大型高炉效果图二-
- 格式:ppt
- 大小:4.16 MB
- 文档页数:1
[]世界最大炼铁高炉——沙钢5860立方米高炉〔上〕世界高炉之王——沙钢5860立方米炼铁高炉(上〕工程投资额:18亿元以上工程期限:2021年——2021年沙钢5860高炉底部送风装置。
这座世界第一高炉投产后,每天可生产1.3万多吨铁水,足够装满90只150吨铁水罐。
2021年10月21日凌晨1点36分,沙钢集团华盛炼铁厂5860立方米高炉顺利出铁,标志着这座目前世界上容积最大、技术最先进的“世界第一高炉〞正式投产。
该炉年产量高达500万吨,年产值超过120亿元;主要为沙钢集团新投产的300万吨热轧和200万吨宽厚板生产线提供铁水。
高炉炼铁技术已有数百年历史,2021年世界生铁产量9.267亿吨,高炉炼铁占总产量的90%以上。
目前全世界约有炼铁高炉1400余座,我国约有炼铁高炉1100余座,2021年我国生铁产量达4.7067亿吨,约占世界生铁总产量的50.8%。
高炉生产线是钢铁厂的“龙头〞,通常由选料、制粉、烧结/球团、焦化、配料、鼓风机、热风炉、喷吹、高炉、除尘、煤气站、渣铁运输等庞大的系统组成。
铁矿石经高炉冶炼成生铁,再用铁水罐转运到炼钢车间,用转炉等设备精炼成钢水,并铸成板坯钢锭,供后续生产流程轧制成钢材。
因此高炉一旦出现问题,整个钢厂都有可能瘫痪,其重要性可见一斑。
沙钢集团位于省家港市锦丰镇,是我国最大的民营钢铁企业。
华盛5860立方米高炉工程总投资18亿元,工程由原料运输设备、高炉本体、热风炉、高炉鼓风机、喷煤制粉及喷吹、轧铁处理及运输、煤气清洗以及三电控制系统组成。
采用世界最先进的富氧喷煤系统、煤气洗涤循环系统、净化水增压系统、TRT余热发电、炉前脱硅及高效除尘环保等节能减排先进技术,装备水平居世界前列,吨铁能耗比国同类装备降低40%左右,烟尘粉尘排放量可减少15%左右,技术经济指标到达国际一流水平。
日本第二大钢铁集团——日本JFE钢铁福山厂〔左起〕第2高炉、第3高炉、第4高炉、第5高炉,4号高炉2006年5月扩容到5000立方米,5号高炉扩容到5500立方米。
高炉:炼铁一般就是在高炉里连续进行的。
高炉又叫鼓风炉,这就是因为要把热空气吹入炉中使原料不断加热而得名的。
这些原料就是铁矿石、石灰石及焦炭。
因为碳比铁的性质活泼,所以它能从铁矿石中把氧夺走,而把金属铁留下。
高炉的主要组成部分:高炉炉壳:现代化高炉广泛使用焊接的钢板炉壳,只有极少数最小的土高炉才用钢箍加固的砖壳。
炉壳的作用就是固定冷却设备,保证高炉砌体牢固,密封炉体,有的还承受炉顶载荷。
炉壳除承受巨大的重力外,还要承受热应力与内部的煤气压力,有时要抵抗崩料、坐料甚至可能发生的煤气爆炸的突然冲击,因此要有足够的强度。
炉壳外形尺寸应与高炉内型、炉体各部厚度、冷却设备结构形式相适应。
炉喉:高炉本体的最上部分,呈圆筒形。
炉喉既就是炉料的加入口,也就是煤气的导出口。
它对炉料与煤气的上部分布起控制与调节作用。
炉喉直径应与炉缸直径、炉腰直径及大钟直径比例适当。
炉喉高度要允许装一批以上的料,以能起到控制炉料与煤气流分布为限。
炉身:高炉铁矿石间接还原的主要区域,呈圆锥台简称圆台形,由上向下逐渐扩大,用以使炉料在遇热发生体积膨胀后不致形成料拱,并减小炉料下降阻找力。
炉身角的大小对炉料下降与煤气流分布有很大影响。
炉腰:高炉直径最大的部位。
它使炉身与炉腹得以合理过渡。
由于在炉腰部位有炉渣形成,并且粘稠的初成渣会使炉料透气性恶化,为减小煤气流的阻力,在渣量大时可适当扩大炉腰直径,但仍要使它与其她部位尺寸保持合适的比例关系,比值以取上限为宜。
炉腰高度对高炉冶炼过程影响不很显著,一般只在很小范围内变动。
炉腹:高炉熔化与造渣的主要区段,呈倒锥台形。
为适应炉料熔化后体积收缩的特点,其直径自上而下逐渐缩小,形成一定的炉腹角。
炉腹的存在,使燃烧带处于合适位置,有利于气流均匀分布。
炉腹高度随高炉容积大小而定,但不能过高或过低,一般为3.0~3.6m。
炉腹角一般为79~82 ;过大,不利于煤气流分布;过小,则不利于炉料顺行。
炉缸:高炉燃料燃烧、渣铁反应与贮存及排放区域,呈圆筒形。
高炉的结构详解高炉是炼铁生产的主要设备,它具有产量大、生产率高和成本低的优点,这是其他炼铁方法无法比拟的。
随着炼铁工业的迅速发展,炼铁的不断强化,高炉日趋大型化,有效容积已从近1500立方米增加到5000立方米左右,日产生铁量达到或超过1万吨,同时采用高压炉顶、高风温、综合喷吹和电子计算机控制等新技术,利用系数不断提高,焦比不断降低,可是高炉炉衬工作条件随之发生了重大变化,使其使用寿命降低较多,一般只有5─6年。
特别是高炉炉身下部及炉腰、炉腹部委,其寿命就更为短暂。
这就说明,炼铁技术的飞跃发展要求耐火材料必须发生重大变革,否则很难石英现代炼铁工艺的要求。
我过高炉距离原冶金部确定的一代炉龄8年不中修,单位炉容产铁量5000吨每立方米的目标要求还有一定的距离。
这与高炉各部委耐火材料的选择,耐火材料的各种性能有很大关系。
耐火材料寿命不断提高,将直接影响高炉下一代的寿命。
所以,一个稳产、高产、顺行的高炉,没有性能优异的耐火材料做坚强的后盾是不行的。
世界各国的炼铁工作者为了提高高炉炉龄,做了大量的工作。
主要是进行高炉解体破损调查,探讨炉衬损坏机理,提高砖衬的指令并创造新品种;砌筑综合炉衬;改变或改进冷却系统的结构和材质;加强维护操作和采用不定形耐火材料等。
因此,炼铁方面的新技术,耐火材料的新品种不断涌现,由于采用上述新技术措施,目前大、中型高炉炉衬的使用寿命普遍有所提高。
高炉是冶炼生铁的主体设备。
他有耐火材料砌筑成竖式圆筒形的炉体,外有钢板炉壳加固密封,内嵌冷却壁保护。
高炉内部工作空间的形状称为高炉内型,它有炉喉、炉身、炉腰、炉腹、炉缸5段组成。
高炉的大小用有效容积来表示,所谓的有效容积就是自出铁口中心线到大料钟下降位置下缘这段有效高度范围内的内部工作空间的体积。
要完成高炉生产,除高炉本体外,还必须有其他的附属设备。
1、供料系统,包括贮矿槽、过筛、输送、称量及上料机等一系列设备。
2、送风系统,包括鼓风机、加湿和脱湿装置、热风炉及一系列管道阀门等设备,主要是连续不断地供给送风。
高炉:炼铁一般是在高炉里连续进行的。
高炉又叫鼓风炉,这是因为要把热空气吹入炉中使原料不断加热而得名的。
这些原料是铁矿石、石灰石及焦炭。
因为碳比铁的性质活泼,所以它能从铁矿石中把氧夺走,而把金属铁留下。
高炉的主要组成部分:高炉炉壳:现代化高炉广泛使用焊接的钢板炉壳,只有极少数最小的土高炉才用钢箍加固的砖壳。
炉壳的作用是固定冷却设备,保证高炉砌体牢固,密封炉体,有的还承受炉顶载荷。
炉壳除承受巨大的重力外,还要承受热应力和内部的煤气压力,有时要抵抗崩料、坐料甚至可能发生的煤气爆炸的突然冲击,因此要有足够的强度。
炉壳外形尺寸应与高炉内型、炉体各部厚度、冷却设备结构形式相适应。
炉喉:高炉本体的最上部分,呈圆筒形.炉喉既是炉料的加入口,也是煤气的导出口。
它对炉料和煤气的上部分布起控制和调节作用.炉喉直径应和炉缸直径、炉腰直径及大钟直径比例适当。
炉喉高度要允许装一批以上的料,以能起到控制炉料和煤气流分布为限。
炉身:高炉铁矿石间接还原的主要区域,呈圆锥台简称圆台形,由上向下逐渐扩大,用以使炉料在遇热发生体积膨胀后不致形成料拱,并减小炉料下降阻找力.炉身角的大小对炉料下降和煤气流分布有很大影响。
炉腰:高炉直径最大的部位.它使炉身和炉腹得以合理过渡.由于在炉腰部位有炉渣形成,并且粘稠的初成渣会使炉料透气性恶化,为减小煤气流的阻力,在渣量大时可适当扩大炉腰直径,但仍要使它和其他部位尺寸保持合适的比例关系,比值以取上限为宜。
炉腰高度对高炉冶炼过程影响不很显著,一般只在很小范围内变动.炉腹:高炉熔化和造渣的主要区段,呈倒锥台形.为适应炉料熔化后体积收缩的特点,其直径自上而下逐渐缩小,形成一定的炉腹角。
炉腹的存在,使燃烧带处于合适位置,有利于气流均匀分布。
炉腹高度随高炉容积大小而定,但不能过高或过低,一般为3.0~3.6m。
炉腹角一般为79~82 ;过大,不利于煤气流分布;过小,则不利于炉料顺行.炉缸:高炉燃料燃烧、渣铁反应和贮存及排放区域,呈圆筒形.出铁口、渣口和风口都设在炉缸部位,因此它也是承受高温煤气及渣铁物理和化学侵蚀最剧烈的部位,对高炉煤气的初始分布、热制度、生铁质量和品种都有极重要的影响。
冶金高炉本体高炉本体是高炉炼铁的核心设备,@代大型和超大型高炉一代炉龄在不中修的情况下可达到15 -20年•,单位炉容产铁量可达到d000t以上。
高炉本体主要由钢结构(炉体支承框架、炉壳)、炉衬(耐火材料)、冷却设备(冷却壁、冷却板等)、送风装置(热风围管、支管、直吹管、风口)和检测仪器设备等组成。
图5-4为钢3号高炉(4360m3)炉体结构图。
1 钢结构高炉钢结构包括炉体支承结构和炉壳。
炉体支承结构采用如图5-5所示的大框架自立式结构。
其特点是大料斗、小料4*和旋转布料器的重量由炉壳支承,上升管、大小钟和受料漏斗等重量通过炉顶框架支承在炉顶平台上(第7层平台)。
对无料钟炉顶,旋转溜槽、中心喉管等重量由炉壳支承。
料罐、受料漏斗、密封阀、上升管等设备重童通过炉顶框架支承在炉顶平台上,炉顶平台的所有重量再由大框架传递给基础。
大框架自立式结构的优点是风口平台宽敞,炉前操作方便,利于风口平台机械化作业。
新建的大、中型和超大型高炉都采用这种结构。
高炉炉壳用高强度钢板焊接而成,起承重、密封煤气和固定冷却器的作用,图5-6所示为正在安装中的5500m3高炉炉壳。
2 炉衬高炉炉衬由耐火砖砌筑而成,由于各部分内衬工作条件不同,采用的耐火砖材质和性能也不同。
如炉身中上部炉衬主要考虑耐磨,炉身下部和炉腰主要考虑抗热震破坏和碱金属的侵蚀,炉腹主要考虑高FeO的初渣侵蚀,炉缸、炉底主要考虑抗铁水机械冲刷和耐火砖的差热膨胀。
目前,冶金备件大型高炉上部以碳化硅和优质硅酸盐耐火材料为主,中部以抗碱金属能力强的碳化硅砖或高导热的炭砖为主,高炉下部以高导热的石墨质炭砖为主,冷却壁基体可用高韧性球墨铸铁、铸钢或纯铜浇铸而成,内部水冷管夫低碳钢管。
镶砖冷却壁在基体的砖槽内再砌人耐火砖,镶砖也可用散状耐火材料捣打成型。
图5-9为不同结构的镲砖冷却壁,结构^和^;带凸台,用在炉腰和炉身,对炉衬耐火砖起意图。
3 冷却设备冷却设备的作用是降低炉衬温度,提髙炉衬材料抗机械、化学和热产生的侵蚀能力,使炉衬材料处于良好的服役状态。
唐钢2560m3高炉炉体设计简介唐钢2560m3高炉炉体设计简介北京钢铁设计研究总院炼铁工程所全强吕宇来内容提要:本文简要介绍了唐钢2560m3高炉炉体设计,及在延长高炉寿命上所采用的新技术,如炉体采用板壁结合技术,炉缸炉底陶瓷杯技术。
关键词:2560m3高炉长寿新技术abstract: a introduction to Tanggang 2560m3 BF , new technology applied in long campaign life, such as plate-stave combination ,ceramic cup.Key words : 2560m3 BF long campaign new technology 1.概述唐钢2560m3高炉是唐钢二铁厂一号高炉移地大修工程,也是唐钢规划中的一座2500m3级的高炉。
唐钢二铁厂原有两座1260m3高炉,分别建于1989年和1993年。
1号高炉于1998年12月25日停炉,一代炉役寿命9年3个月、产铁量~679×104 t、单位炉容产铁量5389 t/ m3。
新建2560 m3高炉本着技术、装备先进、实用的原则,在1号、2号高炉成功的设计经验基础上,设计中采用了一些行之有效的新技术:如高炉长寿技术、炉体为板壁结合冷却结构、炉底炉缸采用陶瓷杯技术、软水密闭循环冷却技术;焦丁回收、槽下减重法称量技术、并罐无料钟炉顶装料设备、高风温技术等等。
唐钢新建2560m3高炉工程建在唐钢二铁厂现有厂区内进行,场地狭窄,除建设工艺主体设施外,同时建设与该高炉有关的公用和辅助设施,设计中尽可能减少各系统的占地面积,进行合理的布置,保证高炉安全生产。
该工程设计占地18hm2,建筑系数31.7%。
唐山钢铁公司二铁厂新建2560m3高炉,是由北京钢铁设计研究总院为主,唐钢设计研究院参加联合设计的。
1996年8月9日工程设计委托后,正式开展设计,1996年12月26日开始建设,于1998年9月26日正式投产,历时26个月。
高炉炉体内型参数表高炉各部分的热流强度设计取值表w/m²热风炉主要性能参数热风炉耐火球堆比重(t/m³)热风炉使用球的数值热风炉主要性能参数柳钢6号高炉球式热风炉设计参数青钢500m³高炉卡鲁顶燃式热风炉设计参数烘炉操作及改进1 烘炉准备工作青钢两座500m³高炉采用卡鲁金顶燃式热风炉均采用天津热能设备厂专用内燃式烘炉器进行烘炉。
烘烤器安装在热风炉顶部燃烧器的下部点火孔上。
改设备用柴油作燃料,产生的热气体,经配风系统调节送风温度。
送风系统出口风速达到80m/s,产生很大的动能,搅动燃烧产物循环使炉内温度均匀,提高了烘炉质量。
烘炉前需要做好如下工作:1)热风炉的修建和检修工作全部完成,并达到质量要求。
2)热风炉系统各阀门必须进行全部联合、联锁试车,各机电设备运转正常。
3)热风炉冷却水通水正常。
4)各仪表必须正常运转,保证准确可靠,特别是炉顶温度,废气温度、煤气压力表必须保证好用。
5)各热风炉试漏合格。
6)烟囪烘好,具有抽力。
7)如烘炉期间,高炉内常有人施工,热风炉与高炉必须彻底隔断。
8)一切烘炉设备安装完毕,提供三相380v动力电源,24h不间断,供三台18.5kw助燃风机、油泵及现场照明使用。
9)准备好可装10吨柴油的油罐。
10)提供不间断压缩空气源,压力>0.60MPa。
11)烘炉报表台账等数据记录及材料器具准备完毕。
烘炉曲线的制订青钢5、6号高炉热风炉在炉顶和上部高温区均采用了硅砖砌筑。
烘炉曲线由俄方提供,计划烘炉30天,如图中I所示。
烘炉时严格按烘炉曲线升温,温度误差±2°C。
在烘炉过程中实验了两种烘炉曲线,5号高炉的热风炉实际烘炉时间为30天,6号高炉的热风炉为23天。
这两座高炉热风炉计划和实际烘炉曲线如图2所示。
图3为霍戈文(Hoogov-ens)供鞍钢新一号高炉(3200m³)硅砖热风炉的烘炉曲线。
图2 改进前后卡鲁金顶燃式硅砖热风炉烘炉曲线I—改进前(青钢5号高炉热风炉烘炉曲线);Ⅱ--改进后(青钢6号高炉热风炉烘炉曲线硅砖热风炉的烘炉曲线是最复杂的一种。
高炉炉体系统设计(blast furnace proper system design)高炉炉体系统的范围是从基础至炉顶圈(也叫炉顶法兰盘)(图1)。
设计内容包括高炉内型、高炉内衬、高炉钢结构型式、炉体设备和长寿技术等。
高炉内型高炉内部工作空间的形状和主要尺寸必须适合炉料和煤气在炉内运动的规律。
合理的内型有利于高炉操作顺行,高产低耗。
高炉内型(图2)从下往上分为炉缸、炉腹、炉腰、炉身和炉喉五部分。
各国对高炉容积的表示方法不尽相同。
在中国,对于钟式炉顶高炉,有效容积通常是指从铁口中心线至大钟全开位置下沿所包括的容积;对于无钟炉顶高炉,有效容积是指从铁口中心线至炉喉上沿之间的容积。
欧美诸国把从风口中心线至料线之间的容积称为工作容积。
日本把从铁口底端至料线之间的容积称为内容积。
料线位置,日本定在大钟全开位置底面以下一米的水平面上,美国一般定在炉喉高度的一半处。
对于高炉内型各部尺寸的合理比例及算法,是雷得布尔(A.jejeyp)在他1878年出版的著作里首次提出的。
巴甫洛夫(M.A.ПaBJoB)提出用下式表示全高(H)与有效容积(V u)的关系:H= n (V u )1/3。
式中n是大于2.85的数字,并且H:D的比值愈高,n的数值愈大。
有效容积按要求的生铁日产量和利用系数求出后,用上式可求出全高H。
炉腰直径D可按公式D =(V u/0.54H) 1/2求出,然后再决定内型其它尺寸。
巴氏建议选择炉缸直径应以燃烧强度(每小时每m2炉缸面积燃烧的焦炭量,用kg表示)为出发点。
美国莱斯(Owen Rice)在计算燃烧强度时所指的炉缸面积是从风口前端起6f t 环状带的面积。
拉姆(A.H.Pamm)内型每个尺寸都是与有效容积成一定方次的函数,建议用经验公式x=cV n u 计算内型各部分尺寸x,式中n和c对内型各部分尺寸是固定的系数。
高炉内型主要与原、燃料条件和操作制度有关。
合适的内型来源于生产实践,实际上高炉内型的设计大都是根据冶炼条件类似的同级高炉的生产实践进行分析和比较确定。