(浙江专版)2018年高考数学二轮专题复习选择填空提速专练(七)
- 格式:doc
- 大小:207.00 KB
- 文档页数:6
选择填空提速专练(八)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合P ={x ∈R||x |<2},Q ={x ∈R|-1≤x ≤3},则P ∩Q =( ) A .[-1,2) B .(-2,2) C .(-2,3]D .[-1,3]解析:选A 由题意得集合P =(-2,2),Q =[-1,3],所以P ∩Q =[-1,2),故选A. 2.已知直线l 1:ax +(a +2)y +1=0,l 2:x +ay +2=0,则“l 1∥l 2”是“a =-1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选B 由l 1∥l 2,可得a ·a =(a +2)·1,解得a =2或a =-1,所以“l 1∥l 2”是“a =-1”的必要不充分条件,故选B.3.在△ABC 中,cos A =35,cos B =45,则sin(A -B )=( )A .-725 B.725 C .-925D.925解析:选B 因为A ,B 为三角形的内角,所以A ,B ∈(0,π),则sin A =1-cos 2A =45,sin B =1-cos 2B =35,则sin(A -B )=sin A cos B -cos A sin B =45×45-35×35=725,故选B.4.向量a ,b 的夹角是60°,|a |=2,|b |=1,则|2a -b |=( ) A .13 B.13 C.7D .7解析:选 B 依题意,|2a -b |2=4a 2-4a ·b +b 2=16-4+1=13,故|2a -b |=13,故选B.5.(2017·全国卷Ⅲ)设x ,y 满足约束条件⎩⎪⎨⎪⎧3x +2y -6≤0,x ≥0,y ≥0,则z =x -y 的取值范围是( )A .[-3,0]B .[-3,2]C .[0,2]D .[0,3]解析:选B 作出不等式组表示的可行域如图中阴影部分所示,作出直线l 0:y =x ,平移直线l 0,当直线z =x -y 过点A (2,0)时,z 取得最大值2,当直线z =x -y 过点B (0,3)时,z 取得最小值-3,所以z =x -y 的取值范围是[-3,2].6.过双曲线C :x 2a -y 2b=1(a ,b >0)的左焦点F 作圆x 2+y 2=a 2的两条切线,切点分别为A ,B ,双曲线左顶点为M ,若∠AMB =120°,则该双曲线的离心率为( )A. 2B. 3 C .3D .2解析:选D 由题可知OA ⊥FA ,∠AMO =60°,OM =OA =a ,所以△AMO 为等边三角形,∠AFO =30°,在Rt △OAF 中,OF =c ,所以该双曲线的离心率e =c a =OF OA =1sin 30°=2,故选D.7.已知函数f (x )=ln x +(x -b )2(b ∈R)在⎣⎢⎡⎦⎥⎤12,2上存在单调递增区间,则实数b 的取值范围是( )A.⎝⎛⎭⎪⎫-∞,32 B.()-∞,3 C.()-∞,2D.⎝⎛⎭⎪⎫-∞,94解析:选D 由题意得f ′(x )=1x +2(x -b )=1x +2x -2b ,因为函数f (x )在⎣⎢⎡⎦⎥⎤12,2上存在单调递增区间,所以f ′(x )=1x +2x -2b >0在⎣⎢⎡⎦⎥⎤12,2上有解,所以b <⎝ ⎛⎭⎪⎫12x +x max ,x ∈⎣⎢⎡⎦⎥⎤12,2,由函数的性质易得当x =2时,12x +x 取得最大值,即⎝ ⎛⎭⎪⎫12x +x max =12×2+2=94,所以b 的取值范围为⎝ ⎛⎭⎪⎫-∞,94,故选D.8.2位男生和3位女生共5位同学站成一排,则3位女生中有且只有两位女生相邻的概率是( )A.310B.35C.25D.15解析:选B 依题意,基本事件总数为A 55,要使3位女生中有且只有两位女生相邻,需先将两位女生捆绑,然后排两位男生,最后将捆绑的两位女生与剩下的一位女生去插空,共有(C 23A 22)·A 22·A 23种排法,所以所求概率P =23A2222·A 23A 55=35,故选B. 9.记min{x ,y }=⎩⎪⎨⎪⎧y ,x ≥y ,x ,x <y .设f (x )=min{x 2,x 3},则( )A .存在t >0,|f (t )+f (-t )|>f (t )-f (-t )B .存在t >0,|f (t )-f (-t )|>f (t )-f (-t )C .存在t >0,|f (1+t )+f (1-t )|>f (1+t )+f (1-t )D .存在t >0,|f (1+t )-f (1-t )|>f (1+t )-f (1-t ) 解析:选C 由x2-x 3=x 2(1-x )≤0得x ≥1,所以f (x )=min{x 2,x 3}=⎩⎪⎨⎪⎧x 2,x ≥1,x 3,x <1.当t >1时,|f (t )+f (-t )|=|t 2+(-t )3|=t 3-t 2,|f (t )-f (-t )|=|t 2-(-t )3|=t 3+t 2,f (t )-f (-t )=t 2-(-t )3=t 3+t 2,所以|f (t )+f (-t )|<f (t )-f (-t ),|f (t )-f (-t )|=f (t )-f (-t );当0<t <1时,|f (t )+f (-t )|=|t 3+(-t )3|=0,|f (t )-f (-t )|=|t 3-(-t )3|=2t 3,f (t )-f (-t )=t 3-(-t )3=2t 3,所以|f (t )+f (-t )|<f (t )-f (-t ),|f (t )-f (-t )|=f (t )-f (-t ); 当t =1时,|f (1)+f (-1)|=0,|f (1)-f (-1)|=2,f (1)-f (-1)=2,所以|f (t )+f (-t )|<f (t )-f (-t ),|f (t )-f (-t )|=f (t )-f (-t ).综上所述,A ,B 错误.当t >0时,设g (t )=f (1+t )+f (1-t )=(1+t )2+(1-t )3=-t 3+4t 2-t +2,则g ′(t )=-3t 2+8t -1,令-3t 2+8t -1=0得t =4±133,所以函数g (t )在⎝ ⎛⎭⎪⎫4+133,+∞上单调递减,所以存在t 0∈⎝ ⎛⎭⎪⎫4+133,+∞使得g (t 0)<0成立,所以存在t 0∈⎝ ⎛⎭⎪⎫4+133,+∞,使得|f (1+t 0)+f (1-t 0)|≥0>f (1+t 0)+f (1-t 0),C 正确;当t >0时,设h (t )=f (1+t )-f (1-t )=(1+t )2-(1-t )3=t 3-2t 2+5t ,则h ′(t )=3t 2-4t +5=3⎝⎛⎭⎪⎫t -232+113>0,所以函数h (t )在(0,+∞)上单调递增,所以h (t )>h (0)=0,所以|f (1+t )-f (1-t )|=f (1+t )-f (1-t ),D 错误.综上所述,故选C.10.已知f (x )是定义在R 上的函数,若方程f (f (x ))=x 有且仅有一个实数根,则f (x )的解析式可能是( )A .f (x )=|2x -1|B .f (x )=e xC .f (x )=x 2+x +1D .f (x )=sin x解析:选D 对于A ,由f (f (x ))=x ,即|2|2x -1|-1|=x ,可得x =1或13或15或35,故A 错误;对于B ,由(e x -x )′=e x -1,得y =e x-x 在(0,+∞)上单调递增,在(-∞,0)上单调递减,所以(e x -x )min =1>0,即e x >x 恒成立,所以f (f (x ))=ee x >e x>x ,即f (f (x ))=x 无解,故B 错误;对于C ,f (x )=x 2+x +1,f (f (x ))=(x 2+x +1)2+x 2+x +1+1=x ,即(x 2+x +1)2+x 2+2=0,无实数根,故C 错误;对于D ,令y =sin x -x ,则y ′=cos x -1≤0,则y =sin x -x 在R 上单调递减,当x =0时,y =0,所以当x ∈(0,+∞)时,sin x <x ,sin(sin x )<sin x <x ,当x ∈(-∞,0)时,sin x >x ,sin(sin x )>sin x >x ,则sin(sin x )-x 在R 上单调递减,且sin(sin 0)=0,故f (f (x ))=x 有且仅有一个实数根,故选D.二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分,把答案填在题中横线上)11.已知复数z =1-3i(其中i 是虚数单位),满足z -2+az =0,则|z +a |=________. 解析:由题意得z -=1+3i ,所以z -2+az =-2+23i +a -a 3i =(a -2)-(a -2)3i =0,所以a =2,则|z +a |=|1-3i +2|=32+32=2 3.答案:2 312.如果函数f (x )=x 2sin x +a 的图象过点(π,1)且f (t )=2,那么a =________;f (-t )=________.解析:因为函数f (x )=x 2sin x +a 的图象过点(π,1),所以f (π)=π2sin π+a =1,解得a =1,所以f (x )=x 2sin x +1.设g (x )=x 2sin x ,则易得函数g (x )为奇函数,又因为f (t )=g (t )+1=2,所以g (t )=1,g (-t )=-g (t )=-1,则f (-t )=g (-t )+1=-1+1=0.答案:1 013.已知等差数列{a n },等比数列{b n }的前n 项和分别为S n ,T n (n ∈N *).若S n =32n 2+12n ,b 1=a 1,b 2=a 3,则a n =________,T n =________.解析:由题意得a 1=S 1=32×12+12×1=2,当n ≥2时,a n =S n -S n -1=32n 2+12n -32(n -1)2-12(n-1)=3n -1,当n =1时也成立,所以a n =3n -1(n ∈N *),所以b 1=a 1=2,b 2=a 3=8,所以等比数列{b n }的公比为4,则T n =-4n1-4=23(4n -1)(n ∈N *). 答案:3n -123(4n-1) 14.一个几何体的三视图如图所示,正视图与侧视图为全等的矩形,俯视图为正方形,则该几何体的表面积为________;体积为________.解析:由三视图知,该几何体为长、宽、高分别为2,2,3的长方体挖去同底等高的正四棱锥后所得.因为四棱锥的侧棱长为32+22=11,所以四棱锥的侧面高为112-12=10,所以该几何体的表面积S =22+4×2×3+4×12×2×10=28+410,体积V =22×3-13×22×3=8.答案:28+410 815.若(1-2x )2 017=a 0+a 1x +a 2x 2+…+a 2 017x2 017,则各项系数之和为________,a 12+a 222+…+a 2 01722 017的值为________.解析:令x =1,则各项系数之和为(1-2×1)2 017=-1.令x =0得a 0=(1-2×0)2 017=1,令x =12得a 0+a 12+a 222+…+a 2 01722 017=⎝⎛⎭⎪⎫1-2×12 2 017=0,所以a 12+a 222+…+a 2 017a 2 017=-a 0=-1.答案:-1 -116.已知正实数x ,y 满足xy +2x +3y =42,则xy +5x +4y 的最小值为________. 解析:因为x ,y 为正实数,所以由xy +2x +3y =42得y =42-2xx +3>0,所以0<x <21,则xy +5x +4y =x-2x x +3+5x +-2x x +3=3⎝⎛⎭⎪⎫x +3+16x +3+31≥3×2 x +16x +3+31=55,当且仅当x +3=16x +3,即x =1时等号成立,所以xy +5x +4y 的最小值为55. 答案:5517.如图,矩形ABCD 中,AB =1,BC =3,将△ABD 沿对角线BD 向上翻折,若翻折过程中AC 长度在⎣⎢⎡⎦⎥⎤102,132内变化,则点A 所形成的运动轨迹的长度为________.解析:如图①,过点A 作AO ⊥BD ,垂足为点O ,过点C 作直线AO 的垂线,垂足为点E ,则易得AO =OE =32,CE =1.在图②中,由旋转的性质易得点A 在以点O 为圆心,AO 为半径的圆上运动,且BD 垂直于圆O 所在的平面,又因为CE ∥BD ,所以CE 垂直于圆O 所在的平面,设当A 运动到点A 1处时,CA 1=132,当A 运动到点A 2处时,CA 2=102,则有CE ⊥EA 1,CE ⊥EA 2,则易得EA 1=32,EA 2=62,则易得△OEA 2是以O 为顶点的等腰直角三角形,在△OEA 1中,由余弦定理易得cos ∠EOA 1=-12,所以∠EOA 1=120°,所以∠A 1OA 2=30°,所以点A 所形成的轨迹为半径为OA=32,圆心角为∠A 1OA 2=30°的圆弧,所以轨迹的长度为30°180°×π×32=312π.答案:3 12π。
小题提速练(七)“选择+填空”分练(时间:分钟分值:分)一、选择题(本大题共小题,每小题分,共分.在每小题给出的四个选项中,只有一项是符合题目要求的).若集合={∈≤},={-<},则∩=( ).{≤<} .{-<<}.{} .{-}[易知={},={-<<},所以∩={}.].已知复数满足(+)=(-),则的共轭复数的虚部为( )..-.-.[====--,所以=-+,其虚部为.].已知正项等差数列{}中,++=,若+,+,+成等比数列,则=( )....[设等差数列{}的公差为,则>.因为++=,所以=.因为+,+,+成等比数列,所以(+)=(+)(+),所以(+)=(-+)·(++),所以=(-)(+),解得=,所以=+=+×=.] .函数()=(\\(-+,≤,,-+,>))的零点个数为( )【导学号:】....[当≤时,()=-+是单调递增函数,因为()>,(-)<,所以()在(-∞,]上有一个零点;当>时,()=-+是单调递增函数,因为()=,所以=是函数的零点.综上知,函数()有两个零点.].设函数()=(\\(-,<,+,>,))若()是奇函数,则()的值是( ) .-.-.-.[()+=()=-(-)=-=-,所以()=-.].已知平面直角坐标系中的三点(),(),(),从以这三个点中的任意两点为起点和终点构成的向量中任取一个向量,则这个向量与向量=(-)构成基底的概率为( )[以,,三个点中的两个点为起点和终点构成的向量有个,即,,,,,,其中与=(-)不共线的向量有个,即,,,,所以所求概率为=.].若非负实数,满足(+-)≤,则-的最大值和最小值分别是( ).和.和-.和-.和-[依题意有(\\(<+-≤,≥,≥,))作出可行域如图中阴影部分所示.易求得-的最大值在点()处取得,最大值为;最小值在点()处取得,最小值为-.故选.].把“正整数除以正整数后的余数为”记为≡( ),例如≡( ).执行如图所示的程序框图后,输出的值为( )【导学号:】图....[程序运行如下:第步,=,≡( )成立,≡( )不成立;第步,=,≡( )不成立;第步,=,≡( )不成立;第步,=,≡( )成立,≡( )不成立;第步,=,≡( )不成立;第步,=,≡( )不成立;第步,=,≡( )成立,≡( )成立.循环结束,所以输出的值为.] .已知函数()=ω-ω,ω>,∈,且其图象上两个相邻最高点的距离为π,则下列说法正确的是( )。
选择填空提速专练(六)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合P ={x |1≤x ≤3},Q ={x |x 2≥4},则P ∩(∁R Q )=( ) A .[2,3] B .(-2,3]C .[1,2)D .(-∞,-2]∪[1,+∞)解析:选C 由题易得∁R Q ={x |-2<x <2},所以P ∩(∁R Q )={x |1≤x <2},故选C. 2.已知复数z 满足z ·(1-i)=2i ,其中i 为虚数单位,则|z |=( ) A .1 B. 2 C .2D .4解析:选B 设复数z =a +b i ,则z (1-i)=(a +b i)(1-i)=a +b +(b -a )i =2i.所以根据对应相等可得,a =-1,b =1.所以z =-1+i ,|z |=2,故选B.3.已知a ,b ∈R ,则“|a |+|b |>1”是“b <-1”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件解析:选B 因为不等式|a |+|b |>1,由特殊值法,取a =0,b =2符合条件但推不出b <-1,充分性不成立;反过来b <-1,则|b |>1,又|a |≥0,所以|a |+|b |>1,必要性成立.所以“|a |+|b |>1”是“b <-1”的必要不充分条件,故选B.4.将函数y =sin ⎝ ⎛⎭⎪⎫2x -π3的图象向左平移π4个单位长度,所得函数图象的一条对称轴方程是( )A .x =2π3B .x =-π12C .x =π3D .x =5π12解析:选A 由题意可得y =sin ⎝ ⎛⎭⎪⎫2x -π3的图象向左平移π4个单位长度得到的函数图象对应的解析式为y =sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x +π4-π3=cos ⎝ ⎛⎭⎪⎫2x -π3,令2x -π3=k π,k ∈Z ,得x =k π2+π6,k ∈Z ,结合选项,当k =1时,x =2π3,故选A. 5.(x 2-1)⎝⎛⎭⎪⎫1x-25的展开式的常数项为( )A .112B .48C .-112D .-48解析:选D 原式的展开式的常数项包括x 2×C 35×⎝ ⎛⎭⎪⎫1x2×(-2)3+(-1)×C 55×(-2)5=-48,故选D.6.等差数列{a n }的公差d <0,且a 21=a 217,则数列{a n }的前n 项和S n 取得最大值时的项数n 是( )A .8或9B .9或10C .10或11D .11或12解析:选A 由题意知,a 1=±a 17,又因为d <0,所以a 1=-a 17,故a 9=0,a 1=-8d ,a n=a 1+(n -1)d =(n -9)d ,当a n ≥0时,n ≤9,又S n =a 1+a n n2,所以当n =8或9时,S n取最大值,故选A.7.甲组有5名男同学、3名女同学,乙组有6名男同学、2名女同学,若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有( )A .150种B .180种C .300种D .345种解析:选D 由题意可知,不同的选法有从甲组5名男生中选1名,3名女生中选1名,然后乙组从6名男生中选2名,或者从甲组5名男生中选2名,从乙组6名男生中选1名,2名女生中选1名,即C 15C 13C 26+C 25C 16C 12=345种,故选D.8.已知直线(m +2)x +(m +1)y +1=0上存在点(x ,y )满足⎩⎪⎨⎪⎧x +y -3≤0,x -2y -3≤0,x ≥1,则实数m的取值范围是( )A.⎣⎢⎡⎦⎥⎤-1,12B.⎣⎢⎡⎦⎥⎤-14,12C.⎣⎢⎡⎭⎪⎫-53,+∞D.⎝⎛⎦⎥⎤-∞,-53解析:选D 该题目标函数对应的直线表示过定点A (-1,1)的直线束.约束条件对应的平面区域是以点B (1,2),C (1,-1),D (3,0)为顶点的三角形区域,如图(阴影部分,含边界)所示,当直线经过该区域时,k AB =12,k AC =-1,易知在题设条件下m +1≠0,即直线(m +2)x +(m +1)y +1=0的斜率-m +2m +1∈[k AC ,k AB ],故m ∈⎝⎛⎦⎥⎤-∞,-53,故选D. 9.已知函数f (x )=⎩⎪⎨⎪⎧|log 2-x ,x <1,-x 2+4x -2,x ≥1,则方程f ⎝⎛⎭⎪⎫x +1x-2=1的实根个数为( )A .8B .7C .6D .5解析:选C 由f (x )的解析式可以在平面直角坐标系中画出简图,如图所示,通过图象易知f (x )=1有四个根,分别为x =-1,12,1或3,即x +1x-2可能取该四个值,分别对应x+1x =1或52或3或5,整理得,x 2-x +1=0 ①,x 2-52x +1=0 ②,x 2-3x +1=0 ③,x 2-5x +1=0 ④,Δ1<0,Δ2>0,Δ3>0,Δ4>0,所以实根有6个,故选C.10.如图,平面PAB ⊥平面α,AB ⊂α,且△PAB 为正三角形,点D 是平面α内的动点,四边形ABCD 是菱形,点O 为AB 的中点,AC 与OD 交于点Q ,l ⊂α,且l ⊥AB ,则PQ 与l 所成角的正切值的最小值为( )A. -3+372B. 3+372C.7D .3解析:选B 如图,过点D ,Q 分别作DE ⊥AB 于点E ,QH ⊥AB 于点H ,设∠ABC 为θ,则|QH |=13|DE |=13|AD |sin θ,|OH |=13|OE |=13⎝ ⎛⎭⎪⎫|AD |cos θ+12|AB |,设|AD |=|AB |=3,则|QH |=sin θ,|OH |=cos θ+12,|PO |=332,∴|PH |=PO 2+OH 2=7+cos θ+cos 2θ,要求的角即为∠PQH ,∴tan ∠PQH =|PH ||QH |,令cos θ=t ,则tan ∠PQH=7+t +t21-t2=-1+8+t 1-t2=-1+116-⎝ ⎛⎭⎪⎫8+t +638+t ≥3+372(当且仅当8+t=638+t时,等号成立),故选B.二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分,把答案填在题中横线上)11.若sin θ=-13,tan θ>0,则cos θ=________,tan 2θ=________.解析:由题意知,因为sin θ<0,tan θ>0,所以cos θ<0,又sin 2θ+cos 2θ=1,故cos θ=-223,又由tan θ=sin θcos θ,tan 2θ=2tan θ1-tan 2θ,可知tan 2θ=427. 答案:-223 42712.已知抛物线C :x 2=2py (p >0)上一点A (m,4)到其焦点的距离为174,则p =________,m=________.解析:由题意可知,该抛物线的焦点为⎝ ⎛⎭⎪⎫0,p 2,准线为y =-p 2,所以4+p 2=174,故p =12,抛物线的方程为x 2=y ,将点(m,4)代入,可得m =±2.答案:12±213.定义:函数f (x )在闭区间[a ,b ]上的最大值与最小值之差为函数f (x )的极差.若定义在区间[-2b,3b -1]上的函数f (x )=x 3-ax 2-(b +2)x 是奇函数,则a +b =________,函数f (x )的极差为________.解析:由f (x )在[-2b,3b -1]上为奇函数,所以区间关于原点对称,故-2b +3b -1=0,b =1,又由f (-x )+f (x )=0可求得a =0,所以a +b =1.又f (x )=x 3-3x ,f ′(x )=3x 2-3,易知f (x )在(-2,-1),(1,2)上单调递增,在(-1,1)上单调递减,所以f (x )在[-2,2]上的最大值,最小值分别为f (-1)=f (2)=2,f (1)=f (-2)=-2,所以极差为4.答案:1 414.若某几何体的三视图(单位:cm)如图所示,则此几何体的体积为________cm 3,表面积为________cm 2.解析:由三视图可知该几何体为一个直三棱柱上边截去一个底面直角边分别为3,4的直角三角形、高为3的三棱锥后剩余的部分(如图所示).结合题中的数据,易得该几何体的体积为12×3×4×5-13×12×3×4×3=24(cm 3),表面积为12×3×4+5×5+12×(2+5)×4+12×(2+5)×3+12×32×822=111+3412(cm 2).答案:24111+341215.将3个小球随机地投入编号为1,2,3,4的4个小盒中(每个盒子容纳的小球的个数没有限制),则1号盒子中小球的个数ξ的期望为________.解析:因为三个小球依次投入4个小盒中,彼此之间没有影响,因此符合独立性重复试验与二项分布.每个小球落在1号小盒的概率都是14,故期望为3×14=34.答案:3416.已知平面向量a ,b ,c 满足|a |=2,|b |=1,a·b =-1,且a -c 与b -c 的夹角为π4,则|c |的最大值为________. 解析:设DA ―→=a ,DB ―→=b ,DC ―→=c .∵平面向量a ,b ,c 满足|a |=2,|b |=1,a·b=-1,∴cos 〈a ,b 〉=a·b |a |×|b |=-12×1=-22,∴〈a ,b 〉=3π4.∵a -c 与b -c 的夹角为π4,∴点C 在△DAB 的外接圆的弦AB 所对的优弧上,如图所示. 因此|c |的最大值为△DAB 的外接圆的直径. ∵|a -b |=a 2-2a ·b +b 2=22--+12= 5.由正弦定理得:△DAB 的外接圆的直径2R =|a -b |sin3π4=522=10,则|c |的最大值为10.答案:1017.已知a ,b 均为正数,且a +b =1,c >1,则⎝ ⎛⎭⎪⎫a 2+12ab -1·c +2c -1的最小值为________.解析:由题意知,∵a 2+12ab -1=a 2+a +b 22ab-1=2a 2+b22ab≥2(当且仅当a =2-1,b=2-2时,等号成立),∴原式≥2c +2c -1=2⎝ ⎛⎭⎪⎫c -1+1c -1+2≥22+2=32(当且仅当c =2时,等号成立).答案:3 2。
小题提速练(七) “12选择+4填空”80分练 (时间:45分钟 分值:80分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若集合A ={x ∈N |x ≤4},B ={x |x 2-4<0},则A ∩B =( )A .{x |0≤x <2}B .{x |-2<x <2}C .{0,1}D .{-2,0,1,2}C [易知A ={0,1,2,3,4},B ={x |-2<x <2},所以A ∩B ={0,1}.] 2.已知复数z 满足(1+i)z =(1-i)2,则z 的共轭复数的虚部为( )A .2B .-2C .-1D .1D [z =-21+i=-2i 1+i=--2=-1-i ,所以z =-1+i ,其虚部为1.]3.已知正项等差数列{a n }中,a 1+a 2+a 3=15,若a 1+2,a 2+5,a 3+13成等比数列,则a 10=( )A .19B .20C .21D .22C [设等差数列{a n }的公差为d ,则d >0.因为a 1+a 2+a 3=15,所以a 2=5.因为a 1+2,a 2+5,a 3+13成等比数列,所以(a 2+5)2=(a 1+2)(a 3+13),所以(a 2+5)2=(a 2-d +2)·(a 2+d +13),所以102=(7-d )(18+d ),解得d =2,所以a 10=a 2+8d =5+8×2=21.]4.函数f (x )=⎩⎪⎨⎪⎧2x -1+x ,x ≤0,-1+ln x ,x >0的零点个数为( )【导学号:04024196】A .3B .2C .1D .0B [当x ≤0时,f (x )=2x -1+x 是单调递增函数,因为f (0)>0,f (-1)<0,所以f (x )在(-∞,0]上有一个零点;当x >0时,f (x )=-1+ln x 是单调递增函数,因为f (e)=0,所以x =e 是函数的零点.综上知,函数f (x )有两个零点.]5.设函数f (x )=⎩⎪⎨⎪⎧log 2-x ,x <0,g x +1,x >0,若f (x )是奇函数,则g (3)的值是( )A .-4B .-2C .-3D .2C [g (3)+1=f (3)=-f (-3)=-log 24=-2,所以g (3)=-3.]6.已知平面直角坐标系中的三点A (1,0),B (0,1),C (1,1),从以这三个点中的任意两点为起点和终点构成的向量中任取一个向量,则这个向量与向量a =(-1,1)构成基底的概率为( ) A.56 B.35 C.34D.23D [以A ,B ,C 三个点中的两个点为起点和终点构成的向量有6个,即AB →,BA →,AC →,CA →,CB →,BC →,其中与a =(-1,1)不共线的向量有4个,即AC →,CA →,CB →,BC →,所以所求概率为46=23.]7.若非负实数x ,y 满足ln(x +y -1)≤0,则x -y 的最大值和最小值分别是( )A .2和1B .2和-1C .1和-1D .2和-2D [依题意有⎩⎪⎨⎪⎧0<x +y -1≤1,x ≥0,y ≥0,作出可行域如图中阴影部分所示.易求得x -y 的最大值在点C (2,0)处取得,最大值为2;最小值在点A (0,2)处取得,最小值为-2.故选D.]8.把“正整数N 除以正整数m 后的余数为n ”记为N ≡n (mod m ),例如8≡2(mod 3).执行如图1所示的程序框图后,输出的i 值为( )【导学号:04024197】图1A .14B .17C .22D .23B [程序运行如下:第1步,i =11,i ≡2(mod 3)成立,i ≡2(mod 5)不成立;第2步,i =12,i ≡2(mod 3)不成立;第3步,i =13,i ≡2(mod 3)不成立;第4步,i =14,i ≡2(mod 3)成立,i ≡2(mod 5)不成立;第5步,i =15,i ≡2(mod 3)不成立;第6步,i =16,i ≡2(mod 3)不成立;第7步,i =17,i ≡2(mod 3)成立,i ≡2(mod 5)成立.循环结束,所以输出的i 值为17.]9.已知函数f (x )=sin ωx -cos ωx ,ω>0,x ∈R ,且其图象上两个相邻最高点的距离为π,则下列说法正确的是( ) A .ω=1B .曲线y =f (x )关于点(π,0)对称C .曲线y =f (x )关于直线x =π2对称D .函数f (x )在区间⎝⎛⎭⎪⎫0,π3上单调递增D [f (x )=sin ωx -cos ωx =2sin ⎝ ⎛⎭⎪⎫ωx -π4,依题意知函数f (x )的周期为π,所以T=2πω=π,得ω=2,所以f (x )=2sin ⎝⎛⎭⎪⎫2x -π4.验证知,选项D 正确.] 10.已知定义在R 上的奇函数y =f (x )的图象关于直线x =1对称,当0<x ≤1时,f (x )=log 12x ,则方程f (x )-1=0在(0,6)内的零点之和为( ) A .8B .10C .12D .16C [依据题意画出f (x )的图象如图所示,方程f (x )-1=0在(0,6)内有四个零点,这四个零点之和为2×1+2×5=12.]11.已知函数f (x )=a ln x -x 2,在区间(0,1)内任取两个实数p ,q ,且p ≠q ,不等式f p -f qp -q>1恒成立,则实数a 的取值范围是( ) A .[3,+∞) B.⎣⎢⎡⎭⎪⎫-18,+∞ C .[15,+∞) D .[1,+∞)A [由f p -f q p -q>1可知,函数f (x )=a ln x -x 2的图象在区间(0,1)内过任意两点的割线的斜率都大于1,等价于函数f (x )的图象在区间(0,1)内的任意一点的切线斜率大于1.由f ′(x )=a x -2x ,得a x-2x >1恒成立,整理得a >2x 2+x (x ∈(0,1)),因为当x ∈(0,1)时,2x 2+x <3,所以a ≥3.]12.已知实数p >0,直线4x +3y -2p =0与抛物线y 2=2px 和圆⎝ ⎛⎭⎪⎫x -p 22+y 2=p24从上到下的交点依次为A ,B ,C ,D ,则|AC ||BD |的值为( )【导学号:04024198】A.18B.516C.38D.716C [依题意知,直线4x +3y -2p =0过抛物线焦点F ⎝ ⎛⎭⎪⎫p 2,0,圆⎝ ⎛⎭⎪⎫x -p 22+y 2=p24的圆心为F ⎝ ⎛⎭⎪⎫p 2,0,半径为p 2.设A (x 1,y 1),D (x 2,y 2),由抛物线定义得|AC |=|AF |+|FC |=p 2+x 1+p 2=x 1+p ,同理得|BD |=x 2+p .将4x +3y -2p =0代入抛物线方程,整理得8x 2-17px +2p2=0,解得x 1=p 8,x 2=2p ,所以|AC ||BD |=x 1+p x 2+p =38.]二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.某单位有员工90人,其中女员工有36人,为做某项调查,拟采用分层抽样的方法抽取容量为15的样本,则应抽取的男员工人数是________. [解析] 应抽取的男员工人数为90-3690×15=9.[答案] 914.某几何体的三视图如图2所示,则该几何体的体积为________.图2[解析] 由三视图可知,该几何体是由横放着的三棱柱截去一个三棱锥后得到的,其体积V =12×1×1×2-13×12×1×1×1=56. [答案] 5615.已知a =(1,t ),b =(t ,-6),则|2a +b |的最小值为________.【导学号:04024199】[解析] |2a +b |=|(2,2t )+(t ,-6)|=|(2+t,2t -6)|=+t2+t -2=t -2+4]≥5×4=25,当且仅当t =2时取等号,所以|2a +b |的最小值为2 5.[答案] 2 516.如图3所示,在△ABC 中,B =π3,AC =3,D 为BC 边上一点.若AB =AD ,则△ADC 的周长的取值范围为________.图3[解析] 依题意知,△ABD 是正三角形,所以∠ADC =2π3.在△ADC 中,由正弦定理得ACsin2π3=ADsin C =DCsin ∠DAC,即332=AD sin C =DC sin ⎝ ⎛⎭⎪⎫π3-C ,所以AD =2sin C ,DC =2sin ⎝ ⎛⎭⎪⎫π3-C ,所以△ADC 的周长为AC +AD +DC =2sin C +2sin ⎝ ⎛⎭⎪⎫π3-C +3=sin C +3cos C +3=2sin ⎝⎛⎭⎪⎫C +π3+ 3.因为∠ADC =2π3,所以0<C <π3,所以32<sin ⎝ ⎛⎭⎪⎫C +π3≤1,所以23<2sin ⎝ ⎛⎭⎪⎫C +π3+3≤2+3,所以△ADC 的周长的取值范围为(23,2+3]. [答案] (23,2+3]。
阶段滚动检测(二) 专题一~专题三(时间:120分钟 满分:150分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合A ={x |log 2x <0},B ={m |m 2-2m <0},则A ∪B =( ) A .(-∞,2) B .(0,1) C .(0,2)D .(1,2)解析:选C 由题意可得A =(0,1),B =(0,2),所以A ∪B =(0,2).2.在数列{a n }中,“a n =2a n -1,n ≥2,n ∈N *”是“{a n }是公比为2的等比数列”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选B 当a n =0时,也有a n =2a n -1,n ≥2,n ∈N *,但{a n }不是等比数列,因此充分性不成立;当{a n }是公比为2的等比数列时,有a n a n -1=2,n ≥2,n ∈N *,即a n =2a n -1,n ≥2,n ∈N *,所以必要性成立.故选B.3.定义在R 上的偶函数f (x )满足f (x +1)=-f (x ),且当x ∈[-1,0)时,f (x )=⎝ ⎛⎭⎪⎫12x,则f (log 28)=( )A .3 B.18C .-2D .2解析:选D ∵f (x +1)=-f (x ),∴f (x +2)=-f (x +1)=f (x ),∴函数f (x )是周期为2的周期函数,∴f (log 28)=f (3)=f (3-4)=f (-1).又当x ∈[-1,0)时,f (x )=⎝ ⎛⎭⎪⎫12x ,∴f (log 28)=f (-1)=⎝ ⎛⎭⎪⎫12-1=2.4.(2018届高三·江西九校联考)已知数列{a n }是等比数列,数列{b n }是等差数列,若a 1·a 6·a 11=33,b 1+b 6+b 11=7π,则tanb 3+b 91-a 4·a 8的值是( )A .1 B.22C .-22D .- 3解析:选D ∵{a n }是等比数列,{b n }是等差数列, 且a 1·a 6·a 11=33,b 1+b 6+b 11=7π,∴a 36=(3)3,3b 6=7π,∴a 6=3,b 6=7π3,∴tan b 3+b 91-a 4·a 8=tan 2b 61-a 26=tan2×7π31-32=tan ⎝ ⎛⎭⎪⎫-7π3=tan ⎝⎛⎭⎪⎫-2π-π3=-tan π3=- 3. 5.(2017·全国卷Ⅲ)函数y =1+x +sin xx2的部分图象大致为( )解析:选D 法一:易知函数g (x )=x +sin xx2是奇函数,其函数图象关于原点对称,所以函数y =1+x +sin xx2的图象只需把g (x )的图象向上平移一个单位长度,结合选项知选D.法二:当x →+∞时,sin x x 2→0,1+x →+∞,y =1+x +sin xx2→+∞,故排除选项B.当0<x <π2时,y =1+x +sin xx2>0,故排除选项A 、C.选D.6.若△ABC 的三个内角满足sin B -sin A sin B -sin C =ca +b,则A =( )A.π6B.π3C.2π3D.π3或2π3解析:选B 由sin B -sin A sin B -sin C =c a +b ,结合正弦定理,得b -a b -c =c a +b,整理得b 2+c 2-a 2=bc ,所以cos A =b 2+c 2-a 22bc =12,由A 为三角形的内角,知A =π3,故选B.7.(2017·全国卷Ⅱ)设x ,y 满足约束条件⎩⎪⎨⎪⎧2x +3y -3≤0,2x -3y +3≥0,y +3≥0,则z =2x +y 的最小值是( )A .-15B .-9C .1D .9解析:选A 作出不等式组表示的可行域如图中阴影部分所示.易求得可行域的顶点A (0,1),B (-6,-3),C (6,-3),当直线z =2x +y 过点B (-6,-3)时,z 取得最小值,z min =2×(-6)-3=-15.8.已知菱形ABCD 的边长为6,∠ABD =30°,点E ,F 分别在边BC ,DC 上,BC =2BE ,CD =λCF .若AE ―→·BF ―→=-9,则λ的值为( )A .2B .3C .4D .5解析:选B 依题意得AE ―→=AB ―→+BE ―→=12BC ―→-BA ―→,BF ―→=BC ―→+1λBA ―→,因此AE ―→·BF ―→=⎝ ⎛⎭⎪⎫12BC ―→-BA ―→·⎝ ⎛⎭⎪⎫BC ―→+1λBA ―→=12BC ―→2-1λBA ―→2+⎝ ⎛⎭⎪⎫12λ-1BC ―→·BA ―→,于是有⎝ ⎛⎭⎪⎫12-1λ×62+⎝ ⎛⎭⎪⎫12λ-1×62×cos 60°=-9,由此解得λ=3,故选B. 9.已知函数f (x )=e xx2-k ⎝ ⎛⎭⎪⎫2x +ln x ,若x =2是函数f (x )的唯一一个极值点,则实数k 的取值范围为( )A .(-∞,e]B .[0,e]C .(-∞,e)D .[0,e)解析:选A f ′(x )=x 2e x -2x e x x 4-k ⎝ ⎛⎭⎪⎫-2x 2+1x =x -2⎝ ⎛⎭⎪⎫e xx -k x 2(x >0).设g (x )=exx,则g ′(x )=x -1e xx 2,则g (x )在(0,1)上单调递减,在(1,+∞)上单调递增.∴g (x )在(0,+∞)上有最小值,为g (1)=e ,结合g (x )=exx与y =k 的图象可知,要满足题意,只需k ≤e,故选A.10.(2017·沈阳二中模拟)已知f (x ),g (x )都是定义在R 上的函数,g (x )≠0,f ′(x )g (x )>f (x )g ′(x ),且f (x )=a xg (x )(a >0且a ≠1),f 1g 1+f -1g -1=52.若数列⎩⎨⎧⎭⎬⎫f n g n (n ∈N *)的前n 项和大于62,则n 的最小值为( )A .8B .7C .6D .5解析:选C 由⎣⎢⎡⎦⎥⎤f x g x ′=f ′x g x -f x g ′x g 2x >0,知f x g x 在R 上是增函数,即f xg x =a x为增函数,所以a >1.又由f 1g 1+f -1g -1=a +1a =52,得a =2或a =12(舍).所以数列⎩⎨⎧⎭⎬⎫fn gn 的前n 项和S n =21+22+…+2n =21-2n1-2=2n +1-2>62,即2n>32,得n >5,所以n 的最小值为6.故选C.二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分,把答案填在题中横线上)11.(2017·杭州模拟)若2sin α-cos α=5,则sin α=________,tan ⎝ ⎛⎭⎪⎫α-π4=________.解析:由已知条件,2sin α=5+cos α,将两边平方,结合sin 2α+cos 2α=1,可求得sin α=255,cos α=-55,∴tan α=-2,∴tan ⎝⎛⎭⎪⎫α-π4=tan α-11+tan α=-2-11+-2=3.答案:255312.已知函数f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12x -2, x ≤-1,x -2|x |-1,x >-1,则f (f (-2))=________,若f (x )≥2,则x 的取值范围为________.解析:f (-2)=⎝ ⎛⎭⎪⎫12-2-2=2,f (f (-2))=f (2)=0.当x ≤-1时,⎝ ⎛⎭⎪⎫12x-2≥2,解得x ≤-2;当x >-1时,f (x )=(x -2)(|x |-1)=⎩⎪⎨⎪⎧x -2-x -1,-1<x ≤0,x -2x -1,x >0.当-1<x ≤0时,由(x -2)(-x -1)≥2,解得x =0,当x >0时,由(x -2)·(x -1)≥2,解得x ≥3.综上,x 的取值范围为(-∞,-2]∪{0}∪[3,+∞).答案:0 (-∞,-2]∪{0}∪[3,+∞)13.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知A =π4,b =6,△ABC 的面积为3+32,则c =_______,B =________.解析:由题意得△ABC 的面积等于12bc sin A =62c ×22=3+32,解得c =3+1,则由余弦定理得a 2=b 2+c 2-2bc cos A =(6)2+(1+3)2-2×6×(1+3)×22=4,解得a =2,则由正弦定理得b sin B =asin A,即sin B =b sin A a =32,又因为b <c ,所以B =π3. 答案:3+1π314.(2017·萧山中学模拟)设等比数列{a n }的首项a 1=1,且4a 1,2a 2,a 3成等差数列,则公比q =________;数列{a n }的前n 项和S n =________.解析:因为a 1=1,且4a 1,2a 2,a 3成等差数列,所以4a 2=4a 1+a 3,即4q =4+q 2,解得q =2,所以S n =1-2n1-2=2n-1.答案:2 2n -115.已知△ABC 的面积是4,∠BAC =120°.点P 满足BP ―→=3PC ―→,过点P 作边AB ,AC 所在直线的垂线,垂足分别是M ,N ,则PM ―→·PN ―→=________.解析:不妨设△ABC 是等腰三角形,因为∠BAC =120°,则B =C =30°,b =c ,S △ABC =12bc sinA =34b 2=4,b 2=1633,由余弦定理可得a 2=b 2+c 2-2bc cos A =16 3.又BP ―→=3PC ―→,则|BP ―→|=3a 4,|PC ―→|=a 4,则|PM ―→|=|BP ―→|sin B =3a 8,|PN ―→|=|PC ―→|sin C =a 8,∠MPN =60°,所以PM ―→·PN ―→=|PM ―→||PN ―→|·cos 60°=3a 8×a 8×12=3a 2128=3128×163=338.答案:33816.(2017·嘉兴中学模拟)已知a >0,b >0,且满足3a +b =a 2+ab ,则2a +b 的最小值为________.解析:由3a +b =a 2+ab 得显然a ≠1,所以b =3a -a2a -1,又因为a >0,b >0,所以(a -1)(3a-a 2)>0,即a (a -1)·(a -3)<0,1<a <3,所以a -1>0,则2a +b =2a +3a -a 2a -1=2a 2-2a +3a -a2a -1=a 2+a a -1=a -1+2a -1+3≥2a -1·2a -1+3=22+3,当且仅当a -1=2a -1,即a =1+2时,等号成立,所以2a +b 的最小值为22+3.答案:22+317.(2017·湖南岳阳一中模拟)对于数列{a n },定义H n =a 1+2a 2+…+2n -1a nn为{a n }的“优值”,现在已知某数列{a n }的“优值”H n =2n +1,记数列{a n -kn }的前n 项和为S n ,若S n ≤S 5对任意的n ∈N *恒成立,则实数k 的取值范围是________.解析:由题意知H n =a 1+2a 2+…+2n -1a n n=2n +1,所以a 1+2a 2+…+2n -1a n =n ×2n +1,①当n ≥2时,a 1+2a 2+…+2n -2a n -1=(n -1)×2n ,②①-②得2n -1a n =n ×2n +1-(n -1)×2n ,解得a n =2n +2,n ≥2,当n =1时,a 1=4也满足上式,所以数列{a n }的通项公式为a n =2n +2,且数列{a n }为等差数列,其公差为2.令b n =a n -kn =(2-k )n +2,则数列{b n }也是等差数列,由S n ≤S 5对任意的n ∈N *恒成立,知2-k <0,且b 5=12-5k ≥0,b 6=14-6k ≤0,解得73≤k ≤125.答案:⎣⎢⎡⎦⎥⎤73,125三、解答题(本大题共5小题,共74分.解答应写出文字说明,证明过程或演算步骤) 18.(本小题满分14分)(2017·杭州质检)设函数f (x )=2cos x (cos x +3sin x )(x ∈R). (1)求函数y =f (x )的最小正周期和单调递增区间;(2)当x ∈⎣⎢⎡⎦⎥⎤0,π3时,求函数f (x )的最大值.解:(1)∵f (x )=2cos x (cos x +3sin x )=2cos 2x +3sin 2x =cos 2x +3sin 2x +1=2sin ⎝⎛⎭⎪⎫2x +π6+1,∴最小正周期T =2π2=π,令2k π-π2≤2x +π6≤2k π+π2(k ∈Z),∴k π-π3≤x ≤k π+π6(k ∈Z),∴函数y =f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π3,k π+π6(k ∈Z).(2)∵x ∈⎣⎢⎡⎦⎥⎤0,π3,∴2x +π6∈⎣⎢⎡⎦⎥⎤π6,5π6,∴sin ⎝⎛⎭⎪⎫2x +π6∈⎣⎢⎡⎦⎥⎤12,1,∴f (x )=2sin ⎝⎛⎭⎪⎫2x +π6+1的最大值是3. 19.(本小题满分15分)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且满足⎝ ⎛⎭⎪⎫54c -a cosB =b cos A .(1)若sin A =25,a +b =10,求a ;(2)若b =35,a =5,求△ABC 的面积S .解:∵⎝ ⎛⎭⎪⎫54c -a cos B =b cos A , ∴由正弦定理得⎝ ⎛⎭⎪⎫54sin C -sin A ·cos B =sin B cos A ,即54sin C cos B =sin A cos B +cos A sinB =sinC ,∵sin C ≠0,∴54cos B =1,即cos B =45.(1)由cos B =45,得sin B =35,∵sin A =25,∴a b =sin A sin B =23,又a +b =10,解得a =4.(2)∵b 2=a 2+c 2-2ac cos B ,b =35,a =5, ∴45=25+c 2-8c ,即c 2-8c -20=0, 解得c =10或c =-2(舍去), ∴S =12ac sin B =12×5×10×35=15.20.(本小题满分15分)已知f (x )=x -ln x ,x ∈(0,e],g (x )=ln x x,其中e 是自然对数的底数.(1)判断f (x )的单调性并求其极值; (2)求证:f (x )>g (x )+12.解:(1)∵f ′(x )=1-1x =x -1x,x ∈(0,e],∴当0<x <1时,f ′(x )<0,此时f (x )单调递减; 当1<x ≤e 时,f ′(x )>0,此时f (x )单调递增. ∴f (x )的极小值为f (1)=1,无极大值.(2)证明:∵f (x )的极小值为1,即f (x )在(0,e]上的最小值为1,令h (x )=g (x )+12=ln x x +12,则h ′(x )=1-ln xx 2,当0<x ≤e 时,h ′(x )≥0,h (x )在(0,e]上单调递增, ∴h (x )max =h (e)=1e +12<1=f (x )min .∴f (x )>g (x )+12.21.(本小题满分15分)已知数列{a n }的前n 项和S n 满足a n =1-2S n . (1)求证:数列{a n }为等比数列;(2)设函数f (x )=log 13x ,b n =f (a 1)+f (a 2)+…+f (a n ),求T n =1b 1+1b 2+1b 3+…+1b n.解:(1)证明:∵数列{a n }的前n 项和S n 满足a n =1-2S n .∴a 1=1-2a 1,解得a 1=13.n ≥2时,a n -1=1-2S n -1,可得a n -a n -1=-2a n .∴a n =13a n -1.∴数列{a n }是首项和公比均为13的等比数列.(2)由(1)可知a n =⎝ ⎛⎭⎪⎫13n,则f (a n )=log 13a n =n .∴b n =1+2+…+n =n n +12.∴1b n =2⎝ ⎛⎭⎪⎫1n -1n +1. ∴T n =1b 1+1b 2+1b 3+…+1b n=2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1 =2⎝⎛⎭⎪⎫1-1n +1=2nn +1. 22.(本小题满分15分)已知数列{a n }满足:a 1=12,a n +1=a 2n 2 017+a n (n ∈N *).(1)求证:a n +1>a n; (2)求证:a 2 018<1;(3)若a k >1,求正整数k 的最小值. 解:(1)由a n +1-a n =a 2n2 017≥0,得a n +1≥a n ,因为a 1=12,所以a n ≥12,因此a n +1-a n =a 2n2 017>0,所以a n +1>a n .(2)由已知得1a n +1=2 017a na n +2 017=1a n -1a n +2 017,所以1a n +2 017=1a n -1a n +1,由1a 1+2 017=1a 1-1a 2,1a 2+2 017=1a 2-1a 3,…,1a n -1+2 017=1a n -1-1a n ,累加可得1a 1-1a n=1a 1+2 017+1a 2+2 017+…+1a n -1+2 017.当n =2 018时,由(1)得12=a 1<a 2<a 3<…<a 2 017,所以1a 1-1a 2 017+1a 1+2 017+1a 2+2 017+…+1a 2 017+2 017<2 017×1a 1+2 017<1.所以a 2 018<1.(3)由(2)得12=a 1<a 2<a 3<…<a 2 018<1,所以1a 1-1a 2 019=1a 1+2 017+1a 2+2 017+…+1a 2 018+2 017>2 018×11+2 017=1.所以a 2 018<1<a 2 019,又因为a n +1>a n , 所以k 的最小值为2 019.。
专题限时集训(十七) 集合与常用逻辑用语(对应学生用书第151页)[建议A、B组各用时:45分钟][A组高考题、模拟题重组练]一、集合1.(2015·浙江高考)已知集合P={x|x2-2x≥3},Q={x|2<x<4},则P∩Q=( ) A.[3,4) B.(2,3]C.(-1,2) D.(-1,3]A[P={x|x2-2x≥3}={x|(x-3)(x+1)≥0}={x|x≥3或x≤-1},∴P∩Q={x|x≥3或x≤-1}∩{x|2<x<4}={x|3≤x<4},即P∩Q=[3,4).]2.(2017·浙江高考)已知集合P={x|-1<x<1},Q={x|0<x<2},那么P∪Q=( ) A.(-1,2) B.(0,1)C.(-1,0) D.(1,2)A[∵P={x|-1<x<1},Q={x|0<x<2},∴P∪Q={x|-1<x<2}.故选A.]3.设集合A={y|y=2x,x∈R},B={x|x2-1<0},则A∪B=( )A.(-1,1) B.(0,1)C.(-1,+∞)D.(0,+∞)C[由已知得A={y|y>0},B={x|-1<x<1},则A∪B={x|x>-1}.故选C.]4.(2016·浙江高考)已知集合P={x∈R|1≤x≤3},Q={x∈R|x2≥4},则P∪(∁R Q)=( ) A.[2,3] B.(-2,3]C.[1,2) D.(-∞,-2]∪[1,+∞)B[∵Q={x∈R|x2≥4},∴∁R Q={x∈R|x2<4}={x|-2<x<2}.∵P={x∈R|1≤x≤3},∴P∪(∁R Q)={x|-2<x≤3}=(-2,3].]5.(2015·浙江高考)已知集合P={x|x2-2x≥0},Q={x|1<x≤2},则(∁R P)∩Q=( ) A.[0,1) B.(0,2]C.(1,2) D.[1,2]C[由x2-2x≥0,得x≤0或x≥2,即P={x|x≤0或x≥2},所以∁R P={x|0<x<2}=(0,2).又Q={x|1<x≤2}=(1,2],所以(∁R P)∩Q=(1,2).]6.(2014·浙江高考)设全集U={x∈N|x≥2),集合A={x∈N|x2≥5},则∁U A=( )A .∅B .{2}C .{5}D .{2,5}B [因为A ={x ∈N |x ≤-5或x ≥5}, 所以∁U A ={x ∈N |2≤x <5),故∁U A ={2}.] 二、命题及其关系、充分条件与必要条件7.(2015·浙江高考)设a ,b 是实数,则“a +b >0”是“ab >0”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件D [特值法:当a =10,b =-1时,a +b >0,ab <0,故a +b >0D ⇒/ab >0;当a =-2,b =-1时,ab >0,但a +b <0,所以ab >0D ⇒/a +b >0.故“a +b >0”是“ab >0”的既不充分也不必要条件.]8.(2017·湖州市高三第一学期期末调研测试)已知{a n }是等比数列,则“a 2<a 4”是“{a n }是单调递增数列”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件B [若a n =(-2)n,是等比数列,且a 2=4<a 4=16,但该数列不具有单调性,所以充分性不成立;若{a n }是单调递增的等比数列,则必有a 2<a 4,所以必要性成立,即“a 2<a 4”是“{a n }是单调递增数列”的必要不充分条件,故选B.]9.设p :实数x ,y 满足(x -1)2+(y -1)2≤2,q :实数x ,y 满足⎩⎪⎨⎪⎧y ≥x -1,y ≥1-x ,y ≤1,则p 是q 的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件A [p 表示以点(1,1)为圆心,2为半径的圆面(含边界),如图所示.q 表示的平面区域为图中阴影部分(含边界).由图可知,p是q的必要不充分条件.故选A.]10.已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”是“平面α和平面β相交”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件A[由题意知a⊂α,b⊂β,若a,b相交,则a,b有公共点,从而α,β有公共点,可得出α,β相交;反之,若α,β相交,则a,b的位置关系可能为平行、相交或异面.因此“直线a和直线b相交”是“平面α和平面β相交”的充分不必要条件.故选A.]11.设集合A={x|x>-1},B={x|x≥1},则“x∈A且x∉B”成立的充要条件是( ) A.-1<x≤1B.x≤1C.x>-1 D.-1<x<1D[由x∈A且x∉B知x∈A∩(∁R B),又∁R B={x|x<1},则A∩(∁R B)={x|-1<x<1}.][B组“8+7”模拟题提速练]一、选择题1.已知集合A={x|y=lg(x-x2)},集合B={x|x2-cx<0,c>0},若A⊆B,则c的取值范围为( ) A.(0,1] B.(0,1)C.[1,+∞)D.(1,+∞)C[由题意将两个集合化简得:A=(0,1),B=(0,c),因为A⊆B,所以c≥1.]2.(2017·杭州市高三年级第二学期教学质量检测)设α,β是两个不同的平面,m是一条直线,给出下列命题:①若m⊥α,m⊂β,则α⊥β;②若m∥α,α⊥β,则m⊥β,则A.①②都是假命题B.①是真命题,②是假命题C.①是假命题,②是真命题D.①②都是真命题B[由面面垂直的判定可知m⊥α,m⊂β,则α⊥β,故命题①为真命题;m∥α,α⊥β,m与β可能平行,在β内,或与α相交,故②为假命题.]3.(2014·浙江高考)已知i是虚数单位,a,b∈R,则“a=b=1”是“(a+b i)2=2i”的( ) A.充分不必要条件B.必要不充分条件C .充分必要条件D .既不充分也不必要条件A [当a =b =1时,(a +b i)2=(1+i)2=2i ;当(a +b i)2=2i 时,得⎩⎪⎨⎪⎧a 2-b 2=0,ab =1,解得a =b =1或a =b =-1,所以“a =b =1”是“(a +b i)2=2i”的充分不必要条件.]4.(2017·浙江省名校新高考研究联盟高三第三次联考)已知集合P ={x ∈R |0<x <1},Q ={x ∈R |x 2+x -2≤0},则( ) A .P ∈Q B .P ∈∁R Q C .∁R P ⊆QD .∁R Q ⊆∁R PD [由题意得集合P ={x |0<x <1},Q ={x |-2≤x ≤1},所以∁R P ={x |x ≤0或x ≥1},∁R Q ={x |x <-2或x >1},所以∁R Q ⊆∁R P ,故选D.]5.函数f (x )的定义域为实数集R ,“f (x )是奇函数”是“|f (x )|是偶函数”的( ) 【导学号:68334154】A .充分不必要条件B .必要不充分条件C .既不充分也不必要条件D .充要条件A [f (x )为奇函数,则f (-x )=-f (x ),所以|f (-x )|=|-f (x )|=|f (x )|,因此|f (x )|是偶函数,但当f (x )为奇函数时,|f (x )|为偶函数,但由|f (x )|为偶函数不能得出结论f (x )为奇函数,因此本题选A.]6.“a =0”是“函数f (x )=sin x -1x+a 为奇函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件C [f (x )的定义域为{x |x ≠0},关于原点对称,当a =0时,f (x )=sin x -1x,f (-x )=sin(-x )-1-x =-sin x +1x =-⎝ ⎛⎭⎪⎫sin x -1x =-f (x ),故f (x )为奇函数; 反之,当f (x )=sin x -1x+a 为奇函数时,f (-x )+f (x )=0,又f (-x )+f (x )=sin(-x )-1-x +a +sin x -1x +a =2a ,故a =0,所以“a =0”是“函数f (x )=sin x -1x+a 为奇函数“的充要条件,故选C.]7.已知集合A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为( ) A .1 B .2 C .3D .4D [A ={x |(x -1)(x -2)=0,x ∈R }={1,2},B ={x |0<x <5,x ∈N }={1,2,3,4}. 因为A ⊆C ⊆B ,所以C 可以为{1,2},{1,2,3},{1,2,4},{1,2,3,4}.]8.(2015·浙江高考)设A ,B 是有限集,定义:d (A ,B )=card(A ∪B )-card(A ∩B ),其中card(A )表示有限集A 中元素的个数.( )命题①:对任意有限集A ,B ,“A ≠B ”是“d (A ,B )>0”的充分必要条件; 命题②:对任意有限集A ,B ,C ,d (A ,C )≤d (A ,B )+d (B ,C ). A .命题①和命题②都成立 B .命题①和命题②都不成立 C .命题①成立,命题②不成立 D .命题①不成立,命题②成立A [命题①成立,若A ≠B ,则card(A ∪B )>card(A ∩B ),所以d (A ,B )=card(A ∪B )-card(A ∩B )>0.反之可以把上述过程逆推,故“A ≠B ”是“d (A ,B )>0”的充分必要条件; 命题②成立,由Venn 图,知card(A ∪B )=card(A )+card(B )-card(A ∩B ),d (A ,C )=card(A )+card(C )-2card(A ∩C ), d (B ,C )=card(B )+card(C )-2card(B ∩C ),所以d (A ,B )+d (B ,C )-d (A ,C )=card(A )+card(B )-2card(A ∩B )+card(B )+card(C )-2card(B ∩C )-[card(A )+card(C )-2card(A ∩C )]=2card(B )-2card(A ∩B )-2card(B ∩C )+2card(A ∩C ) =2card(B )+2card(A ∩C )-2[card(A ∩B )+card(B ∩C )] ≥2card(B )+2card(A ∩C )-2[card((A ∪C )∩B )+card(A ∩B ∩C )] =[2card(B )-2card ( A ∪CB+[2card(A ∩C )-2card(A ∩B ∩C )]≥0,所以d (A ,C )≤d (A ,B )+d (B ,C )得证.] 二、填空题9.(2017·浙江省名师原创预测卷(二))已知集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪y =lnx -1x ,N ={y |y =x 2+2x +2},则(∁RM )∩N =________.{1} [由题意得M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x -1x >0,即M =(-∞,0)∪(1,+∞),N ={y |y ≥1},所以(∁R M )∩N =[0,1]∩[1,+∞)={1}.]10.已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈R ⎪⎪⎪12<2x<8,B ={x ∈R |-1<x <m +1},若x ∈B 成立的一个充分不必要的条件是x ∈A ,则实数m 的取值范围是________.(2,+∞) [A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈R ⎪⎪⎪12<2x<8={x |-1<x <3}, 因为x ∈B 成立的一个充分不必要条件是x ∈A , 所以A ⊆B ,所以m +1>3,即m >2.]11.(2017·浙江省名师原创预测卷(四))已知集合A ={1,2,3,…,10},若集合A 的一个非空子集中的奇数的个数不多于偶数的个数,则称该子集为“偏偶集”,那么集合A 的所有非空子集中,“偏偶集”的个数为________.637 [集合A 的所有非空子集可分为三类:偶数的个数多于奇数的个数、奇数的个数多于偶数的个数、偶数的个数与奇数的个数相等.其中前两种情况的子集数相等,现考虑第三种情况,即考虑元素个数为2,4,6,8,10的子集,则共有子集数:(C 15)2+(C 25)2+(C 35)2+(C 45)2+(C 55)2=251,从而“偏偶集”的个数为251+12(210-1-251)=637.]12.设p :(x -a )2≤9,q :(x +1)(2x -1)≥0,若p 是q 的充分不必要条件,则实数a 的取值范围是________.(-∞,-4]∪⎣⎢⎡⎭⎪⎫72,+∞ [p :(x -a )2≤9,所以a -3≤x ≤a +3,q :x ≤-1或x ≥12.因为p 是q 的充分不必要条件,所以a +3≤-1或a -3≥12,即a ≤-4或a ≥72.]13.(2014·浙江高考)设集合S ={x |x ≥2},T ={x |x ≤5},则S ∩T =________.[2,5] [因为S ={x |x ≥2},T ={x |x ≤5},所以S ∩T ={x |x ≥2且x ≤5}={x |2≤x ≤5}.] 14.已知集合A ={1,2,3,4},B ={x ∈Z ||x |≤1},则A ∩(∁Z B )=________.{2,3,4} [因为集合A ={1,2,3,4},B ={x ∈Z ||x |≤1}={-1,0,1},所以A ∩(∁Z B )={2,3,4}.] 15.(2016·江南十校一模)已知集合P ={x |-1<x <b ,b ∈N },Q ={x |x 2-3x <0,x ∈Z },若P ∩Q ≠∅,则b 的最小值等于________.2 [集合P ={x |-1<x <b ,b ∈N },Q ={x |x 2-3x <0,x ∈Z }={1,2},P ∩Q ≠∅,可得b 的最小值为2.]专题限时集训(十八) 不等式与线性规划(对应学生用书第153页) [建议A 、B 组各用时:45分钟] [A 组 高考题、模拟题重组练]一、基本不等式1.已知a >0,b >0,a +b =1a +1b ,则1a +2b的最小值为( )A .4B .2 2C .8D .16B [由a +b =1a +1b,有ab =1,则1a +2b≥21a ×2b=2 2.]2.(2017·温州九校协作体高三期末联考)已知实数x >0,y >0,且满足x +y =1,则2x +xy的最小值为________.2+22 [因为x +y =1,所以2x +x y =2x +2y x +x y =2+2y x +xy≥2+22,当且仅当⎩⎪⎨⎪⎧2y x =x y,x +y =1,即x =2-2,y =2-1时等号成立.]3.(2014·浙江高考)已知实数a ,b ,c 满足a +b +c =0,a 2+b 2+c 2=1,则a 的最大值是________.63[因为a +b +c =0,所以b +c =-a . 因为a 2+b 2+c 2=1,所以-a 2+1=b 2+c 2=(b +c )2-2bc =a 2-2bc , 所以2a 2-1=2bc ≤b 2+c 2=1-a 2, 所以3a 2≤2,所以a 2≤23,所以-63≤a ≤63. 所以a max =63.] 4.(2015·浙江高考)已知函数f (x )=⎩⎪⎨⎪⎧x 2,x ≤1,x +6x-6,x >1,则f (f (-2))=________,f (x )的最小值是________.-12 26-6 [f (f (-2))=f (4)=4+64-6=-12.当x ≤1时,f (x )min =0; 当x >1时,f (x )=x +6x-6.令f ′(x )=1-6x2=0,解得x =6(负值舍去).当1<x <6时,f ′(x )<0;当x >6时,f ′(x )>0, ∴f (x )的最小值为f (6)=6+66-6=26-6.综上,f (x )的最小值是26-6.] 二、线性规划问题5.(2017·浙江高考)若x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,x +y -3≥0,x -2y ≤0,则z =x +2y 的取值范围是( )A .[0,6]B .[0,4]C .[6,+∞)D .[4,+∞)D [作出不等式组表示的平面区域,如图中阴影部分所示.由题意可知,当直线y =-12x +z2过点A (2,1)时,z 取得最小值,即z min =2+2×1=4.所以z =x +2y的取值范围是[4,+∞). 故选D.]6.(2016·山东高考)若变量x ,y 满足⎩⎪⎨⎪⎧x +y ≤2,2x -3y ≤9,x ≥0,则x 2+y 2的最大值是( )A .4B .9C .10D .12C [作出不等式组表示的平面区域,如图中阴影部分所示.x 2+y 2表示平面区域内的点到原点距离的平方,由⎩⎪⎨⎪⎧x +y =2,2x -3y =9得A (3,-1),由图易得(x 2+y 2)max =|OA |2=32+(-1)2=10.故选C.]7.(2016·浙江高考)若平面区域⎩⎪⎨⎪⎧x +y -3≥0,2x -y -3≤0,x -2y +3≥0夹在两条斜率为1的平行直线之间,则这两条平行直线间的距离的最小值是( ) A.355 B. 2 C.322D. 5B [根据约束条件作出可行域如图阴影部分,当斜率为1的直线分别过A 点和B 点时满足条件,联立方程组⎩⎪⎨⎪⎧x +y -3=0,x -2y +3=0求得A (1,2),联立方程组⎩⎪⎨⎪⎧2x -y -3=0,x +y -3=0求得B (2,1),可求得分别过A ,B 点且斜率为1的两条直线方程为x -y +1=0和x -y -1=0,由两平行线间的距离公式得距离为|1+1|2=2,故选B.]8.设x ,y 满足约束条件⎩⎪⎨⎪⎧2x -y +1≥0,x -2y -1≤0,x ≤1,则z =2x +3y -5的最小值为________.-10 [画出不等式组表示的平面区域如图中阴影部分所示.由题意可知,当直线y =-23x +53+z3过点A (-1,-1)时,z 取得最小值,即z min=2×(-1)+3×(-1)-5=-10.]9.某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时.生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为________元.216 000 [设生产A 产品x 件,B 产品y 件,则⎩⎪⎨⎪⎧1.5x +0.5y ≤150,x +0.3y ≤90,5x +3y ≤600,x ≥0,x ∈N *,y ≥0,y ∈N *.目标函数z =2 100x +900y .作出可行域为图中的阴影部分(包括边界)内的整数点,图中阴影四边形的顶点坐标分别为(60,100),(0,200),(0,0),(90,0).当直线z =2 100x +900y 经过点(60,100)时,z 取得最大值,z max =2 100×60+900×100=216 000(元).]10.(2015·浙江高考)若实数x ,y 满足x 2+y 2≤1,则|2x +y -2|+|6-x -3y |的最小值是________. 3 [满足x 2+y 2≤1的实数x ,y 表示的点(x ,y )构成的区域是单位圆及其内部.f (x ,y )=|2x +y -2|+|6-x -3y |=|2x +y -2|+6-x -3y=⎩⎪⎨⎪⎧4+x -2y ,y ≥-2x +2,8-3x -4y ,y <-2x +2.直线y =-2x +2与圆x 2+y 2=1交于A ,B 两点,如图所示,易得B ⎝ ⎛⎭⎪⎫35,45.设z 1=4+x -2y ,z 2=8-3x -4y ,分别作直线y =12x 和y =-34x 并平移,则z 1=4+x -2y 在点B ⎝ ⎛⎭⎪⎫35,45取得最小值为3,z 2=8-3x -4y 在点B ⎝ ⎛⎭⎪⎫35,45取得最小值为3,所以|2x +y -2|+|6-x -3y |的最小值是3.][B 组 “8+7”模拟题提速练]一、选择题1.已知a <b <0,则下列不等式成立的是( ) 【导学号:68334155】 A .a 2<b 2B.a b<1 C .a <1-bD.1a <1bC [因为a <b <0,所以a 2>b 2,a b >1,1a >1b,a +b <1.因此A ,B ,D 不正确,C 正确.]2.已知P (x ,y )为区域⎩⎪⎨⎪⎧y 2-x 2≤0,0≤x ≤a 内的任意一点,当该区域的面积为4时,z =2x -y 的最大值是( ) A .6 B .0 C .2 D .2 2A [由⎩⎪⎨⎪⎧y 2-x 2≤0,0≤x ≤a 作出可行域如图,易求得A (a ,-a ),B (a ,a ),由题意知S △OAB =12·2a ·a =4,得a =2.∴A (2,-2),当y =2x -z 过A 点时,z 最大,z max =2×2-(-2)=6.故选A.]3.(2015·浙江高考)有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色,且三个房间颜色各不相同.已知三个房间的粉刷面积(单位:m 2)分别为x ,y ,z ,且x <y <z ,三种颜色涂料的粉刷费用(单位:元/m 2)分别为a ,b ,c ,且a <b <c .在不同的方案中,最低的总费用(单位:元)是( ) A .ax +by +cz B .az +by +cx C .ay +bz +cx D .ay +bx +czB [令x =1,y =2,z =3,a =1,b =2,c =3. A 项:ax +by +cz =1+4+9=14; B 项:az +by +cx =3+4+3=10;C 项:ay +bz +cx =2+6+3=11;D 项:ay +bx +cz =2+2+9=13.故选B.]4.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≤0,y ≤1,x >-1,则(x -2)2+y 2的最小值为( )A.322B. 5C.92D .5D [作出不等式组对应的平面区域如图,设z =(x -2)2+y 2,则z 的几何意义为区域内的点到定点D (2,0)的距离的平方,由图知C ,D 间的距离最小,此时z 最小. 由⎩⎪⎨⎪⎧y =1,x -y +1=0,得⎩⎪⎨⎪⎧x =0,y =1,即C (0,1),此时z min =(x -2)2+y 2=4+1=5,故选D.]5.已知x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,y ≥-1,4x +y ≤9,x +y ≤3,若目标函数z =y -mx (m >0)的最大值为1,则m 的值是( ) 【导学号:68334156】 A .-209B .1C .2D .5B [作出可行域,如图所示的阴影部分.∵m >0,∴当z =y -mx 经过点A 时,z 取最大值,由⎩⎪⎨⎪⎧x =1,x +y =3,解得⎩⎪⎨⎪⎧x =1,y =2,即A (1,2),∴2-m =1,解得m =1.故选B.]6.若关于x ,y 的不等式组⎩⎪⎨⎪⎧x ≤0,x +y ≥0,kx -y +1≥0表示的平面区域是等腰直角三角形,则其表示的区域面积为( ) A .1或14B.12或18 C .1或12D.12或14D [可行域由三条直线x =0,x +y =0,kx -y +1=0所围成,因为x =0与x +y =0的夹角为π4,所以x =0与kx -y +1=0的夹角为π4或x +y =0与kx -y +1=0的夹角为π4.当x =0与kx -y +1=0的夹角为π4时,可知k =1,此时等腰三角形的直角边长为22,面积为14;当x +y =0与kx -y +1=0的夹角为π4时,k =0,此时等腰三角形的直角边长为1,面积为12,所以选D.]7.设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0,则当z xy取得最小值时,x +2y -z 的最大值是( ) 【导学号:68334157】 A .0 B.98 C .2D.94C [z xy =x 2-3xy +4y 2xy =x y -3+4yx≥2x y ·4y x -3=1,当且仅当x y =4yx,即x =2y 时等号成立. 此时z =x 2-3xy +4y 2=(2y )2-3·2y ·y +4y 2=2y 2. ∴x +2y -z =2y +2y -2y 2=-2(y -1)2+2,∴当y =1,x =2,z =2时,x +2y -z 取最大值,最大值为2,故选C.]8.设m >1,x ,y 满足约束条件⎩⎪⎨⎪⎧y ≥x ,y ≤mx ,x +y ≤1,且目标函数z =x +my 的最大值为2,则m 的取值为( )A .2B .1+ 2C .3D .2+ 2B [因为m >1,由约束条件⎩⎪⎨⎪⎧y ≥x ,y ≤mx ,x +y ≤1作出可行域如图,直线y =mx 与直线x +y =1交于B ⎝ ⎛⎭⎪⎫1m +1,m m +1,目标函数z =x +my 对应的直线与直线y =mx 垂直,且在B ⎝⎛⎭⎪⎫1m +1,m m +1处取得最大值,由题意可知1+m2m +1=2,又因为m >1,解得m =1+ 2.] 二、填空题9.(2017·浙江省名校新高考联盟高三第三次联考)过P (-1,1)的光线经x 轴上点A 反射后,经过不等式组⎩⎪⎨⎪⎧x -2y +4≥0,x +y -2≥0,3x +y -9≤0所表示的平面区域内某点(记为B ),则|PA |+|AB |的取值范围是________.[22,5] [由题意得点P (-1,1)关于x 轴的对称点为P 1(-1,-1),则|PA |+|PB |的取值范围等价于点P 1(-1,-1)与不等式组⎩⎪⎨⎪⎧x -2y +4≥0,x +y -2≥0,3x +y -9≤0,y ≥0表示的平面区域内的点的连线的长度的范围,如图,在平面直角坐标系内画出不等式组表示的平面区域(阴影区域,含边界),由图易得点P 1(-1,-1)到直线x +y -2=0的距离最小,最小值为|-1-1-2|12+12=22;点P 1(-1,-1)与点C (2,3)的距离最大,最大值为+2++2=5,所以|PA |+|PB |的取值范围为[22,5].]10.(2017·萧山中学高三仿真模拟)已知实数x ,y 满足|2x +y -2|≥|6-x -3y |且|x |≤4,则|3x -4y |的最大值为________.32 [∵实数x ,y满足|2x +y -2|≥|6-x -3y |,且|x |≤4,∴⎩⎪⎨⎪⎧2x +y -2≥0,x +3y -6≥0,x -2y +4≥0,-4≤x ≤4或⎩⎪⎨⎪⎧ 2x +y -2≤0,x +3y -6≤0,x -2y +4≤0,-4≤x ≤4或⎩⎪⎨⎪⎧2x +y -2≥0,x +3y -6≤0,3x +4y -8≥0,-4≤x ≤4或⎩⎪⎨⎪⎧2x +y -2≤0,x +3y -6≥0,3x +4y -8≤0,-4≤x ≤4.∴可行域为如图中阴影部分(含边界)所示,其中A (-4,5),B (-4,0),C (0,2),D (4,4),E (4,-1).设目标函数z =3x -4y ,则当目标函数z =3x -4y 经过A (-4,5)时取得最小值z min =-32;当目标函数z =3x -4y 经过E (4,-1)时取得最大值z max =16,则|z |=|3x -4y |的最大值为32.]11.(2014·浙江高考)当实数x ,y 满足⎩⎪⎨⎪⎧x +2y -4≤0,x -y -1≤0,x ≥1时,1≤ax +y ≤4恒成立,则实数a 的取值范围是________.⎣⎢⎡⎦⎥⎤1,32 [画可行域如图所示,设目标函数z =ax +y ,即y =-ax +z ,要使1≤z ≤4恒成立,则a >0,数形结合知,满足⎩⎪⎨⎪⎧1≤2a +1≤4,1≤a ≤4即可,解得1≤a ≤32.所以a 的取值范围是1≤a ≤32.]12.已知正数a ,b ,c 满足b +c ≥a ,则b c +ca +b的最小值为________.2-12[因为正数a ,b ,c 满足b +c ≥a ,所以b c +c a +b ≥b c +c 2b +c =⎝ ⎛⎭⎪⎫b c +12+c 2b +c -12=2b +c 2c +c 2b +c -12≥2-12. 当且仅当2b +c 2c =c2b +c时取等号.]13.已知一元二次不等式f (x )<0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-1或x >13,则f (e x )>0的解集为________.{x |x <-ln 3} [f (x )>0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-1<x <13, 则由f (e x )>0得-1<e x<13,解得x <-ln 3,即f (e x)>0的解集为{x |x <-ln 3}.]14.(2017·宁波十校高三适应性考试 17)已知a ,b 均为正数,且a +b =1,c >1,则⎝ ⎛⎭⎪⎫a 2+12ab -1·c +2c -1的最小值为________.3 2 [由题意知,∵a 2+12ab -1=a 2+a +b 22ab-1=2a 2+b22ab≥2(当且仅当a =2-1,b =2-2时,等号成立),∴原式≥2c +2c -1=2⎝ ⎛⎭⎪⎫c -1+1c -1+2≥22+2=32(当且仅当c =2时,等号成立).]15.(2016·舟山调研)若log 4(3a +4b )=log 2ab ,则a +b 的最小值是________. 7+43 [由log 4(3a +4b )=log 2ab ,得3a +4b =ab ,且a >0,b >0,∴a =4bb -3,由a >0,得b >3. ∴a +b =b +4bb -3=b +b -+12b -3=(b -3)+12b -3+7≥212+7=43+7,即a +b 的最小值为7+4 3.]专题限时集训(十九) 复数、数学归纳法(对应学生用书第155页) [建议A 、B 组各用时:45分钟] [A 组 高考题、模拟题重组练]一、复数1.设(1+i)x =1+y i ,其中x ,y 是实数,则|x +y i|=( ) A .1 B. 2 C. 3D .2B [∵(1+i)x =1+y i ,∴x +x i =1+y i. 又∵x ,y ∈R ,∴x =1,y =x =1. ∴|x +y i|=|1+i|=2,故选B.]2.已知z =(m +3)+(m -1)i 在复平面内对应的点在第四象限,则实数m 的取值范围是( ) A .(-3,1) B .(-1,3) C .(1,+∞) D .(-∞,-3)A [由题意知⎩⎪⎨⎪⎧m +3>0,m -1<0,即-3<m <1.故实数m 的取值范围为(-3,1).]3.若z =4+3i ,则z|z |=( ) A .1 B .-1 C.45+35iD.45-35i D [∵z =4+3i ,∴z =4-3i ,|z |=42+32=5,∴z|z |=4-3i 5=45-35i.] 4.设复数z 满足1+z 1-z =i ,则|z |=( )A .1 B. 2 C. 3D .2 A [由1+z 1-z =i ,得z =-1+i1+i=-1+-2=2i2=i ,所以|z |=|i|=1,故选A.] 5.若a 为实数,且(2+a i)(a -2i)=-4i ,则a =( ) A .-1 B .0 C .1D .2B [∵(2+a i)(a -2i)=-4i ,∴4a +(a 2-4)i =-4i.∴⎩⎪⎨⎪⎧4a =0,a 2-4=-4,解得a =0.故选B.]6.若复数z 满足2z +z =3-2i ,其中i 为虚数单位,则z =( ) A .1+2iB .1-2iC .-1+2iD .-1-2iB [法一:设z =a +b i(a ,b ∈R ),则2z +z =2a +2b i +a -b i =3a +b i =3-2i.由复数相等的定义,得3a =3,b =-2,解得a =1,b =-2,∴z =1-2i.法二:由已知条件2z +z =3-2i ①,得2z +z =3+2i ②,解①②组成的关于z ,z 的方程组,得z =1-2i.故选B.]7.(2017·浙江高考)已知a ,b ∈R ,(a +b i)2=3+4i(i 是虚数单位),则a 2+b 2=________,ab =________.【导学号:68334158】5 2 [(a +b i)2=a 2-b 2+2ab i.由(a +b i)2=3+4i ,得⎩⎪⎨⎪⎧a 2-b 2=3,ab =2.解得a 2=4,b 2=1.所以a 2+b 2=5,ab =2.]8.若复数z =m (m -1)+(m -1)i 是纯虚数,其中m 是实数,则1z=________.i [由题意,得m (m -1)=0且(m -1)≠0,得m =0,所以z =-i ,1z =1-i =i.二、数学归纳法9.用数学归纳法证明:(n +1)(n +2)…(n +n )=2n×1×3×…×(2n -1)(n ∈N *)时,从“n =k 到n =k +1”时,左边应增添的代数式为________.2(2k +1) [假设n =k 时,(k +1)(k +2)…(k +k )=2k×1×3…×(2k -1)成立;那么n =k +1时左边应为[(k +1)+1][(k +1)+2]…[(k +1)+k -1][(k +1)+k ][(k +1)+(k +1)]=(k +2)(k +3)…(k +k )(2k +1)(2k +2),即从“n =k 到n =k +1”时,左边应添乘的式子是[k +k +k ++k +k +1=k +k +k +1=2(2k +1).]10.观察下列各式:1=12,2+3+4=32,3+4+5+6+7=52,4+5+6+7+8+9+10=72,…,可以得出的一般结论是________.n +(n +1)+(n +2)+…+(3n -2)=(2n -1)2 [1=12,2+3+4=32,3+4+5+6+7=52,4+5+6+7+8+9+10=72,…,由上述式子可以归纳:等式左边为连续自然数的和,有2n -1项,且第一项为n ,则最后一项为3n -2,等式右边均为2n -1的平方.]11.用数学归纳法证明122+132+…+1n +2>12-1n +2.假设n =k 时,不等式成立,则当n =k +1时,应推证的目标不等式是________.122+132+…+1k 2+1k +2+1k +2>12-1k +3 [观察不等式中各项的分母变化知,n =k +1时,122+132+ (1)2+1k +2+1k +2>12-1k +3.][B 组 “8+7”模拟题提速练]一、选择题1.已知复数z =11-i ,则z -|z |对应的点所在的象限为( )A .第一象限B .第二象限C .第三象限D .第四象限 B [∵复数z =11-i =1+i -+=12+12i , ∴z -|z |=12+12i -⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫122=1-22+12i ,其对应的点⎝ ⎛⎭⎪⎫1-22,12所在的象限为第二象限.故选B.]2.已知i 为虚数单位,若a 1-i =1+ii,则a 的值为( )A .iB .-iC .-2iD .2iC [∵a 1-i =1+ii,∴a =+-i=2i=-2i ,故选C.] 3.(2016·浙江镇海中学模拟)设z 1,z 2是复数,则下列命题中的假命题是( ) A .若|z 1-z 2|=0,则z -1=z -2 B .若z 1=z -2,则z -1=z 2C .若|z 1|=|z 2|,则z 1·z -1=z 2·z -2 D .若|z 1|=|z 2|,则z 21=z 22D [对于选项A ,若|z 1-z 2|=0,则z 1-z 2=0,z 1=z 2,所以z -1=z -2,命题为真;对于选项B ,若z 1=z -2,则z 1和z 2互为共轭复数,所以z -1=z 2,命题为真;对于选项C ,设z 1=a 1+b 1i ,z 2=a 2+b 2i(a 1,b 1,a 2,b 2∈R ),若|z 1|=|z 2|,则a 21+b 21=a 22+b 22,z 1·z -1=a 21+b 21,z 2·z -2=a 22+b 22,所以z 1·z-1=z 2·z -2,命题为真;对于选项D ,若z 1=1,z 2=i ,则|z 1|=|z 2|,而z 21=1,z 22=-1,所以z 21≠z 22,命题为假.]4.复数z =3+4i1-2i (其中i 是虚数单位),则复数z 的共轭复数z -=( )A .-1-2iB .-1+2iC .1+2iD .1-2iA [依题意得z =++-+=-5+10i5=-1+2i ,因此z -=-1-2i ,故选A.]5.设复数z 1和z 2在复平面内的对应点关于坐标原点对称,且z 1=3-2i ,则z 1·z 2=( ) A .-5-12i B .-5+12i C .-13+12iD .-13-12iB [复数z 1=3-2i 在复平面内对应的点为(3,-2),其关于原点对称的点的坐标为(-3,2),所以z 2=-3+2i ,z 1·z 2=(3-2i)(-3+2i)=-5+12i ,故选B.]6.设i 是虚数单位,则复数2i1-i在复平面内所对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限B [2i1-i=+-+=-2=-1+i ,由复数的几何意义知-1+i 在复平面内的对应点为(-1,1),该点位于第二象限,故选B.]7.若复数z 满足(2+i)z =3i(i 为虚数单位),则z 的共轭复数为( ) A.2+i B.2-i C .1+2i D .1-2iD [依题意得z =3i2+i=2-2+2-=1+2i ,则复数z 的共轭复数为1-2i ,选D.]8.用数学归纳法证明“n 3+(n +1)3+(n +2)3(n ∈N +)能被9整除”,要利用归纳假设证n =k +1时的情况,只需展开( ) A .(k +3)3B .(k +2)3C .(k +1)3D .(k +1)3+(k +2)3A [假设当n =k 时,原式能被9整除,即k 3+(k +1)3+(k +2)3能被9整除.当n =k +1时,(k +1)3+(k +2)3+(k +3)3为了能用上面的归纳假设,只需将(k +3)3展开,让其出现k 3即可.] 二、填空题9.设复数z 的共轭复数为z ,若z =1-i(i 为虚数单位),则zz+z 2的虚部为________.-1 [∵z =1-i(i 为虚数单位), ∴zz +z 2=1+i 1-i+(1-i)2=+2-+-2i =2i2-2i =-i ,故其虚部为-1.] 10.在复平面上,已知直线l 上的点所对应的复数z 满足|z +i|=|z -3-i|,则直线l 的斜率为________. -32 [设z =x +y i(x ,y ∈R ),∵|z +i|=|z -3-i|,∴|x +(y +1)i|=|(x -3)+(y -1)i|,∴x 2+(y +1)2=(x -3)2+(y -1)2, ∴6x +4y -9=0,则直线l 的斜率为-32.]11.已知f (n )=1+12+13+…+1n (n ∈N +),证明不等式f (2n )>n 2时,f (2k +1)比f (2k)多的项数是_____________项.2k [f (2k )=1+12+13+…+12k ,f (2k +1)=1+12+13+…+12k +12k +1+12k +2+…+12k +2k .因此,f (2k +1)比f (2k )多了2k项.]12.用数学归纳法证明不等式1n +1+1n +2+…+1n +n >1324(n ≥2,n ∈N *)的过程中,由n =k 推导n =k +1时,不等式的左边增加的式子是__________.1k +k +[当n =k +1时左边的代数式是1k +2+1k +3+…+12k +1+12k +2,增加了两项12k +1与12k +2,但是少了一项1k +1,故不等式的左边增加的式子是12k +1+12k +2-1k +1=1k +k +.]13.复数+23-4i 的值是________.-1 [+23-4i=1+4i +4i 23-4i =-3+4i 3-4i=-1.]14.已知x1+i=1-y i ,其中x ,y 是实数,i 是虚数单位,则x +y i 的共轭复数为________.2-i [x 1+i =12(x -x i)=1-y i ,所以x =2,y =1.]15.设复数z 1=3+2i ,z 2=1-i ,则⎪⎪⎪⎪⎪⎪z 1+2z 2=________. 【导学号:68334159】5 [⎪⎪⎪⎪⎪⎪z 1+2z 2=⎪⎪⎪⎪⎪⎪3+2i +21-i=|3+2i +(1+i)|=|4+3i|=5.]专题限时集训(二十) 排列组合、二项式定理 (对应学生用书第157页) [建议A 、B 组各用时:45分钟] [A 组 高考题、模拟题重组练]一、排列、组合1.如图201,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( )图201A.24 B.18C.12 D.9B[从E到G需要分两步完成:先从E到F,再从F到G.从F到G的最短路径,只要考虑纵向路径即可,一旦纵向路径确定,横向路径即可确定,故从F到G的最短路径共有3条.如图,从E到F的最短路径有两类:先从E到A,再从A到F,或先从E到B,再从B到F.因为从A到F或从B到F都与从F到G的路径形状相同,所以从A到F,从B到F最短路径的条数都是3,所以从E 到F的最短路径有3+3=6(条).所以小明到老年公寓的最短路径条数为6×3=18.]2.用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为( )A.24 B.48C.60 D.72D[第一步,先排个位,有C13种选择;第二步,排前4位,有A44种选择.由分步乘法计数原理,知有C13·A44=72(个).]3.定义“规范01数列”{a n}如下:{a n}共有2m项,其中m项为0,m项为1,且对任意k≤2m,a1,a2,…,a k中0的个数不少于1的个数.若m=4,则不同的“规范01数列”共有( )A.18个B.16个C.14个D.12个C[由题意知:当m=4时,“规范01数列”共含有8项,其中4项为0,4项为1,且必有a1=0,a8=1.不考虑限制条件“对任意k≤2m,a1,a2,…,a k中0的个数不少于1的个数”,则中间6个数的情况共有C36=20(种),其中存在k≤2m,a1,a2,…,a k中0的个数少于1的个数的情况有:①若a2=a3=1,则有C14=4(种);②若a2=1,a3=0,则a4=1,a5=1,只有1种;③若a2=0,则a3=a4=a5=1,只有1种.综上,不同的“规范01数列”共有20-6=14(种).故共有14个.故选C.]4.(2012·浙江高考)若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有( )A.60种B.63种C.65种D.66种D[满足题设的取法可分为三类:一是四个奇数相加,其和为偶数,在5个奇数1,3,5,7,9中,任意取4个,有C45=5(种);二是两个奇数加两个偶数其和为偶数,在5个奇数中任取2个,再在4个偶数2,4,6,8中任取2个,有C25·C24=60(种);三是四个偶数相加,其和为偶数,4个偶数的取法有1种,所以满足条件的取法共有5+60+1=66(种).]5.某中学高三学习雷锋志愿小组共有16人,其中一班、二班、三班、四班各4人,现在从中任选3人,要求这三人不能是同一个班级的学生,且在三班至多选1人,不同的选取法的种数为( )【导学号:68334160】A.484 B.472C.252 D.232B[分两类,不选三班的同学,利用间接法,没有条件得选择3人,再排除3个同学来自同一班,有C312-3C34=208种;选三班的一位同学,剩下的两位同学从剩下的12人中任选2人,有C14·C212=264种.根据分类计数原理,得208+264=472,故选B.]6.下列各式的展开式中x8的系数恰能表示从重量分别为1,2,3,4,…,10克的砝码(每种砝码各一个)中选出若干个,使其总重量恰为8克的方法总数的选项是( ) 【导学号:68334161】A.(1+x)(1+x2)(1+x3)…(1+x10)B.(1+x)(1+2x)(1+3x)…(1+10x)C.(1+x)(1+2x2)(1+3x3)…(1+10x10)D.(1+x)(1+x+x2)(1+x+x2+x3)...(1+x+x2+ (x10)A[从重量分别为1,2,3,4,…,10克的砝码(每种砝码各一个)中选出若干个,使其总重量恰为8克的方法是选一个,8克,一种方法,选两个,1+7,2+6,3+5,共3种方法,选三个,1+2+5,只有一种方法,其他不含1的三个的和至少是2+3+4>8.四个以上的和都大于8,因此共有方法数为 5.A中,x8的系数是1+3+1=5(x8,x·x7,x2·x6,x3·x5,x·x2·x5),B中,x8的系数大于1×2×3×4×5×6×7×8,C中,x8的系数大于8(8x8的系数就是8),D中,x8的系数大于C49>8(有四个括号里取x2,其余取1时系数为C49).因此只有A是正确的,故选A.]7.(2017·浙江高考)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有________种不同的选法.(用数字作答)660 [法一:只有1名女生时,先选1名女生,有C12种方法;再选3名男生,有C36种方法;然后排队长、副队长位置,有A24种方法.由分步乘法计数原理,知共有C12C36A24=480(种)选法.有2名女生时,再选2名男生,有C26种方法;然后排队长、副队长位置,有A24种方法.由分步乘法计数原理,知共有C26A24=180(种)选法.所以依据分类加法计数原理知共有480+180=660(种)不同的选法.法二:不考虑限制条件,共有A28C26种不同的选法,而没有女生的选法有A26C24种,故至少有1名女生的选法有A28C26-A26C24=840-180=660(种).]8.(2014·浙江高考)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有________种(用数字作答).60[把8张奖券分4组有两种分法,一种是分(一等奖,无奖)、(二等奖,无奖)、(三等奖,无奖)、(无奖,无奖)四组,分给4人有A44种分法;另一种是一组两个奖,一组只有一个奖,另两组无奖,共有C23种分法,再分给4人有C23A24种分法,所以不同获奖情况种数为A44+C23A24=24+36=60.]二、二项式定理9.(x2+x+y)5的展开式中,x5y2的系数为( )A.10 B.20C.30 D.60C[法一:(x2+x+y)5=[(x2+x)+y]5,含y2的项为T3=C25(x2+x)3·y2.其中(x2+x)3中含x5的项为C13x4·x=C13x5.所以x5y2的系数为C25C13=30.故选C.法二:(x2+x+y)5为5个x2+x+y之积,其中有两个取y,两个取x2,一个取x即可,所以x5y2的系数为C25C23C11=30.故选C.]10.(2014·浙江高考)在(1+x)6(1+y)4的展开式中,记x m y n项的系数为f(m,n),则f(3,0)+f(2,1)+f(1,2)+f(0,3)=( )A.45 B.60C.120 D.210C[因为f(m,n)=C m6C n4,所以f(3,0)+f(2,1)+f(1,2)+f(0,3)=C36C04+C26C14+C16C24+C06C34=120.]11.已知(1+ax)(1+x)5的展开式中x2的系数为5,则a=( )A.-4 B.-3C.-2 D.-1D[(1+x)5中含有x与x2的项为T2=C15x=5x,T3=C25x2=10x2,∴x2的系数为10+5a=5,∴a=-1,故选D.]12.已知多项式(x+1)3(x+2)2=x5+a1x4+a2x3+a3x2+a4x+a5,则a4=________,a5=________.16 4 [由题意知a4为含x的项的系数,根据二项式定理得a4=C23×12×C22×22+C33×13×C12×2=16,a5是常数项,所以a5=C33×13×C22×22=4.]13.(2016·全国乙卷)(2x+x)5的展开式中,x3的系数是________.(用数字填写答案)10 [(2x +x )5展开式的通项为T r +1=C r 5(2x )5-r·(x )r =25-r·C r5·x 5-r2.令5-r2=3,得r =4.故x 3的系数为25-4·C 45=2C 45=10.]14.⎝⎛⎭⎪⎫ax 2+1x 5的展开式中x 5的系数是-80,则实数a =________. -2 [T r +1=C r 5·(ax 2)5-r⎝ ⎛⎭⎪⎫1x r =C r 5·a 5-r x 10-52r .令10-52r =5,解得r =2.又展开式中x 5的系数为-80,则有C 25·a 3=-80,解得a =-2.]15.(a +x )(1+x )4的展开式中x 的奇数次幂项的系数之和为32,则a =________. 3 [设(a +x )(1+x )4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5. 令x =1,得(a +1)×24=a 0+a 1+a 2+a 3+a 4+a 5.① 令x =-1,得0=a 0-a 1+a 2-a 3+a 4-a 5.②①-②,得16(a +1)=2(a 1+a 3+a 5)=2×32,∴a =3.]16.设二项式⎝⎛⎭⎪⎪⎫x -13x 5的展开式中常数项为A ,则A =________. -10 [T r +1=C r 5(x )5-r ⎝⎛⎭⎪⎪⎫-13x r =C r 5(-1)r x 52-5r 6,令52-5r 6=0,得r =3,所以A =-C 35=-10.]17.已知对任意实数x ,有(m +x )(1+x )6=a 0+a 1x +a 2x 2+…+a 7x 7,若a 1+a 3+a 5+a 7=32,则m =________. 【导学号:68334162】0 [设(1+x )6=b 0+b 1x +b 2x 2+…+b 6x 6,则a 1=b 0+mb 1,a 3=b 2+mb 3,a 5=b 4+mb 5,a 7=b 6, 所以a 1+a 3+a 5+a 7=(b 0+b 2+b 4+b 6)+m (b 1+b 3+b 5),又由二项式定理知b 0+b 2+b 4+b 6=b 1+b 3+b 5=12(1+1)6=32,所以32+32m =32,m =0.][B 组 “8+7”模拟题提速练]一、选择题1.某校开设10门课程供学生选修,其中A ,B ,C 三门由于上课时间相同,至多选一门,学校规定:每位同学选修三门,则每位同学不同的选修方案种数是( )A .70B .98C .108D .120B [可分为两类:选A ,B ,C 中的一门,其它7科中选两门,有C 13C 27=63;不选A ,B ,C 中的一门,其它7科中选三门,有C 37=35;所以共有98种,故选B.]2.在⎝⎛⎭⎪⎫ax 6+b x 4的二项展开式中,如果x 3的系数为20,那么ab 3=( ) A .20 B .15 C .10D .5D [T r +1=C r4·(ax 6)4-r·⎝ ⎛⎭⎪⎫b xr =C r 4a 4-r b r x 24-7r,令24-7r =3,得r =3,则4ab 3=20,∴ab 3=5.]3.(2018·杭州二模)某微信群中甲、乙、丙、丁、戊五名成员同时抢4个红包,每人最多抢一个,且红包被全部抢光,4个红包中两个2元,两个3元(红包金额相同视为相同的红包),则甲、乙两人都抢到红包的情况有( ) A .36种 B .24种 C .18种D .9种C [由题意可得丙、丁、戊中有1人没有抢到红包,且抢到红包的4人中有2人抢到2元红包,另2人抢到3元红包,则甲、乙两人都抢到红包的情况有C 13C 24=18种,故选C.]4.七名同学站成一排照毕业纪念照,其中甲必须站在正中间,并且乙,丙两位同学要站在一起,则不同的排法有( ) A .240种 B .192种 C .120种D .96种B [不妨令乙丙在甲左侧,先排乙丙两人,有A 22种站法,再取一人站左侧有C 14×A 22种站法,余下三人站右侧,有A 33种站法,考虑到乙丙在右侧的站法,故总的站法总数是2×A 22×C 14×A 22×A 33=192,故选B.]5.某学校开设“蓝天工程博览课程”,组织6个年级的学生外出参观包括甲博物馆在内的6个博物馆,每个年级任选一个博物馆参观,则有且只有两个年级选择甲博物馆的情况有( ) A .A 26×A 45种 B .A 26×54种 C .C 26×A 45种D .C 26×54种D [有两个年级选择甲博物馆共有C 26种情况,其余四个年级每个年级各有5种选择情况,故有且只有两个年级选择甲博物馆的情况有C 26×54种,故选D.] 6.在⎝⎛⎭⎪⎫1+x +1x2 01810的展开式中,含x 2项的系数为( ) A .10 B .30 C .45D .120C [因为⎝⎛⎭⎪⎫1+x +1x2 01810=⎣⎢⎡⎦⎥⎤+x +1x2 01810=(1+x )10+C 110(1+x )91x2 018+…+C 1010⎝⎛⎭⎪⎫1x 2 01810,所以x 2项只能在(1+x )10的展开式中,所以含x 2的项为C 210x 2,系数为C 210=45,故选C.]7.(x +2y )7的展开式中,系数最大的项是( )。
题型专项训练2选择填空题组合特训(二)(时间:60分钟满分:100分)一、选择题(本大题共8小题,每小题8分,共64分)1.已知全集U=R,A={x|x2-2x<0},B={x|x≥1},则A∪(∁U B)=()A.(0,+∞)B.(-∞,1)C.(-∞,2)D.(0,1)2.椭圆=1的焦距为2,则m的值等于()A.5或-3B.2或6C.5或3 D3.已知一几何体的三视图如图所示,则该几何体的体积为()A B+1C D4.已知x,y满足约束条件则z=3x+y的取值范围为()A.[6,10]B.(-2,10]C.(6,10]D.[-2,10)5.(2017浙江宁波十校联考)已知a,b∈R,则“|a|+|b|>1”是“b<-1”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件6.已知函数f(x)=x2+cos x,f'(x)是函数f(x)的导函数,则f'(x)的图象大致是()7.已知随机变量ξ+η=8,若ξ~B(10,0.4),则E(η),D(η)分别是()A.4和2.4B.2和2.4C.6和2.4D.4和5.68.如图所示,在直三棱柱ABC-A1B1C1中,AB=AA1=2,∠ABC=90°,点E,F分别是棱AB,BB1的中点,当二面角C1-AA1-B为45°时,直线EF和BC1所成的角为()A.45°B.60°C.90°D.120°二、填空题(本大题共6小题,每小题6分,共36分)9.“斐波那契”数列由十三世纪意大利数学家斐波那契发现.数列中的一系列数字常被人们称之为神奇数.具体数列为:1,1,2,3,5,8,…,即从该数列的第三项开始,每个数字等于前两个相邻数字之和.已知数列{a n}为“斐波那契”数列,S n为数列{a n}的前n项和,则S7=.10.复数z=(1+2i)(3-i),其中i为虚数单位,则z的实部是,|z|=.11.若x10-x5=a0+a1(x-1)+a2(x-1)2+…+a10(x-1)10,则a0=,a5=.12.△ABC中,内角A,B,C的对边分别为a,b,c,且b sin A=a cos B,b=3,sin C=2sin A,则a+c=,△ABC面积为.13.(2017浙江杭州高级中学模拟)若向量a,b满足|a|=|2a+b|=2,则a在b方向上投影的最大值是,此时a与b夹角为.14.某科室派出4名调研员到3个学校调研该校高三复习备考近况,要求每个学校至少一名,则不同的分配方案种数为.参考答案题型专项训练2选择填空题组合特训(二)1.C解析由题意得,集合A={x|x2-2x<0}={x|0<x<2},B={x|x≥1},所以∁U B={x|x<1},所以A∪(∁U B)={x|x<2},故选C.2.B解析假设椭圆的焦点在x轴上,则m>4,由焦距2c=2,c=,则c2=m-4,解得m=6,当椭圆的焦点在y轴上时,即0<m<4,由焦距2c=2,c=,则c2=4-m,解得m=2,故m的值为2或6,故选B.3.C解析观察三视图可知,几何体是一个圆锥的与三棱锥的组合体,其中圆锥的底面半径为1,高为1.三棱锥的底面是两直角边分别为1,2的直角三角形,高为1.则几何体的体积V=×π×12×1+×1×2×1=.故选C.4.B解析由约束条件作出可行域如图,化目标函数为y=-3x+z,由图可知,当直线y=-3x+z过点A时,z取最大值,由得A(4,-2),此时z max=3×4-2=10;当直线y=-3x+z过点B时,z取最小值,由解得B(0,-2),故z=-2.综上,z=3x+y的取值范围为(-2,10].5.B解析当a=2,b=0时,满足|a|+|b|>1,但b<-1不成立,即充分性不成立;若b<-1,则|b|>1,则|a|+|b|>1恒成立,即必要性成立.则“|a|+|b|>1”是“b<-1”的必要不充分条件,故选B.6.A解析由于f(x)=x2+cos x,∴f'(x)=x-sin x,∴f'(-x)=-f'(x),故f'(x)为奇函数,其图象关于原点对称,排除B,D;又当x=时,f'-sin-1<0,排除C,只有A适合,故选A.7.A解析∵ξ~B(10,0.4),∴E(ξ)=10×0.4=4,D(ξ)=10×0.4×0.6=2.4,∵η=8-ξ,∴E(η)=E(8-ξ)=4,D(η)=D(8-ξ)=2.4,故选A.8.B解析如图,因为三棱柱ABC-A1B1C1是直三棱柱,∴AA1⊥平面A1B1C1,则A1C1⊥AA1,A1B1⊥AA1,∴∠B1A1C1为二面角C1-AA1-B的平面角,等于45°,∵A1B1=AB=2,∴B1C1=BC=2,以B为原点,分别以BC,BA,BB1所在直线为x,y,z轴建立空间直角坐标系,则B(0,0,0),E(0,1,0),C1(2,0,2),F(0,0,1),∴=(2,0,2),=(0,-1,1),∴cos<>=, ∴的夹角为60°,即直线EF和BC1所成的角为60°,故选B.9.33解析由题意S7=1+1+2+3+5+8+13=33.10.55解析z=(1+2i)(3-i)=5+5i.故实部为5,模为5.11.0251解析当x=1时,可得a0=0,x10-x5=[(x-1)+1]10-[(x-1)+1]5,所以a5==251.12.3解析由b sin A=a cos B及正弦定理,得sin B sin A=sin A cos B,∵A为三角形的内角,∴sin A≠0,∴sin B=cos B,即tan B=,又B为三角形的内角,∴B=;由sin C=2sin A及正弦定理,得c=2a,①∵b=3,cos B=,∴由b2=a2+c2-2ac cos B,得9=a2+c2-ac,②联立①②解得a=,c=2,∴a+c=3.面积S=ac sin B=×2.13.- 解析∵|2a+b|=2,|a|=2,∴|b|2+4a·b+16=4,设a,b的夹角为θ,则|b|2+8|b|cos θ+12=0.∴cos θ=-.∴a在b方向上投影为|a|cos θ=-=-.∵≥2,当且仅当|b|=时等号成立,∴|a|cos θ≤-.所以a在b方向上投影最大值是-,cos θ=-,θ=.14.36解析分两步完成:第一步将4名调研员按2,1,1分成三组,其分法有种;第二步将分好的三组分配到三个学校,其分法有种,所以不同的分配方案种数为=36种,故填36.。
(限时:40分钟)一、选择题(本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在复平面内,复数6+5i ,2+4i(i 为虚数单位)对应的点分别为A 、C .若C 为线段AB 的中点,则点B 对应的复数是( ) A.-2+3i B.4+i C.-4+iD.2-3i解析 ∵两个复数对应的点分别为A (6,5)、C (2,4),C 为线段AB 的中点,∴B (-2,3),即其对应的复数是-2+3i.故选A. 答案 A2.如图,设全集U 为整数集,集合A ={x ∈N |1≤x ≤8},B ={0,1,2},则图中阴影部分表示的集合的真子集的个数为( ) A.3 .4 C.7.8解析 依题意,A ∩B ={1,2},该集合的真子集个数是22-1=3.故选A. 答案 A3.已知实数x 、y 满足不等式组⎩⎨⎧x +y ≤3,x +y ≥2,x ≥0,y ≥0,若z =x -y ,则z 的最大值为()A.3B.4C.5D.6解析作出不等式组⎩⎨⎧x +y ≤3,x +y ≥2,x ≥0,y ≥0所对应的可行域(如图所示),变形目标函数为y =x -z ,平移直线y =x -z 可知,当直线经过点(3,0)时,z 取最大值,代值计算可得z =x -y 的最大值为3.故选A. 答案 A4.已知F 1、F 2为双曲线C :x 2-y 2=1的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2=( )A.14B.34C.35D.45解析 由双曲线的定义知,|PF 1|-|PF 2|=2a =2,又|PF 1|=2|PF 2|,∴|PF 2|=2,|PF 1|=4,又|F 1F 2|=2c =22,∴cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=34.故选B.答案 B5.已知定义在R 上的函数f (x )满足条件: ①对任意的x ∈R ,都有f (x +4)=f (x );②对任意的x 1、x 2∈[0,2]且x 1<x 2,都有f (x 1)<f (x 2); ③函数f (x +2)的图象关于y 轴对称. 则下列结论正确的是( ) A.f (7)<f (6.5)<f (4.5) B.f (7)<f (4.5)<f (6.5) C.f (4.5)<f (6.5)<f (7)D.f (4.5)<f (7)<f (6.5)解析 由函数f (x +2)的图象关于y 轴对称,得f (2+x )=f (2-x ),又f (x +4)=f (x ),∴f (4.5)=f (0.5),f (7)=f (3)=f (2+1)=f (2-1)=f (1),f (6.5)=f (2.5)=f (2+0.5)=f (2-0.5)=f (1.5),由题意知,f (x )在[0,2]上是增函数,∴f (4.5)<f (7)<f (6.5).故选D. 答案 D6.已知在锐角△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且A 、B 、C 成等差数列,△ABC 的面积等于3,则b 的取值范围为( ) A.[2,6) B.[2,6) C.[2,6)D.[4,6)解析 ∵A 、B 、C 成等差数列,∴2B =A +C ,又A +B +C =180°,∴3B =180°,即B =60°.∵S =12ac sin B =12ac sin 60°=34ac =3, ∴ac =4.法一 由余弦定理,得b 2=a 2+c 2-2ac cos B =a 2+c 2-2ac cos 60°=a 2+c 2-ac ,又△ABC 为锐角三角形,∴a 2+b 2>c 2,且b 2+c 2>a 2,∵b 2=a 2+c 2-ac ,∴b 2+c 2<(a 2+c 2-ac )+(a 2+b 2),整理得2a >c ,且b 2+a 2<(a 2+c 2-ac )+(b 2+c 2),整理得2c >a ,∴c 2<a <2c ,ac2<a 2<2ac ,又ac =4,∴2<a 2<8,b 2=a 2+c 2-ac =a 2+16a 2-4,2<a 2<8,∴令a 2=t ∈(2,8),则b 2=f (t )=t +16t -4,2<t <8,∵函数f (t )在(2,4)上单调递减,在(4,8)上单调递增, ∴f (t )∈[4,6),即4≤b 2<6,∴2≤b < 6.故选A. 法二 由正弦定理a sin A =b sin B =c sin C ,得ac =b 2sin 2B · sin A sin C ⇒4=43b 2sin A sin(120°-A ), 即b 2=3sin A sin (120°-A )=3sin A ⎝ ⎛⎭⎪⎫32cos A +12sin A=332sin A cos A +12sin 2A =334sin 2A +14(1-cos 2A )=6sin (2A -30°)+12, ∵30°<A <90°,∴30°<2A -30°<150°,1<sin(2A -30°)+12≤32,∴632≤b 2<61,即4≤b 2<6,∴2≤b < 6.故选A. 答案 A7.点P 是底边长为23,高为2的正三棱柱表面上的动点,MN 是该棱柱内切球的一条直径,则PM →·PN →的取值范围是( ) A.[0,2] B.[0,3] C.[0,4] D.[-2,2]解析 如图所示,设正三棱柱的内切球球心为O ,则PM →·PN →=(PO →+OM →)·(PO →+ON →)=(PO →+OM →)·(PO →-OM →)=PO →2-OM →2,由正三棱柱底边长为23,高为2,可得该棱柱的内切球半径为OM =ON =1,外接球半径为OA =OA 1=5,对三棱柱上任一点P 到球心O 的距离的范围为[1,5],∴PM →·PN →=PO →2-OM →2=OP →2-1∈[0,4].故选C. 答案 C8.在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx +2上至少存在一点,使得以该点为圆心,半径为1的圆与圆C 有公共点,则k 的最小值是( ) A.-43 B.-54 C.-35D.-53解析 ∵圆C 的方程可化为(x -4)2+y 2=1,∴圆C 的圆心为(4,0),半径为1,由题意设直线y =kx +2上至少存在一点A (x 0,kx 0+2),以该点为圆心,1为半径的圆与圆C 有公共点,∴存在x 0∈R ,使得|AC |≤1+1成立,即|AC |min ≤2,∵|AC |min 即为点C 到直线y =kx +2的距离|4k +2|k 2+1≤2,解得-43≤k ≤0,即k 的最小值是-43.故选A. 答案 A二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分.) 9.曲线y =1-2x +2在点(-1,-1)处的切线方程为________. 解析 法一 ∵y =1-2x +2=x x +2,∴y ′=x +2-x (x +2)2=2(x +2)2, ∴y ′|x =-1=2,∴曲线在点(-1,-1)处的切线斜率为2,∴所求切线方程为y +1=2(x +1),即y =2x +1.法二 由题意得y =1-2x +2=1-2(x +2)-1,∴y ′=2(x +2)-2,∴y ′|x =-1=2,所求切线方程为y +1=2(x +1),即y =2x +1. 答案 y =2x +110.在等比数列{a n }中,若a 5+a 6+a 7+a 8=154,a 6a 7=98,则1a 5+1a 6+1a 7+1a 8=________.解析 由等比数列的性质知a 5a 8=a 6a 7,∴1a 5+1a 6+1a 7+1a 8=a 5+a 8a 5a 8+a 6+a 7a 6a 7=a 5+a 6+a 7+a 8a 6a 7=154×89=103.答案 10311.已知空间几何体的三视图如图所示,则该几何体的表面积是________;几何体的体积是________.解析 由三视图知该几何体为两个半径为1的半球与一个底面半径为1,高为2的圆柱的组合体,所以几何体的表面积为4π×12+2π×1×2=8π,体积为43π×13+π×12×2=10π3. 答案 8π10π312.若x =π6是函数f (x )=sin 2x +a cos 2x 的一条对称轴,则函数f (x )的最小正周期是________;函数f (x )的最大值是________. 解析因为f (x )=sin2x +a cos2x =1+a 2sin(2x +φ)⎝⎛⎭⎪⎫其中tan φ=a ,0<|φ|<π2,所以f (x )的最小正周期T =2π2=π;因为x =π6是函数f (x )的一条对称轴,所以2×π6+φ=k π+π2,即φ=k π+π6(k ∈Z ),所以φ=π6,所以a =tan φ=33,所以函数f (x )的最大值为1+a 2=233. 答案 π23313.已知正数x ,y 满足x +y =1,则x -y 的取值范围为________,1x +xy 的最小值为________.解析 设y =1-x ,则x -y =x -(1-x )=2x -1,0<x <1,所以x -y ∈(-1,1);1x +x y =x +y x +x y =y x +x y +1≥3,当且仅当y x =x y ,即x =y =12时取得等号. 答案 (-1,1) 314.如图,等腰△OAB 中,∠OAB =∠OBA =30°,E ,F 分别是直线OA ,OB 上的动点,OE→=λOA →,OF →=μOB→,|OA →|=2.若AF →·AB →=9,则μ=________;若λ+2μ=2,则AF→·BE →的最小值是________.解析 以AB 为x 轴,AB 的垂直平分线为y 轴建立平面直角坐标系,由|OA |=2,∠OAB =∠OBA =30°得A (-3,0),B (3,0),O (0,1),AB→=(23,0),由OF →=μOB→得F (3μ,1-μ),所以AF →=(3μ+3,1-μ),由AF →·AB →=23(3μ+3)=9得μ=12,由OE→=λOA →得E (-3λ,1-λ),BE →=(-3λ-3,1-λ),由λ+2μ=2得BE→=(-33+23μ,2μ-1),所以AF →·BE →=4μ2-10,当μ=0时,AF →·BE →取得最小值-10. 答案 12 -1015.关于函数f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π6(x ∈R ),有下列命题:①y =f (x )的图象关于直线x =-π6对称; ②y =f (x )的图象关于点⎝ ⎛⎭⎪⎫π6,0对称;③若f (x 1)=f (x 2)=0,可得x 1-x 2必为π的整数倍;④y =f (x )在⎝ ⎛⎭⎪⎫-π6,π6上单调递增;⑤y =f (x )的图象可由y =2sin 2x 的图象向右平移π6个单位得到. 其中正确命题的序号有________.解析 对于①,y =f (x )的对称轴是2x -π6=k π+π2,(k ∈Z ),即x =k π2+π3,当k =-1时,x =-π6,即①正确;对于②,y =f (x )的对称点的横坐标满足2x -π6=k π,(k ∈Z ),即x =k π2+π12.即②不成立;对于③,函数y =f (x )的周期为π,若f (x 1)=f (x 2)=0,可得x 1-x 2必为半个周期π2的整数倍,即③不正确;对于④,y =f (x )的增区间满足-π2+2k π≤2x -π6≤π2+2k π,k ∈Z ,∴-π6+k π≤x ≤π3+k π,k ∈Z ,即④成立;对于⑤,y =2sin 2⎝ ⎛⎭⎪⎫x -π6=2sin ⎝ ⎛⎭⎪⎫2x -π3≠f (x ),即⑤不正确. 答案 ①④。
选择填空提速专练(四)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合P ={x ∈R|0<x <1},Q ={x ∈R|x 2+x -2≤0},则( ) A .P ∈Q B .P ∈∁R Q C .∁R P ⊆QD .∁R Q ⊆∁R P解析:选D 由题意得集合P ={x |0<x <1},Q ={x |-2≤x ≤1},所以∁R P ={x |x ≤0或x ≥1},∁R Q ={x |x <-2或x >1},所以∁R Q ⊆∁R P ,故选D.2.已知i 为虚数单位,复数z =1-3i2+i ,则复数z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选C 由题意得复数z =1-3i2+i =--+-=-15-75i ,则其在复平面内对应的点为⎝ ⎛⎭⎪⎫-15,-75,位于第三象限,故选C.3.在△ABC 中,“sin A >sin B ”是“cos A <cos B ”的() A .充分不必要条件 B .充要条件C .必要不充分条件D .既不充分也不必要条件解析:选B 在△ABC 中,由正弦定理得sin A >sin B ⇔a >b ⇔A >B ,又因为在(0,π)内函数f (x )=cos x 单调递减,所以A >B ⇔cos A <cos B ,所以sin A >sin B ⇔A >B ⇔cos A <cos B ,故选B.4.直三棱柱ABC A 1B 1C 1中,所有棱长都相等,M 是A 1C 1的中点,N 是BB 1的中点,则AM 与NC 1所成角的余弦值为( )A.23 B.35C.53D.45解析:选B 设直三棱柱的棱长为2a ,AC 的中点为D ,连接C 1D ,DN ,则易得C 1D ∥AM ,则∠DC 1N 就是AM 与NC 1的夹角,又因为C 1D =CC21+CD2=5a ,DN =AB2-AD2+BN2=2a ,C 1N =C1B21+B1N2=5a ,所以AM 与NC 1的夹角的余弦值等于cos ∠DC 1N =C1D2+C1N2-DN22C1D·C1N =35,故选B.5.若(1+x )3+(1+x )4+(1+x )5+…+(1+x )2 017=a 0+a 1x +a 2x 2+…+a 2 017x2 017,则a 3的值为( )A .C32 017B .C32 018C .C42 017D .C42 018解析:选 D 由题意得a 3=C33+C34+…+C32 017=C44+C34+…+C32 017=C45+C35+…+C32 017=…=C42 017+C32 017=C42 018,故选D.6.已知等差数列{a n }的前n 项和为S n ,且S4S8=13,则S8S16=( )A.310B.37C.13D.12解析:选A 设等差数列{a n }的公差为d ,则由S4S8=13得d ≠0,S42S4+16d =13,解得S 4=16d ,所以S8S16=S82S8+64d =3×16d 6×16d+64d =310,故选A.7.从双曲线x23-y25=1的左焦点F 引圆x 2+y 2=3的切线FP 交双曲线右支于点P ,T 为切点,M 为线段FP 的中点,O 为坐标原点,则|MO |-|MT |等于( )A. 3B. 5C.5- 3D.5+ 3解析:选C 设双曲线的右焦点为F 1,连接PF 1.因为点M 为PF 的中点,点O 为F 1F 的中点,所以|OM |=12|PF 1|=12(|PF |-23)=|FM |-3,所以|OM |-|MT |=|FM |-|MT |-3=|FT |-3,又因为直线FP 与圆x 2+y 2=3相切于点T ,所以|FT |=8-3=5,则|OM |-|MT |=5-3,故选C.8.从{1,2,3,…,10}中选取三个不同的数,使得其中至少有两个相邻,则不同的选法种数是( )A .72B .70C .66D .64解析:选D 选取的三个数中有且只有两个相邻的选法有7×2+6×7=56种,选取的三个数都相邻的选法有8种,所以选取的三个数中至少有两个相邻的不同选法种数为56+8=64,故选D.9.已知f (x )=2x 2-4x -1,设有n 个不同的数x i (i =1,2,…,n )满足0≤x 1<x 2<…<x n ≤3,则满足|f (x 1)-f (x 2)|+|f (x 2)-f (x 3)|+…+|f (x n -1)-f (x n )|≤M 的M 的最小值是( )A .10B .8C .6D .2解析:选A 由二次函数的性质易得f (x )=2x 2-4x -1在(0,1)上单调递减,在(1,3)上单调递增,且f (0)=-1,f (1)=-3,f (3)=5,则当x 1=0,x n =3,且存在x i =1时,|f (x 1)-f (x 2)|+|f (x 2)-f (x 3)|+…+|f (x n -1)-f (x n )|取得最大值,最大值为|f (x 1)-f (x i )|+|f (x i )-f (x n )|=|-1-(-3)|+|-3-5|=10,所以M 的最小值为10,故选A.10.已知Rt △ABC 中,AB =3,AC =4,BC =5,I 是△ABC 的内心,P 是△IBC 内部(不含边界)的动点,若AP ―→=λAB ―→+μAC ―→(λ,μ∈R),则λ+μ的取值范围是( )A.⎝⎛⎭⎪⎫712,1B.⎝ ⎛⎭⎪⎫13,1C.⎝ ⎛⎭⎪⎫14,712 D.⎝ ⎛⎭⎪⎫14,1 解析:选A 以A 为坐标原点,AB 所在的直线为x 轴,AC 所在的直线为y 轴建立平面直角坐标系(图略),则易得A (0,0),B (3,0),C (0,4),I (1,1),设点P (x ,y ),则由AP ―→=λAB ―→+μAC ―→得(x ,y )=λ(3,0)+μ(0,4),所以⎩⎪⎨⎪⎧λ=x3,μ=y4,则λ+μ=x 3+y4,又由题意得点P (x ,y )在以B (3,0),C (0,4),I (1,1)为顶点的三角形内部(不包含边界),所以当目标函数z =x 3+y4与直线BC 重合时,z =x 3+y 4取得最大值1,当目标函数z =x 3+y 4经过点I (1,1)时,z =x 3+y4取得最小值712,又因为点P (x ,y )的可行域不包含边界,所以z =x 3+y 4的取值范围为⎝ ⎛⎭⎪⎫712,1,即λ+μ的取值范围为⎝ ⎛⎭⎪⎫712,1,故选A.二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分,把答案填在题中横线上)11.已知函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π4,则f (x )的最小正周期为________;f ⎝ ⎛⎭⎪⎫π3=________. 解析:函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π4的最小正周期为π2,f ⎝ ⎛⎭⎪⎫π3=tan ⎝ ⎛⎭⎪⎫2π3-π4=tan 2π3-tanπ41+tan 2π3·tanπ4=-3-11+-3=2+ 3.答案:π22+ 312.某几何体的三视图如图所示(单位:cm),则该几何体的体积为________cm 3;该几何体的外接球的直径为________cm.解析:由三视图得该几何体为一个底面为边长为1的正方形,有一条长为1的侧棱垂直于底面的四棱锥,所以该几何体的体积为13×1×1×1=13(cm 3).由题意得该四棱锥可以补形为一个棱长为1的正方体,且正方体的外接球即为四棱锥的外接球,所以该几何体的外接球的直径为12+12+12=3(cm).答案:13313.随机变量X 的分布列如下:2X +3,则E (Y )=________.解析:由分布列的概念易得12+13+p =1,解得p =16,则E (X )=(-2)×12+0×13+1×16=-56,所以E (Y )=2E (X )+3=2×⎝ ⎛⎭⎪⎫-56+3=43.答案:164314.已知函数y =x +a x2+1(a ∈R)的值域是⎣⎢⎡⎦⎥⎤-14,m ,则常数a =________,m =________.解析:由题意得f (x )=x +a x2+1≥-14,即a ≥-14x 2-x -14对任意x ∈R 恒成立,且存在x ∈R 使得等号成立,所以a =⎝ ⎛⎭⎪⎫-14x2-x -14max ,又因为-14x 2-x -14=-14(x +2)2+34,所以a =⎝⎛⎭⎪⎫-14x2-x -14max=34,所以f (x )=x +34x2+1=4x +34x2+4,则f ′(x )=-2x2-3x +2+=+-2x ++,当x ∈⎝ ⎛⎭⎪⎫-2,12时,f ′(x )>0,x ∈(-∞,-2)∪⎝ ⎛⎭⎪⎫12,+∞时,f ′(x )<0,又x →-∞时f (x )→0,所以当x =12时,f (x )取得最大值f ⎝ ⎛⎭⎪⎫12=4×12+34×⎝ ⎛⎭⎪⎫122+4=1,即m =1.答案:341答案:34115.已知P (x ,y )是抛物线y 2=4x 上的点,则-+--x 的最大值是________.解析:由题意得抛物线y 2=4x 的焦点为F (1,0),准线方程为x =-1,所以|PF |=x +1,则x =|PF |-1.设点A (3,2),则-+--x =|PA |-(|PF |-1)=|PA |-|PF |+1,由图结合三角形的性质易得当P ,F ,A 三点自下而上依次共线时,|PA |-|PF |取得最大值|AF |=-+-=22,所以-+--x 的最大值为22+1.答案:22+116.过P (-1,1)的光线经x 轴上点A 反射后,经过不等式组⎩⎪⎨⎪⎧x -2y +4≥0,x +y -2≥0,3x +y -9≤0所表示的平面区域内某点(记为B ),则|PA |+|AB |的取值范围是________.解析:由题意得点P (-1,1)关于x 轴的对称点为P 1(-1,-1),则|PA |+|PB |的取值范围等价于点P 1(-1,-1)与不等式组⎩⎪⎨⎪⎧x -2y +4≥0,x +y -2≥0,3x +y -9≤0,y≥0表示的平面区域内的点的连线的长度的范围,如图,在平面直角坐标系内画出不等式组表示的平面区域(阴影区域,含边界),由图易得点P 1(-1,-1)到直线x +y -2=0的距离最小,最小值为|-1-1-2|12+12=22;点P 1(-1,-1)与点C (2,3)的距离最大,最大值为+++=5.所以|PA |+|PB |的取值范围为[22,5]. 答案:[22,5]17.已知非负实数x ,y 满足2x 2+4xy +2y 2+x 2y 2=9,则22(x +y )+xy 的最大值为________.2x 2+4xy +2y 2+x 2y 2=9得2(x +y )2+x 2y 2=9,令解析:由⎩⎪⎨⎪⎧u =x +y ,v =xy ,则x ,y 为方程t 2-ut +v =0(t 为自变量)的两u 2-4v ≥0,即有u292+v29=1,而22(x +y )+xy =22u +v ,个根,则Δ=以u 为横坐标,v 为纵坐标建立平面直角坐标系,设z =22u +v ,则u ,v 的可行域为⎩⎪⎨⎪⎧u2-4v≥0,u292+v29=1,作出可行域,如图中椭圆的实线部分所示,由⎩⎪⎨⎪⎧u2-4v =0,u292+v29=1得⎩⎪⎨⎪⎧u =±2,v =1,且点在(2,1)处,椭圆u292+v29=1的切线斜率为-4<-22,所以当直线z =22u +v 经过点(2,1)时,z 取得最大值42+1,所以22(x +y )+xy 的最大值为42+1.答案:42+1。
专题二 巧做高考题型第一讲六招秒杀选择题——快得分选择题具有概括性强,知识覆盖面广,小巧灵活等特点.注重多个知识点的小型综合,侧重于考查学生是否能迅速选出正确答案,解题手段不拘常规,有利于考查学生的选择、判断能力.常用方法分直接法和间接法两大类.直接法是解答选择题最基本、最常用的方法,但高考的题量较大,如果所有选择题都用直接法解答,时间可能不允许,因此,我们还要研究解答选择题的一些间接法的应用技巧.其基本解答策略是:充分利用题干和选项所提供的信息作出判断.先定性后定量,先特殊后推理,先间接后直接,先排除后求解.总的来说,选择题属于小题,尽量避免“小题大做”.在考场上,提高了解题速度,也是一种制胜的法宝.准确地运算,从而得出正确的结论,然后对照题目所给出的选项“对号入座”,作出相应的选择.涉及概念、性质的辨析或运算较简单的题目常用直接法.[例1] (2017·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A .1B .2C .4D .8[解析] 设等差数列{a n }的公差为d ,则由⎩⎪⎨⎪⎧a 4+a 5=24,S 6=48,得⎩⎪⎨⎪⎧a 1+3d +a 1+4d =24,6a 1+6×52d =48,即⎩⎪⎨⎪⎧2a 1+7d =24,2a 1+5d =16,解得d =4.[答案] C直接法是解答选择题最常用的基本方法.直接法适用的范围很广,只要运算正确必能得出正确的答案.平时练习中应不断提高用直接法解选择题的能力,准确把握题目的特点.用简便的方法巧解选择题,是建立在扎实掌握“三基”的基础上的,否则一味求快则会快中出错.1.两个正数a ,b 的等差中项是92,一个等比中项是25,且a >b ,则抛物线y 2=-b ax 的焦点坐标为( )A.⎝ ⎛⎭⎪⎫-516,0B.⎝ ⎛⎭⎪⎫-15,0C.⎝ ⎛⎭⎪⎫15,0 D.⎝ ⎛⎭⎪⎫-25,0 解析:选B 由两个正数a ,b 的等差中项是92,得a +b =9;a ,b 的一个等比中项是25,得ab =20,且a >b ,故a =5,b =4.又由b a =45=2p ,得p 2=15,故抛物线y 2=-b a x 的焦点坐标为⎝ ⎛⎭⎪⎫-15,0.从题干(或选项)数或图形位置,进行判断.特殊化法是“小题小做”的重要策略,要注意在怎样的情况下才可使用,特殊情况可能是:特殊值、特殊点、特殊位置、特殊函数等.[例2] 已知ω>0,函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π4在⎝ ⎛⎭⎪⎫π2,π上单调递减.则ω的取值范围是( )A.⎣⎢⎡⎦⎥⎤12,54B.⎣⎢⎡⎦⎥⎤12,34 C.⎝ ⎛⎦⎥⎤0,12 D. (0,2][解析] 根据三角函数的性质利用特殊值法代入逐项判断: ∵ω=2时,2x +π4∈⎝ ⎛⎭⎪⎫5π4,9π4,不合题意,∴排除D.∵ω=1时,x +π4∈⎝ ⎛⎭⎪⎫3π4,5π4,合题意,∴排除B 、C ,故选A.[答案] A特例法具有简化运算和推理的功效,比较适用于题目中含有字母或具有一般性结论的选择题,但用特例法解选择题时,要注意以下两点:第一,取特例尽可能简单,有利于计算和推理;第二,若在不同的特殊情况下有两个或两个以上的结论相符,则应选另一特例情况再检验,或改用其他方法求解.2.函数y =a x-1a(a >0,a ≠1)的图象可能是( )解析:选D 函数y =a x-1a(a >0,a ≠1)恒过(-1,0),选项只有D 符合,故选D.分析、推理、计算、判断,排除不符合要求的选项,从而得出正确结论的一种方法.[例3] 设[x ]表示不大于x 的最大整数,则对任意实数x ,y 有( ) A .[-x ]=-[x ] B .[2x ]=2[x ] C .[x +y ]≤[x ]+[y ]D .[x -y ]≤[x ]-[y ][解析] 选项A ,取x =1.5,则[-x ]=[-1.5]=-2,-[x ]=-[1.5]=-1,显然[-x ]≠-[x ];选项B ,取x =1.5,则[2x ]=[3]=3,2[x ]=2[1.5]=2,显然[2x ]≠2[x ];选项C ,取x =y =1.6,则[x +y ]=[3.2]=3,[x ]+[y ]=[1.6]+[1.6]=2,显然[x +y ]>[x ]+[y ].排除A ,B ,C ,故选D.[答案] D排除法适应于定性型或不易直接求解的选择题.当题目中的条件多于一个时,先根据某些条件在选项中找出明显与之矛盾的予以否定,再根据另一些条件在缩小选项的范围内找出矛盾,这样逐步筛选,直到得出正确的答案.3.函数y =x cos x +sin x 的图象大致为( )解析:选D 由题意知,函数是奇函数,图象关于坐标原点对称,当0<x <π2时,显然y >0,而当x =π时,y =-π<0,据此排除选项A ,B ,C.习惯上也叫数形结合法.有些选择题可通过命题条件中的函数关系或几何意义,作出函数的图象或几何图形,借助于图象或图形的作法、形状、位置、性质等,综合图象的特征,得出结论.图形化策略就是以数形结合的数学思想为指导的一种解题策略.[例4] 设函数f (x )=⎩⎪⎨⎪⎧x -[x ],x ≥0,fx +,x <0,其中[x ]表示不超过x 的最大整数,如[-1.1]=-2,[π]=3等.若直线y =kx +k (k >0)与函数y =f (x )的图象恰有三个不同的交点,则实数k 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,14B.⎣⎢⎡⎭⎪⎫14,13C.⎝ ⎛⎭⎪⎫13,1 D.⎣⎢⎡⎭⎪⎫14,1 [解析] 直线y =kx +k (k >0)恒过定点(-1,0),在同一直角坐标系中作出函数y =f (x )的图象和直线y =kx +k (k >0)的图象,如图所示,因为两个函数图象恰好有三个不同的交点,所以14≤k <13.[答案] B涉及函数零点问题,一般有两种题型,且都可以利用数形结合法求解.(1)求解方程根的个数.画出相关的两个函数的图象,则两函数图象的交点个数即是函数零点的个数;(2)讨论图象交点问题的参数范围,如本例就是利用图象中直线y =kx +k (k >0)与函数y =f (x )图象恰有三个不同的交点,得到实数k 的取值范围.4.(2017·全国卷Ⅲ)在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP ―→=λAB ―→+μAD ―→,则λ+μ的最大值为( )A .3B .2 2 C. 5D .2解析:选A 以A 为坐标原点,AB ,AD 所在直线分别为x 轴,y 轴建立如图所示的平面直角坐标系,则A (0,0),B (1,0),C (1,2),D (0,2),可得直线BD 的方程为2x +y -2=0,点C 到直线BD 的距离为212+22=25,所以圆C :(x -1)2+(y -2)2=45. 因为P 在圆C 上,所以P ⎝ ⎛⎭⎪⎫1+255cos θ,2+255sin θ.又AB ―→=(1,0),AD ―→=(0,2),AP ―→=λAB ―→+μAD ―→=(λ,2μ), 所以⎩⎪⎨⎪⎧1+255cos θ=λ,2+255sin θ=2μ,λ+μ=2+255cos θ+55sin θ=2+sin(θ+φ)≤3(其中tan φ=2),当且仅当θ=π2+2k π-φ,k ∈Z 时,λ+μ取得最大值3.正确结论的方法.这类题目一般是给出一个创新定义,或涉及一些似是而非、容易混淆的概念或性质,需要考生在平时注意辨析有关概念,准确区分相应概念的内涵与外延,同时在审题时多加小心.[例5] 对于函数f (x )和g (x ),设α∈{x |f (x )=0},β={x |g (x )=0},若存在α,β,使得|α-β|≤1,则称f (x )与g (x )互为“零点相邻函数”.若函数f (x )=e x -1+x -2与g (x )=x 2-ax -a +3互为“零点相邻函数”,则实数a 的取值范围是( )A .[2,4]B.⎣⎢⎡⎦⎥⎤2,73 C.⎣⎢⎡⎦⎥⎤73,3 D .[2,3][解析] 函数f (x )=ex -1+x -2的零点为x =1,设g (x )=x 2-ax -a +3的零点为b ,若函数f (x )=e x -1+x -2与g (x )=x 2-ax -a +3互为“零点相邻函数”,则|1-b |≤1,∴0≤b ≤2.由于g (x )=x 2-ax -a +3=x 2+3-a (x +1)必经过点(-1,4),∴要使其零点在区间[0,2]上,则⎩⎪⎨⎪⎧g ,g ⎝ ⎛⎭⎪⎫a 2≤0,即⎩⎪⎨⎪⎧-a +3≥0,⎝ ⎛⎭⎪⎫a 22-a ·a2-a +3≤0,解得2≤a ≤3.[答案] D函数的创新命题是高考的一个亮点,此类题型是用数学符号、文字叙述给出一个教材之外的新定义,要求考生在短时间内通过阅读、理解后,解决题目给出的问题.解决这类问题的关键是准确把握新定义的含义,把从定义和题目中获取的信息进行有效整合,并转化为熟悉的知识加以解决.5.若对于定义在R 上的函数f (x ),其图象是连续不断的,且存在常数λ(λ∈R)使得f (x +λ)+λf (x )=0对任意实数都成立,则称f (x )是一个“λ伴随函数”.下列是关于“λ伴随函数”的结论:①f (x )=0不是常数函数中唯一一个“λ伴随函数”;②f (x )=x 是“λ伴随函数”;③f (x )=x 2是“λ伴随函数”;④“12伴随函数”至少有一个零点.其中正确的结论个数是( )A .1B .2C .3D .4解析:选B 由题意得,①正确,如f (x )=c ≠0,取λ=-1,则f (x -1)-f (x )=c -c =0,即f (x )=c ≠0是一个“λ伴随函数”;②不正确,若f (x )=x 是一个“λ伴随函数”,则x +λ+λx =0,求得λ=0且λ=-1,矛盾;③不正确,若f (x )=x 2是一个“λ伴随函数”,则(x +λ)2+λx 2=0,求得λ=0且λ=-1,矛盾;④正确,若f (x )是“12伴随函数”,则f ⎝ ⎛⎭⎪⎫x +12+12f (x )=0,取x =0,则f ⎝ ⎛⎭⎪⎫12+12f (0)=0,若f (0),f ⎝ ⎛⎭⎪⎫12任意一个为0,则函数f (x )有零点;若f (0),f ⎝ ⎛⎭⎪⎫12均不为0,则f (0),f ⎝ ⎛⎭⎪⎫12异号,由零点存在性定理知,在⎝ ⎛⎭⎪⎫0,12区间内存在零点,所以有两个结论正确.只需对其数值特点和取值界限作出适当的估计,便能作出正确的判断,这就是估算法.估算法的关键是确定结果所在的大致范围,否则“估算”就没有意义.估算法往往可以减少运算量,快速找到答案.[例6] 如图,在多面体ABCDEF 中,已知平面ABCD 是边长为3的正方形,EF ∥AB ,EF =32,EF 与平面ABCD 的距离为2,则该多面体的体积为( )A.92 B .5 C .6D.152[解析] 连接BE ,CE ,四棱锥E ABCD 的体积为V E ABCD =13×3×3×2=6,又多面体ABCDEF 的体积大于四棱锥EABCD的体积,即所求几何体的体积V>V EABCD=6,而四个选项里面大于6的只有15,故选D.2[答案] D本题既用了估算法又用了排除法,解题的关键是利用θ的范围求sin θ的范围一定要准确,否则将达不到解题的目的或解答错误.6.(2017·宁波效实中学模拟)图中阴影部分的面积S是h的函数(0≤h≤H),则该函数的大致图象是( )解析:选B 由图知,随着h的增大,阴影部分的面积S逐渐减小,且减小得越来越慢,结合选项可知选B.第二讲分类智取填空题——稳得分填空题具有小巧灵活、结构简单、运算量不大等特点.(1)根据填空时所填写的内容形式,可以将填空题分成两种类型:①定量型:要求考生填写数值、数集或数量关系;②定性型:要求填写的是具有某种性质的对象或者填写给定数学对象的某种性质.(2)根据填空题出题设问的多少,又可以将填空题分成两类形式:①单空题:与全国卷出题方式相同,一题一空,根据一般填空题的特点,四招速解;②多空题:是浙江高考填空题的一大特色,一题多空,出题的目的是提高知识覆盖面的考查,降低难度,让学生能分步得分;本质上来说和单空题区别无非就是多填一空,其解题方法和单空题相同,但多空题有它自身的特色,搞清多空之间设问的关系能使我们的解题事半功倍.解答填空题时,由于不反映过程,只要求结果,故对正确性的要求比解答题更高、更严格.在解填空题时要做到:一、单空题——四招速解于透过现象抓本质,有意识地采取灵活、简捷的解法解决问题.[例1] (2016·全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =45,cosC =513,a =1,则b =________.[解析] 因为A ,C 为△ABC 的内角,且cos A =45,cos C =513,所以sin A =35,sin C =1213,所以sin B =sin(π-A -C )=sin(A +C )=sin A cos C +cos A sin C =35×513+45×1213=6365.又a =1,所以由正弦定理得b =a sin B sin A =6365×53=2113. [答案]2113直接法是解决计算型填空题最常用的方法,在计算过程中,我们要根据题目的要求灵活处理,多角度思考问题,注意一些解题规律和解题技巧的灵活应用,将计算过程简化从而得到结果,这是快速准确地求解填空题的关键.1.(2017·北京高考)若等差数列{a n }和等比数列{b n }满足a 1=b 1=-1,a 4=b 4=8,则a 2b 2=________.解析:设等差数列{a n }的公差为d ,等比数列{b n }的公比为q ,则a 4=-1+3d =8,解得d =3;b 4=-1·q 3=8,解得q =-2.所以a 2=-1+3=2,b 2=-1×(-2)=2,所以a 2b 2=1.答案:1时,可以从题中变化的不定量中选取符合条件的恰当特殊值(特殊函数、特殊角、特殊数列、特殊位置、特殊点、特殊方程、特殊模型等)进行处理,从而得出探求的结论.为保证答案的正确性,在利用此方法时,一般应多取几个特例.[例2] 如图所示,在平行四边形ABCD 中,AP ⊥BD ,垂足为P ,且AP =3,则AP ―→·AC ―→=________.[解析] 法一:AP ―→·AC ―→=AP ―→·(AB ―→+BC ―→)=AP ―→·AB ―→+AP ―→·BC ―→=AP ―→·AB ―→+AP ―→·(BD ―→+DC ―→) =AP ―→·BD ―→+2AP ―→·AB ―→, ∵AP ⊥BD ,∴AP ―→·BD ―→=0.又∵AP ―→·AB ―→=|AP ―→||AB ―→|cos ∠BAP =|AP ―→|2, ∴AP ―→·AC ―→=2|AP ―→|2=2×9=18. 法二:把平行四边形ABCD 看成正方形, 则P 点为对角线的交点,AC =6, 则AP ―→·AC ―→=18. [答案] 18求值或比较大小等问题的求解均可利用特殊值代入法,但要注意此种方法仅限于求解结论只有一种的填空题,对于开放性的问题或者有多种答案的填空题,则不能使用该种方法求解.本题中的法二把平行四边形看作正方形,从而减少了计算量.2.若函数f (x )满足:f (1)=14,4f (x )f (y )=f (x +y )+f (x -y ),则f (2 018)=________.解析:取x =1,y =0时,有f (0)=f (1)+f (1)=12,取x =1,y =1时,有14=f (2)+f (0),f (2)=-14.取x =n ,y =1,有f (n )=f (n +1)+f (n -1),同理f (n +1)=f (n +2)+f (n ),联立得f (n +2)=-f (n -1),可得f (n +6)=f (n ),所以f (x )是以6为周期的函数,故f (2 018)=f (2)=-14. 答案:-14过对图形的直观分析、判断,即可快速得出正确结果.这类问题的几何意义一般较为明显,如一次函数的斜率和截距、向量的夹角、解析几何中两点间距离等,求解的关键是明确几何含义,准确规范地作出相应的图形.[例3] 已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足(a -c )·(b -c )=0,则|c |的最大值是________.[解析] 如图,OA ―→=a ,OB ―→=b ,OC ―→=c ,∵(a -c )·(b -c )=0,∴点C 在以AB 为直径,AB 的中点为圆心的圆上,故|OC |的最大值为圆的直径,即|AB |的长为 2.[答案]2图象分析法实质上就是数形结合的思想方法在解决填空题中的应用,利用图形的直观性并结合所学知识便可直接得到相应的结论,这也是高考命题的热点.准确运用此类方法的关键是正确把握各种式子与几何图形中的变量之间的对应关系,利用几何图形中的相关结论求出结果.3.不等式⎝ ⎛⎭⎪⎫|x |-π2·sin x <0,x ∈[-π,2π]的解集为________. 解析:在同一坐标系中分别作出y =|x |-π2与y =sin x 的图象:根据图象可得不等式的解集为⎝ ⎛⎭⎪⎫-π,-π2∪⎝ ⎛⎭⎪⎫0,π2∪(π,2π). 答案:⎝⎛⎭⎪⎫-π,-π2∪⎝ ⎛⎭⎪⎫0,π2∪(π,2π)程.构造法是建立在观察联想、分析综合的基础之上的,首先应观察题目,观察已知(例如代数式)形式上的特点,然后积极调动思维,联想、类比已学过的知识及各种数学结构、数学模型,深刻地了解问题及问题的背景(几何背景、代数背景),从而构造几何、函数、向量等具体的数学模型,达到快速解题的目的.[例4] 如图,已知球O 的球面上有四点A ,B ,C ,D ,DA ⊥平面ABC ,AB ⊥BC ,DA =AB =BC =2,则球O 的体积等于________.[解析] 如图,以DA ,AB ,BC 为棱长构造正方体,设正方体的外接球球O 的半径为R ,则正方体的体对角线长即为球O 的直径,所以|CD |=22+22+22=2R ,所以R =62,故球O 的体积V =4πR 33=6π.[答案]6π构造法实质上是转化与化归思想在解题中的应用,需要根据已知条件和所要解决的问题确定构造的方向,通过构造新的函数、不等式或数列等新的模型,从而转化为自己熟悉的问题.本题巧妙地构造出正方体,而球的直径恰好为正方体的体对角线,问题很容易得到解决.4.在数列{a n }中,若a 1=1,a n +1=2a n +3(n ≥1),则该数列的通项a n =________. 解析:由a n +1=2a n +3, 则有a n +1+3=2(a n +3), 即a n +1+3a n +3=2. 所以数列{a n +3}是以a 1+3=4为首项,公比为2的等比数列, 即a n +3=4·2n -1=2n +1,所以a n =2n +1-3.答案:2n +1-3二、多空题——辨式解答空的答案,两空并答,题目比较简单,会便全会,这类题目在高考中一般涉及较少,常考查一些基本量的求解,一般是多空题的第一个题目.[例1] (2016·浙江高考)已知2cos 2x +sin 2x =A sin(ωx +φ)+b (A >0),则A =________,b =________.[解析] ∵2cos 2x +sin 2x =1+cos 2x +sin 2x =1+2sin ⎝ ⎛⎭⎪⎫2x +π4,∴1+2sin ⎝ ⎛⎭⎪⎫2x +π4=A sin(ωx +φ)+b ,∴A =2,b =1. [答案]2 1[点评] 例1中根据题设条件把2cos 2x +sin 2x 化成1+2sin ⎝ ⎛⎭⎪⎫2x +π4后,对比原条件恒等式两边可直接得出两空的结果,A =2,b =1.1.(2015·浙江高考)双曲线x 22-y 2=1的焦距是______,渐近线方程是________________.解析:由双曲线标准方程,知双曲线焦点在x 轴上,且a 2=2,b 2=1,∴c 2=a 2+b 2=3,即c =3,∴焦距2c =23,渐近线方程为y =±ba x ,即y =±22x . 答案:2 3 y =±22x什么具体联系,各自成题,是对于多个知识点或某知识点的多个角度的考查;两问之间互不干扰,不会其中一问,照样可以答出另一问.[例2] (1)(2016·浙江高考)某几何体的三视图如图所示(单位:cm),则该几何体的表面积是________cm 2,体积是________cm 3.(2)(2015·浙江高考)已知函数f (x )=⎩⎪⎨⎪⎧x +2x-3,x ≥1,x 2+,x <1,则f (f (-3))=________,f (x )的最小值是________.[解析] (1)由三视图知该几何体是一个组合体,左边是一个长方体,交于一点的三条棱的长分别为 2 cm,4 cm,2 cm ,右边也是一个长方体,交于一点的三条棱的长分别为2 cm,2 cm ,4 cm.几何体的表面积为(2×2+2×4+2×4)×2×2-2×2×2=72(cm 2), 体积为2×2×4×2=32(cm 3).(2)∵f (-3)=lg[(-3)2+1]=lg 10=1, ∴f (f (-3))=f (1)=1+2-3=0. 当x ≥1时,x +2x-3≥2x ·2x -3=22-3,当且仅当x =2x,即x =2时等号成立, 此时f (x )min =22-3<0;当x <1时,lg(x 2+1)≥lg(02+1)=0, 此时f (x )min =0.所以f (x )的最小值为22-3. [答案] (1)72 32 (2)0 22-3[点评] 例2(1)中根据题设条件三视图得出其几何体的直观图后,由面积的相关公式求出几何体的面积,由体积的相关公式求出其体积;例2(2)中,两空都是在已知一分段函数的解析式,考查两方面的知识,分别求出函数的值和函数的最值.2.(2015·浙江高考)函数f (x )=sin 2x +sin x cos x +1的最小正周期是________,单调递减区间是____________.解析:∵f (x )=sin 2x +sin x cos x +1=1-cos 2x 2+12sin 2x +1=12sin 2x -12cos 2x +32=22sin ⎝⎛⎭⎪⎫2x -π4+32,∴函数f (x )的最小正周期T =π. 令π2+2k π≤2x -π4≤3π2+2k π,k ∈Z , 解之可得函数f (x )的单调递减区间为⎣⎢⎡⎦⎥⎤k π+3π8,k π+7π8(k ∈Z). 答案:π ⎣⎢⎡⎦⎥⎤k π+3π8,k π+7π8(k ∈Z)进行作答,第一空是解题的关键也是难点,只要第一空会做做对,第二空便可顺势解答.[例3] (2016·浙江高考)设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则a 1=________,S 5=________.[解析] ∵a n +1=2S n +1, ∴S n +1-S n =2S n +1, ∴S n +1=3S n +1, ∴S n +1+12=3⎝⎛⎭⎪⎫S n +12, ∴数列⎩⎨⎧⎭⎬⎫S n +12是公比为3的等比数列,∴S 2+12S 1+12=3.又S 2=4,∴S 1=1,∴a 1=1, ∴S 5+12=⎝ ⎛⎭⎪⎫S 1+12×34=32×34=2432,∴S 5=121. [答案] 1 121[点评] 例3中根据题设条件求出a 1=1后,再根据等比数列的求和公式求出S 5.第二空的解答是建立在第一空解答的基础上的,只有求出第一空才能求得第二空.3.(2017·台州模拟)以坐标原点O 为圆心,且与直线x +y +2=0相切的圆方程是________,圆O 与圆x 2+y 2-2y -3=0的位置关系是________.解析:由题意所求圆的半径等于原点O 到直线x +y +2=0的距离,即r =21+1=2,则所求圆的方程为x 2+y 2=2;因为圆O 与圆x 2+y 2-2y -3=0的圆心和半径分别为O (0,0),r 1=2,C 2=(0,1),r 2=2,且r 2-r 1<|OC 2|=1<r 1+r 2=2+2,所以两圆相交.答案:x2+y 2=2 相交选择填空提速专练(一)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知A ={x |y 2=x },B ={y |y 2=x },则( ) A .A ∪B =A B .A ∩B =A C .A =BD .(∁R A )∩B =∅解析:选B 因为A ={x |x ≥0},B ={y |y ∈R},所以A ∩B =A ,故选B.2.设a ,b 是两条不同的直线,α,β是两个不同的平面,则下列四个命题错误的是( )A .若a ⊥b ,a ⊥α,b ⊄α,则b ∥αB .若a ⊥b ,a ⊥α,b ⊥β,则α⊥βC .若a ⊥β,α⊥β,则a ∥α或a ⊂αD .若a ∥α,α⊥β,则a ⊥β解析:选D 易知A ,B ,C 均正确;D 中a 和β的位置关系有三种可能,a ∥β,a ⊂β或a 与β相交,故D 错误,故选D.3.已知函数f (2x)=x ·log 32,则f (39)的值为( ) A.16B.19C .6D .9解析:选D 令t =2x(t >0),则x =log 2t ,于是f (t )=log 2t ·log 32=log 3t (t >0),故函数f (x )=log 3x (x >0),所以f (39)=log 339=9,故选D.4.在复平面内,已知复数z =|1-i|+2i1-i ,则z 在复平面上对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选B 因为z =|1-i|+2i 1-i =2+2i1-i =2++-+=2-22+2+22i ,所以复数z 在复平面上对应的点为2-22,2+22,显然此点在第二象限,故选B. 5.将函数y =cos(2x +φ)的图象向右平移π3个单位,得到的函数为奇函数,则|φ|的最小值为( )A.π12B.π6C.π3D.5π6解析:选 B 设y =cos(2x +φ)向右平移π3个单位长度得到的函数为g (x ),则g (x )=cos ⎝ ⎛⎭⎪⎫2x -2π3+φ,因为g (x )=cos ⎝ ⎛⎭⎪⎫2x -2π3+φ为奇函数,且在原点有定义,所以-2π3+φ=k π+π2(k ∈Z),解得φ=k π+7π6(k ∈Z),故当k =-1时,|φ|min =π6,故选B.6.已知实数a ,b ,则“|a +b |+|a -b |≤1”是“a 2+b 2≤1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A 由绝对值三角不等式|a ±b |≤|a |+|b |可得⎩⎪⎨⎪⎧|2a |≤|a +b |+|a -b |≤1,|2b |≤|a +b |+|a -b |≤1,即⎩⎪⎨⎪⎧-12≤a ≤12,-12≤b ≤12,此不等式组表示边长为1的正方形区域(含边界),而a 2+b 2≤1表示单位圆域(含边界),故由⎩⎪⎨⎪⎧-12≤a ≤12,-12≤b ≤12,可以推出a 2+b 2≤1,但是反之不成立,故选A.7.已知双曲线M :x 2a 2-y 2b 2=1和双曲线N :y 2a 2-x 2b 2=1,其中b >a >0,双曲线M 和双曲线N 交于A ,B ,C ,D 四个点,且四边形ABCD 的面积为4c 2,则双曲线M 的离心率为( )A.5+32 B.5+3 C.5+12D.5+1解析:选C 设A 为双曲线M ,N 在第一象限的交点,由对称性易知四边形ABCD 是正方形,因为正方形ABCD 的面积为4c 2,所以边长为2c ,即A (c ,c ),代入双曲线M 中,得c 2a 2-c 2b2=1,即c 2a 2-c 2c 2-a 2=1,变形为e 2-e 2e 2-1=1,整理得e 4-3e 2+1=0,所以e 2=3+52e 2=3-52<1,舍去,故e =3+52=6+254=52+25+14=5+12,故选C.8.已知实数x ,y 满足x 2+y 2≤1,3x +4y ≤0,则x -3x -y -2的取值范围是( )A .[1,4]B.⎣⎢⎡⎦⎥⎤1917,4C.⎣⎢⎡⎦⎥⎤1,113D.⎣⎢⎡⎦⎥⎤1917,113 解析:选B 因为x -3x -y -2=1x -y -2x -3=11-y -1x -3,故需要先求出y -1x -3的取值范围,而y -1x -3表示动点(x ,y )与定点A (3,1)连线所成直线的斜率,约束条件⎩⎪⎨⎪⎧x 2+y 2≤1,3x +4y ≤0表示的平面区域如图中阴影部分所示,是直线3x +4y =0与圆x 2+y 2=1围成的下半圆区域(含边界).易得B -45,35,由图可知直线AB 的斜率最小,所以⎝ ⎛⎭⎪⎫y -1x -3min=1-353+45=219.又过A (3,1)且在x轴下方与圆x 2+y 2=1相切的直线斜率最大,可设切线方程为y -1=k (x -3),即kx -y -3k +1=0,由圆心到切线的距离等于半径可得d =|1-3k |k 2+1=1,解得k =34,即⎝ ⎛⎭⎪⎫y -1x -3max =34,故y -1x -3∈⎣⎢⎡⎦⎥⎤219,34.于是x -3x -y -2=11-y -1x -3∈⎣⎢⎡⎦⎥⎤1917,4,故选B.9.设等差数列{a n }的公差d ≠0,且a 2=-d ,若a k 是a 6与a k +6的等比中项,则k =( ) A .5B .6C .9D .11解析:选C 因为a k 是a 6与a k +6的等比中项, 所以a 2k =a 6a k +6.又等差数列{a n }的公差d ≠0,且a 2=-d , 所以[a 2+(k -2)d ]2=(a 2+4d )[a 2+(k +4)d ], 所以(k -3)2=3(k +3),解得k =9或k =0(舍去),故选C.10.在直角梯形 ABCD 中,AB ⊥AD ,DC ∥AB ,AD =DC =1,AB =2,E ,F 分别为AB ,BC 的中点,以A 为圆心,AD 为半径的圆弧DE 的中点为P(如图所示).若AP ―→=λED ―→+μAF ―→,其中λ,μ∈R ,则λ+μ的值是( )A.22 B.324 C. 2 D.34解析:选B 以A 为原点,建立如图所示直角坐标系,则A (0,0),B (2,0),C (1,1),D (0,1),E (1,0),F ⎝⎛⎭⎪⎫32,12,所以ED ―→=(-1,1),AF―→=⎝ ⎛⎭⎪⎫32,12, 则AP ―→=λED ―→+μAF ―→=⎝ ⎛⎭⎪⎫-λ+32μ,λ+12μ.又因为以A 为圆心,AD 为半径的圆弧DE 的中点为P ,所以点P 的坐标为P ⎝⎛⎭⎪⎫22,22,AP ―→=⎝ ⎛⎭⎪⎫22,22, 所以⎩⎪⎨⎪⎧-λ+32μ=22,λ+12μ=22,解得⎩⎪⎨⎪⎧λ=24,μ=22,从而λ+μ=324.二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分,把答案填在题中横线上)11.已知函数f (x )=2exe x +1,在F (x )=f (x )+1和G (x )=f (x )-1中,________为奇函数;若f (b )=32,则f (-b )=________.解析:由G (x )=f (x )-1=e x-1e x +1,G (-x )=e -x-1e -x +1=1e x -11ex +1=1-ex1+ex =-G (x ),故G (x )=f (x )-1为奇函数.由f (b )=32得,G (b )=f (b )-1=12,所以G (-b )=f (-b )-1=-12,f (-b )=12.答案:G (x ) 1212.已知等比数列{a n }的前n 项和满足S n =1-A ·3n ,数列{b n }是递增数列,且b n =An 2+Bn ,则A =________,B 的取值范围为________.解析:因为任意一个公比不为1的等比数列前n 项和为S n =a 1-q n1-q=a 11-q -a 11-qq n,而等比数列{a n }的前n 项和为S n =1-A ·3n,所以A =1,b n =n 2+Bn .又因为数列{b n }是递增数列,所以b n +1-b n =(n +1)2+B (n +1)-n 2-Bn =2n +1+B >0恒成立,所以B >-(2n +1)恒成立,所以B >-3.答案:1 (-3,+∞)13.某几何体的三视图如图所示,则该几何体的体积为________,表面积为________.解析:由三视图可知该几何体是由半个圆柱和一个倒立的直四棱锥组合而成的,如图,故该几何体的体积V =13×4×4×4+4π×42=643+8π,表面积为S =π×22+2π×2×42+4×4×22+4×42×22=16+162+12π.答案:643+8π 16+162+12π14.已知在一次考试中甲、乙、丙三人及格的概率均为23,那么三人中至少有2人及格的概率为________,记考试及格的人数为X ,则随机变量X 的期望为________.解析:因为甲、乙、丙三人及格的概率均为23,所以X ~B ⎝ ⎛⎭⎪⎫3,23,所以P =1-⎝ ⎛⎭⎪⎫133-C 13×23×⎝ ⎛⎭⎪⎫132=1-127-627=2027,E (X )=3×23=2.答案:2027215.已知实数x >0,y >0,且满足x +y =1,则2x +xy的最小值为________.解析:因为x +y =1,所以2x +x y =2x +2y x +x y =2+2y x +x y≥2+22,当且仅当⎩⎪⎨⎪⎧2y x =x y ,x +y =1,即x =2-2,y =2-1时等号成立.答案:2+2 216.已知函数f (x )=sin ⎝⎛⎭⎪⎫2x +π3,对任意的x 1,x 2,x 3,且0≤x 1<x 2<x 3≤π,都有|f (x 1)-f (x 2)|+|f (x 2)-f (x 3)|≤m 成立,则实数m 的最小值为________.解析:原不等式恒成立,只需要m 大于或等于|f (x 1)-f (x 2)|+|f (x 2)-f (x 3)|的最大值即可,则只需|f (x 1)-f (x 2)|,|f (x 2)-f (x 3)|都取得最大值,结合f (x )=sin2x +π3,x ∈[0,π]的图象易知,当x 1=π12,x 2=7π12,x 3=π时,|f (x 1)-f (x 2)|max =|1-(-1)|=2,|f (x 2)-f (x 3)|max=⎪⎪⎪⎪⎪⎪-1-32=1+32,所以|f (x 1)-f (x 2)|+|f (x 2)-f (x 3)|的最大值为3+32,即m 的最小值为3+32.答案:3+3217.已知扇环如图所示,∠AOB =120°,OA =2,OA ′=12,P 是扇环边界上一动点,且满足OP ―→=x OA ―→+y OB ―→,则2x +y 的取值范围为________.解析:以O 为坐标原点,以OA 为x 轴建立平面直角坐标系(图略),易知A (2,0),B (-1,3),设P (2cos α,2sin α),α∈⎣⎢⎡⎦⎥⎤0,2π3,(1)当点P 在AA ′上运动时,向量OP ―→与OA ―→共线,显然y =0,此时OP ―→=x OA ―→=(2x,0),12≤2x ≤2,所以12≤2x +y ≤2;(2)当点P 在BB ′上运动时,向量OP ―→与OB ―→共线,显然x =0,此时OP ―→=y OB ―→=(-y ,3y ),-2cos 60°≤-y ≤-12cos 60°,即14≤y ≤1,所以14≤2x +y ≤1;(3)当点P 在AB 上运动时,由OP ―→=x OA ―→+y OB ―→,得(2cos α,2sin α)=x (2,0)+y (-1,3),即2cos α=2x -y , 2sin α=3y ,所以2x +y =43sin α+2cos α,变形可得2x +y =2213sin(α+φ),其中tan φ=32,因为P 是扇环边界上一动点,且满足OP ―→=x OA ―→+y OB ―→,所以x ,y 均为非负实数,又33<32<1,所以可取π6<φ<π4,因为α∈⎣⎢⎡⎦⎥⎤0,2π3,所以当α+φ=π2时,2x +y 取得最大值,最大值为2213,当α=2π3时,2x +y 取得最小值,最小值为1;(4)当点P 在AB ′′上运动时, 因为|OA ′||OA |=|OB ′||OB |=14,故2x +y 的最大值为14×2213=216,最小值为14×1=14.综上所述,2x +y ∈⎣⎢⎡⎦⎥⎤14,2213.答案:⎣⎢⎡⎦⎥⎤14,2213选择填空提速专练(二)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知i 为虚数单位,则|3+2i|=( ) A. 5 B.7 C.13D .3解析:选C 由题意得|3+2i|=32+22=13,故选C. 2.已知A ={x |-2<x <1},B ={x |2x>1},则A ∩(∁R B )为( ) A .(-2,1) B .(-∞,1) C .(0,1)D .(-2,0]解析:选D 由题意得集合B ={x |x >0},所以∁R B ={x |x ≤0},则A ∩(∁R B )={x |-2<x ≤0},故选D.3.若(x -1)8=1+a 1x +a 2x 2+…+a 8x 8,则a 5=( ) A .56 B .-56 C .35D .-35解析:选B 二项式(x -1)8的展开式中x 5的系数为a 5=C 38(-1)3=-56,故选B. 4.设函数f (x )=sin(ωx +φ)(ω>0),则f (x )的奇偶性( ) A .与ω有关,且与φ有关 B .与ω有关,但与φ无关 C .与ω无关,且与φ无关 D .与ω无关,但与φ有关解析:选D 因为ω决定函数f (x )=sin(ωx +φ)的最小正周期,φ决定函数f (x )=sin(ωx +φ)的图象沿x 轴平移的距离,所以函数f (x )=sin(ωx +φ)的奇偶性与ω无关,与φ有关,故选D.5.已知x ∈R ,则“|x -3|-|x -1|<2”是“x ≠1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A 因为|x -3|-|x -1|≤|(x -3)-(x -1)|=2,当且仅当x ≤1时,等号成立,所以|x -3|-|x -1|<2等价于x >1,所以“|x -3|-|x -1|<2”是“x ≠1”的充分不必要条件,故选A.6.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知∠B =30°,△ABC 的面积为32.且sin A +sin C =2sin B ,则b 的值为( )A .4+2 3B .4-2 3 C.3-1D.3+1解析:选D 在△ABC 中,由sin A +sin C =2sin B 结合正弦定理得a +c =2b ,△ABC 的面积为12ac sin B =12ac ×12=32,解得ac =6,在△ABC 中,由余弦定理得b 2=a 2+c 2-2ac cos B =(a+c )2-2ac -3ac =(2b )2-(2+3)×6.解得b =3+1,故选D.7.将5名同学分到甲、乙、丙3个小组,若甲组至少两人,乙、丙组每组至少一人,则不同的分配方案的种数为( )A .50B .80C .120D .140解析:选B 当甲组有两人时,有C 25A 23种不同的分配方案;当甲组有三人时,有C 35A 22种不同的分配方案.综上所述,不同的分配方案共有C 25A 23+C 35A 22=80种不同的分配方案,故选B.8.已知a ,b 为实常数,{c i }(i ∈N *)是公比不为1的等比数列,直线ax +by +c i =0与抛物线y 2=2px (p >0)均相交,所成弦的中点为M i (x i ,y i ),则下列说法错误的是( )A .数列{x i }可能是等比数列B .数列{y i }是常数列C .数列{x i }可能是等差数列D .数列{x i +y i }可能是等比数列解析:选C 设等比数列{c i }的公比为q .当a =0,b ≠0时,直线by +c i =0与抛物线y 2=2px 最多有一个交点,不符合题意;当a ≠0,b =0时,直线ax +c i =0与抛物线y 2=2px 的交点为-c ia,± -2pc i a ,则x i =-c i a ,y i =0,x i +y i =-c i a,此时数列{x i }是公比为q 的等比数列,数列{y i }为常数列,数列{x i +y i }是以q 为公比的等比数列;当a ≠0,b ≠0时,直线ax +by +c i =0与抛物线y 2=2px 的方程联立,结合根与系数的关系易得x i =pb 2a 2-c i a ,y i =-pba,此时数列{y i }为常数列.综上所述,A ,B ,D 正确,故选C.9.若定义在(0,1)上的函数f (x )满足:f (x )>0且对任意的x ∈(0,1),有f ⎝ ⎛⎭⎪⎫2x 1+x 2=2f (x ),则( )A .对任意的正数M ,存在x ∈(0,1),使f (x )≥MB .存在正数M ,对任意的x ∈(0,1),使f (x )≤MC .对任意的x 1,x 2∈(0,1)且x 1<x 2,有f (x 1)<f (x 2)D.对任意的x 1,x 2∈(0,1)且x 1<x 2,有f (x 1)>f (x 2)解析:选A 令x 1∈(0,1),x 2=2x 11+x 21,则易得x 2∈(0,1),f (x 2)=2f (x 1),令x 3=2x 21+x 22,则易得x 3∈(0,1),f (x 3)=2f (x 2)=22f (x 1),…,依次类推得f (x n )=2n -1f (x 1),所以数列{f (x n )}构成以f (x 1)为首项,2为公比的等比数列,又因为f (x 1)>0,所以对任意的正数M ,存在n ∈N *,使得2nf (x 1)≥M ,即存在x =x n ∈(0,1),使得f (x )≥M ,故选A.10.在正方体ABCD A1B 1C 1D 1中,点M ,N 分别是线段CD ,AB 上的动点,点P 是△A 1C 1D 内的动点(不包括边界),记直线D 1P 与MN 所成角为θ,若θ的最小值为π3,则点P 的轨迹是( )A .圆的一部分B .椭圆的一部分C .抛物线的一部分D .双曲线的一部分解析:选B 延长D 1P 交平面ABCD 于点Q ,则直线D 1Q 与直线MN 所成的角即为直线D 1P 与直线MN 所成的角,则由最小角定理易得当点M 与点D 重合,且直线MN 过点Q 时,直线D 1Q 与直线MN 所成的角取得最小值,此时∠D 1QD 即为直线D 1Q 与直线MN 所成的角,所以∠D 1QD =π3,则∠DD 1Q =π6,所以点P 在以DD 1为轴,顶角为π3的圆锥面上运动,又因为点P 在平面A 1C 1D 上,所以点P 的轨迹是椭圆的一部分,故选B.二、填空题11.某几何体的三视图如图所示,则该几何体的体积为________,表面积为________.解析:由三视图得该几何体是一个底面为以4为底边,3为高的三角形,高为8的三棱柱截去两个以三棱柱的底为底,高为2的三棱锥后所得的组合体,则其体积为12×3×4×8-2×13×12×3×4×2=40,表面积为4×8+2×4+82×13+2×12×13×4=32+1613.答案:40 32+161312.比较lg 2,(lg 2)2,lg(lg 2)的大小,其中最大的是________,最小的是________. 解析:因为1<2<10,所以0<lg 2<1,所以0<(lg 2)2<lg 2,lg(lg 2)<0,所以三个数中最大的是lg 2,最小的是lg(lg 2).答案:lg 2 lg(lg 2) 13.设随机变量X 的分布列为。
选择填空提速专练(二)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知i为虚数单位,则|3+2i|=( )A. 5B.7C.13 D.3解析:选C 由题意得|3+2i|=32+22=13,故选C.2.已知A={x|-2<x<1},B={x|2x>1},则A∩(∁R B)为( )A.(-2,1) B.(-∞,1)C.(0,1) D.(-2,0]解析:选D 由题意得集合B={x|x>0},所以∁R B={x|x≤0},则A∩(∁R B)={x|-2<x≤0},故选D.3.若(x-1)8=1+a1x+a2x2+…+a8x8,则a5=( )A.56 B.-56C.35 D.-35解析:选B 二项式(x-1)8的展开式中x5的系数为a5=C38(-1)3=-56,故选B.4.设函数f(x)=sin(ωx+φ)(ω>0),则f(x)的奇偶性( )A.与ω有关,且与φ有关B.与ω有关,但与φ无关C.与ω无关,且与φ无关D.与ω无关,但与φ有关解析:选D 因为ω决定函数f(x)=sin(ωx+φ)的最小正周期,φ决定函数f(x)=sin(ωx +φ)的图象沿x轴平移的距离,所以函数f(x)=sin(ωx+φ)的奇偶性与ω无关,与φ有关,故选D.5.已知x∈R,则“|x-3|-|x-1|<2”是“x≠1”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A 因为|x-3|-|x-1|≤|(x-3)-(x-1)|=2,当且仅当x≤1时,等号成立,所以|x-3|-|x-1|<2等价于x>1,所以“|x-3|-|x-1|<2”是“x≠1”的充分不必要条件,故选A.6.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知∠B =30°,△ABC 的面积为32.且sin A +sin C =2sin B ,则b 的值为( )A .4+2 3B .4-2 3 C.3-1D.3+1解析:选D 在△ABC 中,由sin A +sin C =2sin B 结合正弦定理得a +c =2b ,△ABC 的面积为12ac sin B =12ac ×12=32,解得ac =6,在△ABC 中,由余弦定理得b 2=a 2+c 2-2ac cos B =(a+c )2-2ac -3ac =(2b )2-(2+3)×6.解得b =3+1,故选D.7.将5名同学分到甲、乙、丙3个小组,若甲组至少两人,乙、丙组每组至少一人,则不同的分配方案的种数为( )A .50B .80C .120D .140解析:选B 当甲组有两人时,有C 25A 23种不同的分配方案;当甲组有三人时,有C 35A 22种不同的分配方案.综上所述,不同的分配方案共有C 25A 23+C 35A 22=80种不同的分配方案,故选B.8.已知a ,b 为实常数,{c i }(i ∈N *)是公比不为1的等比数列,直线ax +by +c i =0与抛物线y 2=2px (p >0)均相交,所成弦的中点为M i (x i ,y i ),则下列说法错误的是( )A .数列{x i }可能是等比数列B .数列{y i }是常数列C .数列{x i }可能是等差数列D .数列{x i +y i }可能是等比数列解析:选C 设等比数列{c i }的公比为q .当a =0,b ≠0时,直线by +c i =0与抛物线y 2=2px 最多有一个交点,不符合题意;当a ≠0,b =0时,直线ax +c i =0与抛物线y 2=2px 的交点为⎝ ⎛⎭⎪⎫-c ia,± -2pc i a ,则x i =-c i a ,y i =0,x i +y i =-c ia ,此时数列{x i }是公比为q 的等比数列,数列{y i }为常数列,数列{x i +y i }是以q 为公比的等比数列;当a ≠0,b ≠0时,直线ax +by +c i=0与抛物线y 2=2px 的方程联立,结合根与系数的关系易得x i =pb 2a 2-c i a ,y i =-pba,此时数列{y i }为常数列.综上所述,A ,B ,D 正确,故选C.9.若定义在(0,1)上的函数f (x )满足:f (x )>0且对任意的x ∈(0,1),有f ⎝ ⎛⎭⎪⎫2x 1+x 2=2f (x ),则( )A .对任意的正数M ,存在x ∈(0,1),使f (x )≥MB .存在正数M ,对任意的x ∈(0,1),使f (x )≤MC .对任意的x 1,x 2∈(0,1)且x 1<x 2,有f (x 1)<f (x 2)D.对任意的x 1,x 2∈(0,1)且x 1<x 2,有f (x 1)>f (x 2)解析:选A 令x 1∈(0,1),x 2=2x 11+x 21,则易得x 2∈(0,1),f (x 2)=2f (x 1),令x 3=2x 21+x 22,则易得x 3∈(0,1),f (x 3)=2f (x 2)=22f (x 1),…,依次类推得f (x n )=2n -1f (x 1),所以数列{f (x n )}构成以f (x 1)为首项,2为公比的等比数列,又因为f (x 1)>0,所以对任意的正数M ,存在n ∈N *,使得2nf (x 1)≥M ,即存在x =x n ∈(0,1),使得f (x )≥M ,故选A.10.在正方体ABCD A1B 1C 1D 1中,点M ,N 分别是线段CD ,AB 上的动点,点P 是△A 1C 1D 内的动点(不包括边界),记直线D 1P 与MN 所成角为θ,若θ的最小值为π3,则点P 的轨迹是( )A .圆的一部分B .椭圆的一部分C .抛物线的一部分D .双曲线的一部分解析:选B 延长D 1P 交平面ABCD 于点Q ,则直线D 1Q 与直线MN 所成的角即为直线D 1P 与直线MN 所成的角,则由最小角定理易得当点M 与点D 重合,且直线MN 过点Q 时,直线D 1Q 与直线MN 所成的角取得最小值,此时∠D 1QD 即为直线D 1Q 与直线MN 所成的角,所以∠D 1QD =π3,则∠DD 1Q=π6,所以点P 在以DD 1为轴,顶角为π3的圆锥面上运动,又因为点P 在平面A 1C 1D 上,所以点P 的轨迹是椭圆的一部分,故选B.二、填空题11.某几何体的三视图如图所示,则该几何体的体积为________,表面积为________.解析:由三视图得该几何体是一个底面为以4为底边,3为高的三角形,高为8的三棱柱截去两个以三棱柱的底为底,高为2的三棱锥后所得的组合体,则其体积为12×3×4×8-2×13×12×3×4×2=40,表面积为4×8+2×4+82×13+2×12×13×4=32+1613.答案:40 32+161312.比较lg 2,(lg 2)2,lg(lg 2)的大小,其中最大的是________,最小的是________. 解析:因为1<2<10,所以0<lg 2<1,所以0<(lg 2)2<lg 2,lg(lg 2)<0,所以三个数中最大的是lg 2,最小的是lg(lg 2).答案:lg 2 lg(lg 2) 13.设随机变量X 的分布列为则a =________;E (X )=解析:由分布列的概念易得12+15+a =1,解得a =310,则E (X )=1×12+2×15+3×310=95.答案:310 9514.已知函数f (x )=x 3+ax +b 的图象在点(1,f (1))处的切线方程为2x -y -5=0,则a =________;b =________.解析:由题意得f ′(x )=3x 2+a ,则有⎩⎪⎨⎪⎧f=1+a +b =2×1-5,f =3+a =2,解得a =-1,b =-3.答案:-1 -315.若不等式组⎩⎪⎨⎪⎧x +2y -4≤0,ax +3y -4≥0,y ≥0表示的平面区域是等腰三角形区域,则实数a 的值为________.解析:在平面直角坐标系内画出题中的不等式组表示的平面区域如图所示,由图易得当a >0时,不等式组表示的平面区域为三角形区域,此时画出不等式组表示的平面区域为图中三角形区域△ABC (包含边界),由图易得此时△ABC 是以AB 为底的等腰三角形,且tan ∠BAC =12,则tan ∠BCO =tan(2∠BAC )=2×121-⎝ ⎛⎭⎪⎫122=43,所以直线ax +3y -4=0的斜率为-43,所以a =4.答案:416.若非零向量a ,b 满足:a 2=(5a -4b )·b ,则cos 〈a ,b 〉的最小值为________. 解析:由a 2=(5a -4b )·b =5a ·b -4b 2得cos 〈a ,b 〉=|a |2+4|b |25|a ||b |≥2|a |×2|b |5|a ||b |=45,当且仅当|a |=2|b |时,等号成立,所以cos 〈a ,b 〉的最小值为45.答案:4517.已知实数x ,y ,z 满足⎩⎪⎨⎪⎧xy +2z =1,x 2+y 2+z 2=5,则xyz 的最小值为________.解析:由xy +2z =1得xy =1-2z ,则5=x 2+y 2+z 2≥2xy +z 2=2-4z +z 2,解得2-7≤z ≤2+7,则xyz =(1-2z )z =-2z 2+z 的最小值为-2(2+7)2+2+7=-77-20.答案:-77-20。
(浙江专版)2019年高考数学二轮专题复习 选择填空提速专练(五)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合A =⎩⎨⎧⎭⎬⎫x ∈Zx +1x -3≤0,B ={y |y =x 2+1,x ∈A },则集合B 中含有元素1的子集个数为( )A .5B .4C .3D .2解析:选B 由于A ={x ∈Z|-1≤x <3}={-1,0,1,2},则B ={y |y =x 2+1,x ∈A }={1,2,5},则集合B 中含有元素1的子集为{1},{1,2},{1,5},{1,2,5},共4个,故选B.2.设z =a +b i(a ,b ∈R ,i 为虚数单位),若(1+i)2+|2i|=z -,则直线bx -ay +a =0的斜率为( )A .-1B .1 C. 3D.33解析:选A 由于z -=(1+i)2+|2i|=2i +2,则z =2-2i ,可得a =2,b =-2,即直线的方程为-2x -2y +2=0,亦即y =-x +1,故斜率k =-1,故选A.3.若直线y =x 上存在点(x ,y )满足约束条件⎩⎪⎨⎪⎧x +y -4≤0,x -2y -3≤0,x ≥m ,则实数m 的最大值为( )A .-1B .1 C.32D .2解析:选 D 由于不等式组⎩⎪⎨⎪⎧x +y -4≤0,x -2y -3≤0,x ≥m ,所表示的平面区域是由点A ⎝⎛⎭⎪⎫m ,m -32,B ⎝ ⎛⎭⎪⎫113,13,C (m,4-m )围成的三角形区域(含边界,如图所示),若直线y =x 上存在点(x ,y )满足约束条件,则有m ≤4-m ,解得m ≤2,即实数m 的最大值为2,故选D.4.已知a ∈R ,“关于x 的不等式x 2-2ax +a ≥0的解集为R”是“0≤a ≤1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选C 若关于x 的不等式x 2-2ax +a ≥0的解集为R ,则有Δ=4a 2-4a ≤0,解得0≤a ≤1,故“关于x 的不等式x 2-2ax +a ≥0的解集为R”是“0≤a ≤1”的充要条件,故选C.5.一个几何体的三视图如图所示,其中正视图是一个正三角形,则该几何体的外接球的体积为()A.833π B.163πC.16327π D.32327π解析:选D 由三视图知该几何体是以俯视图中的等腰直角三角形为底面,高为3的三棱锥,且过底面斜边的侧面垂直于底面,则该几何体的外接球球心在侧视图的高上,设其外接球的半径为R ,则有R 2=12+(3-R )2,解得R =233,故其体积V =43πR 3=32327π,故选D.6.已知sin α=12+cos α,且α∈⎝ ⎛⎭⎪⎫0,π2,则cos 2αsin ⎝ ⎛⎭⎪⎫α-π4的值为( )A .-142B .-144C.142D.144解析:选A 由sin α=12+cos α可得sin α-cos α=12,即2sin ⎝ ⎛⎭⎪⎫α-π4=12,可得sin ⎝ ⎛⎭⎪⎫α-π4=24,又α∈⎝ ⎛⎭⎪⎫0,π2,则α-π4∈⎝ ⎛⎭⎪⎫-π4,π4,可得cos ⎝ ⎛⎭⎪⎫α-π4=1-sin 2⎝ ⎛⎭⎪⎫α-π4=144,则cos 2αsin ⎝ ⎛⎭⎪⎫α-π4=-sin ⎝ ⎛⎭⎪⎫2α-π2sin ⎝ ⎛⎭⎪⎫α-π4=-2sin ⎝ ⎛⎭⎪⎫α-π4cos ⎝ ⎛⎭⎪⎫α-π4sin ⎝ ⎛⎭⎪⎫α-π4=-2cos ⎝⎛⎭⎪⎫α-π4=-142,故选A. 7.要得到函数y =sin ⎝ ⎛⎭⎪⎫2x -π3的图象,可将函数y =cos ⎝ ⎛⎭⎪⎫2x -π3的图象( )A .向左平移π2个单位长度B .向左平移π4个单位长度C .向右平移π2个单位长度D .向右平移π4个单位长度解析:选D 由于y =sin ⎝ ⎛⎭⎪⎫2x -π3=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π6,而y =cos ⎝ ⎛⎭⎪⎫2x -π3=sin ⎝ ⎛⎭⎪⎫2x -π3+π2=sin2x +π6=sin2x +π12,则将函数y =cos ⎝ ⎛⎭⎪⎫2x -π3的图象向右平移π12+π6=π4个单位长度即可得到函数y =sin2x -π3的图象,故选D.8.已知方程|ln x |=kx +1在(0,e 3)上有三个不相等的实数根,则实数k 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,2e 3B.⎝ ⎛⎭⎪⎫3e 3,2e 2C.⎝ ⎛⎭⎪⎫2e 3,1e 2 D.⎝ ⎛⎭⎪⎫2e 3,3e 2 解析:选C 令f (x )=kx +1,g (x )=ln x ,而f (x )=kx +1与g (x )=|ln x |的图象在(0,1)上一定有1个交点,那么根据题目条件只需f (x )=kx +1,g (x )=ln x 在(1,e 3)上有2个交点即可,函数f (x )=kx +1,g (x )=ln x 的图象如图所示,设两者相切于点(a ,b ),则有⎩⎪⎨⎪⎧k =1a,b =ln a ,b =ka +1,解得k =1e2,且对数函数g (x )=ln x 的增长速度越来越慢,直线f (x )=kx +1过定点(0,1),方程|ln x |=kx +1中取x =e 3得k =2e 3,则2e 3<k <1e 2,故实数k 的取值范围是⎝ ⎛⎭⎪⎫2e 3,1e 2,故选C.9.如图,已知正方体ABCD A 1B 1C 1D 1的棱长为1,E ,F 分别是棱AD ,B 1C 1上的动点,设AE =λ,B 1F =μ.若平面BEF 与正方体的截面是五边形,则λ+μ的取值范围是( )A .(1,2)B.⎝ ⎛⎭⎪⎫12,2C.⎝ ⎛⎭⎪⎫1,32 D.⎝ ⎛⎭⎪⎫12,32 解析:选A 通过特殊位置来分析,当AE =λ→1时(此时,E 与D 接近重合),若B 1F =μ→0(此时,B 1与F 接近重合),此时截面是四边形,即随着B 1F =μ的变大,平面BEF 与正方体的截面是五边形,由此知λ+μ>1;随着B 1F =μ→1,平面BEF 与正方体的截面仍是五边形,当两者均为1时,截面是三角形,由此知λ+μ<2,故1<λ+μ<2,故选A.10.已知函数f (x )=a sin x +b cos x ,a ,b ∈R ,若y =|f (x )|+⎪⎪⎪⎪⎪⎪f ⎝ ⎛⎭⎪⎫π2+x 的最大值为4,则a ,b 的值可以是( )A .3,5 B.3, 5 C .4,3D .2, 3解析:选 B 由选项知,a ,b 均不为0.由于f (x )=a sin x +b cos x ,那么y =|f (x )|+⎪⎪⎪⎪⎪⎪f ⎝ ⎛⎭⎪⎫π2+x =|a sin x +b cos x |+|a cos x -b sin x |=a 2+b 2|sin(x +φ)|+a 2+b 2|cos(x +φ)|=2×a 2+b 2⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫x +φ±π4⎝ ⎛⎭⎪⎫tan φ=b a ,结合题中条件可得2×a 2+b 2=4,即a2+b 2=8,只有选项B 中的值可以满足条件,故选B.二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分,把答案填在题中横线上)11.双曲线x 2-y 2=2的焦距为________,离心率为________.解析:双曲线的方程化为标准形式为x 22-y 22=1,则a =b =2,所以c =2+2=2,则焦距为2c =4,离心率为e =c a= 2.答案:4212.设函数f (x )=⎩⎪⎨⎪⎧e x,x ≤0,ln x ,x >0,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12=________,方程f (f (x ))=1的解集为________.解析:由于f ⎝ ⎛⎭⎪⎫12=ln 12,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫ln 12=e 1ln 2=12.由f (f (x ))=1可得f (x )=0或f (x )=e ,由f (x )=0可得ln x =0,解得x =1;由f (x )=e 可得ln x =e ,解得x =e e,故对应方程的解集为{1,e e}.答案:12{1,e e}13.数列{a n }的前n 项和为S n =n 2+n +1,b n =(-1)n ·(a n -2)(n ∈N *),则数列{a n }的通项公式为________,数列{b n }的前50项和为________.解析:当n =1时,a 1=S 1=3; 当n ≥2时,a n =S n -S n -1=n 2+n +1-[(n -1)2+(n -1)+1]=2n ,当n =1时不满足上式,则其通项公式为a n =⎩⎪⎨⎪⎧3,n =1,2n ,n ≥2.当n =1时,b 1=-1;当n ≥2时,b n =(-1)n·(a n -2)=(-1)n·2(n -1),则数列{b n }的前50项和为-1+2×1-2×2+2×3-…+2×49=-1+2×(1-2+3-…+49)=-1+2×25=49.答案:a n =⎩⎪⎨⎪⎧3,n =1,2n ,n ≥24914.高一(1)班的假期义工活动小组由10人组成,已知参加义工活动次数为1,2,3的人数分别为3,3,4,现要从这10人中随机选出2人作为该组代表参加座谈会,则选出的2人参加义工活动次数之和为4的概率为________;若设X 为选出的2人参加义工活动次数之差的绝对值,则随机变量X 的数学期望为________.解析:根据等可能事件的概率,选出的2人参加义工活动次数之和为4的概率为P =C 13C 14+C 23C 210=13.由题可得X 的所有可能取值是0,1,2,则P (X =0)=2C 23+C 24C 210=415,P (X =1)=C 13C 13+C 13C 14C 210=715,P (X =2)=C 13C 14C 210=415,则数学期望E (X )=0×415+1×715+2×415=1.答案:13115.设抛物线y 2=2px (p >0)的焦点为F ,准线为l ,过抛物线上一点A 作l 的垂线,垂足为B .设C ⎝ ⎛⎭⎪⎫72p ,0,AF 与BC 相交于点E .若|CF |=2|AF |,且△ACE 的面积为32,则p 的值为________.解析:由抛物线y 2=2px 可得F ⎝ ⎛⎭⎪⎫p 2,0,则|CF |=7p 2-p 2=3p ,又|CF |=2|AF |,则|AF |=3p 2,由抛物线的定义得|AB |=|AF |=3p2,所以x A =p ,则|y A |=2p .由CF ∥AB 得△ABE ∽△FCE ,从而得|EF ||EA |=|CF ||BA |=2,所以S △CEF =2S △CEA =62,S △ACF =S △AEC +S △CFE =92,所以12×3p ×2p =92,解得p = 6.答案: 616.已知平面向量a ,b ,满足 |a |=|b |=a·b =2,且(a -c )·(b -c )=0,则|b +2c |的最大值是________.解析:设平面向量a ,b 的夹角为θ(θ∈[0,π]),则a·b =2×2×cos θ=2,可得cos θ=12,即θ=π3.在平面直角坐标系中,设a =OA ―→=(2,0),b =OB ―→=(1,3),c =OC ―→,由于(a -c )·(b -c )=0,则CA ―→⊥CB ―→,即点C 的轨迹是以AB 为直径的圆,则其轨迹方程为⎝⎛⎭⎪⎫x -322+⎝ ⎛⎭⎪⎫y -322=1,可设c =⎝ ⎛⎭⎪⎫32+cos α,32+sin α,则有b +2c =(4+2cosα,23+2sin α),故|b +2c |=+2cos α2+3+2sin α2=32+83sin α+16cos α=32+87α+φ⎝⎛⎭⎪⎫其中φ是锐角,tan φ=233,则其最大值为32+87=27+2.答案:27+217.已知x >0,y >0,且x 3+y 3=x -y ,则1-x2y2的最小值是________.解析:由x >0,y >0,且x 3+y 3=x -y 可得x 3+y 3x -y =1,则x >y ,令f (x ,y )=1-x 2y 2=x 3+y 3x -y -x 2y 2=y 2+x 2xy -y 2=1+⎝ ⎛⎭⎪⎫x y 2x y-1,令t =x y >1,则f (t )=1+t 2t -1,由于f ′(t )=t 2-2t -1t -2,令f ′(t )=0可得t =1+2(舍负),易知当t =1+2时,f (t )取得最小值f (1+2)=1++221+2-1=2+22,所以1-x2y2的最小值是2+2 2.答案:2+2 2。
选择填空提速专练(五)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合A =⎩⎨⎧⎭⎬⎫x ∈Zx +1x -3≤0,B ={y |y =x 2+1,x ∈A },则集合B 中含有元素1的子集个数为( )A .5B .4C .3D .2解析:选B 由于A ={x ∈Z|-1≤x <3}={-1,0,1,2},则B ={y |y =x 2+1,x ∈A }={1,2,5},则集合B 中含有元素1的子集为{1},{1,2},{1,5},{1,2,5},共4个,故选B.2.设z =a +b i(a ,b ∈R ,i 为虚数单位),若(1+i)2+|2i|=z -,则直线bx -ay +a =0的斜率为( )A .-1B .1 C. 3D.33解析:选A 由于z -=(1+i)2+|2i|=2i +2,则z =2-2i ,可得a =2,b =-2,即直线的方程为-2x -2y +2=0,亦即y =-x +1,故斜率k =-1,故选A.3.若直线y =x 上存在点(x ,y )满足约束条件⎩⎪⎨⎪⎧x +y -4≤0,x -2y -3≤0,x ≥m ,则实数m 的最大值为( )A .-1B .1 C.32D .2解析:选 D 由于不等式组⎩⎪⎨⎪⎧x +y -4≤0,x -2y -3≤0,x ≥m ,所表示的平面区域是由点A ⎝⎛⎭⎪⎫m ,m -32,B ⎝ ⎛⎭⎪⎫113,13,C (m,4-m )围成的三角形区域(含边界,如图所示),若直线y =x 上存在点(x ,y )满足约束条件,则有m ≤4-m ,解得m ≤2,即实数m 的最大值为2,故选D.4.已知a ∈R ,“关于x 的不等式x 2-2ax +a ≥0的解集为R”是“0≤a ≤1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选C 若关于x 的不等式x 2-2ax +a ≥0的解集为R ,则有Δ=4a 2-4a ≤0,解得0≤a ≤1,故“关于x 的不等式x 2-2ax +a ≥0的解集为R”是“0≤a ≤1”的充要条件,故选C.5.一个几何体的三视图如图所示,其中正视图是一个正三角形,则该几何体的外接球的体积为()A.833π B.163πC.16327π D.32327π解析:选D 由三视图知该几何体是以俯视图中的等腰直角三角形为底面,高为3的三棱锥,且过底面斜边的侧面垂直于底面,则该几何体的外接球球心在侧视图的高上,设其外接球的半径为R ,则有R 2=12+(3-R )2,解得R =233,故其体积V =43πR 3=32327π,故选D.6.已知sin α=12+cos α,且α∈⎝ ⎛⎭⎪⎫0,π2,则cos 2αsin ⎝ ⎛⎭⎪⎫α-π4的值为( )A .-142B .-144C.142D.144解析:选A 由sin α=12+cos α可得sin α-cos α=12,即2sin ⎝ ⎛⎭⎪⎫α-π4=12,可得sin ⎝ ⎛⎭⎪⎫α-π4=24,又α∈⎝ ⎛⎭⎪⎫0,π2,则α-π4∈⎝ ⎛⎭⎪⎫-π4,π4,可得cos ⎝ ⎛⎭⎪⎫α-π4=1-sin 2⎝ ⎛⎭⎪⎫α-π4=144,则cos 2αsin ⎝ ⎛⎭⎪⎫α-π4=-sin ⎝ ⎛⎭⎪⎫2α-π2sin ⎝ ⎛⎭⎪⎫α-π4=-2sin ⎝ ⎛⎭⎪⎫α-π4cos ⎝ ⎛⎭⎪⎫α-π4sin ⎝ ⎛⎭⎪⎫α-π4=-2cos ⎝⎛⎭⎪⎫α-π4=-142,故选A. 7.要得到函数y =sin ⎝ ⎛⎭⎪⎫2x -π3的图象,可将函数y =cos ⎝ ⎛⎭⎪⎫2x -π3的图象( )A .向左平移π2个单位长度B .向左平移π4个单位长度C .向右平移π2个单位长度D .向右平移π4个单位长度解析:选D 由于y =sin ⎝ ⎛⎭⎪⎫2x -π3=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π6,而y =cos ⎝ ⎛⎭⎪⎫2x -π3=sin ⎝ ⎛⎭⎪⎫2x -π3+π2=sin2x +π6=sin2x +π12,则将函数y =cos ⎝ ⎛⎭⎪⎫2x -π3的图象向右平移π12+π6=π4个单位长度即可得到函数y =sin2x -π3的图象,故选D.8.已知方程|ln x |=kx +1在(0,e 3)上有三个不相等的实数根,则实数k 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,2e 3B.⎝ ⎛⎭⎪⎫3e 3,2e 2C.⎝ ⎛⎭⎪⎫2e 3,1e 2 D.⎝ ⎛⎭⎪⎫2e 3,3e 2 解析:选C 令f (x )=kx +1,g (x )=ln x ,而f (x )=kx +1与g (x )=|ln x |的图象在(0,1)上一定有1个交点,那么根据题目条件只需f (x )=kx +1,g (x )=ln x 在(1,e 3)上有2个交点即可,函数f (x )=kx +1,g (x )=ln x 的图象如图所示,设两者相切于点(a ,b ),则有⎩⎪⎨⎪⎧k =1a,b =ln a ,b =ka +1,解得k =1e2,且对数函数g (x )=ln x 的增长速度越来越慢,直线f (x )=kx +1过定点(0,1),方程|ln x |=kx +1中取x =e 3得k =2e 3,则2e 3<k <1e 2,故实数k 的取值范围是⎝ ⎛⎭⎪⎫2e 3,1e 2,故选C.9.如图,已知正方体ABCD A 1B 1C 1D 1的棱长为1,E ,F 分别是棱AD ,B 1C 1上的动点,设AE =λ,B 1F =μ.若平面BEF 与正方体的截面是五边形,则λ+μ的取值范围是( )A .(1,2)B.⎝ ⎛⎭⎪⎫12,2C.⎝ ⎛⎭⎪⎫1,32 D.⎝ ⎛⎭⎪⎫12,32 解析:选A 通过特殊位置来分析,当AE =λ→1时(此时,E 与D 接近重合),若B 1F =μ→0(此时,B 1与F 接近重合),此时截面是四边形,即随着B 1F =μ的变大,平面BEF 与正方体的截面是五边形,由此知λ+μ>1;随着B 1F =μ→1,平面BEF 与正方体的截面仍是五边形,当两者均为1时,截面是三角形,由此知λ+μ<2,故1<λ+μ<2,故选A.10.已知函数f (x )=a sin x +b cos x ,a ,b ∈R ,若y =|f (x )|+⎪⎪⎪⎪⎪⎪f ⎝ ⎛⎭⎪⎫π2+x 的最大值为4,则a ,b 的值可以是( )A .3,5 B.3, 5 C .4,3D .2, 3解析:选 B 由选项知,a ,b 均不为0.由于f (x )=a sin x +b cos x ,那么y =|f (x )|+⎪⎪⎪⎪⎪⎪f ⎝ ⎛⎭⎪⎫π2+x =|a sin x +b cos x |+|a cos x -b sin x |=a 2+b 2|sin(x +φ)|+a 2+b 2|cos(x +φ)|=2×a 2+b 2⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫x +φ±π4⎝ ⎛⎭⎪⎫tan φ=b a ,结合题中条件可得2×a 2+b 2=4,即a2+b 2=8,只有选项B 中的值可以满足条件,故选B.二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分,把答案填在题中横线上)11.双曲线x 2-y 2=2的焦距为________,离心率为________.解析:双曲线的方程化为标准形式为x 22-y 22=1,则a =b =2,所以c =2+2=2,则焦距为2c =4,离心率为e =c a= 2.答案:4212.设函数f (x )=⎩⎪⎨⎪⎧e x,x ≤0,ln x ,x >0,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12=________,方程f (f (x ))=1的解集为________.解析:由于f ⎝ ⎛⎭⎪⎫12=ln 12,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫ln 12=e 1ln 2=12.由f (f (x ))=1可得f (x )=0或f (x )=e ,由f (x )=0可得ln x =0,解得x =1;由f (x )=e 可得ln x =e ,解得x =e e,故对应方程的解集为{1,e e}.答案:12{1,e e}13.数列{a n }的前n 项和为S n =n 2+n +1,b n =(-1)n ·(a n -2)(n ∈N *),则数列{a n }的通项公式为________,数列{b n }的前50项和为________.解析:当n =1时,a 1=S 1=3; 当n ≥2时,a n =S n -S n -1=n 2+n +1-[(n -1)2+(n -1)+1]=2n ,当n =1时不满足上式,则其通项公式为a n =⎩⎪⎨⎪⎧3,n =1,2n ,n ≥2.当n =1时,b 1=-1;当n ≥2时,b n =(-1)n·(a n -2)=(-1)n·2(n -1),则数列{b n }的前50项和为-1+2×1-2×2+2×3-…+2×49=-1+2×(1-2+3-…+49)=-1+2×25=49.答案:a n =⎩⎪⎨⎪⎧3,n =1,2n ,n ≥24914.高一(1)班的假期义工活动小组由10人组成,已知参加义工活动次数为1,2,3的人数分别为3,3,4,现要从这10人中随机选出2人作为该组代表参加座谈会,则选出的2人参加义工活动次数之和为4的概率为________;若设X 为选出的2人参加义工活动次数之差的绝对值,则随机变量X 的数学期望为________.解析:根据等可能事件的概率,选出的2人参加义工活动次数之和为4的概率为P =C 13C 14+C 23C 210=13.由题可得X 的所有可能取值是0,1,2,则P (X =0)=2C 23+C 24C 210=415,P (X =1)=C 13C 13+C 13C 14C 210=715,P (X =2)=C 13C 14C 210=415,则数学期望E (X )=0×415+1×715+2×415=1.答案:13115.设抛物线y 2=2px (p >0)的焦点为F ,准线为l ,过抛物线上一点A 作l 的垂线,垂足为B .设C ⎝ ⎛⎭⎪⎫72p ,0,AF 与BC 相交于点E .若|CF |=2|AF |,且△ACE 的面积为32,则p 的值为________.解析:由抛物线y 2=2px 可得F ⎝ ⎛⎭⎪⎫p 2,0,则|CF |=7p 2-p 2=3p ,又|CF |=2|AF |,则|AF |=3p 2,由抛物线的定义得|AB |=|AF |=3p2,所以x A =p ,则|y A |=2p .由CF ∥AB 得△ABE ∽△FCE ,从而得|EF ||EA |=|CF ||BA |=2,所以S △CEF =2S △CEA =62,S △ACF =S △AEC +S △CFE =92,所以12×3p ×2p =92,解得p = 6.答案: 616.已知平面向量a ,b ,满足 |a |=|b |=a·b =2,且(a -c )·(b -c )=0,则|b +2c |的最大值是________.解析:设平面向量a ,b 的夹角为θ(θ∈[0,π]),则a·b =2×2×cos θ=2,可得cos θ=12,即θ=π3.在平面直角坐标系中,设a =OA ―→=(2,0),b =OB ―→=(1,3),c =OC ―→,由于(a -c )·(b -c )=0,则CA ―→⊥CB ―→,即点C 的轨迹是以AB 为直径的圆,则其轨迹方程为⎝⎛⎭⎪⎫x -322+⎝ ⎛⎭⎪⎫y -322=1,可设c =⎝ ⎛⎭⎪⎫32+cos α,32+sin α,则有b +2c =(4+2cosα,23+2sin α),故|b +2c |=+2cos α2+3+2sin α2=32+83sin α+16cos α=32+87α+φ⎝⎛⎭⎪⎫其中φ是锐角,tan φ=233,则其最大值为32+87=27+2.答案:27+217.已知x >0,y >0,且x 3+y 3=x -y ,则1-x2y2的最小值是________.解析:由x >0,y >0,且x 3+y 3=x -y 可得x 3+y 3x -y =1,则x >y ,令f (x ,y )=1-x 2y 2=x 3+y 3x -y -x 2y 2=y 2+x 2xy -y 2=1+⎝ ⎛⎭⎪⎫x y 2x y-1,令t =x y >1,则f (t )=1+t 2t -1,由于f ′(t )=t 2-2t -1t -2,令f ′(t )=0可得t =1+2(舍负),易知当t =1+2时,f (t )取得最小值f (1+2)=1++221+2-1=2+22,所以1-x2y2的最小值是2+2 2.答案:2+2 2。
选择填空提速专练(四)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合P ={x ∈R|0<x <1},Q ={x ∈R|x 2+x -2≤0},则( ) A .P ∈Q B .P ∈∁R Q C .∁R P ⊆QD .∁R Q ⊆∁R P解析:选D 由题意得集合P ={x |0<x <1},Q ={x |-2≤x ≤1},所以∁R P ={x |x ≤0或x ≥1},∁R Q ={x |x <-2或x >1},所以∁R Q ⊆∁R P ,故选D.2.已知i 为虚数单位,复数z =1-3i2+i ,则复数z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选C 由题意得复数z =1-3i 2+i = 1-3i 2-i 2+i 2-i =-15-75i ,则其在复平面内对应的点为⎝ ⎛⎭⎪⎫-15,-75,位于第三象限,故选C.3.在△ABC 中,“sin A >sin B ”是“cos A <cos B ”的( ) A .充分不必要条件 B .充要条件C .必要不充分条件D .既不充分也不必要条件解析:选B 在△ABC 中,由正弦定理得sin A >sin B ⇔a >b ⇔A >B ,又因为在(0,π)内函数f (x )=cos x 单调递减,所以A >B ⇔cos A <cos B ,所以sin A >sin B ⇔A >B ⇔cos A <cos B ,故选B.4.直三棱柱ABC A 1B 1C 1中,所有棱长都相等,M 是A 1C 1的中点,N 是BB 1的中点,则AM 与NC 1所成角的余弦值为( )A.23 B.35C.53D.45解析:选B 设直三棱柱的棱长为2a ,AC 的中点为D ,连接C 1D ,DN ,则易得C 1D ∥AM ,则∠DC 1N 就是AM 与NC 1的夹角,又因为C 1D =CC 21+CD2=5a ,DN =AB 2-AD 2+BN 2=2a ,C 1N =C 1B 21+B 1N 2=5a ,所以AM 与NC 1的夹角的余弦值等于cos ∠DC 1N =C 1D 2+C 1N 2-DN 22C 1D ·C 1N =35,故选B.5.若(1+x )3+(1+x )4+(1+x )5+…+(1+x )2 017=a 0+a 1x +a 2x 2+…+a 2 017x2 017,则a 3的值为( )A .C 32 017 B .C 32 018 C .C 42 017D .C 42 018解析:选D 由题意得a 3=C 33+C 34+…+C 32 017=C 44+C 34+…+C 32 017=C 45+C 35+…+C 32 017=…=C 42 017+C 32 017=C 42 018,故选D.6.已知等差数列{a n }的前n 项和为S n ,且S 4S 8=13,则S 8S 16=( )A.310B.37C.13D.12解析:选A 设等差数列{a n }的公差为d ,则由S 4S 8=13得d ≠0,S 42S 4+16d =13,解得S 4=16d ,所以S 8S 16=S 82S 8+64d =3×16d 6×16d +64d =310,故选A. 7.从双曲线x 23-y 25=1的左焦点F 引圆x 2+y 2=3的切线FP 交双曲线右支于点P ,T 为切点,M 为线段FP 的中点,O 为坐标原点,则|MO |-|MT |等于( )A. 3B. 5C.5- 3D.5+ 3解析:选C 设双曲线的右焦点为F 1,连接PF 1.因为点M 为PF 的中点,点O 为F 1F 的中点,所以|OM |=12|PF 1|=12(|PF |-23)=|FM |-3,所以|OM |-|MT |=|FM |-|MT |-3=|FT |-3,又因为直线FP 与圆x 2+y 2=3相切于点T ,所以|FT |=8-3=5,则|OM |-|MT |=5-3,故选C.8.从{1,2,3,…,10}中选取三个不同的数,使得其中至少有两个相邻,则不同的选法种数是( )A .72B .70C .66D .64解析:选D 选取的三个数中有且只有两个相邻的选法有7×2+6×7=56种,选取的三个数都相邻的选法有8种,所以选取的三个数中至少有两个相邻的不同选法种数为56+8=64,故选D.9.已知f (x )=2x 2-4x -1,设有n 个不同的数x i (i =1,2,…,n )满足0≤x 1<x 2<…<x n ≤3,则满足|f (x 1)-f (x 2)|+|f (x 2)-f (x 3)|+…+|f (x n -1)-f (x n )|≤M 的M 的最小值是( )A .10B .8C .6D .2解析:选A 由二次函数的性质易得f (x )=2x 2-4x -1在(0,1)上单调递减,在(1,3)上单调递增,且f (0)=-1,f (1)=-3,f (3)=5,则当x 1=0,x n =3,且存在x i =1时,|f (x 1)-f (x 2)|+|f (x 2)-f (x 3)|+…+|f (x n -1)-f (x n )|取得最大值,最大值为|f (x 1)-f (x i )|+|f (x i )-f (x n )|=|-1-(-3)|+|-3-5|=10,所以M 的最小值为10,故选A.10.已知Rt △ABC 中,AB =3,AC =4,BC =5,I 是△ABC 的内心,P 是△IBC 内部(不含边界)的动点,若AP ―→=λAB ―→+μAC ―→(λ,μ∈R),则λ+μ的取值范围是( )A.⎝⎛⎭⎪⎫712,1B.⎝ ⎛⎭⎪⎫13,1C.⎝ ⎛⎭⎪⎫14,712 D.⎝ ⎛⎭⎪⎫14,1 解析:选A 以A 为坐标原点,AB 所在的直线为x 轴,AC 所在的直线为y 轴建立平面直角坐标系(图略),则易得A (0,0),B (3,0),C (0,4),I (1,1),设点P (x ,y ),则由AP ―→=λAB ―→+μAC―→得(x ,y )=λ(3,0)+μ(0,4),所以⎩⎪⎨⎪⎧λ=x3,μ=y4,则λ+μ=x 3+y4,又由题意得点P (x ,y )在以B (3,0),C (0,4),I (1,1)为顶点的三角形内部(不包含边界),所以当目标函数z =x 3+y4与直线BC 重合时,z =x 3+y 4取得最大值1,当目标函数z =x 3+y 4经过点I (1,1)时,z =x 3+y4取得最小值712,又因为点P (x ,y )的可行域不包含边界,所以z =x 3+y 4的取值范围为⎝ ⎛⎭⎪⎫712,1,即λ+μ的取值范围为⎝ ⎛⎭⎪⎫712,1,故选A.二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分,把答案填在题中横线上)11.已知函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π4,则f (x )的最小正周期为________;f ⎝ ⎛⎭⎪⎫π3=________. 解析:函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π4的最小正周期为π2,f ⎝ ⎛⎭⎪⎫π3=tan ⎝ ⎛⎭⎪⎫2π3-π4=tan 2π3-tanπ41+tan 2π3·tanπ4=-3-11+ -3 ×1=2+ 3.答案:π22+ 312.某几何体的三视图如图所示(单位:cm),则该几何体的体积为________cm 3;该几何体的外接球的直径为________cm.解析:由三视图得该几何体为一个底面为边长为1的正方形,有一条长为1的侧棱垂直于底面的四棱锥,所以该几何体的体积为13×1×1×1=13(cm 3).由题意得该四棱锥可以补形为一个棱长为1的正方体,且正方体的外接球即为四棱锥的外接球,所以该几何体的外接球的直径为12+12+12=3(cm). 答案:13313.随机变量X 的分布列如下:则p =________;若Y =2X +3解析:由分布列的概念易得12+13+p =1,解得p =16,则E (X )=(-2)×12+0×13+1×16=-56,所以E (Y )=2E (X )+3=2×⎝ ⎛⎭⎪⎫-56+3=43.答案:16 4314.已知函数y =x +a x 2+1(a ∈R)的值域是⎣⎢⎡⎦⎥⎤-14,m ,则常数a =________,m =________. 解析:由题意得f (x )=x +a x 2+1≥-14,即a ≥-14x 2-x -14对任意x ∈R 恒成立,且存在x ∈R 使得等号成立,所以a =⎝ ⎛⎭⎪⎫-14x 2-x -14max ,又因为-14x 2-x -14=-14(x +2)2+34,所以a =⎝⎛⎭⎪⎫-14x 2-x -14max=34,所以f (x )=x +34x 2+1=4x +34x 2+4,则f ′(x )=-2x 2-3x +22 x 2+12= x +2 -2x +1 2 x 2+1 2,当x ∈⎝ ⎛⎭⎪⎫-2,12时,f ′(x )>0,x ∈(-∞,-2)∪⎝ ⎛⎭⎪⎫12,+∞时,f ′(x )<0,又x →-∞时f (x )→0,所以当x =12时,f (x )取得最大值f ⎝ ⎛⎭⎪⎫12=4×12+34×⎝ ⎛⎭⎪⎫122+4=1,即m =1.答案:34115.已知P (x ,y )是抛物线y 2=4x 上的点,则 x -3 2+ y -2 2-x 的最大值是________. 解析:由题意得抛物线y 2=4x 的焦点为F (1,0),准线方程为x =-1,所以|PF |=x +1,则x =|PF |-1.设点A (3,2),则 x -3 2+ y -2 2-x =|PA |-(|PF |-1)=|PA |-|PF |+1,由图结合三角形的性质易得当P ,F ,A 三点自下而上依次共线时,|PA |-|PF |取得最大值|AF |= 3-1 2+ 2-0 2=22,所以 x -3 2+ y -2 2-x 的最大值为22+1.答案:22+116.过P (-1,1)的光线经x 轴上点A 反射后,经过不等式组⎩⎪⎨⎪⎧x -2y +4≥0,x +y -2≥0,3x +y -9≤0所表示的平面区域内某点(记为B ),则|PA |+|AB |的取值范围是________.解析:由题意得点P (-1,1)关于x 轴的对称点为P 1(-1,-1),则|PA |+|PB |的取值范围等价于点P 1(-1,-1)与不等式组⎩⎪⎨⎪⎧x -2y +4≥0,x +y -2≥0,3x +y -9≤0,y ≥0表示的平面区域内的点的连线的长度的范围,如图,在平面直角坐标系内画出不等式组表示的平面区域(阴影区域,含边界),由图易得点P 1(-1,-1)到直线x +y -2=0的距离最小,最小值为|-1-1-2|12+12=22;点P 1(-1,-1)与点C (2,3)的距离最大,最大值为 2+1 2+ 3+1 2=5.所以|PA |+|PB |的取值范围为[22,5].答案:[22,5]17.已知非负实数x ,y 满足2x 2+4xy +2y 2+x 2y 2=9,则22(x +y )+xy 的最大值为________. 解析:由2x 2+4xy +2y 2+x 2y2=9得2(x +y )2+x 2y 2=9,令⎩⎪⎨⎪⎧u =x +y ,v =xy ,则x ,y 为方程t2-ut +v =0(t 为自变量)的两个根,则Δ=u 2-4v ≥0,即有u 292+v 29=1,而22(x +y )+xy =22u +v ,以u 为横坐标,v 为纵坐标建立平面直角坐标系,设z =22u +v ,则u ,v 的可行域为⎩⎪⎨⎪⎧u 2-4v ≥0,u 292+v29=1,作出可行域,如图中椭圆的实线部分所示,由⎩⎪⎨⎪⎧u 2-4v =0,u 292+v29=1得⎩⎪⎨⎪⎧u =±2,v =1,且点在(2,1)处,椭圆u 292+v 29=1的切线斜率为-4<-22,所以当直线z =22u +v 经过点(2,1)时,z 取得最大值42+1,所以22(x +y )+xy 的最大值为42+1.答案:42+1。
题型专项训练4选择填空题组合特训(四)(时间:60分钟满分:100分)一、选择题(本大题共8小题,每小题8分,共64分)1.(2017浙江杭州高级中学模拟)设集合A={y|y=sin x,x∈R},集合B={x|y=lg x},则(∁R A)∩B=()A.(-∞,-1)∪(1,+∞)B.[-1,1]C.(1,+∞)D.[1,+∞)2.已知抛物线y2=x的焦点是椭圆=1的一个焦点,则椭圆的离心率为()A BC D3.若x,y满足约束条件则z=2x+y的最大值与最小值的和等于()A.-4B.-2C.2D.64.若函数f(x)=(x2+x-2)(x2+ax+b)是偶函数,则f(x)的最小值为()A BC.-D.-5.已知a,b,c都是实数,则“a,b,c成等比数列”是“b2=a·c”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.离散型随机变量X的分布列为P(X=k)=p k q1-k(k=0,1,p+q=1),则E(X)与D(X)依次为()A.0和1B.p和p2C.p和1-pD.p和p(1-p)7.某三棱锥的三视图如图所示,该三棱锥的表面积是()A.28+6B.30+6C.56+12D.60+128.已知△ABC和点M满足=0,若存在实数m使得=m成立,则m=()A.2B.3C.4 D二、填空题(本大题共6小题,每小题6分,共36分)9.《孙子算经》是我国古代内容极其丰富的数学名著,书中有如下问题:“今有圆窖,周五丈四尺,深一丈八尺,问受粟几何?”其意思为:“有圆柱形容器,底面圆周长五丈四尺,高一丈八尺,求此容器能装多少斛米.”则该圆柱形容器能装米斛.(古制1丈=10尺,1斛=1.62立方尺,圆周率π≈3)10.(2017浙江宁波诺丁汉大学附中下学期期中)在复平面内,复数z的对应点为(1,1),则z 的虚部为,z2=.11.在△ABC中,角A,B,C所对的边分别为a,b,c,若b=4, A=60°,且△ABC外接圆的面积为4π,则角B为,△ABC的面积为.12.已知向量a,b满足|a|=1,|b|=2,则|a+b|+|a-b|的最小值是,最大值是.13.从5名男公务员和4名女公务员中选出3人,分别派到西部的三个不同地区,要求3人中既有男公务员又有女公务员,则不同的选派方法种数是.14.设抛物线C:y2=4x的焦点为F,过F的直线l与抛物线交于A,B两点,M为抛物线C的准线与x轴的交点,若|AB|=8,则tan∠AMB=.参考答案题型专项训练4选择填空题组合特训(四)1.C解析由集合A中的函数y=sin x,x∈R,得到y∈[-1,1],∴A=[-1,1],∴∁R A=(-∞,-1)∪(1,+∞),由集合B中的函数y=lg x,得到x>0,∴B=(0,+∞),则(∁R A)∩B=(1,+∞).故选C.2.D解析抛物线y2=x的焦点为.所以椭圆=1的一个焦点为.即c=,a2=3+,a=.椭圆的离心率e=,故选D.3.A解析由x,y满足约束条件作出可行域如图,由图可知A(0,2),由解得B(-2,-2),且A,B分别为目标函数z=2x+y取得最大值和最小值的最优解,则z min=-2×2-2=-6,z max=2×0+2=2,∴z=2x+y的最大值和最小值之和等于-4.故选A.4.C解析由已知f(x)=x4+(a+1)x3+(a+b-2)x2+(b-2a)x-2b,f(x)为偶函数,则解得即f(x)=x4-5x2+4=,所以当x2=时,f(x)min=-,故选C.5.A解析由a,b,c成等比数列可得b2=ac;但是当a=b=0时可得b2=ac,而a,b,c不成等比数列,故正确答案为A.6.D解析由题意,离散型随机变量X~B(1,p),根据二项分布的期望与方差公式可得E(X)=1·p=p,D(X)=1·p·(1-p)=p(1-p),故选D.7.B解析由三视图可得该四棱锥的底面是直角边长为4,5的直角三角形,面积为10;侧面ACD是底边长为5,高为4的三角形,面积为10;侧面BCD是直角边长为4,5的三角形,面积为10;侧面ABD是边长为,2的等腰三角形,底边上的高为=6,面积为2×6×=6.故该四棱锥的表面积为30+6.8.B解析因为=0,所以点M为△ABC的重心.设点D为底边BC的中点,则)=),∴=3.∴m=3.故选B.9.2 700解析 2πr=54,r=9,圆柱形容器体积为πr2h≈3×92×18,所以此容器能装=2 700斛米.10.12i解析在复平面内,复数z的对应点为(1,1),∴z=1+i.z2=(1+i)2=2i.11. 2解析πR2=4π⇒R=2,∴=2R=4⇒sin B=1,B=,∴a=2,c=2,S=ac=2.12.42解析设向量a,b的夹角为θ,由余弦定理得|a-b|=,|a+b|=,则|a+b|+|a-b|=.令y=,则y2=10+2∈[16,20],据此可得(|a+b|+|a-b|)max==2,(|a+b|+|a-b|)min==4.即|a+b|+|a-b|的最小值是4,最大值是2.13.420解析由题意,从5名男公务员和4名女公务员中选出3人,有种选法,再排除其中只选派3名男公务员的方案数为,只有女公务员的方案数为种,利用间接法可得既有男公务员又有女公务员的选法有种,分别派到西部的三个不同地区共有)=420.故答案为420.14.2解析设A(x1,y1),B(x2,y2),则由条件得|AB|=|AF|+|BF|=x1+1+x2+1=8,所以x1+x2=6,=24,y1y2=-4,x1x2==1,(y1-y2)2=-2y1y2=32.所以tan∠AMB====2.。
选择填空提速专练(七)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A ={x |x 2+4x -12<0},B ={x |2x>2},则A ∩B =( ) A .{x |x <6} B .{x |1<x <2} C .{x |-6<x <2}D .{x |x <2}解析:选B 由x 2+4x -12<0得,-6<x <2,则A ={x |-6<x <2},由2x>2得 x >1,则B ={x |x >1},所以A ∩B ={x |1<x <2}.2.若复数z =⎝ ⎛⎭⎪⎫cos θ-45+⎝ ⎛⎭⎪⎫sin θ-35i 是纯虚数(i 为虚数单位),则tan ⎝ ⎛⎭⎪⎫θ-π4的值为( )A .-7B .-17C .7D .-7或-17解析:选A 因为复数z =⎝ ⎛⎭⎪⎫cos θ-45+⎝ ⎛⎭⎪⎫sin θ-35i 是纯虚数,所以⎩⎪⎨⎪⎧cos θ-45=0,sin θ-35≠0,即⎩⎪⎨⎪⎧cos θ=45,sin θ=-35,则tan θ=-34,则tan ⎝⎛⎭⎪⎫θ-π4=tan θ-11+tan θ=-7,故选A.3.已知a ,b 为实数,则“a =0”是“f (x )=x 2+a |x |+b 为偶函数”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件解析:选 A 因为对任意a ,b ∈R ,都有f (-x )=(-x )2+a |-x |+b =x 2+a |x |+b =f (x ),函数f (x )为偶函数,所以“a =0”是“函数f (x )=x 2+a |x |+b 为偶函数”的充分不必要条件,故选A.4.已知向量OA ―→=(3,-4),OB ―→=(6,-3),OC ―→=(2m ,m +1),若AB ―→∥OC ―→,则m 的值是( )A.15 B .-3 C .-35D .-17解析:选 B 依题意,AB ―→=OB ―→-OA ―→=(3,1),因为AB ―→∥OC ―→,所以3(m +1)=2m ,解得m =-3,故选B.5.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若cos A +sin A -2cos B +sin B =0,则a +b c的值是( )A .1 B. 2 C. 3D .2解析:选B 由cos A +sin A -2cos B +sin B=0,得2sin ⎝ ⎛⎭⎪⎫A +π4·2sin ⎝ ⎛⎭⎪⎫B +π4=2,即sin ⎝ ⎛⎭⎪⎫A +π4sin ⎝ ⎛⎭⎪⎫B +π4=1, 又⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫A +π4≤1,⎪⎪⎪⎪⎪⎪sin ⎝⎛⎭⎪⎫B +π4≤1, 所以sin ⎝ ⎛⎭⎪⎫A +π4=sin ⎝ ⎛⎭⎪⎫B +π4=1,A =B =π4,C =π2,所以a =b =22c ,a +b c = 2.故选B. 6.下列命题正确的是( ) A .若ln a -ln b =a -3b ,则a >b >0 B .若ln a -ln b =a -3b ,则0<a <b C .若ln a -ln b =3b -a ,则a >b >0 D .若ln a -ln b =3b -a ,则0<a <b解析:选C 若ln a -ln b =3b -a ,则a >0,b >0,所以ln a +a =ln b +3b >ln b +b ,设f (x )=ln x +x ,则易得函数f (x )=ln x +x 在(0,+∞)上单调递增,所以a >b >0,C 正确,故选C.7.已知x ,y ∈R ,且满足⎩⎪⎨⎪⎧y≥x,x +3y≤4,x≥-2,则z =|x +2y |的最大值为( )A .10B .8C .6D .3解析:选C 在平面直角坐标系内画出题中的不等式组表示的平面区域为以(-2,-2),(-2,2),(1,1)为顶点的三角形区域(包含边界),由图易得当直线t =x +2y 经过平面区域内的点(-2,-2)时,直线t =x +2y 在y 轴的截距的绝对值最大,此时z =|x +2y |取得最大值z max =|-2+2×(-2)|=6,故选C.8.已知数列{a n }满足a 1=43,a n +1-1=a 2n -a n (n ∈N *),则m =1a1+1a2+…+1a2 017的整数部分是( )A .1B .2C .3D .4解析:选B 因为a 1=43,a n +1-1=a 2n -a n (n ∈N *),所以a n +1-a n =(a n -1)2>0,知{a n }是单调递增数列.所以a n +1-1=a n (a n -1)>0.所以1an +1-1=1an -1-1an ,即1an =1an -1-1an +1-1,所以S n =1a1+1a2+1a3+…+1an =⎝ ⎛⎭⎪⎫1a1-1-1a2-1+⎝ ⎛⎭⎪⎫1a2-1-1a3-1+⎝ ⎛⎭⎪⎫1a3-1-1a4-1+…+⎝ ⎛⎭⎪⎫1an -1-1an +1-1=1a1-1-1an +1-1=3-1an +1-1,所以m =S 2 017=3-1a2 018-1,因为a 1=43,a 2=⎝ ⎛⎭⎪⎫432-43+1=139,a 3=⎝ ⎛⎭⎪⎫1392-139+1=13381,a 4=⎝ ⎛⎭⎪⎫133812-13381+1=6 9166 561+1>2,所以a 2018>a 4>2,即0<1a2 018-1<1,故2<3-1a2 018-1<3,所以m 的整数部分为2,故选B.9.如图,在长方体ABCD A 1B 1C 1D 1中,点P 是线段CD 中点,则三棱锥P A 1B 1A 的侧视图为( );且B ,A ,所以侧视图的左上角应是直角,排除选项1AA ⊥1A 1B 由长方体可知 D 解析:选 D.,故选C 为虚线,排除选项P 1A 均为实线,只有P 1B ,AP ,1AA ,1AB ,1B 1A 侧视图中, 10.若函数f (x )满足:①对任意x ∈(0,+∞),恒有f (2x )=2f (x )成立;②当x ∈(1,2]时,f (x )=2-x .若f (a )=f (2 017),则满足条件的最小正整数a 是( )A .31B .32C .33D .34 ⎝ ⎛⎭⎪⎫x 2f 2=)x (f ,从而x 2m -2=⎝ ⎛⎭⎪⎫x 2m f ,则(1,2]∈x 2m ,则)*N ∈m ](1+m 2m,(2∈x 设 C 解析:选,则31=2 017-112=⎝ ⎛⎭⎪⎫2 017210f 102=…=⎝ ⎛⎭⎪⎫2 0172f 2=(2 017)f ,所以x -1+m 2=⎝ ⎛⎭⎪⎫x 2m f m 2=…=,因为31-1+n 2=a ,解得31=a -1+n 2=)a (f ,则)*N ∈n ](1+n 2n,(2∈a ,设31=(2 017)f =)a (f C.,故选33=31-62取得最小值a 时,正整数5=n ,所以当>2a 二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分,把答案填在题中横线上)________.=S4S2,则0=5a -2a 8项和,若n 的前}n a {为等比数列n S .设11 5.=153=a11-241-2a11-221-2=S4S2,所以2=q ,解得0=4q 1a -q 1a 8解析:由题意得 答案:5均用数字________(;系数为________项的二项式系数为3x 的展开式中,含6)x -(2.在12作答).36C 项的二项式系数为3x ,所以含r )x -(r-62r 6C =1+r T 解析:因为该二项式展开式的通项公式160.=-31)-(3-6236C 项的系数为3x ,含20= 答案:20 -16013.有10道数学单项选择题,每题选对得4分,不选或选错得0分.已知某考生能答对其为该考生ξ假设每题答对与否相互独立,记.13道题每题能答对的概率为3道题,余下的7中的答对的题数,η为该考生的得分,则P (ξ=9)=________,Eη=________(用数字作答). 23×193×=23×2⎝ ⎛⎭⎪⎫1323C =9)=ξ(P 道,则2道题中能答对3表示考生在余下的9=ξ 解析:=2⎝ ⎛⎭⎪⎫23×13×13C =32)=η(P ,827=3⎝ ⎛⎭⎪⎫23=28)=η(P ,所以28,32,36,40的可能取值为η;29=+2936×+4932×+82728×=Eη,所以127=3⎝ ⎛⎭⎪⎫13=40)=η(P ,29=23×2⎝ ⎛⎭⎪⎫1323C =36)=η( P ,4932.=12740× 3229答案: 恒过定点2C ,则曲线0=)m -mx -y (y :2C 与曲线1=2y +21)-x (:1C .已知曲线14.________的取值范围是m 个不同的交点,则实数4有2C 与曲线1C ;若曲线________ 1C .曲线1,0)-(恒过定点2C ,所以曲线1)+x (m =y 或者0=y :2C 解析:由题意,知曲线的某条直线,由此在同1,0)-(轴以及恒过定点x 为2C 的圆,曲线1,半径为(1,0)表示圆心为=tan 30°=1k 由图知,,如图所示,2C 与1C 一直角坐标系作出曲线轴与圆共有x 、)2l 或直线(1l ,又直线33=-tan 30°=-2k ,33.⎝ ⎛⎭⎪⎫0,33∪⎝ ⎛⎭⎪⎫-33,0∈k =m 四个不同的交点,结合图形可知 ⎝⎛⎭⎪⎫0,33∪⎝ ⎛⎭⎪⎫-33,0 1,0)-(答案: 为r 为圆心,(2,1),又以________=b ,则5的离心率为>0)b 1(=y2b2-2x .已知双曲线15半径的圆与该双曲线的两条渐近线组成的图形只有一个公共点,则半径r =________.为圆心的(2,1);因为以2=52-12=c2-a2=b ,所以5=c =ca=e 解析:因为圆与双曲线的渐近线组成的图形只有一个公共点,所以该圆必与双曲线的渐近线2x -y =0相.355=|2×2-1|22+12=r 切,所以 3552答案: 上一动点,ABCD 是底面Q 的中点,1BC 是面对角线P ,2的棱长为1D 1C 1B 1A ABCD .正方体16.________的最小值为PQ +P 1D 则 取PQ +P 1D 最小时,PQ 为定值,则当6=22+22=D1C21+C1P2=P 1D 解析:由于1CC 12取得最小值,最小值等于PQ ,此时ABCD 平面⊥PQ 的中点时,BC 为Q 得最小值,易得当点.6+1的最小值为PQ +P 1D ,所以1= 6+1答案: 上至少存在一个零点,⎣⎢⎡⎦⎥⎤-12,0在b +ax +2x =)x (f ,函数≤1b +a 0≤且R ∈b ,a .已知17则a -2b 的取值范围为________.=⎝ ⎛⎭⎪⎫-12f (0)·f 上至少存在一个零点得⎣⎢⎡⎦⎥⎤-12,0在b +ax +2x =)x (f 解析:由函数,则在平面直角坐标系≤1b +a 0≤又因为⎩⎪⎨⎪⎧f 0=b≥0,f ⎝ ⎛⎭⎪⎫-12=14-a 2+b≥0,-12≤-a2≤0,Δ=a2-4b≥0,或≤0⎝ ⎛⎭⎪⎫14-a 2+b b aOb 内画出两不等式组表示的平面区域如图中阴影部分所示(包含边界),设z =a -2b ,由图易得当目标函数z =a -2b 经过平面区域内的点(0,0)时,z =a -2b 取得取得最b 2-a =z 时,(1,0)经过平面区域内的点b 2-a =z ;当目标函数0=2×0-0=min z 最小值.[0,1]的取值范围为b 2-a 综上所述,1.=2×0-1=max z 大值 答案:[0,1]。
选择填空提速专练(七)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A ={x |x 2+4x -12<0},B ={x |2x>2},则A ∩B =( ) A .{x |x <6} B .{x |1<x <2} C .{x |-6<x <2}D .{x |x <2}解析:选B 由x 2+4x -12<0得,-6<x <2,则A ={x |-6<x <2},由2x>2得 x >1,则B ={x |x >1},所以A ∩B ={x |1<x <2}.2.若复数z =⎝ ⎛⎭⎪⎫cos θ-45+⎝ ⎛⎭⎪⎫sin θ-35i 是纯虚数(i 为虚数单位),则tan ⎝ ⎛⎭⎪⎫θ-π4的值为( )A .-7B .-17C .7D .-7或-17解析:选A 因为复数z =⎝ ⎛⎭⎪⎫cos θ-45+⎝ ⎛⎭⎪⎫sin θ-35i 是纯虚数,所以⎩⎪⎨⎪⎧cos θ-45=0,sin θ-35≠0,即⎩⎪⎨⎪⎧cos θ=45,sin θ=-35,则tan θ=-34,则tan ⎝⎛⎭⎪⎫θ-π4=tan θ-11+tan θ=-7,故选A.3.已知a ,b 为实数,则“a =0”是“f (x )=x 2+a |x |+b 为偶函数”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件解析:选A 因为对任意a ,b ∈R ,都有f (-x )=(-x )2+a |-x |+b =x 2+a |x |+b =f (x ),函数f (x )为偶函数,所以“a =0”是“函数f (x )=x 2+a |x |+b 为偶函数”的充分不必要条件,故选A.4.已知向量OA ―→=(3,-4),OB ―→=(6,-3),OC ―→=(2m ,m +1),若AB ―→∥OC ―→,则m 的值是( )A.15 B .-3 C .-35D .-17解析:选B 依题意,AB ―→=OB ―→-OA ―→=(3,1),因为AB ―→∥OC ―→,所以3(m +1)=2m ,解得m =-3,故选B.5.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若cos A +sin A -2cos B +sin B =0,则a +bc的值是( ) A .1 B. 2 C. 3D .2解析:选B 由cos A +sin A -2cos B +sin B=0,得2sin ⎝ ⎛⎭⎪⎫A +π4·2sin ⎝ ⎛⎭⎪⎫B +π4=2,即sin ⎝ ⎛⎭⎪⎫A +π4sin ⎝ ⎛⎭⎪⎫B +π4=1, 又⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫A +π4≤1,⎪⎪⎪⎪⎪⎪sin ⎝⎛⎭⎪⎫B +π4≤1, 所以sin ⎝ ⎛⎭⎪⎫A +π4=sin ⎝ ⎛⎭⎪⎫B +π4=1,A =B =π4,C =π2,所以a =b =22c ,a +b c = 2.故选B. 6.下列命题正确的是( ) A .若ln a -ln b =a -3b ,则a >b >0 B .若ln a -ln b =a -3b ,则0<a <b C .若ln a -ln b =3b -a ,则a >b >0 D .若ln a -ln b =3b -a ,则0<a <b解析:选C 若ln a -ln b =3b -a ,则a >0,b >0,所以ln a +a =ln b +3b >ln b +b ,设f (x )=ln x +x ,则易得函数f (x )=ln x +x 在(0,+∞)上单调递增,所以a >b >0,C 正确,故选C.7.已知x ,y ∈R ,且满足⎩⎪⎨⎪⎧y ≥x ,x +3y ≤4,x ≥-2,则z =|x +2y |的最大值为( )A .10B .8C .6D .3解析:选C 在平面直角坐标系内画出题中的不等式组表示的平面区域为以(-2,-2),(-2,2),(1,1)为顶点的三角形区域(包含边界),由图易得当直线t =x +2y 经过平面区域内的点(-2,-2)时,直线t =x +2y 在y 轴的截距的绝对值最大,此时z =|x +2y |取得最大值z max =|-2+2×(-2)|=6,故选C.8.已知数列{a n }满足a 1=43,a n +1-1=a 2n -a n (n ∈N *),则m =1a 1+1a 2+…+1a 2 017的整数部分是( )A .1B .2C .3D .4解析:选B 因为a 1=43,a n +1-1=a 2n -a n (n ∈N *),所以a n +1-a n =(a n -1)2>0,知{a n }是单调递增数列.所以a n +1-1=a n (a n -1)>0.所以1a n +1-1=1a n -1-1a n ,即1a n =1a n -1-1a n +1-1,所以S n =1a 1+1a 2+1a 3+…+1a n =⎝ ⎛⎭⎪⎫1a 1-1-1a 2-1+⎝ ⎛⎭⎪⎫1a 2-1-1a 3-1+⎝ ⎛⎭⎪⎫1a 3-1-1a 4-1+…+⎝ ⎛⎭⎪⎫1a n -1-1a n +1-1=1a 1-1-1a n +1-1=3-1a n +1-1,所以m =S 2 017=3-1a 2 018-1,因为a 1=43,a 2=⎝ ⎛⎭⎪⎫432-43+1=139,a 3=⎝ ⎛⎭⎪⎫1392-139+1=13381,a 4=⎝ ⎛⎭⎪⎫133812-13381+1=6 9166 561+1>2,所以a 2 018>a 4>2,即0<1a 2 018-1<1,故2<3-1a 2 018-1<3,所以m 的整数部分为2,故选B.9.如图,在长方体ABCD A 1B 1C 1D 1中,点P 是线段CD 中点,则三棱锥P A 1B 1A 的侧视图为( )解析:选D 由长方体可知B 1A 1⊥AA 1,所以侧视图的左上角应是直角,排除选项A ,B ;且侧视图中,A 1B 1,AB 1,AA 1,AP ,B 1P 均为实线,只有A 1P 为虚线,排除选项C ,故选D.10.若函数f (x )满足:①对任意x ∈(0,+∞),恒有f (2x )=2f (x )成立; ②当x ∈(1,2]时,f (x )=2-x .若f (a )=f (2 017),则满足条件的最小正整数a 是( ) A .31 B .32 C .33D .34解析:选C 设x ∈(2m,2m +1](m ∈N *),则x2m ∈(1,2],则f ⎝ ⎛⎭⎪⎫x 2m =2-x2m ,从而f (x )=2f ⎝ ⎛⎭⎪⎫x 2=…=2mf ⎝ ⎛⎭⎪⎫x 2m =2m +1-x ,所以f (2 017)=2f ⎝⎛⎭⎪⎫2 0172=…=210f ⎝⎛⎭⎪⎫2 017210=211-2 017=31,则f (a )=f (2 017)=31,设a ∈(2n,2n +1](n ∈N *),则f (a )=2n +1-a =31,解得a =2n +1-31,因为a >2,所以当n =5时,正整数a 取得最小值26-31=33,故选C.二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分,把答案填在题中横线上)11.设S n 为等比数列{a n }的前n 项和,若8a 2-a 5=0,则S 4S 2=________.解析:由题意得8a 1q -a 1q 4=0,解得q =2,所以S 4S 2=a 1 1-241-2a 1 1-221-2=153=5. 答案:512.在(2-x )6的展开式中,含x 3项的二项式系数为________;系数为________(均用数字作答).解析:因为该二项式展开式的通项公式T r +1=C r 626-r(-x )r ,所以含x 3项的二项式系数为C 36=20,含x 3项的系数为C 3626-3(-1)3=-160.答案:20 -16013.有10道数学单项选择题,每题选对得4分,不选或选错得0分.已知某考生能答对其中的7道题,余下的3道题每题能答对的概率为13.假设每题答对与否相互独立,记ξ为该考生答对的题数,η为该考生的得分,则P (ξ=9)=________,E η=________(用数字作答).解析: ξ=9表示考生在余下的3道题中能答对2道,则P (ξ=9)=C 23⎝ ⎛⎭⎪⎫132×23=3×19×23=29;η的可能取值为28,32,36,40,所以P (η=28)=⎝ ⎛⎭⎪⎫233=827,P (η=32)=C 13×13×⎝ ⎛⎭⎪⎫232=49,P (η=36)=C 23⎝ ⎛⎭⎪⎫132×23=29,P (η=40)=⎝ ⎛⎭⎪⎫133=127,所以E η=28×827+32×49+36×29+40×127=32.答案:293214.已知曲线C 1:(x -1)2+y 2=1与曲线C 2:y (y -mx -m )=0,则曲线C 2恒过定点________;若曲线C 1与曲线C 2有4个不同的交点,则实数m 的取值范围是________.解析:由题意,知曲线C 2:y =0或者y =m (x +1),所以曲线C 2恒过定点(-1,0).曲线C 1表示圆心为(1,0),半径为1的圆,曲线C 2为x 轴以及恒过定点(-1,0)的某条直线,由此在同一直角坐标系作出曲线C 1与C 2,如图所示,由图知,k 1=tan 30°=33,k 2=-tan 30°=-33,又直线l 1(或直线l 2)、x 轴与圆共有四个不同的交点,结合图形可知m =k ∈⎝ ⎛⎭⎪⎫-33,0∪⎝⎛⎭⎪⎫0,33. 答案:(-1,0) ⎝ ⎛⎭⎪⎫-33,0∪⎝⎛⎭⎪⎫0,33 15.已知双曲线x 2-y 2b2=1(b >0)的离心率为5,则b =________,又以(2,1)为圆心,r 为半径的圆与该双曲线的两条渐近线组成的图形只有一个公共点,则半径r =________.解析:因为e =c a=c =5,所以b =c 2-a 2= 5 2-12=2;因为以(2,1)为圆心的圆与双曲线的渐近线组成的图形只有一个公共点,所以该圆必与双曲线的渐近线2x -y =0相切,所以r =|2×2-1|22+12=355. 答案:235516.正方体ABCD A 1B 1C 1D 1的棱长为2,P 是面对角线BC 1的中点,Q 是底面ABCD 上一动点,则D 1P +PQ 的最小值为________.解析:由于D 1P =D 1C 21+C 1P 2=22+ 2 2=6为定值,则当PQ 最小时,D 1P +PQ 取得最小值,易得当点Q 为BC 的中点时,PQ ⊥平面ABCD ,此时PQ 取得最小值,最小值等于12CC 1=1,所以D 1P +PQ 的最小值为1+ 6.答案:1+ 617.已知a ,b ∈R 且0≤a +b ≤1,函数f (x )=x 2+ax +b 在⎣⎢⎡⎦⎥⎤-12,0上至少存在一个零点,则a -2b 的取值范围为________.解析:由函数f (x )=x 2+ax +b 在⎣⎢⎡⎦⎥⎤-12,0上至少存在一个零点得f (0)·f ⎝ ⎛⎭⎪⎫-12=b ⎝ ⎛⎭⎪⎫14-a 2+b ≤0或⎩⎪⎨⎪⎧f 0 =b ≥0,f ⎝ ⎛⎭⎪⎫-12=14-a 2+b ≥0,-12≤-a2≤0,Δ=a 2-4b ≥0,又因为0≤a +b ≤1,则在平面直角坐标系aOb 内画出两不等式组表示的平面区域如图中阴影部分所示(包含边界),设z=a-2b,由图易得当目标函数z=a-2b经过平面区域内的点(0,0)时,z=a-2b取得最小值z min=0-2×0=0;当目标函数z=a-2b经过平面区域内的点(1,0)时,z=a-2b取得最大值z max=1-2×0=1.综上所述,a-2b的取值范围为[0,1].答案:[0,1]。