不规则三角网TIN的建立
- 格式:ppt
- 大小:11.38 MB
- 文档页数:57
摘要作为空间数据基础设施中的“4D”产品之一和地理信息系统的核心数据库,数字高程模型(DEM)已在测绘、遥感、农林规划、城市规划、土木水利工程、地学分析等各个领域都有了广泛的应用。
数字高程模型的表示方法主要有规则格网模型、不规则三角网模型和等高线模型三种,而不规则三角网(TIN)是数字高程模型中最基本和最重要的一种模型,它能以不同层次的分辨率来描述地形表面,并可以灵活的处理特殊地形。
因此,围绕基于TIN 的DEM 的构建,本文主要论述了基于 TIN 结构的数字高程模型建模原理和方法,离散点的Delaunay 三角网生成算法,建立有约束条件的约束三角网,最后分析了建立的 TIN模型在土方计算方面的应用。
在本论文论述的过程中,针对传统算法进行了对比和分析后,在逐点插入法的基础之上,提出了一些新的细部改进的实现方法。
局部优化操作和改进的算法实现使得对大容量离散点的三角网构建速度更快,效率更高;对限制条件的嵌入满足由此计算出来的土方量更接近实际期望值。
本论文中主要的研究成果和内容如下: 1)在离散点的 Delaunay 三角网生成方面,本文中在插入点算法的基础上,建立凸包和矩形包容盒,建立虚拟网格,对原始离散点进行一级格网自适应分块,并建立索引关系。
在定位点所在三角形时引入快速点定位算法,简易的空外接圆及圆内测试公式,通过这些改进使得 Delaunay 三角网的剖分更加高效。
2)在约束 Delaunay 三角网理论基础之上,结合上面散点域的剖分方法,对已有的两步算法基础上改进,完成约束 Delaunay 三角网的构建。
在其过程中应用矢量点积等数学工具改善了计算中的凹凸点判断,继续采用上章的快速索引和最速定位方法,并且对约束线相切等特殊情形进行了处理,进一步完善了算法的稳健性。
3)对于在约束三角网构造基础上的 TIN 模型的应用,文中对其在土方量计算方面精度的优越性进行了分析,在可视化表达方面最后结合广东省东莞市某高尔夫球场工程给出了例证。
[测绘]不规则点建立TIN和等高线的方法!不规则点建立TIN对于不规则分布的高程点,可以形式化地描述为平面的一个无序的点集P,点集中每个点p对应于它的高程值。
将该点集转成TIN,最常用的方法是Delaunay三角剖分方法。
生成TIN的关键是Delaunay三角网的产生算法,下面先对Delaunay三角网和它的偶图V oronoi图作简要的描述。
V oronoi图,又叫泰森多边形或Dirichlet图,它由一组连续多边形组成,多边形的边界是由连接两邻点线段的垂直平分线组成。
N个在平面上有区别的点,按照最近邻原则划分平面:每个点与它的最近邻区域相关联。
Delaunay三角形是由与相邻V oronoi多边形共享一条边的相关点连接而成的三角形。
Delaunay三角形的外接圆圆心是与三角形相关的V oronoi多边形的一个顶点。
Delaunay三角形是V oronoi图的偶图,如图所示。
此主题相关图片如下:对于给定的初始点集P,有多种三角网剖分方式,而Delaunay三角网有以下特性:1)其Delaunay三角网是唯一的;2)三角网的外边界构成了点集P的凸多边形“外壳”;3)没有任何点在三角形的外接圆内部,反之,如果一个三角网满足此条件,那么它就是Delaunay三角网。
4)如果将三角网中的每个三角形的最小角进行升序排列,则Delaunay三角网的排列得到的数值最大,从这个意义上讲,Delaunay三角网是“最接近于规则化”的三角网。
下面简要介绍Delaunay三角形产生的基本准则:Delaunay三角形产生准则的最简明的形式是:任何一个Delaunay三角形的外接圆的内部不能包含其它任何点[Delaunay 1934]。
Lawson[1972]提出了最大化最小角原则:每两个相邻的三角形构成的凸四边形的对角线,在相互交换后,六个内角的最小角不再增大。
Lawson [1977]又提出了一个局部优化过程LOP(Local Opti mization Procedure)方法。
2。
1数字高程模型建模数字高程模型有两种模式[4],一种是不规则三角网模型TIN,另一种是规则格网模型Grid。
两种模型可以相互转换,但一般大规模的地形都采用规则格网模型。
格网数字高程模型的建模方法可以有多种,最常用的方法是数字摄影测量方法,通过影像匹配自动生成数字高程模型。
当得不到立体影像,仅有地形图时,通常采用对现有地图进行扫描,获得矢量化等高线,再由等高线内插成数字高程模型。
当然,我们也可以通过外业测量的方法,获得大量高程点三维坐标,再内插成数字高程模型。
地面纹理影像可以从现有航空影像或航天遥感影像获得,也可根据地面物体的特征,人工赋予相应的纹理影像。
但不管用哪种方法,都要先将原始影像处理成数字正射影像,它有一致的比例尺,消除了投影误差,坐标与数字高程模型一致。
这样经过处理的数字正射影像才能与数字高程模型匹配,形成真实的景观模型。
由原始影像处理成数字正射影像可以有多种方法,通常有数字摄影测量方法和单片微分纠正方法。
不论哪种方法都是消除像片倾斜和投影差的过程,都要进行绝对定位使之归化比例尺和地面坐标。
2。
3三维建筑结构数据的获取与处理三维建筑结构是指房屋建筑、路桥、油罐、电视塔等各种三维实体,获得这些三维目标的框架数据主要有两种方法。
一种是用数字摄影测量方法,在立体模型上采集建筑物的框架坐标,然后通过建模软件将它们构造成体对象。
另一种方法是采用三维设计软件,如3Dmaxs,Multigen,Microstation等软件。
将设计好的三维实体导入并定位于地形景观模型中。
无论哪一种方法,都要对数据进行检核,使它们的连线正确,以利于粘贴侧面纹理。
三维实体数据检核的过程如下:(1)拓扑结构检查。
通过对每一地物的三维模型与航测像对中的立体影像的比对,检查三维模型的拓扑结构是否正确。
(2)建筑物顶部同高检查。
在现实中建筑物顶面绝大部分表现为同高的情况,而这就需要对三维建筑物模型的顶面进行同高检查,从而使点与平面符合。
2。
1数字高程模型建模数字高程模型有两种模式[4],一种是不规则三角网模型TIN,另一种是规则格网模型Grid。
两种模型可以相互转换,但一般大规模的地形都采用规则格网模型。
格网数字高程模型的建模方法可以有多种,最常用的方法是数字摄影测量方法,通过影像匹配自动生成数字高程模型。
当得不到立体影像,仅有地形图时,通常采用对现有地图进行扫描,获得矢量化等高线,再由等高线内插成数字高程模型。
当然,我们也可以通过外业测量的方法,获得大量高程点三维坐标,再内插成数字高程模型。
地面纹理影像可以从现有航空影像或航天遥感影像获得,也可根据地面物体的特征,人工赋予相应的纹理影像。
但不管用哪种方法,都要先将原始影像处理成数字正射影像,它有一致的比例尺,消除了投影误差,坐标与数字高程模型一致。
这样经过处理的数字正射影像才能与数字高程模型匹配,形成真实的景观模型。
由原始影像处理成数字正射影像可以有多种方法,通常有数字摄影测量方法和单片微分纠正方法。
不论哪种方法都是消除像片倾斜和投影差的过程,都要进行绝对定位使之归化比例尺和地面坐标。
2。
3三维建筑结构数据的获取与处理三维建筑结构是指房屋建筑、路桥、油罐、电视塔等各种三维实体,获得这些三维目标的框架数据主要有两种方法。
一种是用数字摄影测量方法,在立体模型上采集建筑物的框架坐标,然后通过建模软件将它们构造成体对象。
另一种方法是采用三维设计软件,如3Dmaxs,Multigen,Microstation等软件。
将设计好的三维实体导入并定位于地形景观模型中。
无论哪一种方法,都要对数据进行检核,使它们的连线正确,以利于粘贴侧面纹理。
三维实体数据检核的过程如下:(1)拓扑结构检查。
通过对每一地物的三维模型与航测像对中的立体影像的比对,检查三维模型的拓扑结构是否正确。
(2)建筑物顶部同高检查。
在现实中建筑物顶面绝大部分表现为同高的情况,而这就需要对三维建筑物模型的顶面进行同高检查,从而使点与平面符合。
第一章绪论1.1研究背景地球是人类生活和活动的承载体。
多年以来,我们为了更充分的认识自然客体和改造自然,总在不懈的努力尝试用不同的方式方法来描述、表达人所处的环境,其中地形图就是一个有代表性的测绘表述变迁的缩影。
从最开始的象形符号抽象的雏形到后来的在二维介质上对三维表面进行地形写景图,地貌写景图等描述是一个进步,但写景方式不具备可量测性,所以还是很局限的。
随着测绘技术发展,地形的表达也由写景式的定性表达过渡到了以等高线为主的矢量化表达。
航空摄影测量,遥感技术提供的影响都在对三维现实世界的模拟。
但是有一个矛盾体,那就是对于地形表面形态而言,一方面我们尽可能的从几何角度去理解和描述以解决实际应用中的可量测性;另外一个方面它本身是一种三维景观现象,对于其表述要考虑生理视觉感受,我们总是希望能够尽可能的直观形象逼真。
从20世纪四十年代开始的计算机图形学、计算机辅助制图等相关学科和理论的发展,使得在测绘领域,在图形表达表述方面发生了从模拟表达时代走向了数字表达时代,有了质的飞跃。
其中地理信息系统(GIS )及数字高程模型(DEM )学科或技术显得尤为重要。
地理信息系统,简称GIS (Geographical Information System ),它源于20世纪60年代初期加拿大测量学家Tomlinson 的“把地图变成数字形式的地图,以便计算机进行处理与分析”的观点,但是在技术工具处理中,则是利用计算机存贮、处理地理信息,并且在计算机软、硬件支持下,把各种资源信息和环境参数按空间分布或地理坐标,以一定的格式或者分类输入、处理、存贮、输出,用以满足其应用需要的人机交互系统。
因此GIS 的本质是在二维地理空间基础上实现对地下、地表和空中诸地理信息的数字化表达和管理。
当然地理信息系统技术发展到当前,功能不再是当初的局限于查询、检索和制图,而是丰富到空间分析、建模、决策等诸多方面,在数据管理上则从简单的栅格数据、矢量数据管理转向多元数据融合,在现实生活中应用的很活跃,也很充分。