高一数学必修一复习资料
- 格式:docx
- 大小:128.62 KB
- 文档页数:23
高一数学知识点复习必修一(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如教案大全、书信范文、述职报告、合同范本、工作总结、演讲稿、心得体会、作文大全、工作计划、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as lesson plans, letter templates, job reports, contract templates, work summaries, speeches, reflections, essay summaries, work plans, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!高一数学知识点复习必修一本店铺为大家整理的,知识点有时候特指教科书上或考试的知识。
高一必修一数学知识点归纳最全五篇奋斗也就是我们平常所说的努力。
那种不怕苦,不怕累的精神在学习中也是需要的。
看到了一道有意思的题,就不惜一切代价攻克它。
为了学习,废寝忘食一点也不是难事,只要你做到了有兴趣。
下面就是给大家带来的高一数学必修一知识点,希望能帮助到大家大家!高一必修一数学知识点11.元素的三性(确定,互异,无序);已知集合A={x,xy,lgxy},集合B={0,|x|,y},且A=B,则x+y=2.集合代表元素已知集合M={y|y=x2,xR},N={y|y=x2+1,xR},求MN;与集合M={(x,y)|y=x2,xR},N={(x,y)|y=x2+1,xR}求MN的区别。
3.求集合的子集时是否忘记.4.对于含有n个元素的有限集合M,其子集、真子集、非空子集、非空真子集的个数依次为如满足条件的集合M共有多少个5.韦恩图的应用;某文艺小组共有10名成员,每人至少会唱歌和跳舞中的一项,其中7人会唱歌跳舞5人会,现从中选出会唱歌和会跳舞的各一人,表演一个唱歌和一个跳舞节目,问有多少种不同的选法?6.两集合之间的关系。
7.摩根定律(CUA)(CUB)=CU(AB)(CUA)(CUB)=CU(AB);;8.你对映射的概念了解了吗?映射f:AB中,A中元素的任意性和B中与它对应元素的性,哪几种对应能够成映射?A中有m 个元素B中有n个元素,f:AB的映射有多少个?高中数学学习方法(1)制定计划明确学习目的。
合理的学习计划是推动我们主动学习和克服困难的内在动力。
计划先由老师指导督促,再一定要由自己切实完成,既有长远打算,又有短期安排,执行过程中严格要求自己,磨炼学习意志。
(2)课前预习是取得较好学习效果的基础。
课前预习不仅能培养自学能力,而且能提高学习新课的兴趣,掌握学习的主动权。
预习不能搞走过场,要讲究质量,力争在课前把教材弄懂,上课着重听老师讲思路,把握重点,突破难点,尽可能把问题解决在课堂上。
专题一 集合与函数第一章 集合(一) 集合1. 基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用.2. 集合的表示法:列举法、描述法、图形表示法. 集合元素的特征:确定性、互异性、无序性. 集合的性质:①任何一个集合是它本身的子集,记为A A ⊆; ②空集是任何集合的子集,记为A ⊆φ; ③空集是任何非空集合的真子集; 如果B A ⊆,同时A B ⊆,那么A = B. 如果C A C B B A ⊆⊆⊆,那么,.②已知集合S 中A 的补集是一个有限集,则集合A 也是有限集.(×)(例:S=N ; A=+N ,则C s A= {0}) ③ 空集的补集是全集.④若集合A =集合B ,则C B A = ∅, C A B = ∅ C S (C A B )= D ( 注 :C A B = ∅). 3. ①{(x ,y )|xy =0,x ∈R ,y ∈R }坐标轴上的点集. ②{(x ,y )|xy <0,x ∈R ,y ∈R}二、四象限的点集.③{(x ,y )|xy >0,x ∈R ,y ∈R } 一、三象限的点集. [注]:①对方程组解的集合应是点集.例: ⎩⎨⎧=-=+1323y x y x 解的集合{(2,1)}.②点集与数集的交集是φ. (例:A ={(x ,y )| y =x +1} B={y |y =x 2+1} 则A ∩B =∅)4. ①n 个元素的子集有 个. ②n 个元素的真子集有 个. ③n 个元素的非空子集有 个. ③n 个元素的非空真子集有 个.5. 集合运算:交、并、补.{|,}{|}{,}A B x x A x B A B x x A x B A x U x A ⇔∈∈⇔∈∈⇔∈∉U 交:且并:或补:且C 6. 主要性质和运算律 (1) 包含关系:,,,,,;,;,.U A A A A U A U A B B C A C A B A A B B A B A A B B ⊆Φ⊆⊆⊆⊆⊆⇒⊆⊆⊆⊇⊇C(2) 等价关系:U A B A B A A B B A B U ⊆⇔=⇔=⇔=C(3) 集合的运算律:交换律:.;A B B A A B B A ==结合律:)()();()(C B A C B A C B A C B A == 分配律:.)()()();()()(C A B A C B A C A B A C B A == 0-1律:,,,A A A U A A U A U Φ=ΦΦ===等幂律:.,A A A A A A ==补:拓展:有限集A 的元素的个数叫做集合A 的基数,记为card( A)规定 card(φ) =0.基本公式:(1)()()()()(2)()()()()()()()()card A B card A card B card A B card A B C card A card B card C card A B card B C card CA card ABC =+-=++---+【例题精练】1.(15年安徽文科)设全集{}123456U=,,,,,,{}12A =,,{}234B =,,,则()U AC B =( )(A ){}1256,,,(B ){}1 (C ){}2 (D ){}1234,,, 【答案】B2. (15年广东理科) 若集合{|(4)(1)0}M x x x =++=,{|(4)(1)0}N x x x =--=,则M N =A .∅B .{}1,4--C .{}0D .{}1,4【答案】A .3. (15年天津理科) 已知全集{}1,2,3,4,5,6,7,8U= ,集合{}2,3,5,6A = ,集合{}1,3,4,6,7B = ,则集合U A B =ð (A ){}2,5 (B ){}3,6 (C ){}2,5,6 (D ){}2,3,5,6,8【答案】A4.集合{(,)02,02,,}x y x y x y Z ≤≤≤<∈用列举法表示{(0,0),(0,1),(1,0),(1,1),(2,0),(2,1)}.5.设集合{21,}A x x k k Z ==-∈,{2,}B x x k k Z ==∈,则A B ⋂=∅.6.设全集{1,3,5,7,9}I =,集合{1,5,9}A a =-,{5,7}I C A =,则实数a 的值为8或27.已知M ={2,a ,b },N ={2a ,2,b 2},且M =N ,求a ,b 的值 0、1或1/4、1/2 . 8.设集合{}2,1=A ,{}3,2,1=B ,{}4,3,2=C ,则()C B A U ⋂=__{1,2,3,4}___. 9.设P ,Q 为两个非空实数集合,定义集合P +Q =},5,2,0{},,|{=∈∈+P Q b P a b a 若}6,2,1{=Q ,则P +Q 中元素的个数是___8_ 个.10.设集合2{60}P x x x =--<,{23}Q x a x a =≤≤+. (1)若P Q P ⋃=,求实数a 的取值范围; (2)若P Q ⋂=∅,求实数a 的取值范围; (3)若{03}P Q x x ⋂=≤<,求实数a 的值. 解:(1)由题意知:{23}P x x =-<<,P Q P ⋃=,Q P ∴⊆.①当Q =∅时,得23a a >+,解得3a >.②当Q ≠∅时,得2233a a -<≤+<,解得10a -<<. 综上,(1,0)(3,)a ∈-⋃+∞.(2)①当Q =∅时,得23a a >+,解得3a >; ②当Q ≠∅时,得23,3223a a a a ≤+⎧⎨+≤-≥⎩或,解得3532a a ≤-≤≤或.综上,3(,5][,)2a ∈-∞-⋃+∞.(3)由{03}P Q x x ⋂=≤<,则0a =.11.【易错点】忽视空集是任何非空集合的子集导致思维不全面。
高一数学期末复习必看:必修一知识点汇编
一、集合
二、充分条件与必要条件
三、充要条件
如果“若p,则q”和它的逆命题“若q,则p”均是真命题,即既有p⇒q,又有q⇒p,就记作p⇔q.此时,p既是q的充分条件,也是q的必要条件,我们说p是q的充分必要条件,简称为充要条件.概括地说,如果p⇔q,那么p与q互为充要条件.
四、全称量词与全称量词命题
五、存在量词与存在量词命题
六、全称量词命题和存在量词命题的否定
七、不等式的主要性质
1.对称性:a>b⇔b<a.
2.传递性:a>b,b>c⇒a>c.
3.加法法则:a>b⇒a+c>b+c;a>b,c>d⇒a+c>b+d.
4.乘法法则:a>b,c>0⇒ac>bc;a>b,c<0⇒ac<bc;
八、基本不等式
九、二次函数与一元二次方程、不等式
十、函数的概念及其表示
十一、函数的单调性、最值与奇偶性
1.函数的单调性
2.函数的最大(小)值
3.函数的奇偶性
十二、幂函数
十三、指数与指数函数
1.正数的分数指数幂
2.指数函数及其性质
十四、对数与对数函数
1.对数的概念与运算
2.对数函数及其性质十五、函数与方程
1.函数的零点
2.二分法求函数的零点十六、三角函数。
高一必修一数学全册知识点一、集合1. 集合的基本概念1.1 集合的定义和表示方法1.2 集合的元素与集合的关系二、数字与代数1. 实数与数轴2.1 实数的概念及表示2.2 数轴的绘制与实数的表示2.3 实数的比较与加减法运算2.4 实数的乘除法运算及其性质2. 同底数幂与科学计数法2.1 指数与幂的概念2.2 同底数幂的乘除法运算2.3 科学计数法的表示与运算3. 整式的基本概念3.1 代数式与整式的定义3.2 项、次数及系数的概念3.3 同类项与合并同类项3.4 整式的加减法运算4. 一元一次方程及其应用4.1 一元一次方程的定义及基本性质4.2 解一元一次方程的基本方法4.3 应用题中的一元一次方程5. 分式及其运算5.1 分式的定义及分式运算的基本性质5.2 分式的化简5.3 分式方程的解法及应用三、函数与图像1. 函数的概念与表示6.1 函数的定义及函数的表示方法6.2 函数的自变量、因变量与定义域、值域的关系2. 幂函数与分段函数6.2.1 幂函数的概念及其性质6.2.2 分段函数的定义及分段函数的画法3. 一次函数与斜率6.3.1 一次函数的定义及一次函数的性质6.3.2 斜率的概念及其计算方法4. 二次函数及其图像6.4.1 二次函数的定义及二次函数的图像特点6.4.2 二次函数的变换与最值四、三角函数1. 三角函数及其基本性质7.1.1 弧度制与角度制的转换7.1.2 正弦、余弦、正切函数的定义及其基本性质2. 三角函数图像的性质与变换7.2.1 三角函数图像的对称性与奇偶性7.2.2 三角函数图像的平移与伸缩7.2.3 三角函数图像的组合与分解3. 三角函数的简单应用7.3.1 三角函数在实际问题中的应用7.3.2 直角三角形的解题方法五、平面几何1. 直线与圆的性质8.1.1 直线的定义及其性质8.1.2 圆的定义及其性质2. 三角形的基本性质8.2.1 三角形分类及其特性8.2.2 三角形的成立条件3. 三角形的相似8.3.1 相似三角形的定义及判定条件 8.3.2 相似三角形的性质及应用4. 圆的切线与割线8.4.1 切线的定义及性质8.4.2 相交弦的性质及切割定理六、统计与概率1. 统计图与数据的分析9.1.1 统计图的绘制及其分析9.1.2 数据的分析与统计规律2. 事件的概率9.2.1 随机事件与概率的定义 9.2.2 事件的计算与概率的性质3. 排列与组合9.3.1 排列的定义及排列的计算 9.3.2 组合的定义及组合的计算。
高中数学必修一知识点梳理一、集合。
1. 集合的概念。
- 集合是由一些确定的、互不相同的对象所组成的整体。
这些对象称为集合的元素。
例如,一个班级里的所有学生可以组成一个集合,每个学生就是这个集合的元素。
- 元素与集合的关系:如果a是集合A中的元素,就说a∈ A;如果a不是集合A中的元素,就说a∉ A。
2. 集合的表示方法。
- 列举法:把集合中的元素一一列举出来,写在大括号内。
例如,集合A = {1,2,3}。
- 描述法:用确定的条件表示某些对象是否属于这个集合。
一般形式为{xp(x)},其中x是集合中的代表元素,p(x)是元素x所满足的条件。
例如,{xx >0且x∈ R}表示所有大于0的实数组成的集合。
- 韦恩图(Venn diagram):用平面上封闭曲线的内部代表集合,这种图可以直观地表示集合间的关系。
3. 集合间的基本关系。
- 子集:如果集合A的任意一个元素都是集合B的元素,那么集合A称为集合B的子集,记作A⊆ B(或B⊇ A)。
如果A⊆ B且B⊆ A,那么A = B。
- 真子集:如果A⊆ B,且存在元素x∈ B,x∉ A,那么集合A称为集合B的真子集,记作A⊂neqq B。
- 空集:不含任何元素的集合叫做空集,记作varnothing。
空集是任何集合的子集,是任何非空集合的真子集。
4. 集合的基本运算。
- 交集:由所有属于集合A且属于集合B的元素所组成的集合,叫做集合A 与B的交集,记作A∩ B={xx∈ A且x∈ B}。
- 并集:由所有属于集合A或属于集合B的元素所组成的集合,叫做集合A 与B的并集,记作A∪ B = {xx∈ A或x∈ B}。
- 补集:设U是一个全集,A是U的一个子集,由U中所有不属于A的元素组成的集合,叫做子集A在全集U中的补集,记作∁_UA={xx∈ U且x∉ A}。
二、函数。
1. 函数的概念。
- 设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数y和它对应,那么就称f:A→ B为从集合A到集合B的一个函数,记作y = f(x),x∈ A。
高一数学必修1各章知识点总结第一章集合与函数概念一、集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上最高的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ …} 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。
注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或N+ 整数集Z 有理数集Q 实数集R 1)列举法:{a,b,c……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
{x∈R| x-3>2} ,{x| x-3>2}3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集A⊆有两种可能(1)A是B的一部分,;(2)A与B是注意:B同一集合。
⊆/B 反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊇/A或B2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”即:①任何一个集合是它本身的子集。
A⊆A②真子集:如果A⊆B,且A≠ B那就说集合A是集合B的真子集,记作A B(或B A)③如果A⊆B, B⊆C ,那么A⊆C④如果A⊆B 同时B⊆A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。
有n个元素的集合,含有2n个子集,2n-1个真子集运算类型交集并集补集定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A B(读作‘A交B’),即A B={x|x∈A,且x∈B}.由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A B(读作‘A并B’),即A B ={x|x∈A,或x∈B}).设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)记作ACS,即C S A=},|{AxSx x∉∈且韦恩图示A B图1A B图2SA二、函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B 的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.2.值域: 先考虑其定义域(1)观察法(2)配方法(3)代换法3.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间(2)无穷区间(3)区间的数轴表示.4.映射一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A 到集合B的一个映射。
高一必修一数学全章知识点一、集合与函数1. 集合的概念和表示方法2. 集合的基本运算3. 集合的关系和判定方法4. 函数的概念和表示方法5. 函数的性质和基本类型二、数与式1. 实数的概念和性质2. 整式与分式的概念和性质3. 代数式的运算规则和性质4. 同类项与合并同类项5. 因式分解的方法和应用6. 分式的运算和应用三、方程与不等式1. 方程的概念和解的概念2. 一元一次方程的解法和应用3. 一元二次方程的解法和应用4. 一元一次不等式的解法和应用5. 一元二次不等式的解法和应用6. 绝对值方程与不等式的解法和应用四、平面几何与立体几何1. 点、线、面的基本概念与性质2. 直线与线段的性质3. 角的概念与性质4. 三角形的分类与性质5. 四边形的分类与性质6. 圆的性质与定理7. 三维图形的基本概念与性质五、函数与图像1. 二次函数的图像与性质2. 一次函数的图像与性质3. 反比例函数的图像与性质4. 幂函数的图像与性质5. 指数函数的图像与性质6. 对数函数的图像与性质六、实数与三角函数1. 整式的值域与最值问题2. 三角函数的概念与性质3. 三角函数的图像与变化规律4. 三角函数的同角关系5. 三角函数的基本公式与应用七、数列与数学归纳法1. 数列的概念与表示2. 等差数列与等差数列的性质3. 等比数列与等比数列的性质4. 递推数列与递推数列的性质5. 数学归纳法的原理与应用八、概率与统计1. 随机事件与概率的概念2. 概率的运算与应用3. 组合与排列的概念与性质4. 统计图表的制作与分析5. 平均数与波动范围的计算以上是高一必修一数学全章的知识点,希望对你的学习有所帮助。
高一数学必修一知识点整理大全
一、数集与复数
1、数集:实数集、整数集、有理数集、自然数集、负数集和无理数集等
2、复数:复数由实数部分和虚数部分组成,表示形式为a+bi,其中a 为实数部分,b为虚数部分;以及其实部和虚部计算方法,共轭数,复数的乘法和除法等
二、方程与不等式
1、一元一次方程的解法:唯一解法、无解法,以及利用求根公式求解等
2、不等式:不等式的解法、绝对值不等式、二次不等式和向量不等式
三、集合与函数
1、集合:一个集合由若干元素组成,可用于天空符号来表示,以及运算符号的应用;
2、函数:体景函数的定义、反函数的概念、一元函数的性质、复合函数和函数的变换
四、直线与圆
1、直线:斜率的概念,相交点的求解、两条直线的垂直关系、直线的标准方程和点斜式;
2、圆:圆的性质,圆的中点、半径和圆心的关系,同心圆的特点,圆的标准方程,圆上一点到圆心的弧长。
五、三角函数
1、三角函数的定义:余弦函数、正切函数,以及三角函数的四象性理论;
2、三角函数的应用:三角形的基本概念、余弦定理、正弦定理,以及用于解三角形的其他定理。
六、分数与比例
1、分数:基本分数的概念,真分数、假分数,特殊分数及其转换,带分数的基本运算等;
2、比例:比例具有多重性,比例的初始情况和分级表,比例的连续变化、列比较法求不确定比例等。
高一数学必修一复习知识点总结(最新6篇)高一必修一数学复习知识点梳理篇一直线和平面垂直直线和平面垂直的定义:如果一条直线a和一个平面内的任意一条直线都垂直,我们就说直线a和平面互相垂直。
直线a叫做平面的垂线,平面叫做直线a的垂面。
直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。
直线与平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。
③直线和平面平行——没有公共点直线和平面平行的定义:如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。
直线和平面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。
直线和平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
高一必修一数学复习知识点梳理篇二定义:形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。
定义域和值域:当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。
当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。
在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。
而只有a为正数,0才进入函数的值域。
性质:对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q 是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。
当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:排除了为0与负数两种可能,即对于x0,则a可以是任意实数;排除了为0这种可能,即对于x排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。
高一数学必修一知识点梳理1. 集合与函数- 集合的基本概念:元素、集合、子集、真子集、并集、交集、补集。
- 集合的表示方法:列举法和描述法。
- 集合的基本运算:并集、交集、补集、差集。
- 函数的定义:函数的概念、定义域、值域、函数的表示方法。
- 函数的性质:单调性、奇偶性、周期性。
- 函数的图像:函数图像的绘制方法、图像的基本特征。
2. 指数与对数- 指数幂的定义:a^n(a>0,n为整数)。
- 指数幂的运算法则:指数的乘法法则、指数的除法法则、指数的幂的乘方。
- 对数的定义:对数的概念、对数的运算法则。
- 对数的换底公式:换底公式的应用。
- 对数函数的性质:对数函数的单调性、值域。
3. 三角函数- 三角函数的定义:正弦、余弦、正切的定义。
- 三角函数的基本关系:三角函数的基本恒等式。
- 三角函数的图像与性质:正弦函数、余弦函数的图像和性质。
- 三角恒等变换:和差公式、倍角公式、半角公式。
4. 平面向量- 向量的基本概念:向量的定义、向量的表示方法。
- 向量的运算:向量的加法、减法、数乘。
- 向量的坐标表示:向量的坐标运算。
- 向量的数量积:数量积的定义、运算法则、几何意义。
- 向量的向量积:向量积的定义、运算法则、几何意义。
5. 不等式- 不等式的基本性质:不等式的性质、不等式的传递性、不等式的可加性。
- 不等式的解法:一元一次不等式、一元二次不等式的解法。
- 绝对值不等式:绝对值不等式的定义、解法。
- 基本不等式:算术平均数-几何平均数不等式、柯西不等式。
6. 复数- 复数的概念:复数的定义、复数的表示方法。
- 复数的运算:复数的加法、减法、乘法、除法。
- 复数的模和辐角:复数的模、辐角的定义、运算。
- 复数的代数形式:复数的代数表示、复数的乘除运算。
7. 空间几何- 空间直线与平面:直线与平面的位置关系、直线与平面的方程。
- 空间向量:空间向量的定义、运算、坐标表示。
- 空间向量的应用:空间向量在几何问题中的应用、空间向量在立体几何中的应用。
高中数学必修一知识点归纳1. 集合与简易逻辑- 集合的概念:集合是由一些确定的、互不相同的元素所组成的整体。
- 集合的表示法:列举法和描述法。
- 集合间的基本关系:子集、真子集、相等。
- 集合的基本运算:交集、并集、补集。
- 简易逻辑:命题、逻辑连接词、真值表、四种命题。
2. 函数- 函数的概念:函数是定义域到值域的映射关系。
- 函数的表示法:解析式、图象、列表。
- 函数的性质:定义域、值域、单调性、奇偶性。
- 函数的图象:函数图象的绘制、变换。
- 基本初等函数:幂函数、指数函数、对数函数、三角函数。
3. 指数与对数- 指数的概念:指数是幂运算的逆运算。
- 指数函数的性质:单调性、周期性。
- 对数的概念:对数是指数运算的逆运算。
- 对数函数的性质:单调性、周期性。
- 指数与对数的运算:指数运算法则、对数运算法则。
4. 三角函数- 任意角的概念:角度制与弧度制的转换。
- 三角函数的定义:正弦、余弦、正切。
- 三角函数的图象:正弦、余弦、正切的图象。
- 三角函数的性质:周期性、单调性、奇偶性。
- 三角恒等变换:和差公式、倍角公式、半角公式。
5. 平面向量- 向量的概念:向量是具有大小和方向的量。
- 向量的表示法:坐标表示法、几何表示法。
- 向量的运算:向量加法、减法、数乘。
- 向量的数量积:定义、性质、计算。
- 向量的向量积:定义、性质、计算。
6. 解析几何- 直线的方程:点斜式、斜截式、一般式。
- 直线的位置关系:平行、垂直、相交。
- 圆的方程:标准方程、一般方程。
- 圆的位置关系:相切、相交、相离。
- 直线与圆的位置关系:切线、相交、相离。
7. 立体几何- 空间几何体:柱、锥、球。
- 空间几何体的表面积与体积:公式与计算。
- 空间直线与平面的位置关系:平行、垂直、相交。
- 空间平面与平面的位置关系:平行、垂直、相交。
8. 概率与统计- 随机事件:必然事件、不可能事件、随机事件。
- 概率的计算:古典概型、几何概型。
第一章§ 集合1.关于集合的元素的特征(1)确定性(组成元素不确定的如:我国的小河流)(2)互异性(3)无序性集合相等:构成两个集合的元素完全一样(1)若集合A中的元素与集合B中的元素完全相同则称集合A等于集合B,记(2)例:已知A={1,1+d,1+2d},B={1,q,q2},若A=B,求的,d,q的值。
解:d=-,q=-2.元素与集合的关系;(1)如果a是集合A的元素,就说a属于(belong to)A,记作a∈Aa不是集合A的元素,就说a不属于(not belong to)A,记作子集与真子集:B中的元素,那么集合A叫做集合B若集合P P不包含于Q,或Q不包含P.A B中至少有一个元素不属于A,那么集合A叫做集合B或.子集与真子集的性质:3.常用数集及其记法非负整数集(或自然数集),记作N正整数集,记作N*或N+;整数集,记作Z有理数集,记作Q实数集,记作R4.集合的表示方法(1)列举法:把集合中的元素一一列举出来,写在大括号内。
如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},…;(2)描述法:把集合中的元素的公共属性描述出来,写在大括号 {}内。
具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。
如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形},…;(3)自然语言描述法:小于10的所有正偶数组成的集合。
({2,4,6,8})2、用例举法表示练习:(1)已知集合M={a,b,c}中的三个元素可构成某一三角形的三条边,那么此三角形一定不是( )A 直角三角形B 锐角三角形C 钝角三角形D 等腰三角形5.集合间的基本运算并集(∪):一般的由所有属于集合A 或属于集合B 的元素组成的集合,成A∪B,即:,韦恩图如下:交集(∩):一般地,由属于集合A 且属于集合B 的所有元素组成的集韦恩图如下:全集(U):一般地,如果一个集合含有我们所研究问题中涉及的所有元素,那么就成这个集合为全集,记为U。
高中数学必修一最全知识点汇总高中数学必修1知识点第一章集合与函数概念1.1 集合1.1.1 集合的含义与表示集合是由元素组成的整体,其中的元素具有确定性、互异性和无序性。
常用的数集有自然数集N、正整数集N*或N+、整数集Z、有理数集Q、实数集R。
集合与元素之间的关系可以表示为a∈M或a∉M。
集合的表示法有自然语言法、列举法、描述法和图示法。
集合可以分为有限集、无限集和空集(∅)。
1.1.2 集合间的基本关系集合间的基本关系包括子集、真子集和集合相等。
子集表示为A⊆B,真子集表示为A⊂B,集合相等表示为A=B。
已知集合A有n(n≥1)个元素,则它有2个子集,2^(n-1)个真子集,2^(n-1)个非空子集和2^n-2个非空真子集。
1.1.3 集合的基本运算集合的基本运算包括交集、并集和补集。
交集表示为A∩B,并集表示为A∪B,补集表示为A的补集。
补集的性质为A∪A的补集=全集,A∩A的补集=空集。
2.补充知识:含绝对值的不等式与一元二次不等式的解法含绝对值的不等式|x|0)的解集为{-aa(a>0)的解集为{xa}。
一元二次不等式的解法与一元二次方程类似,可以通过移项、配方法和求根公式等方式求解。
1.解一元二次不等式将$ax+b$看作一个整体,化成$|x|c(c>0)$,$|x|>a(a>0)$型不等式来求解。
2.解一元二次不等式的方法通过判别式$\Delta=b^2-4ac$,确定二次函数$y=ax^2+bx+c(a>0)$的图像,分类讨论$\Delta>\Delta'$,$\Delta=\Delta'$和$\Delta0)$的根$x_1,x_2$(其中$x_10$和$y<0$的解集。
3.函数及其表示3.1 函数的概念设$A$、$B$是两个非空的数集,如果按照某种对应法则$f$,对于集合$A$中任何一个数$x$,在集合$B$中都有唯一确定的数$f(x)$和它对应,那么这样的对应(包括集合$A$、$B$以及$A$到$B$的对应法则$f$)叫做集合$A$到$B$的一个函数,记作$f:A\to B$。
高中数学必修1知识点总结一、集合与函数的概念1. 集合的含义与表示- 集合是具有某种特定性质的事物的全体。
- 常用符号表示集合,如A={x|x满足性质P}。
2. 集合之间的关系- 子集:集合A中的所有元素都属于集合B,则A是B的子集。
- 真子集:A是B的子集,且A不等于B。
- 并集:集合A和集合B中所有元素组成的集合。
- 交集:集合A和集合B中共有的元素组成的集合。
- 补集:集合A在全集U中的补集是全集U中不属于A的元素组成的集合。
3. 函数的概念- 函数是定义在非空数集之间的映射关系。
- 函数的表示方法:f(x)、y=f(x)等。
4. 函数的简单性质- 定义域:函数f(x)的定义域是所有能使函数式有意义的x的集合。
- 值域:函数f(x)的值域是所有f(x)的取值构成的集合。
- 单调性:函数在某个区间内,若x1<x2,则f(x1)≤f(x2),则称函数在该区间单调递增。
- 奇偶性:奇函数满足f(-x)=-f(x),偶函数满足f(-x)=f(x)。
二、基本初等函数1. 幂函数- y=x^n (n为实数),其中n=0,1,2,3...时分别对应不同的函数。
2. 指数函数- y=a^x (a>0, a≠1),a为底数,x为指数。
3. 对数函数- y=log_a(x) (a>0, a≠1),a为底数,x为真数。
4. 三角函数- 正弦函数:y=sin(x)- 余弦函数:y=cos(x)- 正切函数:y=tan(x)- 余切函数:y=cot(x)- 正割函数:y=sec(x)- 余割函数:y=csc(x)三、三角恒等变换1. 同角三角函数的基本关系- sin^2(x) + cos^2(x) = 1- 1 + tan^2(x) = sec^2(x)- 1 + cot^2(x) = csc^2(x)2. 特殊角的三角函数值- sin(30°) = 1/2, cos(30°) = √3/2, tan(30°) = √3/3- sin(45°) = √2/2, cos(45°) = √2/2, tan(45°) = 1- sin(60°) = √3/2, cos(60°) = 1/2, tan(60°) = √33. 和差公式- sin(a±b) = sin(a)cos(b) ± cos(a)sin(b)- cos(a±b) = cos(a)cos(b) ∓ sin(a)sin(b)- tan(a±b) = (tan(a) ± tan(b)) / (1 ∓ tan(a)tan(b))四、数列的概念与简单表示1. 数列的概念- 数列是按照一定顺序排列的一列数。
高一数学必修一复习知识点总结(优秀4篇)高中必修一数学知识点总结篇一一、集合的运算1.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集。
记作A∩B(读作”A交B”),即A∩B={x|x∈A,且x∈B}.2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。
记作:A∈B(读作”A并B”),即A∈B={x|x∈A,或x∈B}.3、交集与并集的性质:A∩A=A,A∩φ=φ,A∩B=B∩A,A∈A=A,A∈φ=A,A∈B=B∈A.4、全集与补集(1)补集:设S是一个集合,A是S的一个子集(即),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)记作:CSA即CSA={x|x?S且x?A}(2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。
通常用U来表示。
(3)性质:∈CU(CUA)=A∈(CUA)∩A=Φ∈(CUA)∈A=U二、函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A 中的任意一个数x,在集合B中都有确定的数f(x)和它对应,那么就称f:A→B为从集合A 到集合B的一个函数。
记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域。
注意:2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;3函数的定义域、值域要写成集合或区间的形式。
定义域补充能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1.(5)如果函数是由一些基本函数通过四则运算结合而成的。
高一数学必修1各章知识点总结第一章集合与函数概念一、集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上最高的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ …} 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。
注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或N+ 整数集Z 有理数集Q 实数集R 1)列举法:{a,b,c……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
{x∈R| x-3>2} ,{x| x-3>2}3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集A⊆有两种可能(1)A是B的一部分,;(2)A与B是注意:B同一集合。
⊆/B 反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊇/A或B2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”即:①任何一个集合是它本身的子集。
A⊆A②真子集:如果A⊆B,且A≠ B那就说集合A是集合B的真子集,记作A B(或B A)③如果A⊆B, B⊆C ,那么A⊆C④如果A⊆B 同时B⊆A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。
有n个元素的集合,含有2n个子集,2n-1个真子集运算类型交集并集补集定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A B(读作‘A交B’),即A B={x|x∈A,且x∈B}.由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A B(读作‘A并B’),即A B ={x|x∈A,或x∈B}).设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)记作ACS,即C S A=},|{AxSx x∉∈且韦恩图示A B图1A B图2SA二、函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B 的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.2.值域: 先考虑其定义域(1)观察法(2)配方法(3)代换法3.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间(2)无穷区间(3)区间的数轴表示.4.映射一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A 到集合B的一个映射。
§ 1.1集合1.关于集合的元素的特征(1)确定性(组成元素不确定的如:我国的小河流)(2)互异性(3)无序性集合相等:构成两个集合的元素完全一样(1)若集合A中的元素与集合B中的元素完全相同则称集合A等于集合B,记作A=B.(2)A B, B A A B例:已知A={1,1+d ,1+2d},B={1 ,q,q2},若A=B,求的,d,q 的值。
解:d=-,q=-2.元素与集合的关系;(1)如果 a 是集合 A 的元素,就说 a 属于(belong to)A,记作a∈ A (2)如果a不是集合 A 的元素,就说a不属于(not belong to)A,记作aA子集与真子集:如果集合A中的每一个元素都是集合B中的元素,那么集合A叫做集合 B 的子集,记作 A B或 B A.若集合P 中存在元素不是集合Q的元素,那么P 不包含于Q,或Q不包含P.记作PQ若集合A是集合B的子集,且B中至少有一个元素不属于A,那么集合A叫做集合 B 的真子集. A B 或 B A .子集与真子集的性质:传递性:若 A B , B C ,则 A C 空集是任意集合的子集,是任意非空集合的真子集.3.常用数集及其记法非负整数集(或自然数集),记作N正整数集,记作N*或N+;整数集,记作Z有理数集,记作Q实数集,记作R4.集合的表示方法( 1)列举法:把集合中的元素一一列举出来,写在大括号内。
如:{1 ,2,3,4,5},{x 2,3x+2,5y3-x,x2+y2},⋯;( 2)描述法:把集合中的元素的公共属性描述出来,写在大括号{} 内。
具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。
如:{x|x-3>2} ,{(x,y)|y=x 2+1},{直角三角形},⋯;( 3)自然语言描述法:小于10 的所有正偶数组成的集合。
({2,4,6,8})问:1、{1 ,3,5,7,9}如何用自然语言描述法表示?2、用例举法表示集合 A {x N |1 x 8}练习:(1)已知集合M={a,b,c}中的三个元素可构成某一三角形的三条边,那么此三角形一定不是()A 直角三角形B 锐角三角形C 钝角三角形D 等腰三角形5.集合间的基本运算并集(∪):一般的由所有属于集合A或属于集合B的元素组成的集合,成为集合A与B的并集,记作A∪ B,即:A B {x|x A,或x B} ,韦恩图如下:交集(∩):一般地,由属于集合 A 且属于集合 B 的所有元素组成的集合,称为 A 与 B 的交集,记作A∩ B,即:A B {x|x A,且x B}. 韦恩图如下:全集(U):一般地,如果一个集合含有我们所研究问题中涉及的所有元素,那么就成这个集合为全集,记为U。
补集:对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集,简称为集合A的补集,记作C U A,即练习:1、若A={0,2,4},C U A={-1 ,2},C U B={-1 ,0,2},求B=2、设A={x|x>-2},B={x|x<0}, 求A∩ B.3、若A={x|x=4n,n ∈ Z},B={x|x=6n,n ∈ Z},求A∩ B.4、A={x|a ≤x≤a+3},B={x|x < -1 或x>5} ,分别求出满足下列条件的 a 的取值范围: (1) A ∩ B= (2) A ∩ B=A5、已知A={x|-1 < x< 2}, B= {x|1 < x< 3}求A∪B.6、集合 A {n | n Z}, B {m | m _________________________ 1 Z},则 A B7、已知X={x|x2+px+q=0,p2-4q>0},A={1,3,5,7,9},B={1,4,7,10} ,且X A ,X B X ,试求p、q;8、已知集合A={a+2,(a+1)2,a2+3a+3},且1∈ A,求实数a 的值9、已知集合A={x|x 2-5x+6=0},B={x|mx+1=0},A∪ B=A,求实数m的值组成的集合。
10、集合A={x||x -2| ≤2,x∈R},B={y|y= -x2,-1≤x≤2},则C R(A∩ B)等于()A.RB.{x|x ∈ R,x≠ 0}C.{0}D. Φ (空集)11、已知{a ,b} A,且A为{a,b,c,d,e}的真子集,则满足条件的集合 A 的个数是()12、记函数 f (x)=lg (2x-3)的定义域为集合M,函数g(x)= 的定义域为集合N,求:(1)集合M、N;(2)集合m∩N,M∪N13、已知集合A={x||x -a| ≤ 1},B={x|x 2-5x+4≥ 0},若A∩ B=Φ ,则实数a§ 1.2函数函数概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合 A 中的任意一个数x,在集合 B 中都有唯一确定的数 f (x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数。
记作:y=f(x),x∈ A.其中,x 叫做自变量,x 的取值范围A叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f(x)| x∈ A } 叫做函数的值域.构成函数的三要素:定义域、对应关系、值域区间:(1)、开区间、闭区间、半开半闭区间;(2)、无穷区间;区间的数轴表示例1:已知函数f ( x) = x 3 + 1,求函数的定义域。
x2例2:设一个矩形周长为80,其中一边长为x,求它的面积关于x 的函数的解析式,并写出定义域。
函数的定义域小结:(1)如果 f (x)是整式,那么函数的定义域是实数集R .(2)如果 f (x)是分式,那么函数的定义域是使分母不等于零的实数的集合.(3)如果 f (x)是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数的集合.(4)如果 f (x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合. (即求各集合的交集)(5)满足实际问题有意义.例3:下列函数中哪个与函数y=x 相等?(1)y = (x)2 ; (2)y = (3x3) ;2 x2( 3)y = x2; (4)y=x练习: 1. 求下列函数的定义域( 1)y= +( 2)y=(3)已知f(x)的定义域为(-1,1 ),求函数F(x)=f(1-x)+f()的定义域。
2.已知A={1,2,3 ,k},B={4,7,a4,a2+3a},a∈ N*,x∈ A,y∈ B,f:x→y=3x+1 是从定义域A到值域B的一个函数,求a,k,A,B。
解:a=2,k=5,A={1,2,3,5} ,B={4,7,16,10}映射:一般地,设A、B 是两个非空的集合,如果按某一个确定的对应法则f ,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应 f :A→B为从集合A到集合B的一个映射.记作“ f :A→ B”说明:(1)这两个集合有先后顺序,A到B的映射与B到A的映射是截然不同的,其中 f 表示具体的对应法则,可以用多种形式表述.(2)“都有唯一”包含两层意思:一是必有一个;二是只有一个,也就是说有且只有一个的意思.例: 1. 已知A={x,y},B={a,b,c},从集合A到集合B的所有不同的映射有()个。
2.已知A={x,y},B={a,b,c},从集合B到集合A的所有不同的映射有()个。
函数的表示方法:解析法、列表法、图像法练习: 1. 已知 f (x-2)=2x2-9x+13,求 f (x)——配凑法答案:f(x)=2x2-x+33.已知f(+1)=x+ 2 ,求f(x+1),f(x2)——换元法答案: f (x+1)=x2+2x,(x≥0); f(x2)=x4-1,(x≤- 1 或x≥1)4.已知f(x)是一次函数,且有f[f (x)]=9x +8,求f(x)——待定系数法答案:f(x)=3x+2或f(x)=-3x- 45.设 f (x)满足关系式 f (x)+2f ()=3x,求f (x)——消元法答案: f (x)=-x,x∈ {x|x ∈ R,x≠0}6.已知x≠0,函数f(x)满足f(x-)=x2+,则f (x)的表达式为()A.f (x)=x+B.f (x)=x2+ 2C.f (x)=x2D.f (x)=(x-)27.已知函数 f (x)= ,那么f(5)的值为()A.32B.16C.8D.648.若函数f(2x+1)x2-2x,则f(3)=()9.已知函数 f (x)= ,则 f (1)+ f (2)+f()+f(3)+f()+f (4)+f()的值为()10.已知 f (+1)=lgx ,求f(x)11.已知f(x)是二次函数,且f(0)=0,f (x+1)=f(x)+x+1,求f(x)12.定义在(-1,1 )内的函数f(x)满足:2f (x)-f(-x)=lg(x+1),求函数f(x)的解析式.1.3 函数的基本性质增函数:一般地,设函数y=f(x) 的定义域为I ,如果对于定义域I 内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x 1)<f(x 2),那么就说f(x)在区间D上是增函数。
注意:(1)函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;(2)必须是对于区间D内的任意两个自变量x1,x2;当x1<x2时,总有f(x 1)<f(x 2) .减函数:一般地,设函数y=f(x) 的定义域为I ,如果对于定义域I 内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x 1) > f(x 2),那么就说f(x) 在区间D上是减函数。
函数的单调性定义:如果函数y=f(x) 在某个区间上是增函数或是减函数,那么就说函数y=f(x) 在这一区间具有(严格的)单调性,区间D叫做y=f(x) 的单调区间。
例1:物理学中的玻意耳定律P=k( k 为正常数)告诉我们,对于一定量的气体,当其体积V减少时,压强P将增大。
试用函数的单调性证明之。
(设V1>V2> 0)判断函数单调性的方法步骤:利用定义证明函数f(x) 在给定的区间D上的单调性的一般步骤:①任取x1,x2∈ D,且x1<x2;②作差f(x 1)-f(x 2);③变形(通常是因式分解和配方);④定号(即判断差f(x 1) -f(x 2)的正负);⑤下结论(即指出函数f(x) 在给定的区间D上的单调性) .练习:1、用函数单调性的定义证明 f ( x) =x+在( ,+∞)上是增函数。