10.减数分裂:在性母细胞成熟时,配子形成过程中所发生的一种使细胞染色体数目减半的特殊分裂方式。
11.有丝分裂:又称体细胞分裂。
整个细胞分裂包含两个紧密相连的过程,先是细胞核分裂,后是细胞质分裂,核分裂过程分为四个时期;前期、中期、后期、末期。
最后形成的两个子细胞在染色体数目和性质上与母细胞相同。
12.二价体:各对染色体的对应部位相互紧密并列,逐渐沿着纵向连接在一起,这样联会的一对同源染色体,成为二价体。
13.受精:雄配子与雌配子融合为一个合子,称为受精。
14.双受精:授粉后,一个精核(n)与卵细胞(n)受精结合为合子(2n),将来发育成胚。
同时另一精核(n)与两个极核(n+n)受精结合为胚乳核(3n),将来发育成胚乳。
这一过程就称为双受精。
15.无融合生殖:雌雄配子不发生核融合的一种无性生殖方式,称为融合生殖。
16.生活周期:从合子到个体成熟和死亡所经历的一系列发育阶段。
17.世代交替:有性生殖的生物的生活周期大多数包括1个无性世代,这样二者交替发生,称为世代交替。
第一章绪论遗传学:研究生物遗传与变异的学科。
遗传:生物按照亲本所经历的同一发育途径和方式,产生与亲代相似的复本的一种自身繁殖过程称为遗传(heredity)。
遗传的本质就是遗传物质通过不断的复制和传递,保持亲子代间相似的过程。
变异:同种个体间的差异叫变异。
遗传代表的是性状的稳定性,是相对的;变异代表的是性状的不稳定性,是绝对的。
遗传和变异是生物进化和物种形成的内在因素。
遗传学的研究目的:揭示遗传物质的本质,阐明遗传物质的传递方式,研究遗传信息实现的途径。
1900年,德国的柯伦斯(C.Correns)、荷兰的德佛里斯(De.Vries)、奥地利的切马克(E.SeyseneggTschermak)三人重新发现孟德尔遗传定律,标志着遗传学的诞生遗传学的发展时期及重要成果1、细胞遗传学时期1910年摩尔根连锁与交换定律1927年穆勒发现X射线的诱变作用1908年哈迪温伯格创立哈代-伯格定律(遗传平衡定律)奠定了群体遗传学的基础1932年费舍尔霍尔丹赖特建立了群体遗传学2、微生物遗传学时期1941年美国比德尔(G.W.Beadle)对粗糙链孢霉的研究提出“一个基因一种酶”的理论1944 艾佛里(O.T.Avery)细菌转化实验证明DNA是遗传物质。
此后,莱德伯格和塔特姆对大肠杆菌进行了有关遗传物质和基因重组的深入研究1957年本泽尔(S.Benzer)提出顺反子学说,打破了经典遗传学中基因的三位一体观点3、分子遗传学时期1953年沃森克里克提出DNA分子的双螺旋结构1961年雅各布和莫诺提出操纵子学说1967年尼伦伯格和克拉纳等人破译了遗传密码1973年伯格在体外将不同生物的DNA人工重组在一起,获得杂种分子,建立了DNA重组技术1977 罗伯茨夏普提出断裂基因的概念1985年穆利斯发明PCR反应第二章遗传物质的基础原核生物的染色体是裸露的环状双链DNA分子(cccDNA, circle covalence close DNA),且原核生物通常只有一个环状染色体;真核生物的染色体位于细胞核内,由同蛋白质分子和少量RNA相结合的线状双链DNA分子所组成。
遗传学复习资料及答单项选择题1.1900年( )规律的重新发现标志着遗传学的诞生。
A.达尔文B.孟德尔C.拉马克D.克里克染色体存在于植物细胞的〔〕。
A 内质网中B 细胞核中C 核糖体中D叶绿体中一个大孢子母细胞减数分裂后形成四个大孢子,最后形成〔〕A 四个雌配子B 两个雌配子C一个雌配子D三个雌配子别离定律证明, 杂种F1形成配子时, 成对的基因〔〕。
A 别离, 进入同一配子B别离, 进入不同一配子C不别离, 进入同一配子D不别离, 进入不同一配子独立分配规律中所涉及的基因重组和染色体的自由组合具有平行性,所以基因重组是发生在减数分裂的〔〕A 中期ⅠB后期ⅡC后期ⅠD中期Ⅱ染色体倒位的一个主要遗传学效应是降低到位杂合体中到位区段及其临近区域连锁基因之间的重组率。
导致这一效应的实质是〔〕A 倒位区段内不发生交换B 倒位圈内发生交换后同时产生重复和缺失的染色单体C 倒位区段不能联会D倒位圈内发生屡次交换7.某一植物中,以AABBDD×aabbdd杂交,F1再与三隐性亲本测交,获得的Ft数据为:ABD20;abd20;abD20;ABd20;Abd5;aBD5;aBd5;AbD5;从这些数据看出ABD是〔〕。
A. AB 连锁,D独立; B .AD 连锁,B独立;C. BD 连锁,A独立D.ABD 都连锁8.两个正常夫妇生下一个色盲的儿子。
儿子色盲基因是从双亲的哪一个传来的?〔〕A.父亲B.母亲C.父母各1/2D.父或母任一方9.在生物体内,tRNA参与的生化反响是( )。
A.转录B.翻译C.复制D. 前体mRNA的剪接10.金鱼草的红花基因(R)对白花基因〔r〕是不完全显性,另一对与之独立的窄叶形基因〔N〕对宽叶形基因〔n〕为完全显性,那么基因型为RrNn的个体自交后代会产生( )。
A. 1/8粉红花宽叶B. 1/8粉红花窄叶C. 3/16 白花宽叶D. 3/16红花宽叶11.男性红绿色盲患者与隐性基因携带者的女性结婚,生育一子一女,子女表现型均正常的概率是( )。
遗传学第一章绪论名词解释:遗传与变异概念:遗传学(Genetics)是研究生物遗传和变异的科学,遗传与变异是生物界最普通、最基本的两个特征。
遗传(heredity):指生物亲代与子代相似的现象,即生物在世代传递过程中可以保持物种和生物个体各种特性不变;变异(variation):指生物在亲代与子代之间,以及在子代与子代之间表现出一定差异的现象。
遗传学(Genetics)是研究生物遗传和变异的科学,遗传与变异是一对矛盾对立统一的两个方面,遗传是相对的、保守的,而变异是绝对的、发展的,没有遗传就没有物种的相对稳定,也就不存在变异的问题‘没有变异特征物种将是一成不变的,也不存在遗传的问题。
第二章遗传的细胞学基础 填空题: 1、玉米种子的淀粉性(A)基因对砂糖性基因(a)为显性,一个纯系砂糖性玉米的雌蕊接受了淀粉性的花粉,它所产生的种子的胚乳的基因型是_____ Aaa _____。
2、在AaBbCcDd×AaBbCcDd的杂交中,①每一亲本能产生 16种配子②后代的基因型种类有81 种。
③后代的表型种类有16 种(假定4对基因均为完全显性)。
④后代中表现A_B_C_D_表型的占 81/256。
⑤后代中表现aabbccdd表型的占1/256 。
3、细胞减数分裂过程中,__前期Ⅰ的偶线期____期发生同源染色体的联会配对;前期Ⅰ的粗线期______期染色体间发生遗传物质交换;__前期Ⅰ的双线期____期发生交叉端化现象,这一过程一直进行到中期Ⅰ,后期Ⅰ_同源染色体_____染色体分开,而染色单体分离在___后期Ⅱ_____期。
4、金丝雀的黄棕色羽毛由性连锁隐性基因a控制,绿色羽毛由基因A控制。
在一组合的后代中,所有的雄雀都是绿毛的,雌雀都是黄棕色的。
该组合的亲本父本基因型为Z a Z a,母本基因型为Z A W 。
5、全部的哺乳类动物为XY型类型性决定;家禽几乎为ZW型类型性决定;蜜蜂的性别是由染色体倍数决定的;果蝇的性别由性指数决定的。
四、名词解释1、中断杂交试验一种用来研究细菌接合过程中基因转移方式的试验方法。
把接合中的细菌在不同时间取样,并把样品猛烈搅拌以分散接合中的细菌,然后分析受体细菌的基因顺序。
是大肠杆菌等细胞中用来测定基因位置的一种方法。
2. 母性影响由于卵细胞质中存在母体核基因的某些代谢产物,使子代的性状并不受本身的基因型所决定,而表现与母体相似性状的遗传方式。
3.抑制作用在两对以上独立遗传的基因中,其中一对显性基因本身并不控制性状表现,但对其它对基因的表现有抑制效应。
4、细胞质遗传(核外遗传)指由细胞质基因所决定的遗传现象和遗传规律。
其原因是控制某性状的基因位于线粒体、叶绿体等细胞器上。
细胞质遗传在农业生产上应用最成功的例子是杂种优势利用中质核互作型控制雄性不育现象。
5、转换与颠换转换:指DNA分子中一种嘌呤被另一种嘌呤替换,或一种嘧啶被另一种嘧啶替换的突变方式;颠换:指DNA分子中的嘌呤碱基被嘧啶碱基替换,或嘧啶碱基被嘌呤碱基替换的突变方式。
6、核型分析把生物细胞核内全部染色体的形态特征(染色体长度、着丝点位置、长短臂比、随体有无等)所进行的分析,也称为染色体组型分析。
7、遗传平衡定律(Hardy-Weinberg):在一个完全随机交配群体内,如果没有其他因素(如突变、选择、遗传漂移和迁移)干扰时,则基因频率和基因型频率常保持一定。
8、突变的平行性亲缘关系相近物种因遗传基础近似,常发生相似的基因突变。
9. 影印培养法使在一系列培养皿的相同位置上出现相同菌落的接种培养方法。
把长有细菌菌落的培养皿倒过来印到绒布上,接着把无菌培养皿倒过来,在绒布上印一下,将每一菌落接种到相应的位置上。
4. 母性影响:由于卵细胞质中存在母体核基因的某些代谢产物,使子代的性状并不受本身的基因型所决定,而表现与母体相似性状的遗传方式。
10、转导以噬菌体为媒介,把一个细菌的基因导入另一个细菌的过程。
即细菌的一段染色体被错误地包装在噬菌体的蛋白质外壳内,通过感染转移到另一受体菌中。
一、概念对比说明(名词解释)遗传学与基因工程遗传学:是研究生物遗传和变异规律的科学。
由于生命体的遗传与变异的物质基础是基因,所以现代遗传学是研究基因的结构、功能及其变异、传递和表达规律的学科。
基因工程:基因工程是狭义的遗传工程,指按照人们预先设计好的蓝图,从分子水平上对基因进行体外操作,将外源基因加工后插入到质粒和病毒等载体中,转化受体细胞并使目的基因得以扩增和表达,从而实现人们定向改造生物,得到人们所需的生物性状或基因工程产品的技术。
其核心技术为DNA重组技术。
亲缘系数与近交系数亲缘系数:是指将群体中个体之间基因组成的相似程度用数值来表示。
近交系数:是指根据近亲交配的世代数,将基因的纯化程度用百分数来表示。
遗传与变异遗传:亲代与子代之间同一性状相似的现象。
变异:亲代与子代或子代之间出现性状差异的现象。
同源染色体与等位基因同源染色体:形态和结构相同的一对染色体称为同源染色体。
等位基因:在同源染色体上占据相同座位的两个不同形式的基因。
等位基因与复等位基因等位基因:在同源染色体上占据相同座位的两个不同形式的基因,是由突变所造成的许多可能的形式之一。
复等位基因:一个基因存在很多等位形式,称为复等位现象,这组基因就叫复等位基因。
常染色质与异染色质常染色质:是指间期细胞核内染色质纤维折叠压缩程度低,相对处于伸展状态,用碱性染料染色时着色浅的那些染色质。
异染色质:是指间期细胞核内染色质纤维折叠压缩程度高,处于聚缩状态,用碱性染料染色时着色深的那些染色质。
一倍体与多倍体一倍体:只有一个染色体组的细胞或体细胞中只含有单个染色体组的个体。
多倍体:体细胞中含有三个或三个以上染色体组的个体。
同源多倍体与异源多倍体同源多倍体:由同一物种的染色体组加倍所形成的细胞或个体。
异源多倍体:两个或两个以上的不相同物种杂交,其杂种的染色体组经染色体加倍形成的多倍体。
整倍体与非整倍体整倍体:是指具有某物种特有的一套或几套整倍数染色体组的细胞或个体。
第一章绪论遗传学:研究生物遗传与变异的学科。
遗传:生物按照亲本所经历的同一发育途径和方式,产生与亲代相似的复本的一种自身繁殖过程称为遗传(heredity)。
遗传的本质就是遗传物质通过不断的复制和传递,保持亲子代间相似的过程。
变异:同种个体间的差异叫变异。
遗传代表的是性状的稳定性,是相对的;变异代表的是性状的不稳定性,是绝对的。
遗传和变异是生物进化和物种形成的内在因素。
第二章遗传物质的基础原核生物的染色体是裸露的环状双链DNA分子(cccDNA, circle covalence close DNA),且原核生物通常只有一个环状染色体;真核生物的染色体位于细胞核内,由同蛋白质分子和少量RNA相结合的线状双链DNA分子所组成。
在细胞处于不分裂状态时,这种无定形的易被碱性染料着色的DNA和蛋白质复合物,称为染色质染色质的分类:常染色质和异染色质两类,这是根据染色质染色反应而划分的,其中染色很深的区段称异染色质,染色很浅的区段,称为常染色质。
异染色质又可以分为组成型异染色质和功能型异染色质两种。
染色质的组成:由DNA和蛋白质组成,与DNA结合的蛋白为碱性蛋白。
染色体的细微结构:1、一级结构,核小体是染色质的结构单位2、二级结构,螺线体是由核小体连接起来的细线螺旋化形成的中空结构3三级结构,超螺线体是螺线体经螺旋化形成的4、四级结构,染色体染色体的特征:1、数量特征,恒定性(同一种生物染色体数目是恒定的);在体细胞中是成对的,以2n表示;在性细胞中总是成单的,以n表示;不同种染色体数目差异很大2、结构:原核生物的染色体是裸露的DNA分子(细菌等)或RNA分子(病毒等),线粒体和叶绿体的DNA也是裸露的,呈环状。
真核生物的染色体为DNA好蛋白质极少量RNA组成的复合体染色体组:一个正常的二倍体个体形成的配子所含有的全部不同染色体染色体组型:一个典型的有丝分裂中期的染色体的特征,对其进行分析的过程称为染色体组性分析端粒:染色体游离端的特化结构多线染色体:指一些昆虫的唾液腺细胞中的类似电缆的一类巨大染色体灯刷染色体:两栖类一些种类中的未成熟卵母细胞中发现的类似灯刷状的染色体有丝分裂的意义:1.保证了物种的连续性和稳定性2.维持个体的正常生长和发育减数分裂(meiosis),又称成熟分裂,是在性母细胞成熟时,配子形成过程中所发生的一种特殊的有丝分裂。
细胞连续分裂两次,而DNA只复制一次,所以分裂后cs数目减半主要特点1、同源染色体在前期Ⅰ发生配对联会。
2包括两次分裂,即减数分裂Ⅰ和减数分裂Ⅱ。
第一次发生染色体减数,第二次是等数。
3、最后形成的子细胞染色体数目较母细胞减少一半。
减数分裂的意义:1、保证了亲代与子代间染色体数目的恒定性,为后代的正常发育和性状遗传提供了物质基础,同时保证了物种的相对稳定性2、为生物的变异提供了重要的物质基础,有利于生物的适应与进化,并为人工选择提供了丰富的材料前期Ⅰ可进一分为五个时期:细线期、偶线期(cs开始配对、重组)、粗线期(完全联会配对,非姊妹染色单体间出现相互交换)、双线期和终变期。
中期Ⅰ是鉴定染色体数目的最好时期。
减数分裂cs数目减半发生在减数第一次分裂后期同源cs分离,非同源cs自由组合时胚乳直感(xenia):在3n胚乳的性状上由于精核的影响而直接表现父本某些性状的现象。
果实直感(metaxenia):种皮或果皮组织在发育过程中由于花粉影响而表现父本的某些性状染色体遗传学说1、染色体可在显微镜下看到,有一定的形态结构。
基因是遗传学的单位,每对基因在杂交中仍保持它们的完整性和独立性。
2、染色体成对存在,基因也是成对的。
在配子中每对基因只有一个,而每对同源染色体也只有一个。
3、个体中成对的基因一个来自母本,一个来自父本,染色体也是如此,两个同源染色体也是分别来自父本和母本。
4、不同对基因在形成配子时的分离与不同对染色体在减数分裂后期的分离,都是独立分配的。
DNA是遗传物质,DNA的特点:A. 稳定性B. 连续性C. 多样性证明DNA是遗传物质的三个经典实验:1、肺炎双球菌的转化实验2、噬菌体感染实验3、烟草花叶病毒(TMV) 的重建实验DNA的双螺旋模型(1)一个双螺旋是由2个反向平行的单链组成;(2)一个螺旋的直径位2nm,螺距为3.4nm,相临碱基的垂直距离为0.34nm,交角为36°;(3)两链之间由碱基对配对,A=T,G=C;(4)DNA双螺旋有大沟和小沟的存在。
RNA的分子结构RNA通常是单链线型,但可自身回折形成局部双螺旋,进而折叠。
除tRNA外,几乎全部细胞中的RNA都与蛋白形成核蛋白复合物。
RNA既是信息分子,又是功能分子。
RNA的生物学功能1、RNA在遗传信息的翻译中起决定作用,rRNA在蛋白质生物合成中起装配和催化作用,tRNA起转运和信息转换的作用,mRNA在蛋白质的生物合成过程中起翻译模板的功能2、RNA具有重要的催化功能和其他持家功能3、RNA转录后加工和修饰依赖于各类小RNA和其蛋白质复合物。
4、RNA对基因表达和细胞功能具有重要调节作用。
DNA的结构:左旋,Z-DNA Z-DNA基本重复单位是嘌呤-嘧啶,嘧啶的苷键——反式取向,嘌呤的苷键——顺式取向,而右手螺旋中,苷键构象都是反式,因此,是嘌呤苷键构型的不同产生了左手双螺旋。
Z-DNA与B-DNA区别:螺旋方向、苷键构象、二核苷酸重复单位右旋,B-DNA A-DNAA型螺旋比较短粗,碱基倾角大,大沟深度明显超过小沟;B型较适中;Z型细长,大沟平坦,核苷酸构象顺反相间,使磷酸和糖骨架呈Z字型。
各种类型的DNA分子的比较A B Z外形粗短适中细长螺旋方向右手右手左手螺旋直径 2.55nm 2.37nm 1.84nm碱基轴升0.23nm 0.34nm 0.38nm碱基夹角32.7°34.6°60°每圈碱基数11 10.4 12螺距 2.46nm 3.32nm 4.56nm轴心与碱基对关系不穿过碱基对穿过碱基对不穿过碱基对碱基倾角19°1°9°糖环折叠C3’内式C2’内式嘧啶C2’内式,嘌呤C3’内式糖苷键构像反式反式C、T反式, G 顺式大沟很狭、很深很宽、较深平坦小沟很宽、浅狭、深较狭、很深第三章孟德尔遗传定律选择豌豆作为研究材料的理由:1、豌豆具有稳定的易于区分的性状;2、自花授粉且闭花受精;3、豌豆豆荚成熟后籽粒都留在豆荚内,便于各种类型籽粒的准确计数性状(character)——是生物体形态结构特征、生理生化特性、代谢类型和本能行为等,主要由遗传基础决定,其具体表现还与环境条件有关。
单位性状(unit character)——由一对等位基因控制的某一种可以区分的性状,可用于遗传分析。
相对性状(contrast/relative character)——由等位基因所决定的同一性状的不同表现型。
显性性状(dominant character)——为等位基因中显性基因所决定的性状,杂合体中得以表现。
隐性性状(recessive character)——等位基因中隐性基因所决定的性状,只有在隐性基因纯合时才得以表现。
纯系(pure line):经多代自交或长期近交(动物)所获得的高度自交系。
亲本世代(parental generation, P):杂交时的双亲世代。
正反交(reciprocal cross):第二个杂交与第一个杂交的双亲相同只是性别互换。
等位基因(alleles)——位于同源染色体上相同位置上,控制同一类性状的基因(遗传因子)。
基因型(genotype)——又称遗传型,指细胞或生物体的遗传组成总合。
表现型(phenotype)——简称表型,指特定基因型在一定环境条件下所表现的性状纯合体(homozygote)——指纯合基因型的细胞或个体,其等位基因呈同质状态,可真实遗传。
杂合体(heterozygote)——即杂合基因型的细胞或个体,一个或几个座位的等位基因呈异质状态。
测交(test cross):被测个体与纯合隐性亲本的杂交。
一方面,验证被测个体的基因型,另一方面,检测被测个体产生的配子类型和数量。
自交(selfing)基因型相同个体之间的交配。
与测交的目的相同。
可以推导F2代需要获得的某一基因型的个体数。
让F2植株自交产生F3株系,然后根据F3的性状表现来验证F2的基因型。
一因多效:一个基因影响多个性状的发育多因一效:多个基因一起影响同一性状的表现表现度:个体间基因表达的变化程度外显度:具有特定基因的一群个体中,表现该基因性状的个体的百分率复等位基因:在二倍体生物的个体中,一种基因(在一个基因座位上)只有两个等位基因,而在群体中可能存在两个以上等位基因,这些基因被称为复等位基因。
复等位性:存在复等位基因的这种现象,称为复等位性等位基因族:一套复等位基因称为等位基因族一对遗传因子的杂交试验(分离定律Law of Segregation)杂交实验的特点:1、一对相对性状不同的个体杂交,F1代只表现显性性状;2、F2代形成了与亲代相同的两类性状,称为分离现象;3、F2代两种类型之间的比例为3:1。
在设计的多个杂交试验中,都得到了类似的结果。
遗传因子假说:1、遗传性状是由遗传因子决定的;2、每一个单位性状都是由一对遗传因子控制的,在个体中成对存在;3、生殖细胞中遗传因子只有每对遗传因子中的一个;4、每对遗传因子中,一个来自父本,一个来自母本;5、形成生殖细胞时,每对遗传因子相互分开,分别进入生殖细胞中;6、生殖细胞的结合是随机的;7、每种单位性状中遗传因子存在两种形式,其中某一遗传因子只有纯合时才表现出某一性状,另一遗传因子在纯合或杂合时都可以表现出某一性状。
分离定律的内容:一对基因在杂合状态下互不沾染,保持其独立性,在配子形成时,又按原样分离到不同的配子中去。
通常情况下,配子分离比是1:1,F2代基因型分离比是1:2:1,F2表型分离比是3:1。
分离定律的验证:1、测交(test cross)2、自交(selfing)两对遗传因子的杂交试验(自由组合定律)1、F1只是表现显性性状;2、F2除具有亲组合之外,还有重组合类型;分离与组合现象.3、表型比例为:9:3:3:1自由组合定律的内容:两对或多对遗传因子在杂合状态时保持其独立性,互不污染。
配子形成时,同一对遗传因子彼此分离,独立传递;不同对的遗传因子则自由组合。
对于双因子杂交实验而言,F1配子比1:1:1:1:1;F2基因型比(1:2:1)2;表型比(3:1)2。
要达到理想的分离比例,必须具备下列条件:1、亲本必需是纯合二倍体,相对性状差异明显。
2、基因显性完全,不受其他基因影响而改变作用方式。
3、减数分裂过程,同源染色体分离机会均等,形成两类配子的数目相等, 或接近相等。