高中物理电磁学的解题技巧分析
- 格式:doc
- 大小:13.50 KB
- 文档页数:2
高中物理电磁学的简单题解题技巧电磁学是高中物理中的重要内容之一,也是学生们普遍感到困惑的一门学科。
在电磁学中,有许多简单题目,但是由于学生对于概念的理解不够深入,常常会在解题过程中出现错误。
本文将介绍一些解决这类简单题目的技巧,以帮助学生们更好地掌握电磁学知识。
一、电场强度与电势差的关系在电磁学中,电场强度与电势差是两个重要概念。
电场强度表示单位正电荷所受到的力,而电势差则表示电场中两点之间的电势能差。
在解题过程中,有时需要根据已知条件求解电势差或者电场强度。
例如,某题目给出了一个电场强度为E的匀强电场,要求求解该电场中两点之间的电势差。
解决这类问题时,可以利用电场强度与电势差的关系公式:ΔV = -Ed,其中ΔV表示电势差,E表示电场强度,d表示两点之间的距离。
根据该公式,我们可以很容易地求解出电势差。
二、电场线与电场强度的方向在电磁学中,电场线是用来描述电场分布情况的一种图形表示方法。
电场线的方向与电场强度的方向是一致的,即电场强度的方向是沿着电场线的切线方向。
举个例子,某题目给出了一个电荷分布情况,并要求画出电场线。
解决这类问题时,可以先通过电荷的正负性确定电场的方向,然后沿着电场线的切线方向画出电场线。
通过掌握电场线与电场强度方向的关系,可以更好地理解电场的分布情况。
三、电容器的电荷与电势差的关系在电磁学中,电容器是一个重要的电路元件,用于存储电荷和电能。
电容器的电荷与电势差之间存在着一定的关系。
例如,某题目给出了一个电容器的电容量C和电势差V,要求求解该电容器中的电荷。
解决这类问题时,可以利用电容器的电荷与电势差的关系公式:Q = CV,其中Q表示电荷,C表示电容量,V表示电势差。
根据该公式,我们可以很容易地求解出电容器中的电荷。
综上所述,电磁学中的简单题目虽然表面上看起来简单,但是在解题过程中需要掌握一些基本的解题技巧。
通过理解电场强度与电势差的关系、电场线与电场强度的方向关系以及电容器的电荷与电势差的关系,我们可以更好地解决这类简单题目。
(每日一练)高中物理电磁学静电场解题技巧总结单选题1、一带负电荷的质点,在电场力作用下沿曲线abc从a运动到c,已知质点的速率是递减的.关于b点电场强度E的方向,下列图示中可能正确的是(虚线是曲线在b点的切线)A.B.C.D.答案:D解析:A、电荷做曲线运动,电场力与速度方向不在同一直线上,应指向轨迹弯曲的内侧,不可能沿轨迹的切线方向,则场强也不可能沿轨迹的切线方向.故A错误.B、负电荷所受的电场力方向与场强方向相反,图中电场力方向与速度方向的夹角为锐角,电场力做正功,电荷的速率增大,与题不符.故B错误.C、图中场强方向指向轨迹的内侧,则电场力指向轨迹的外侧,电荷的轨迹应向上弯曲,不可能沿如图的轨迹运动.故C错误.D、图中场强方向指向轨迹的外侧,则电场力指向轨迹的内侧,而且电场力方向与电荷的速度方向成钝角,电场力做负功,电荷的速率减小,符合题意.故D正确.2、带负电的粒子在某电场中仅受电场力作用,能分别完成以下两种运动:①在电场线上运动,②在等势面上做匀速圆周运动。
该电场可能由A.一个带正电的点电荷形成B.一个带负电的点电荷形成C.两个分立的带等量负电的点电荷形成D.一带负电的点电荷与带正电的无限大平板形成答案:A解析:AB.负电荷在电场线上运动,说明电场线是直线;负电荷在等势面上做匀速圆周运动,说明等势线是圆形曲线,能满足以上两种情况的场源电荷可以是一个带正电的点电荷,不可能是带负电的点电荷,所以A正确、B错误;C.两个分立的带等量正电的点电荷可以满足以上条件,而两个分立的带等量负电的点电荷不能使负电荷完成题中运动,所以C错误;D.题中情况的等势线不能使负电荷做匀速圆周运动,D错误。
故选A。
3、电源、开关、平行板电容器连成如图所示电路,上极板接地。
闭合开关S,电源对电容器充电后,电容器带电量为Q,两极板间电压为U,板间电场强度大小为E0,电容器中的P点电势为φ,则下列说法正确的是()A.若将上板下移少许,Q增大,U减小,E0不变,φ变大B.若将上板下移少许,Q不变,U减小,E0减小,φ变小C.若断开开关S,将上板下移少许,Q增大,U不变,E0增大,φ变小D.若断开开关S,将上板下移少许,Q不变,U减小,E0不变,φ变大答案:D解析:AB.电容器与电源保持连接时电容器两极板间的电压U不变,上板下移(板间距d减小)。
【高中物理】快速解答电磁学题目的20个诀窍1.若一条直线上有三个点电荷,因相互作用而平衡,其电性及电荷量的定性分布为“两同夹一异,两大夹一小”。
2.在均匀电场中,任意两个连接点中点的电势等于这两点电势的平均值。
在任何方向上,电位差都与距离成正比。
3.正电荷在电势越高的地方,电势能越大,负电荷在电势越高的地方,电势能越小。
4.电容器充电并断开电源后,只有当极板之间的距离改变时,场强才保持不变。
5.两电流相互平行时无转动趋势,同向电流相互吸引,异向电流相互排斥;两电流不平行时,有转动到相互平行且电流方向相同的趋势。
6.当带电粒子在磁场中仅受洛伦兹力时,圆周运动的周期与粒子的速度和半径无关,但仅与粒子的质量、电荷和磁感应强度有关。
7.带电粒子在有界磁场中做圆周运动(1)速度偏转角等于扫掠中心角。
(2)几个出射方向① 当粒子从线性边界进入磁场,然后飞出边界时,速度和边界之间的夹角相等。
②在圆形磁场区域内,沿径向射入的粒子,必沿径向射出――对称性。
③ 刚通过磁场边界的条件是,带电粒子在磁场中的轨迹与边界相切。
(3)运动的时间:轨迹对应的圆心角越大,带电粒子在磁场中的运动时间就越长,与粒子速度的大小无关。
8.速度选择器模型:当带电粒子以速度V进入正交电场和磁场区域时,当电场力和磁场力方向相反且满足V=E/B时,带电粒子以匀速直线运动(选定)移动与带电粒子的带电量和正负无关,但当V、B和E的任何量发生变化时,粒子将偏转。
9.回旋加速器(1)为了使粒子在加速器中不断加速,加速电场的周期必须等于回旋周期。
(2)粒子做匀速圆周运动的最大半径等于d形盒的半径。
(3)当确定粒子的质量和电量时,粒子所能达到的最大动能仅与D盒的半径和磁感应强度有关,而与加速器的电压无关(电压仅决定旋转的次数)。
(4)将带电粒子:在两盒之间的运动首尾相连起来是一个初速度为零的匀加速直线运动,带电粒子每经过电场加速一次,回旋半径就增大一次。
10.在没有外部轨道约束的情况下,复合场中带电粒子在三个场力(电场力、洛伦兹力和重力)作用下的线性运动必须是均匀的线性运动;如果是匀速圆周运动,则必须有大的、相反的方向,如电场力和重力。
《高中物理电磁学学习中的困难与应对策略》摘要:电磁学是高中物理的重要组成部分,然而学生在学习过程中常常遇到诸多困难。
本文分析了高中物理电磁学学习中的常见困难,如概念抽象、公式复杂、数学知识运用要求高等,并针对这些困难提出了相应的应对策略,包括加强概念理解、注重知识体系构建、多做习题巩固等,旨在帮助学生更好地掌握电磁学知识,提高学习效果。
一、引言电磁学在高中物理中具有重要地位,但由于其知识的抽象性和复杂性,给学生的学习带来了一定的挑战。
深入了解学生在电磁学学习中遇到的困难,并提出有效的解决策略,对于提高教学质量和学生的学习效果具有重要意义。
二、高中物理电磁学学习中的困难(一)概念抽象电磁学中的概念如电场、磁场、电磁感应等较为抽象,学生难以通过直观感受来理解,容易造成概念混淆。
(二)公式繁多且复杂电磁学涉及众多公式,如库仑定律、法拉第电磁感应定律等,公式的形式和适用条件各不相同,学生记忆和运用时容易出错。
(三)数学知识运用要求高电磁学问题的解决往往需要运用数学知识,如矢量运算、微积分等,学生数学基础薄弱可能会影响电磁学的学习。
(四)综合分析能力要求高电磁学中的题目通常需要综合考虑多个知识点,对学生的综合分析和逻辑推理能力要求较高。
三、应对策略(一)加强概念理解教师在教学中应采用多种教学方法,如实验演示、多媒体辅助教学等,帮助学生建立清晰的物理图像,加深对概念的理解。
(二)注重知识体系构建引导学生梳理电磁学的知识脉络,构建知识体系,明确各知识点之间的内在联系,便于记忆和运用。
(三)多做习题巩固通过大量的习题练习,让学生熟悉公式的运用和题型的解法,提高解题能力。
(四)提高数学能力教师在教学中应适当补充和复习相关的数学知识,培养学生运用数学工具解决物理问题的能力。
(五)培养学习兴趣通过介绍电磁学在生活和科技中的应用,激发学生的学习兴趣,提高学习的主动性。
四、结论高中物理电磁学的学习具有一定的难度,但通过采取有效的应对策略,学生能够克服困难,更好地掌握这部分知识。
浅谈高中物理电磁学的有效学习方法电磁学作为高中物理的必修内容之一,涉及到电场、磁场、电磁感应等知识点,是物理学中比较重要的部分之一。
由于其涉及到一定的数学知识和抽象概念,很多学生在学习这部分内容时会感到困惑和难以理解。
那么,如何有效地学习高中物理电磁学呢?下面我们就来浅谈一下关于高中物理电磁学的有效学习方法。
一、掌握基本概念和原理要想学好电磁学,首先要掌握基本概念和原理。
电磁学的基本概念包括电场、磁场、电荷、电流等,而电磁学的原理主要包括库仑定律、安培定律、法拉第电磁感应定律等。
在学习的过程中,要逐个原理逐个概念地进行梳理和理解,尤其要明确它们之间的关联和区别,这样才能对电磁学的知识体系有一个较为清晰的认识。
二、注重实际应用和动手实验学习电磁学不仅要掌握理论知识,更要注重实际应用和动手实验。
学生可以通过实验仪器搭建电路、观察电磁感应现象、测量电场强度等,从而加深对电磁学知识的理解和记忆。
通过实验,学生可以看到抽象的概念变得具体起来,这样更有利于学生的学习。
三、掌握数学计算方法电磁学作为物理学中的一部分,离不开数学的运用。
在学习电磁学的过程中,学生要掌握一定的数学计算方法,比如向量运算、积分运算等。
只有掌握了数学计算方法,才能更好地理解电磁学的概念和原理。
四、善于总结归纳在学习电磁学的过程中,学生要善于总结归纳,将学过的知识点进行整合和梳理。
可以通过做总结性的思维导图、练习题目、归纳笔记等形式加深对知识的理解和记忆。
这样可以形成一个完整的知识系统,为复习和考试打下良好的基础。
五、积极参与讨论和互助学习学习电磁学的过程中,学生可以和同学们进行讨论和互助学习。
通过与同学们的交流,可以发现自己对知识点的不足之处,从而更好地进行学习和提高。
在学习的过程中,可以积极参与课堂讨论、小组讨论、同学讨论会等形式,这样有利于自己的知识水平的提高。
学习高中物理电磁学需要具备一定的数学基础,要注重实际应用和动手实验,掌握基本概念和原理,善于总结归纳,积极参与讨论和互助学习。
高中物理电磁学磁场问题解析磁场问题在高中物理中是一个重要且常见的考点。
理解和掌握磁场的概念、性质以及应用,对于学生来说是非常关键的。
在本文中,我们将通过几个具体的题目来说明磁场问题的考点,并给出解题技巧和指导。
1. 题目:一根长直导线通有电流I,求导线周围的磁场强度。
这是一个经典的磁场问题,考察了安培环路定理的应用。
根据安培环路定理,沿着一个闭合回路的磁场强度的积分等于通过该回路的总电流。
对于一根长直导线,可以选择一个圆形回路,其半径与导线的距离相等。
根据安培环路定理,磁场强度H乘以回路的周长等于导线的电流I。
因此,我们可以得到磁场强度H等于I除以2πr,其中r是回路的半径。
这个题目的考点是通过安培环路定理计算磁场强度。
类似的问题还有求解长直导线的磁场分布、两根平行导线之间的磁场强度等。
通过理解安培环路定理的原理和应用,学生可以更好地解决这类问题。
2. 题目:一根长直导线通有电流I,求导线上某点的磁场强度。
这个题目考察了比奥-萨伐尔定律的应用。
根据比奥-萨伐尔定律,导线上某点的磁场强度与电流的大小、导线到该点的距离以及导线与该点的夹角有关。
具体地,磁场强度H等于导线上的电流I乘以一个常数μ0除以4π乘以导线到该点的距离r再乘以sinθ,其中θ是导线与该点的夹角。
这个题目的考点是根据比奥-萨伐尔定律计算导线上某点的磁场强度。
类似的问题还有求解长直导线上不同点的磁场强度、螺线管的磁场分布等。
理解比奥-萨伐尔定律的原理和应用,对于解决这类问题非常重要。
3. 题目:一根长直导线通有电流I,求导线附近某点的磁感应强度。
这个题目考察了洛伦兹力的应用。
根据洛伦兹力的原理,磁感应强度B等于磁场强度H乘以导线上的电流I。
因此,我们可以得到磁感应强度B等于μ0乘以I除以2πr,其中μ0是真空中的磁导率。
这个题目的考点是根据洛伦兹力计算导线附近某点的磁感应强度。
类似的问题还有求解长直导线附近不同点的磁感应强度、螺线管附近的磁感应强度等。
高中物理电磁学电磁感应问题解析电磁感应是高中物理中一个重要的概念,也是学生普遍感到困惑的一个难点。
本文将通过具体的题目举例,分析解题思路和考点,并给出解题技巧,帮助高中学生更好地理解和应用电磁感应的知识。
一、题目一:一根导线以速度v=10m/s垂直地穿过一个磁感应强度为B=0.5T的磁场,导线的长度为l=20cm,求导线两端的感应电动势。
解析:这是一个简单的电磁感应问题,考察对电磁感应定律的理解和应用。
根据电磁感应定律,感应电动势的大小等于磁感应强度与导线长度的乘积再乘以导线的速度。
所以,感应电动势E=Blv=0.5T×0.2m×10m/s=1V。
解题技巧:对于这类简单的电磁感应问题,只需要根据电磁感应定律进行计算即可。
注意单位的转换和计算的准确性。
二、题目二:一根导线以速度v=5m/s垂直地穿过一个磁感应强度为B=0.2T 的磁场,导线的长度为l=30cm,求导线两端的感应电流。
解析:这是一个稍微复杂一些的电磁感应问题,考察对电磁感应定律和欧姆定律的理解和应用。
根据电磁感应定律,感应电动势的大小等于磁感应强度与导线长度的乘积再乘以导线的速度。
所以,感应电动势E=Blv=0.2T×0.3m×5m/s=0.3V。
根据欧姆定律,感应电流的大小等于感应电动势与导线的电阻之比。
假设导线的电阻为R,那么感应电流I=E/R=0.3V/R。
解题技巧:对于这类稍微复杂一些的电磁感应问题,需要综合运用电磁感应定律和欧姆定律进行计算。
注意单位的转换和计算的准确性。
同时,要注意导线的电阻是否给出,如果没有给出,需要通过其他已知条件来求解。
三、题目三:一个导体圆环的半径为R=10cm,它的面积为S=πR²,导体圆环以角速度ω=2πrad/s绕垂直于圆环平面的轴旋转,求导体圆环两端的感应电动势。
解析:这是一个涉及到旋转运动的电磁感应问题,考察对电磁感应定律和旋转运动的理解和应用。
电磁学解题技巧帮助高中生提高电磁学问题解题能力的教案引言:电磁学是物理学中的一门重要学科,也是高中物理的必修内容之一。
电磁学问题解题是高中生学习电磁学过程中需要面对的一项重要挑战。
本教案旨在向高中生介绍一些电磁学解题技巧,帮助他们提高解题能力。
一、理解电磁学基础知识掌握电磁学的基础知识对于解题能力的提高至关重要。
高中生应该从电磁学的基本概念、电场与磁场的相互作用、电磁感应等方面进行系统学习。
只有建立牢固的基础知识,才能更好地应对解题过程中的各种复杂情况。
二、多做例题和习题解题能力的提高需要大量的练习。
高中生应该在课后多花时间做电磁学相关的例题和习题。
通过不断锻炼和反复思考,可以更好地理解电磁学问题解题的思路和方法,为以后的解题提供经验积累。
三、理清解题思路在解决电磁学问题时,理清解题思路是非常重要的。
高中生应该学会运用所学的理论知识,将问题进行拆解,找出问题的关键点,并着重解决。
在解题过程中,可以采用逐步推导的方式,将问题化繁为简,逐步逼近最终答案。
四、合理利用工具在解决电磁学问题时,合理利用工具可以提高解题效率。
例如,在计算电磁场强度时,可以使用计算器或电磁场仿真软件来减少计算过程中的失误。
但是,高中生也应该注意不要过度依赖工具,要保持对解题思路和方法的独立思考。
五、培养逻辑思维能力解决电磁学问题需要进行逻辑推理和分析。
高中生应该在学习中培养逻辑思维能力,学会运用逻辑思维的方法解决问题。
例如,通过画图、列方程等方式,将问题转化为具体的数学形式,进而进行推导和解答。
六、合作学习合作学习是一种有效的提高解题能力的方式。
在小组内互相讨论、互相学习,可以开阔思路,激发创新思维。
通过与同学合作解题,高中生可以从不同的角度观察问题,并从他人的解题方法中汲取经验和智慧。
结论:电磁学问题解题是高中生学习物理的重要内容之一。
通过理解电磁学基础知识、多做例题和习题、理清解题思路、合理利用工具、培养逻辑思维能力以及合作学习等方式,高中生可以提高电磁学问题解题的能力。
高中物理电磁学的计算题解题技巧电磁学是高中物理中的重要内容之一,也是学生们较为困惑的部分。
在学习电磁学时,学生们经常会遇到各种计算题,需要掌握一定的解题技巧。
本文将以几个常见的电磁学计算题为例,介绍一些解题技巧,帮助高中学生更好地理解和应用电磁学知识。
1. 静电场强度计算题静电场强度的计算是电磁学中的基础题型。
例如,给定一个点电荷和一个观察点,要求计算观察点处的电场强度。
解决这类问题时,首先需要明确电场强度的定义,即单位正电荷所受到的力。
然后,根据库仑定律,计算出电荷与观察点之间的距离和电荷的大小,最后代入公式求解。
2. 电场能量计算题电场能量的计算是电磁学中的另一个重要题型。
例如,给定一个电容器,要求计算其中储存的电场能量。
解决这类问题时,需要掌握电场能量的计算公式,即电场能量等于电容器两极板之间的电压乘以电容值的平方再除以2。
根据题目给出的条件,计算出电压和电容值,代入公式求解即可。
3. 磁感应强度计算题磁感应强度的计算是电磁学中的又一个常见题型。
例如,给定一个长直导线和一个观察点,要求计算观察点处的磁感应强度。
解决这类问题时,需要掌握磁感应强度的计算公式,即磁感应强度等于导线上电流元素产生的磁场对观察点的影响之和。
根据题目给出的条件,计算出导线上电流元素的大小和观察点与电流元素之间的距离,然后代入公式求解。
4. 洛伦兹力计算题洛伦兹力的计算是电磁学中的一道较为复杂的题型。
例如,给定一个带电粒子在磁场中运动,要求计算粒子所受的洛伦兹力。
解决这类问题时,首先需要明确洛伦兹力的定义,即电荷在磁场中受到的力。
然后,根据洛伦兹力的计算公式,计算出电荷的速度、电荷的大小以及磁感应强度,最后代入公式求解。
在解决以上几类电磁学计算题时,不仅需要掌握相应的计算公式,还需要注意以下几点技巧:1. 弄清题目要求:在解题前,仔细阅读题目,了解题目要求和给出的条件。
明确需要计算的物理量和已知的物理量,有助于确定解题思路。
高中物理电磁偏转问题分析高中物理是一门探讨自然界规律的学科,其中电磁学是其重要的组成部分之一。
在学习电磁学过程中,学生通常会遇到许多与电磁偏转相关的问题。
本文将从电磁偏转的基本原理入手,分析高中物理中的电磁偏转问题,并探讨相关的解决方法。
首先,我们来看一下电磁偏转的基本原理。
在物理学中,电磁偏转是指通过电流和磁场之间的相互作用来改变运动的方向。
在高中物理课程中,学生通常会学习电流和磁场的相互作用,也就是洛伦兹力。
当带电粒子在磁场中运动时,由于洛伦兹力的作用,带电粒子会产生偏转运动。
这种偏转运动在实际生活中有许多应用,比如电子束在示波管中的偏转、质子在加速器中的偏转等等。
在学习过程中,学生可能会遇到一些与电磁偏转相关的问题,比如电子束在电子枪中的偏转问题、质子在磁场中的偏转问题等等。
针对这些问题,学生可以根据洛伦兹力的公式进行分析和计算。
学生还需要掌握一些基本的电磁学知识,比如安培环路定律、比奥-萨伐尔定律等,以便能够更好地理解和解决电磁偏转问题。
在解决这些问题时,学生需要进行适当的简化和假设,以便能够更好地理解和解决问题。
对于电子束在电子枪中的偏转问题,学生可以假设电子的运动是匀速直线运动,然后根据洛伦兹力的公式,计算电子在电场和磁场中的偏转情况。
对于质子在磁场中的偏转问题,学生可以假设质子的运动是匀速圆周运动,然后根据洛伦兹力的公式,计算质子在磁场中的偏转情况。
除了进行适当的简化和假设外,学生还需要善于利用物理学知识和数学方法,比如矢量运算、微积分等,来解决电磁偏转问题。
学生还需要学会利用实验手段来验证和检验理论计算的结果,从而提高解决问题的准确性和可靠性。
电磁偏转是高中物理中的重要问题,学生需要通过深入理解电磁学知识和熟练掌握解题方法,来解决与电磁偏转相关的问题。
通过解决这些问题,不仅能够更好地理解电磁学知识,还能够培养学生的物理思维能力和解决实际问题的能力。
希望本文的分析能够对学生们在学习电磁学中遇到的问题有所帮助。
高中物理电磁学的解题技巧分析
作者:唐敏高
来源:《读写算》2018年第20期
摘要物理是高中阶段一门实用性较强的学科,电磁学是高中物理的重要内容,可以说其是物理学习的重点难点知识。
因为电磁学问题会涉及电流、电磁场以及电磁辐射等内容,所以有些同学解题时会遇到麻烦,因此,本文先阐述了电磁学的概念及解题策略,然后通过一些例题来分析具体解题技巧。
关键词高中物理;电磁学;解题技巧
中图分类号:O44;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 文献标识码:A;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 文章编号:1002-7661(2018)20-0122-01
高中物理涉及的知识面较广,如果没有对某些物理定义有较深的理解,就会在做题时遇到麻烦,而电磁学包含了众多知识点,相对于其他物理知识点来说偏难,所以在解决电磁学问题时,高中生一定要掌握好有效的解题技巧,这样才能够提升自己的物理成绩,对电磁现象有更深的理解。
一、高中物理中电磁学阐述
在高中物理整体知识架构中,电磁学占有重要地位,属于物理体系的重要枝节,电磁学是近代社会所提出来的物理知识。
从广义上讲,电磁学包括电学和磁学;从狭义上讲,电磁学是一门研究电与磁相互交织关系的学科,研究内容有电磁场、电磁波、带电物体以及电荷等。
为了能够掌握好此部分物理知识,高中生要保持良好的学习习惯,在解答电磁学问题过程中,要使用一定的解题技巧,充分理解电磁的一般表现规律及实际应用。
二、电磁学解题策略
根据以往解决电磁学问题的经验,可以总结出常见解题技巧有图像法、整体思维法、利用守恒定律等,因为解题方式不同,所以解题时所体现的特点及性质也存在差异。
在解答电磁学问题时,要根据其实际问题类型选择合理的解题方式,把握好解题规律,进而提升自身的物理知识水平。
三、电磁学的解题技巧
(一)利用图像法解题。
因为大多数电磁学问题都需要做辅助图进行问题解答,而且使用图像来解决问题,会使抽象的问题形象化、具体化,能够合理的梳理出电磁学问题的整体结
构,使抽象的文字问题具体化。
利用图像法解决问题就是将电磁学知识以图形的方式表述出來,通过建立几何关系解答物理问题。
比如:解答“如图1,此图形表示是绝缘圆筒容器,其半径为R,中轴线为O。
在此容器的内部含有一个磁场,并且其磁场强度均匀,且磁场轴线与其磁场方向保持平行,其磁感强度为B,H是存在于圆筒上的某个小孔。
若使圆筒处于真空环境中,此时存在一颗带电粒子P,质量为m,电荷量为q,此带电粒子会以某种速度从H点进入到圆筒之中,当发生接触及碰撞时,带电粒子P会从H点飞出去;若是圆筒内壁光滑,带电粒子会与筒壁之间发生弹性碰撞,在此状况带电粒子不会飞出筒外。
若想使带电粒子与筒壁之间的碰撞次数最少,那么带电粒子P的速度是多少?其进入圆筒至飞出圆筒的时间是多少?”
通过分析问题可知,带电粒子不会与筒壁之间只进行一次碰撞,如果只发生一次碰撞,那么说明带电粒子是沿直线运动,但是事实上,圆筒内存有磁场,受到洛伦磁力的影响,带电粒子的运行轨迹会发生偏转现象,这时就可考虑带电粒子是否会与筒壁之间发生两次以上的碰撞。
由题可知,粒子与筒壁之间产生的碰撞时弹性碰撞,这表明粒子在碰撞前后不会产生变化,并且按照粒子运动轨迹,若其与筒壁之间产生两次碰撞,那么其会呈现出对称形态。
为了解决此问题,可以找到准圆的三等分点,并描绘出带电粒子的轨迹,明确中心点,通过分析几何之间的关系,即能解决此问题。
(二)微元法。
微元法是指从整体中截取一部分作为研究内容,通过分析部分与整体之间的关系来解答问题。
使用此种方式能够使复杂的物理问题简单化,将其转化成熟悉的问题来解决。
由题可知,导体棒处于匀速转动状态,所以是平衡的,其合力为0;棒上存在的外力与安培力是平行力且方向相反,所以求出安培力,就能够求出外力。
可以使用微元法截取导体棒上的一小段,求出安培力表达式,即可求出答案。
四、结束语
综上所述,电磁力是高中物理学科的重要内容,因其知识较为复杂,所以如果不能够掌握一些解题技巧,就会在解答此类问题时存在困难,因此我们要在学习此部分知识点的同时,学会图像法、微元法等解题技巧,进而提升解题速度,提高物理成绩。
参考文献:
[1]唐博海.高中物理电磁学习题解答困难的解决对策[J].低碳世界,2017(36):373-374.。