第二课时 热力学定律 能量守恒定律2010年11月16日
- 格式:ppt
- 大小:720.50 KB
- 文档页数:27
热力学第二定律摘要:继热力学第一定律之后克劳修斯和开尔文提出了热力学第二定律,本文介绍了热力学第二定律的定义及热力学第二定律使用的条件,除此之外还介绍了它的单方性的性质,为了加深读者对热力学第二律的理解,本文列举了热力学第二定律的部分应用仅供读者参考。
关键词:热力学第二定律;克劳修斯;开尔文;单方向性作者简介:0引言:热力学第一定律指出各种形式的能量在相互转化的过程中必须满足能量守恒定律,对过程行进的方向并没有给出任何限制。
但是实际发生的过程中如果涉及热量或内能与其形式能量的转化。
则所有过程都是具有单方向性。
更普遍的说,凡是涉及热现象的实际过程的方向问题。
它是独立于热力学第一定律的另一个定律。
卡诺提出了卡诺定理,但是卡诺对热机工作过程的认识是不正确的,他认为热机是通过把从高温热源传到热源做功的,工作物质从高温热源吸取热量与在低温热源放出的热量相等,犹如水利及做功是通过水从高处流向低处,在高处和低处流过的水量是一样的。
在热力学第一定律被发现以后克劳修斯和开尔文分别审了卡诺的工作,指出要证明卡诺定理要有一个新的原理,从而发现了热力学第二律。
1热力学第二定律简介1.1热力学第二定律定义不可能把热从低温物体传到高温物体而不产生其他影响;不可能从单一热源取热使之完全转换为有用的功而不产生其他影响;不可逆热力过程中熵的微增量总是大于零。
①克氏表述:在与外界没有物质和能量交换的封闭系统(如热水瓶)中。
②开氏表述:不可能从单一热源取热,把它全部变为功而不产生其他任何影响(这是从能量消耗的角度说的,它说明第二类永动机是不可能实现的)。
热力学第二定律是热力学的基本定律之一,是指热永远都只能由热处转到冷处(在自然状态下)。
它是关于在有限空间和时间内,一切和热运动有关的物理化学过程具有不可逆性的经验总结[1]。
上述①中的内容是克劳修斯在1850年提出的。
②的讲法是开尔文于1851年提出的。
这些表述都是等效的。
在①的讲法中,指出了在自然条件下热量只能从高温物体向低温物体转移,而不能由低温物体自动向高温物体转移,也就是说在自然条件下,这个转变过程是不可逆的。
高中物理能量守恒定律公式知识点归纳高中物理能量守恒定律公式知识点归纳在日复一日的学习中,大家都背过不少知识点,肯定对知识点非常熟悉吧!知识点就是掌握某个问题/知识的学习要点。
还在为没有系统的知识点而发愁吗?下面是店铺精心整理的高中物理能量守恒定律公式知识点归纳,欢迎大家借鉴与参考,希望对大家有所帮助。
高中物理能量守恒定律公式知识点归纳11.阿伏加德罗常数NA=6.02×1023/mol;分子直径数量级10-10米2.油膜法测分子直径d=V/s {V:单分子油膜的体积(m3),S:油膜表面积(m)2}3.分子动理论内容:物质是由大量分子组成的;大量分子做无规则的热运动;分子间存在相互作用力。
4.分子间的引力和斥力(1)r10r0,f引=f斥≈0,F分子力≈0,E分子势能≈05.热力学第一定律W+Q=ΔU{(做功和热传递,这两种改变物体内能的方式,在效果上是等效的),W:外界对物体做的正功(J),Q:物体吸收的热量(J),ΔU:增加的内能(J),涉及到第一类永动机不可造出〔见第二册P40〕}6.热力学第二定律克氏表述:不可能使热量由低温物体传递到高温物体,而不引起其它变化(热传导的方向性);开氏表述:不可能从单一热源吸收热量并把它全部用来做功,而不引起其它变化(机械能与内能转化的方向性){涉及到第二类永动机不可造出〔见第二册P44〕}7.热力学第三定律:热力学零度不可达到{宇宙温度下限:-273.15摄氏度(热力学零度)}注:(1)布朗粒子不是分子,布朗颗粒越小,布朗运动越明显,温度越高越剧烈;(2)温度是分子平均动能的标志;(3)分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快;(4)分子力做正功,分子势能减小,在r0处F引=F斥且分子势能最小;(5)气体膨胀,外界对气体做负功W<0 u="">0;吸收热量,Q>0(6)物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零;(7)r0为分子处于平衡状态时,分子间的距离;(8)其它相关内容:能的转化和定恒定律〔见第二册P41〕/能源的开发与利用、环保〔见第二册P47〕/物体的内能、分子的动能、分子势能〔见第二册P47〕。
人教版高中物理新课标教材目录(2010年4月第三版)必修1物理学与人类文明第一章运动的描述1.质点参考系和坐标系2.时间和位移3.运动快慢的描述──速度4.实验:用打点计时器测速度5.速度变化快慢的描述──加速度第二章匀变速直线运动的研究1.实验:探究小车速度随时间变化的规律2.匀变速直线运动的速度与时间的关系3.匀变速直线运动的位移与时间的关系4.匀变速直线运动的速度与位移的关系5.自由落体运动6.伽利略对自由落体运动的研究第三章相互作用1.重力基本相互作用2.弹力3.摩擦力4.力的合成5.力的分解第四章牛顿运动定律1.牛顿第一定律2.实验:探究加速度与力、质量的关系3.牛顿第二定律4.力学单位制5.牛顿第三定律6.用牛顿运动定律解决问题(一)7.用牛顿运动定律解决问题(二)必修2第五章曲线运动1.曲线运动2.平抛运动3.实验:研究平抛运动4.圆周运动5.向心加速度6.向心力7.生活中的圆周运动第六章万有引力与航天1.行星的运动2.太阳与行星间的引力3.万有引力定律4.万有引力理论的成就5.宇宙航行6.经典力学的局限性第七章机械能守恒定律1.追寻守恒量——能量2.功3.功率4.重力势能5.探究弹性势能的表达式6.实验:探究功与速度变化的关系7.动能和动能定理8.机械能守恒定律9.实验:验证机械能守恒定律10.能量守恒定律与能源选修3-1第一章静电场1.电荷及其守恒定律2.库仑定律3.电场强度4.电势能和电势5.电势差6.电势差与电场强度的关系7.静电现象的应用8.电容器的电容9.带电粒子在电场中的运动第二章恒定电流1.电源和电流2.电动势3.欧姆定律4.串联电路和并联电路5.焦耳定律6.导体的电阻7.闭合电路的欧姆定律8.多用电表的原理9.实验:练习使用多用电表10.实验:测定电池的电动势和内阻11.简单的逻辑电路第三章磁场1.磁现象和磁场2.磁感应强度3.几种常见的磁场4.通电导线和磁场中受到的力5.运动电荷在磁场中受到的力6.带电粒子在匀强磁场中的运动选修3-2第四章电磁感应1.划时代的发现2.探究感应电流的产生条件3.楞次定律4.法拉第电磁感应定律5.电磁感应现象的两类情况6.互感和自感7.涡轮流、电磁阻尼和电磁驱动第五章交变电流1.交变电流2.描述交变电流的物理量3.电感和电容对交变电流的影响4.变压器5.电能的输送第六章传感器1.传感器及其工作原理2.传感器的应用3.实验:传感器的应用附录一些元器件的原理和使用要点选修3-3第七章分子动理论1.物体是由大量分子组成的2.分子的热运动3.分子间的作用力4.温度和温标5.内能第八章气体1.气体的等温变化2.气体的等容变化和等压变化3.理想气体的状态方程4.气体热现象的微观意义第九章固体、液体和物态变化1.固体2.液体3.饱和汽与饱和汽压4.物态变化中的能量交换第十章热力学定律1.功和内能2.热和内能3.热力学第一定律能量守恒定律4.热力学第二定律5.热力学第二定律的微观解释6.能源和可持续发展选修3-4第十一章机械振动1.简谐运动2.简谐运动的描述3.简谐运动的回复力和能量4.单摆5.外力作用下的振动第十二章机械波1.波的形成和传播2.波的图象3.波长、频率和波速4.波的衍射和干涉5.多普勒效应6.惠更斯原理第十三章光1.光的反射和折射2.全反射3.光的干涉4.实验:用双缝干涉测量光的波长5.光的衍射6.光的偏振7.光的颜色色散8.激光第十四章电磁波1.电磁波的发现2.电磁振荡3.电磁波的发射和接收4.电磁波与信息化社会5.电磁波谱第十五章相对论简介1.相对论的诞生2.时间和空间的相对性3.狭义相对论的其他结论4.广义相对论简介选修3-5第十六章动量守恒定律1.实验:探究碰撞中的不变量2.动量和动量定理3.动量守恒定律4.碰撞5.反冲运动火箭第十七章波粒二象性1.能量量子化2.光的粒子性3.粒子的波动性4.概率波5.不确定性关系第十八章原子结构1.电子的发现2.原子的核式结构模型3.氢原子光谱4.玻尔的原子模型第十九章原子核1.原子核的组成2.放射性元素的衰变3.探测射线的方法4.放射性的应用与防护5.核力与结合能6.重核的裂变7.核聚变8.粒子和宇宙选修1-1第一章电场电流一、电荷库仑定律二、电场三、生活中的静电现象四、电容器五、电流和电源六、电流和热效应第二章磁场一、指南针与远洋航海二、电流的磁场三、磁场对通电导线的作用四、磁场对运动电荷的作用五、磁性材料第三章电磁感应一、电磁感应现象二、法拉第电磁感应定律三、交变电流四、变压器五、高压输电六、自感现象涡流七、课题研究:电在我家中第四章电磁波及其应用一、电磁波的发现二、电磁波谱三、电磁波的发射和接收四、信息化社会五、课题研究:社会生活中的电磁波选修1-2致同学们第一章分子动理论内能一、分子及其热运动二、物体的内能三、固体和液体四、气体第二章能量的守恒与耗散一、能量守恒定律二、热力学第一定律三、热机的工作原理四、热力学第二定律五、有序、无序和熵六、课题研究:家庭中的热机第三章核能一、放射性的发现二、原子与原子核的结构三、放射性衰变四、裂变和聚变五、核能的利用第四章能源的开发与利用一、热机的发展与应用二、电力和电信的发展与应用三、新能源的开发四、能源与可持续发展五、课题研究:太阳能综合利用的研究选修2-1第一章电场直流电路第1节电场第2节电源第3节多用电表第4节闭合电路的欧姆定律第5节电容器第2章磁场第1节磁场磁性材料第2节安培力与磁电式仪表第3节洛伦兹力和显像管第3章电磁感应第1节电磁感应现象第2节感应电动势第3节电磁感应现象在技术中的应用第4章交变电流电机第1节交变电流的产生和描述第2节变压器第3节三相交变电流第5章电磁波通信技术第1节电磁场电磁波第2节无线电波的发射、接收和传播第3节电视移动电话第4节电磁波谱第6章集成电路传感器第1节晶体管第2节集成电路第3节电子计算机第4节传感器选修2-2第1章物体的平衡第1节共点力平衡条件的应用第2节平动和转动第3节力矩和力偶第4节力矩的平衡条件第5节刚体平衡的条件第6节物体平衡的稳定性第2章材料与结构第1节物体的形变第2节弹性形变与范性形变第3节常见承重结构第3章机械与传动装置第1节常见的传动装置第2节能自锁的传动装置第3节液压传动第4节常用机构第5节机械第4章热机第1节热机原理热机效率第2节活塞式内燃机第3节蒸汽轮机燃气轮机第4节喷气发动机第5章制冷机第1节制冷机的原理第2节电冰箱第3节空调器选修2-3第一章光的折射第1节光的折射折射率第2节全反射光导纤维第3节棱镜和透镜第4节透镜成像规律第5节透镜成像公式第2章常用光学仪器第1节眼睛第2节显微镜和望远镜第3节照相机第3章光的干涉、衍射和偏振第1节机械波的衍射和干涉第2节光的干涉第3节光的衍射第4节光的偏振第4章光源与激光第1节光源第2节常用照明光源第3节激光第4节激光的应用第5章放射性与原子核第1节天然放射现象原子结构第2节原子核衰变第3节放射性同位素的应用第4节射线的探测和防护第6章核能与反应堆技术第1节核反应和核能第2节核裂变和裂变反应堆第3节核聚变和受控热核反应。
热力学三大基本定律是什么?一文带你搞懂虽然从远古时期人类早就学会了取火和用火,人们就注意探究热、冷现象本身。
但是热力学成为一门系统的学科却要到19世纪,在19世纪40年代前后,人们已经形成了这样的观念:自然界的各种现象间都是相互联系和转化的。
人们对热的研究也不再是孤立地进行,而是在热与其他现象发生转化的过程中认识热,特别是在热与机械功的转比中认识热。
热力学在发展过程中形成了三大基本定律,它们构成了热力学的核心。
热力学第一定律:能量守恒定律德国物理学家迈尔从1840年起就开始研究自然界各种现象间的转化和联系。
在他的论文《与有机运动相联的新陈代谢)中,把热看作“力”(能量)的一一种形式,他指出'热是能够转比为运动的力“。
他还根据当时的气体定压和定容比热的资料,计算出热的机械功当量值为367kgm/千k。
在论文中,迈尔详细考察了当时已知的几种自然现象的相互转化,提出了“力“不灭思想,迈尔是最早表述了能量守恒定律也就是热力学第一定律的科学家。
1847年,德国科学家亥姆霍兹发表了著作《论力的守恒》。
他提出一切自然现象都应该用中心力相互作用的质点的运动来解释,这个时候热力学第一定律也就是能量守恒定律已经有了一个模糊的雏形。
1850年,克劳修斯发表了《论热的动力和能由此推出的关于热学本身的定律》的论文。
他认为单一的原理即“在一切由热产生功的情况,有一个和产生功成正比的热量被消耗掉,反之,通过消耗同样数量的功也能产生这样数量的热。
” 加上一个原理即“没有任何力的消耗或其它变化的情况下,就把任意多的热量从一个冷体移到热体,这与热素的行为相矛盾”来论证。
把热看成是一种状态量。
由此克劳修斯最后得出热力学第一定律的解析式:dQ=dU-dW从1854年起,克劳修斯作了大量工作,努力寻找一种为人们容易接受的证明方法来解释这条原理。
经过重重努力,1860年,能量守恒原理也就是热力学第一定律开始被人们普遍承认。
能量守恒原理表述为一个系统的总能量的改变只能等于传入或者传出该系统的能量的多少。