人教版八年级数学上册教案12.2 第2课时 “边角边”
- 格式:doc
- 大小:1.02 MB
- 文档页数:3
12.2 三角形全等的判定(2)——SAS(边角边) 教学设计一、教学目标1.理解SAS(边角边)判定条件;2.学会运用SAS判定条件判断三角形全等;3.能够解决涉及SAS判定条件的三角形全等问题。
二、教学重点1.掌握SAS判定条件;2.运用SAS判定条件判断三角形全等。
三、教学难点1.在实际问题中应用SAS判定条件。
四、教学内容本节课将继续讨论三角形全等的判定条件,重点探讨SAS(边角边)的判定条件及其应用。
通过实际问题的讨论和解决,培养学生运用SAS判定条件的能力。
五、教学过程与步骤步骤一:导入新知1.老师出示两个三角形,ABCD和EFGH,并标明相等的边和角。
2.引导学生观察两个三角形,讨论它们有什么相同之处。
3.通过学生的回答,引出SAS判定条件的概念。
步骤二:学习与讲解1.通过示例和讲解,介绍SAS判定条件的含义和应用方法。
2.强调SAS判定条件中的两边夹角是相等的。
步骤三:例题讲解1.出示一个具体的例题,要求学生利用SAS判定条件判断两个三角形是否全等。
2.引导学生分析题目信息,找出已知条件,并依次应用SAS判定条件进行判断。
步骤四:练习与巩固1.分发练习题,要求学生根据给定的图形和条件,判断两个三角形是否全等,并用语言描述出判断的依据。
2.让学生互相交换练习题,相互检查对方的答案。
步骤五:拓展与应用1.进一步提出一些实际问题,要求学生利用SAS判定条件解决。
2.引导学生运用所学知识,提出解决问题的思路和方法。
步骤六:归纳总结1.让学生总结SAS判定条件的要点,并写入笔记。
2.提醒学生掌握SAS判定条件的正确运用方法。
六、板书设计SAS判定条件:已知两个三角形的边和夹角分别相等,则这两个三角形全等。
例题:已知∠ABC=∠DEF,AB=DE,BC=EF,判断△ABC≌△DEF。
七、教学反思本堂课通过引出SAS判定条件的概念,结合实际问题的讨论和解决,培养了学生的运用SAS判定条件的能力。
第 2 课时“边角边”1.理解并掌握三角形全等的判断方法——“边角边”.(要点 )2.能运用“边角边”判断方法解决相关问题. ( 要点 )3.“边角边”判断方法的研究以及合适“边角边”判断方法的条件的找寻.(难点)一、情境导入小伟作业本上画的三角形被墨迹污染了,他想画一个与本来完整同样的三角形,他该怎么办?请你帮助小伟想一个方法,并说明你的原因.想想:要画一个三角形与小伟画的三角形全等,需要几个与边或角的大小相关的条件?只知道一个条件 ( 一角或一边 ) 行吗?两个条件呢?三个条件呢?让我们一同来研究三角形全等的条件吧!可得∠ A=∠ B,由 AD= BF可得 AF= BD,又AE= BC,依据SAS,即可证得△AEF≌△ BCD.证明:∵ AE∥BC,∴∠ A=∠ B.∵ AD=BF,∴ AF= BD.在△ AEF 和△ BCD中,∵AE= BC,∠ A=∠ B,AF= BD,∴△ AEF≌△ BCD(SAS).方法总结:判断两个三角形全等时,若有两边一角对应相等时,角一定是两边的夹角.【种类二】“ 边边角” 不可以证明三角形全等以下条件中,不可以证明△ ABC≌△ DEF的是()A.AB=DE,∠B=∠E,BC=EFB.AB=DE,∠A=∠D,AC=DFC.BC=EF,∠B=∠E,AC=DF二、合作研究D.BC=EF,∠C=∠F,AC=DF研究点一:应用“边角边”判断两三角分析:要判断能不可以使△ ABC≌△ DEF,形全等【种类一】利用“SAS”判断三角形全应看所给出的条件是否是两边和这两边的等如图, A、D、F、B在同向来线上,夹角,只有选项 C 的条件不切合,应选 C. AD= BF, AE= BC,且AE∥ BC.求证:△AEF≌△ BCD.方法总结:判断三角形全等时,注意两边与此中一边的对角相等的两个三角形不必定全等.解题时要依据已知条件的地点来分析:由 AE∥BC,依据平行线的性质,考虑,只具备 SSA时是不可以判断三角形全等的.研究点二:全等三角形判断与性质的综合运用分析: (1) 由于已知条件中有两个正方【种类一】利用全等三角形进行证明或计算形,因此 AD= CD,DE= DG,它们的夹角都是已知:如图,BC∥ EF, BC= BE,AB= FB,∠1=∠2,若∠1=45°,求∠ C∠ ADG加上直角,可得夹角相等,因此△ ADE 的度数.和△ CDG全等;(2)再利用互余关系能够证明分析:利用已知条件易证∠ABC=∠ FBE,再依据全等三角形的判断方法可证明△ ABC≌△ FBE,由全等三角形的性质即可获得∠ C=∠ BEF.再依据平行,可得出∠ BEF 的度数,进而可知∠C的度数.解:∵∠ 1=∠ 2,∴∠ABC=∠ FBE.在BC= BE,△ABC和△ FBE中,∵∠ ABC=∠ FBE,∴△ AB= FB,ABC≌ △ FBE(SAS),∴ ∠ C=∠ BEF.又∵BC∥ EF,∴∠ C=∠ BEF=∠1=45°.方法总结:全等三角形是证明线段和角相等的重要工具.【种类二】全等三角形与其余图形的综合如图,四边形ABCD、DEFG都是正方形,连结AE、 CG.求证:(1) AE= CG;(2)AE⊥ CG. AE⊥ CG.证明: (1) ∵四边形ABCD、DEFG都是正方形,∴ AD= CD,GD= ED.∵∠ CDG=90°+∠ADG,∠ ADE=90°+∠ ADG,∴∠ CDG=∠ADE.在△ADE 和△CDG 中,∵AD= CD,∠ADE=∠ CDG,∴△ ADE≌△ CDG(SAS),∴DE= GD,AE= CG;(2)设 AE与 DG订交于 M,AE与 CG订交于 N,在△ GMN和△ DME中,由(1)得∠ CGD =∠ AED,又∵∠ GMN=∠ DME,∠ DEM+∠ DME =90°,∴∠CGD+∠GMN= 90°,∴∠GNM =90°,∴AE⊥CG.三、板书设计边角边1.两边及其夹角分别相等的两个三角形全等.简记为“边角边”或“SAS”.2.“边角边”判断方法可用几何语言表示为:AB= A1B1,在△ ABC和△ A1B1C1中,∵∠ B=∠ B1,BC= B1C1,∴△ ABC≌△ A1B1C1(SAS).3.“ SSA”不可以判断两个三角形全等.本节课从操作研究下手,拥有较强的操作性和直观性,有益于学生从直观上累积感性认识,进而有效地激发了学生的学习踊跃性和研究热忱,提升了讲堂的教课效率,促进了学生对新知识的理解和掌握.。
新人教八年级上册第十二章第2课时边角边【知识与技能】掌握证明三角形全等的“边角边”定理.【过程与方法】1.经历探索三角形全等条件的过程,培养学生观察\,分析图形的能力及动手能力.2.在探索三角形全等条件及其运用的过程中,能够进行有条理的思考并进行简单的推理.【情感态度】通过对问题的共同探讨,培养学生的协作精神.【教学重点】应用“边角边”证明两个三角形全等,进而得出线段或角相等.【教学难点】指导学生分析问题,寻找判定三角形全等的条件.一、情境导入,初步认识问题1 教材探究3:已知任意△ABC,画△A′B′C′,使AB=A′B′,A′C′=AC,∠A′=∠A.【教学说明】要求学生规范地用作图工具画图,纠正学生的错误做法,并让学生剪出画好的△ABC,△A′B′C′,把它们放在一起,观察出现的结果,引导学生间交流结论.教师讲课前,先让学生完成“自主预习”.问题2 请各学习小组间交流,并总结出规律.二、思考探究,获取新知根据学生交流情况,教师作出如下归纳总结.1.两边和它们的夹角对应相等的两个三角形全等,简写成“边角边”或“SAS”.2.其中的角必须是两条相等的对应边的夹角,边必须是夹相等角的两条对应边.例1 如图,有一池塘,要测池塘两端A,B的距离,可先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA,连接BC并延长到E,使CE=CB.连接DE,那么量出DE的长就是A,B的距离,为什么?【教学说明】让学生思考后,书写推理过程,教师引导分析.要想证AB=DE,只需要证△ABC≌△DEC.而证这两个三角形全等,已有条件 ,还需条件 .证明:在△ABC和△DEC中,∴△ABC≌△DEC(SAS).∴AB=DE.【归纳结论】证明分别属于两个三角形的线段相等或角相等的问题,常常通过证明这两个三角形全等来得到答案.例2 如图,已知AB=AC,AD=AE,∠BAC=∠DAE.求证:△ABD≌△ACE.【教学说明】由学生依题意寻找条件,涉及三角形边的条件有AB=AC,AD=AE,但∠BAC=∠DAE只是对应边夹角的一部分,怎么办?以此引导学生思考,理清解题思路.证明:∵∠BAC=∠DAE(已知),∴∠BAC+CAD=∠DAE+CAD,即∠BAD=∠CAE.在△ABD与△ACE中,AB=AC(已知),∠BAD=∠CAE(已证),AD=AE(已知),∴△ABD≌△ACE.【归纳结论】用来证明三角形全等的边、角条件,必须是这两个三角形的边、角,而不是其中的一部分,如∠BAC=∠DAE不能直接用于证△ABD与△ACE的全等.三、运用新知,深化理解1.如图,已知∠1=∠2,如果用SAS证明△ABC≌△BAD,还需要添加的条件是.2.如图,已知OA=OB,OC=OD,∠O=50°,∠D=35°,则∠AEC等于( ).A.60°B.50°C.45°D.30°3.如图,已知AB∥DE,AB=DE,BE=CF,如果∠B=50°,∠A=70°,则∠F=( ).A.70°B.65°C.60°D.55°4.如图,点B,D,C,F在一条直线上,且BC=FD,AB=EF.(1)请你添加一个条件(不再加辅助线),使△ABC≌△EFD,你添加的条件是 .(2)添加了条件后,证明△ABC≌△EFD.5.如图,C是线段AB的中点,CD平分∠ACE,CE平分∠BCD,CD=CE.(1)求证:△ACD≌△BCE.(2)若∠D=50°,求∠B的度数.【教学说明】引导学生应用“SAS”解答上述习题,巩固对“SAS”的认识和提升应用能力.可让学生在黑板上写出4\,5题的过程,强化学生书写证明过程的能力.在完成上述习题的解答后,请学生探究:“两边及其中一边的对角对应相等的两个三角形是否全等?”,指导学生画图分析、共同讨论,形成结论.教师出示下列材料帮助学生探究:如图,在△ABC和△ABD中,∠B=∠B,AB=AB,AC=AD,由图可知,△ABC与△ABD 并不全等.完成上述题目后,引导学生做本课时创优作业“课堂自主演练”中的题.【答案】1.AC=BD 2.A 3.C4.(1)∠B=∠F或AB∥EF或AC=ED.(2)当∠B=∠F时,在△ABC和△EFD中,AB=EF,∠B=∠F,BC=FD,∴△ABC≌△EFD(SAS).其它证明略.5.(1)∵点C是线段AB的中点,∴AC=BC,又∵CD平分∠ACE,CE平分∠BCD,∴∠1=∠2,∠2=∠3,∴∠1=∠3.在△ACD和△BCE中,CD=CE,∠1=∠3,AC=BC,∴△ACD≌△BCE(SAS).(2)∵∠1+∠2+∠3=180,∴∠1=∠2=∠3=60.∵△ACD≌△BCE,∴∠E=∠D=50°.∴∠B=180°-∠E-∠3=70°.四、师生互动,课堂小结先归纳“SAS”,并强调:“两边及其中一边的对角对应相等的两个三角形不一定全等”.再提出问题供同学思考\,交流\,探讨.1.判定三角形全等的方法有哪些?2.证明线段相等\,角相等的常见方法有哪些?1.布置作业:从教材“习题12.2”中选取.2.完成练习册中本课时的练习.本节课的引入,可采用探究的方式,引导学生通过操作、观察、探索、交流、发现思索的过程,得出判定三角形全等的“SAS”条件,同时利用一个联系生活实际的问题——测量池塘两端的距离,对得到的知识加以运用,最后再通过实际图形让学生认识到“两边及其中一边的对角对应相等”的条件不能判定两个三角形全等.。
人教版数学八年级上册12.2.2《“边角边”判定三角形全等》教学设计一. 教材分析人教版数学八年级上册12.2.2《“边角边”判定三角形全等》是全等三角形判定方法的一个章节。
本节课主要让学生掌握边角边(SAS)判定三角形全等的方法,并能运用该方法解决实际问题。
教材通过生动的例题和丰富的练习,引导学生探索和发现全等三角形的判定规律,培养学生的逻辑思维能力和解决问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了全等图形的概念,并学习了用“角角边”(AAS)判定三角形全等的方法。
但部分学生对于全等三角形的判定方法仍然感到困惑,不易理解和运用。
因此,在教学过程中,需要关注学生的学习需求,引导学生通过观察、操作、思考、交流等途径,自主探索和发现边角边(SAS)判定三角形全等的方法。
三. 教学目标1.知识与技能:让学生掌握边角边(SAS)判定三角形全等的方法,能运用该方法解决实际问题。
2.过程与方法:通过观察、操作、思考、交流等途径,培养学生探索问题、解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队协作能力和自信心。
四. 教学重难点1.重点:边角边(SAS)判定三角形全等的方法。
2.难点:灵活运用边角边(SAS)判定三角形全等的方法解决实际问题。
五. 教学方法1.情境教学法:创设生动有趣的情境,引导学生积极参与学习。
2.启发式教学法:引导学生观察、思考、交流,自主探索全等三角形的判定方法。
3.合作学习法:学生进行小组讨论,培养团队协作能力。
4.巩固练习法:通过适量练习,巩固所学知识。
六. 教学准备1.教具:三角板、直尺、圆规等。
2.教学素材:例题、练习题、多媒体课件等。
3.学具:学生用三角板、直尺、圆规等。
七. 教学过程1.导入(5分钟)利用多媒体课件展示生活中的全等三角形实例,引导学生关注全等三角形的概念。
提问:你们知道全等三角形是如何判定的吗?2.呈现(10分钟)展示教材中的例题,引导学生观察、思考,发现全等三角形的判定规律。
第2课时“边角边”学习目标1.三角形全等的“边角边”的条件.2.经历探索三角形全等条件的过程,体会利用操作、•归纳获得数学结论的过程.3.掌握三角形全等的“SAS”条件.4.能运用“SAS”证明简单的三角形全等问题.学习重点:三角形全等的条件.学习难点:寻求三角形全等的条件.学习方法:自主学习与小组合作探究学习过程:一、:温故知新1.怎样的两个三角形是全等三角形?2.全等三角形的性质?二、读一读,想一想,画一画,议一议1.只给一个条件(一组对应边相等或一组对应角相等),•画出的两个三角形一定全等吗?2.给出两个条件画三角形时,有几种可能的情况,每种情况下作出的三角形一定全等吗?阅读:课本总结:通过我们画图可以发现只给一个条件(一组对应边相等或一组对应角相等),•画出的两个三角形不一定全等;给出两个条件画出的两个三角形也不一定全等,按这些条件画出的三角形都不能保证一定全等.给出三个条件画三角形,你能说出有几种可能的情况吗?归纳:有四种可能.即:三内角、三条边、两边一内角、两内有一边.在刚才的探索过程中,我们已经发现三内角不能保证三角形全等.下面我们就逐一探索其余的三种情况.3、如图2,AC、BD相交于O,AO、BO、CO、DO的长度如图所标,△ABO 和△CDO是否能完全重合呢?不难看出,这两个三角形有三对元素是相等的:AO=CO,∠AOB=∠COD,BO=DO.如果把△OAB绕着O点顺时针方向旋转,因为OA=OC,所以可以使OA 与OC重合;又因为∠AOB =∠COD,OB=OD,所以点B与点D重合.这样△ABO与△CDO就完全重合.由此,我们得到启发:判定两个三角形全等,不需要三条边对应相等和三个角对应相等.而且,从上面的例子可以引起我们猜想:如果两个三角形有两边和它们的夹角对应相等,那么这两个三角形全等.4.上述猜想是否正确呢?不妨按上述条件画图并作如下的实验:(1)读句画图:①画∠DAE=45°,②在AD、AE上分别取B、C,使AB =3.1cm,AC=2.8cm.③连结BC,得△ABC.④按上述画法再画一个△A'B'C'.(2)如果把△A'B'C'剪下放到△ABC上,想一想△A'B'C'与△ABC是否能够完全重合?5.“边角边”公理.有两边和它们的夹角对应相等的两个三角形全等(简称“边角边”或“SAS”)书写格式在△ABC和△A1B1C1中1B 1C A B A 1∴ △ABC ≌△ A 1B 1C 1(SAS )用上面的规律可以判断两个三角形全等.判断两个三角形全等的推理过程,叫做证明三角形全等.所以“SAS ”是证明三角形全等的一个依据..三、小组合作学习(1)如图3,已知AD ∥BC ,AD =CB ,要用边角边公理证明△ABC ≌△CDA ,需要三个条件,这三个条件中,已具有两个条件,一是AD =CB(已知),二是___________;还需要一个条件_____________(这个条件可以证得吗?).(2)如图4,已知AB =AC ,AD =AE ,∠1=∠2,要用边角边公理证明△ABD ≌ACE ,需要满足的三个条件中,已具有两个条件:_________________________还需要一个条件_____________(这个条件可以证得吗?).四、阅读例题五、评价反思 概括总结:1.根据边角边公理判定两个三角形全等,要找出两边及夹角对应相等的三个条件.2.找使结论成立所需条件,要充分利用已知条件(包括给出图形中的隐含条件,如公共边、公共角等),并要善于运用学过的定义、公理、定理.六、作业:七、深化提高1.已知:如图,AB=AC,F、E分别是AB、AC的中点.求证:△ABE≌△ACF.2.已知:点A、F、E、C在同一条直线上,AF=CE,BE∥DF,BE=DF.求证:△ABE≌△CDF.3、已知:AD∥BC,AD=CB,AE=CF(图3).求证:△ADF≌△CBE。
教学设计学情诊断学生在前面已经学习了全等三角形判定的两个基本事实“边边边”“边角边”,本节课将继续研究第三种情况“已知两角及一边分别相等的两个三角形是否全等?”类比前面的探究思路,仍需对“两角及一边”的位置关系进行分类讨论,探究的具体方法继续采用“尺规作图及将三角形叠合验证的办法”,整个探究思路和方法与前面的学习过程保持了一致性,进一步内化分类思想,发展几何直观、空间观念、提升推理能力。
通过本节课的学习,无论是研究几何图形的基本思想和方法还是几何命题的推理证明方法都得到进一步强化和完善,这对于后续角平分线的性质、四边形、圆相关知识的学习奠定扎实的基础。
教学目标根据学科课程标准和学生实际,确定本节课的学习目标:①掌握基本事实:两角及其夹边分别相等的两个三角形全等(边角边);及其推论(角角边)①经历探索基本事实“角边角”及其推论“角角边”的过程,体会分类讨论思想,感悟探究几何图形的基本方法,内化几何证明的一般步骤,养成严谨的数学思维习惯。
①经历尺规作图探究“角边角”的过程,进一步增强学生空间观念、几何直观,在利用判定证明几何命题的过程中进一步发展推理能力,落实用数学的眼光观察现实世界和用数学的思维思考现实世界的核心素养。
教学重点与难点本节课的教学重点:探索并验证基本事实“角边角”及其推论“角角边”的正确性;会用“角边角、角角边”证明两个三角形全等。
本节课的教学难点:在解题过程中,找到全等条件、分析证明思路、准确写出推理过程。
教学过程设计环节一:创设情景、引入课题如图所示,小明不慎把一块三角形的玻璃打碎成了三块,他想要去玻璃店里配一块完全一样的玻璃那么只拿一块去,你看行吗?你会拿哪一块呢?师生活动:教师提出问题,引发学生思考问题1回顾已经学习过的SSS 、SAS 判定三角形全等的方法问题2上面的问题是否可以转化成数学问题?问题3上面的问题能不能用我们前两节的知识进行证明?问题4 已知三角形的两个角和两角所夹边相等,能证明三角形全等吗?设计意图:通过实际问题创设情境,激发学生学习兴趣,在尝试问题解决的过程中,产生质疑,提出猜想,为后续探究活动脱好铺垫,发展学生抽象能力、合情推理。
人教版数学八年级上教策2 W “边角边"1.理解并掌握三角形全等的判定方法------- “边角边”.(重点)2.能运用“边角边”判定方法解决有关囿(重点)3「边角边”判定方法的探究以及适合'边角边”判定方法的条件的搏(难点)一、情境导入小伟作业本上画的三角形被墨迹污染他想画一个与原来完全一样的三角形,他该怎么办?请你帮助小伟想一个办法,并说明你的理由.想一想:要画一个三角形与小伟画的三角形全等,需要几个与边或角的大小有关的条件?只知道一个条件(一角或一边)行吗?两个条件呢?三个条件呢?让我们一起来探索三角形全等的条件吧二、合作探究探究点一:应用"边角边字I」定两三角形全等[类型_別用SAS”判定三角形全等 ________如图,A、D、F、B 在同一直线上,AD=BF, AE=BC, S AE||BC.求证:^AEF塁△ BCD.解析:由AE||BC,根据平行线的性质,可得zA=zB,由AD=BF可得AF=BD,又AE = BC,根据SAS,即可证得^AEF奧BCD・AE=BC,SzA=z B, 证明:・. AE||BC,・・z A=zB. ・・ AD= BF,・ AF=BD.在^AEF 和^BCD 中,•/ jAF=BD, ・•・△ AEF塁△ BCD(SAS)・方法总结判定两个三角形全等时,若有两边一角对应相等时,角必须两边的術.册型二勅下列条件中,不能证明公AB3 △ DEF的是()探究点二:全等三角形判定与性质的综合爲 【类型一刑用全等三角形进行证明镰蔭1已知:如图,BC||EF,解析:利用已知条件易证 N ABC=N FBE,再根据全等三角形的判定方法可证明△AB3 A RBE,由全等三角形的性质即可得颈HzBEF.再根据平行,可得出N BEF 的度 数,从而可知N C 的度数.fBC=BE,奧△ FBE(SAS), . .z OzBEF •又T BC|| EF,・.N C=z BEF =45°.方法总结 全等三角形是证明线段和角相等的重要工具【类型二,等三角形与其他图形的综合A. AB=DE, N B=2 E,B. AB=DE, z A= 2 D,C. BC-EF, N B — N E,D. BC=EF,N C=N F,解析:要判断能不能使 只有燼的条件不符合,故徒BC=EF AC=DF AC-DFAC=DF△ABC 塁A DEF,应看所给出的条件是不是两边和这两边的夹角,方法总结判断三角形全等时, 注意两边与其中一边的对角相等的两个三角形不一定全 等•解题吋要根据已知条件的位置来考虑,SSA 时是不能判定三角形全等的.解:. .z ABC=z FBE •在△ ABC 和△ FBE 中,zAB 皆N FBE, ..△ABCAB=FB,若21- 45°,求z C 的度数.解析:(1)因为已知条件中有两个正方形,所以AD=CD, DE=DG,它们的夹角都是N ADG加上直角,可得夹角相等,所以 AADE 和ACDG 全等;(2)再利用互余关系可以证明 AE 丄CG. 证明:⑴ T 四边形 ABCD 、DEFG 都是正方形,/.AD= CD, GD= ED. *. 2 CDG= 90° + ^ ADG,N ADE=90° + N ADG, ・・.z CDG = z ADE.在△ ADE 和△ CDG 中,丁DE=GD,竺△ CDG(SAS),・•・ AE=CG ;如图,四边形ABCD 、DEFG 都是正方形,连從、CG •求证:(1) AE=CG ; (2) AE 丄CG.AD=CD,]N ADE = N CDG,・•・△ ADE⑵摩与DG 相交于 MAE 与CG 相交于N 在△ GMN 和△ DME 中,由⑴得N CGD = N AED, 又GMNzDME, zDEM + zDME=90。
12.2 三角形全等的判定(2)教学目标知识与技能1.掌握三角形全等的“SAS”条件.2.能运用“SAS”证明简单的三角形全等问题.过程与方法经历探索三角形全等条件的过程,培养学生观察分析图形能力、动手能力.情感态度价值观通过对问题的共同探讨,培养学生的协作精神.教学难点指导学生分析问题,寻找判定三角形全等的条件.教学重点应用“边角边”证明两个三角形全等,进而得出线段或角相等.教学过程(师生活动)设计理念创设情境,引入课题1.怎样的两个三角形是全等三角形?2.全等三角形的性质?3.“SSS”的内容是什么?交流对话,探求新知多媒体出示探究3:已知任意△ABC,画△A'B'C',使A'B'=AB,A'C'=AC,∠A'=∠A.教帅点拨,学生边学边画图,再让学生把画好的△A'B'C',剪下放在△ABC上,观察这两个三角形是否全等根据前面的操作,鼓励学生用自己的语言来总结规律:两边和它们的夹角分别相等的两个三角形全等.(可以简写成“边角边”或“SAS”)补充强调:角必须是两条相等的对应边的夹角,边必须是夹相等角的两对边.培养学生的动手操作能力.使学生可以非常直观地获得结果.培养学生的概括能力和语言表达能力.使学生有更深刻的认识和理解.应用新知,体验成功出示例2,如图,有—池塘,要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA,连接BC并延长到E,使CE=CB.连接DE,那么量出DE的长就是A、B的距离,为什么?让学生充分思考后,书写推理过程,并说明每一步的依据.(若学生不能顺利得到证明思路,教师也可作通过测量池塘两端的距离这样一个实际问题.让学生综合运用了三角形全等的判定和性质,体验数学来源于实践.又服务于实践的思想.同时使学生进一步熟悉推理论证的模式,进一步完善学生的证明书写.如下分析:要想证AB=DE,只需证△ABC≌△DEC△ABC与△DEC全等的条件现有……还需要……)明确证明分别属于两个三角形的线段相等或者角相等的问题,常常通过证明这两个三角形全等来解决.再次探究,释解疑惑出示思考:我们知道,两边和它们的夹角对应相等的两个三角形全等.由“两边及其中一边的对角对应相等”的条件能判定两个三角形全等吗?为什么?让学生模仿前面的探究方法,得出结论:两边及其中一边的对角对应相等的两个三角形不一定全等.让学生思考、交流、探讨,通过学生之间的交流、探讨活动,培养学生的协作精神,同时也释解心中的疑惑.巩固练习教科书第39页,练习1、2.教给学生寻找全等条件的方法,完善学生全等的证明书写.小结与作业小结提高1.判定三角形全等的方法;2.证明线段、角相等常见的方法有哪些?让学生自由表述,其他学生补充,让学生自己将知识系统化,以自己的方式进行建构.通过课堂小结,归纳整理本节课学习的内容,帮学生完善认知结构.形成解题经验.布置作业1.必做题:2.选做题:让学生巩固所学知识,注意学生能力的发展.1、在最软入的时候,你会想起谁。
三角形全等的判定《“边角边”判定定理》教学设计一、教学目标1.知识与技能目标理解并掌握三角形全等的“边角边”判定定理。
能够运用“边角边”判定定理进行三角形全等的证明和相关计算。
2.过程与方法目标通过观察、操作、猜想、推理等活动,培养学生的空间观念和逻辑推理能力。
经历探索“边角边”判定定理的过程,体会分类讨论和转化的数学思想。
3.情感态度与价值观目标在合作探究中,培养学生的团队协作精神和勇于探索的品质。
感受数学的严谨性,激发学生对数学的兴趣。
二、教学重难点1.教学重点“边角边”判定定理的内容及应用,探索“边角边”判定定理的过程。
2.教学难点“边角边”判定定理的证明,灵活运用“边角边”判定定理解决复杂问题。
三、教学方法讲授法、探究法、讨论法、练习法四、教学过程(一)导入新课教师活动:展示两个形状相同但大小不同的三角形,提问:这两个三角形全等吗?为什么?回顾已学的三角形全等判定方法(如:边边边),引出本节课的主题:探索新的三角形全等判定方法。
学生活动:观察三角形,思考老师的问题,回答:不全等,因为大小不同。
回忆已学知识,准备学习新知识。
活动预设:学生可能对三角形全等的概念理解不够清晰,教师需要进一步引导和解释。
设计意图:通过直观的展示,引发学生对三角形全等条件的思考,培养直观想象素养。
复习旧知,为引入新知做好铺垫,建立知识的连贯性。
(二)新课讲授1.实验探究教师活动:提出问题1:如果已知两个三角形的两条边和一个角对应相等,这两个三角形一定全等吗?给出两组三角形的边和角的条件,一组是两边及其夹角相等,另一组是两边及其非夹角相等。
提出问题2:先试着画出两边及其夹角相等的三角形,然后剪下来与同桌的对比,能重合吗?提出问题3:再画出两边及其非夹角相等的三角形,剪下来对比,能重合吗?巡视各小组,指导作图方法。
学生活动:思考老师提出的问题1。
小组合作,按照给定条件作图。
对比所作三角形,回答问题2 和3。
活动预设:部分学生可能在作图过程中出现误差,教师及时给予纠正和指导。
第2课时 “边角边”
教学目标
1.理解并掌握三角形全等的判定方法——“边角边”.(重点) 2.能运用“边角边”判定方法解决有关问题.(重点) 3.“边角边”判定方法的探究以及适合“边角边”判定方法的条件的寻找.(难点) 教学过程 一、情境导入
小伟作业本上画的三角形被墨迹污染了,他想画一个与原来完全一样的三角形,他该怎么办?请你帮助小伟想一个办法,并说明你的理由.
想一想:要画一个三角形与小伟画的三角形全等,需要几个与边或角的大小有关的条件?只知道一个条件(一角或一边)行吗?两个条件呢?三个条件呢?
让我们一起来探索三角形全等的条件吧!
二、合作探究
探究点一:应用“边角边”判定两三角形全等 【类型一】 利用“SAS ”判定三角形全等
如图,A 、D 、F 、B 在同一直线上,AD =BF ,AE =BC ,且AE ∥BC .求证:△AEF ≌△BCD .
解析:由AE ∥BC ,根据平行线的性质,可得∠A =∠B ,由AD =BF 可得AF =BD ,又AE =BC ,根据SAS ,即可证得△AEF ≌△BCD .
证明:∵AE ∥BC ,∴∠A =∠B .∵AD =BF ,∴AF =BD .在△AEF 和△BCD 中,∵⎩⎪⎨⎪
⎧AE =BC ,∠A =∠B ,AF =BD ,
∴△AEF ≌△BCD (SAS).
方法总结:判定两个三角形全等时,若有两边一角对应相等时,角必须是两边的夹角. 【类型二】 “边边角”不能证明三角形全等
下列条件中,不能证明△ABC ≌△DEF 的是( )
A .A
B =DE ,∠B =∠E ,B
C =EF B .AB =DE ,∠A =∠
D ,AC =DF C .BC =EF ,∠B =∠
E ,AC =D
F D .BC =EF ,∠C =∠F ,AC =DF
解析:要判断能不能使△ABC ≌△DEF ,应看所给出的条件是不是两边和这两边的夹角,只有选项C 的
条件不符合,故选C.
方法总结:判断三角形全等时,注意两边与其中一边的对角相等的两个三角形不一定全等.解题时要根据已知条件的位置来考虑,只具备SSA 时是不能判定三角形全等的.
探究点二:全等三角形判定与性质的综合运用 【类型一】 利用全等三角形进行证明或计算
已知:如图,BC ∥EF ,BC =BE ,AB =FB ,∠1=∠2,若∠1=45°,求∠C 的度数.
解析:利用已知条件易证∠ABC =∠FBE ,再根据全等三角形的判定方法可证明△ABC ≌△FBE ,由全等三角形的性质即可得到∠C =∠BEF .再根据平行,可得出∠BEF 的度数,从而可知∠C 的度数.
解:∵∠1=∠2,∴∠ABC =∠FBE .在△ABC 和△FBE 中,∵⎩⎪⎨⎪
⎧BC =BE ,∠ABC =∠FBE ,AB =FB ,
∴△ABC ≌△FBE (SAS),
∴∠C =∠BEF .又∵BC ∥EF ,∴∠C =∠BEF =∠1=45°.
方法总结:全等三角形是证明线段和角相等的重要工具. 【类型二】 全等三角形与其他图形的综合
如图,四边形ABCD 、DEFG 都是正方形,连接AE 、CG .求证:(1)AE =CG ;(2)AE ⊥CG .
解析:(1)因为已知条件中有两个正方形,所以AD =CD ,DE =DG ,它们的夹角都是∠ADG 加上直角,可得夹角相等,所以△ADE 和△CDG 全等;(2)再利用互余关系可以证明AE ⊥CG .
证明:(1)∵四边形ABCD 、DEFG 都是正方形,∴AD =CD ,GD =ED .∵∠CDG =90°+∠ADG ,∠ADE =90°
+∠ADG ,∴∠CDG =∠ADE .在△ADE 和△CDG 中,∵⎩⎪⎨⎪
⎧AD =CD ,∠ADE =∠CDG ,DE =GD ,
∴△ADE ≌△CDG (SAS),∴AE =CG ;
(2)设AE 与DG 相交于M ,AE 与CG 相交于N ,在△GMN 和△DME 中,由(1)得∠CGD =∠AED ,又∵∠GMN
=∠DME ,∠DEM +∠DME =90°,∴∠CGD +∠GMN =90°,∴∠GNM =90°,∴AE ⊥CG .
三、板书设计
边角边
1.两边及其夹角分别相等的两个三角形全等.简记为“边角边”或“SAS ”. 2.“边角边”判定方法可用几何语言表示为:
在△ABC 和△A 1B 1C 1中,∵⎩⎪⎨⎪
⎧AB =A 1B 1,∠B =∠B 1,BC =B 1C 1,
∴△ABC ≌△A 1B 1C 1(SAS).
3.“SSA ”不能判定两个三角形全等.
教学反思
本节课从操作探究入手,具有较强的操作性和直观性,有利于学生从直观上积累感性认识,从而有效地激发了学生的学习积极性和探究热情,提高了课堂的教学效率,促进了学生对新知识的理解和掌握.。