高一数学向量加法
- 格式:ppt
- 大小:402.50 KB
- 文档页数:8
高一数学向量公式大全一、向量的加法向量的加法是指将两个向量相加得到一个新向量的运算。
向量的加法满足交换律和结合律。
1. 两向量相加的定义:设向量a和向量b的起点相同,分别为点O,终点分别为点P 和点Q,则向量a和向量b的和向量c为:c=a+b,其起点为点O,终点为点R,R为向量a和向量b的终点所在的点。
2. 向量的加法满足交换律和结合律:交换律:a+b=b+a结合律:(a+b)+c=a+(b+c)二、向量的减法向量的减法是指将一个向量减去另一个向量得到一个新向量的运算。
向量的减法也满足交换律和结合律。
1. 两向量相减的定义:设向量a和向量b的起点相同,分别为点O,终点分别为点P 和点Q,则向量a和向量b的差向量c为:c=a-b,其起点为点O,终点为点R,R为向量a和向量-b的终点所在的点。
2. 向量的减法满足交换律和结合律:交换律:a-b=-(b-a)结合律:(a-b)+c=a-(b-c)三、数量积数量积又称为点积或内积,是两个向量的乘积的数量。
数量积的结果是一个标量(即实数),数量积满足交换律和分配律。
1. 两向量的数量积的定义:设向量a和向量b的夹角为θ,则向量a和向量b的数量积为:a·b=|a|·|b|·cosθ。
其中,|a|和|b|分别为向量a和向量b的模,θ为向量a和向量b的夹角。
2. 数量积满足交换律和分配律:交换律:a·b=b·a分配律:(k·a)·b=k·(a·b)四、向量积向量积又称为叉积或外积,是两个向量的乘积的向量。
向量积的结果是一个垂直于原来的两个向量的向量,其大小等于原来两个向量围成的平行四边形的面积。
向量积满足反交换律和分配律。
1. 两向量的向量积的定义:设向量a和向量b的夹角为θ,则向量a和向量b的向量积为:a×b=|a|·|b|·sinθ·n。
从位移的合成到向量的加法2.1 向量的加法预习课本P76~78,思考并完成以下问题1.向量的加法如何定义?2.在求两向量和的运算时,通常使用哪两个法则?3.向量加法的运算律有哪两条?[新知初探]1.向量的加法三角形法则已知向量a,b,在平面内任取一点A,作AB=a,BC=b,再作向量AC,则向量AC叫作向量a与b的和,记作a+b,即a+b=AB+BC=AC平行四边形法则已知向量a,b,在平面内任取一点A作AB=a,AD=b,再作平行于AD的BC=b,连接DC,则四边形ABCD为平行四边形.向量AC叫作向量a与b的和,表示为:AC=a+b[点睛](1)两个向量的和仍是一个向量.(2)用三角形法则作两向量的和时,要注意保持两向量“首尾相接”,箭头从起点指向最后一个终点.(3)用平行四边形法则作两向量的和时,要注意保持两向量有公共起点.(4)两向量共线时用三角形法则求和.2.向量的加法满足交换律和结合律 a +b =b +a ;(a +b )+c =a +(b +c ).[点睛] 首尾顺次相接的若干个向量若构成一个封闭图形,则它们的和为0.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)()m +a +()b +c =()a +b +()c +m ( ) (2)AB +BC +CA =0 ( ) (3)||a +b =||a +||b ( ) 答案:(1)√ (2)√ (3)×2.对任意四边形ABCD ,下列式子中不等于BC 的是 ( ) A .BA +AC B .BD +DA +AC C .AB +BD +DC D .DC +BA +AD答案:C3.边长为1的正方形ABCD 中,|AB +BC |= ( ) A .2 B. 2 C .1 D .2 2答案:B4.PQ +OM +QO +MQ =________.解析:PQ +OM +QO +MQ =PQ +QO +OM +MQ =PQ +OM +MQ =PQ . 答案:PQ向量求和[典例] 如图,在△ABC 中,D ,E ,F 分别是BC , AC ,AB 的中点,化简下列三式:(1)BC+CE+EA;(2)OE+AB+EA;(3)AB+FE+DC.[解](1)BC+OE+EA=BE+EA=BA.(2)OE+AB+EA=(OE+EA)+AB=OA+AB=OB.(3)AB+FE+DC=AB+BD+DC=AD+DC=AC.解决向量加法运算时应关注两点(1)可以利用向量的几何表示,画出图形进行化简或计算.(2)要灵活应用向量加法运算律,注意各向量的起、终点及向量起、终点字母的排列顺序,特别注意勿将0写成0.[活学活用]如图所示,四边形ABCD是平行四边形,E,F,G,H分别是所在边的中点,点O是对角线的交点,则下列各式正确的是()①AE+AH=OC;②AH+OF=CG+FB;③BE+FC=HD+OH;④OG+BE=DO.A.①③B.②④C.②③D.①④解析:选A①AE+AH=OC,正确;②AH+OF=BF+GC,故②不正确;③BE+FC=HD+OH,正确;④OG+BE=OD,故④不正确.利用向量的加法法则作图[典例]若正方形ABCD的边长为1,AB=a,AD=b,AC=c.试作出向量a+b+c,并求出其模的大小;[解]根据平行四边形法则可知,a+b=AB+AD=AC.延长AC,在AC 的延长线上作CE=AC,则a+b+c=AC+AC=AC+CE=AE(如图所示).∴|a+b+c|=|AE|=212+12=2 2.利用向量加法的两种法则作图的方法法则作法三角形法则①把用小写字母表示的向量,用两个大写字母表示(其中后面向量的起点与其前面向量的终点重合即用同一个字母来表示)②由第一个向量的起点指向第二个向量终点的有向线段就表示这两个向量的和平行四边形法则①把两个已知向量的起点平移到同一点②以这两个已知向量为邻边作平行四边形③对角线上以两向量公共起点为起点的向量就是这两个已知向量的和[活学活用]如图,已知a,b,c,求作向量a+b+c.解:作法:在平面内任取一点O,如图所示,作OA=a,AB=b,BC=c,则OC=a+b+c.向量加法的应用[典例]一艘船以5 km/h的速度向垂直于对岸的方向行驶,航船实际航行方向与水流方向成30°角,求水流速度和船实际速度(保留小数点后1位数字).[解]如图,OA表示水流速度,OB表示船垂直于对岸方向的速度,OC表示船实际航行的速度,其中∠AOC=30°,|OB|=5(km/h).因为四边形OACB为矩形,所以|OC|=|AC|tan 30°=|OB|×3=53≈8.7(km),|OC|=|OA|cos 30°=5332=10(km).所以船的实际速度大小为10 km/h,方向与河岸成30°角,水流速度大小约为8.7 km/h.应用向量解决问题的基本步骤(1)表示:用向量表示相关的量,将所有解决的问题转化为向量的加法问题.(2)运算:应用向量加法的平行四边形法则或三角形法则,进行相关运算.(3)还原:根据向量运算的结果,结合向量共线、相等概念回答原问题.[活学活用]如图所示,两个力F1和F2同时作用在一个点O上,且F1的大小为3 N,F2的大小为4 N,且∠AOB=90°,试作出F1和F2的合力,并求出合力的大小.解:作出F1和F2的合力F,如图所示.在直角三角形AOC中,|F1|=3,|AC|=|F2|=4,|F|2=|F1|2+|AC|2=|F1|2+|F2|2=25,∴|F|=5 N.层级一学业水平达标1.下列命题:①在△ABC中,必有AB+BC+CA=0;②若AB+BC+CA=0,则A,B,C为三角形的三个顶点;③若a,b均为非零向量,则|a+b|与|a|+|b|一定相等.其中真命题的个数为() A.0 B.1C.2 D.3解析:选B①正确.对于②,当A,B,C三点共线时,不能构成三角形.对于③,应该为|a+b|≤|a|+|b|.2.若向量a表示向东走1 km,向量b表示向南走1 km,则向量a+b表示() A.向东南走 2 km B.向东南走2 kmC.向东北走 2 km D.向东北走2 km解析:选A由向量加法的平行四边形法则,易得a+b表示向东南走 2 km.3. 如图,正六边形ABCDEF中,BA+CD+EF=()A.0 B.BEC.AD D.CF解析:选D BA+CD+EF=BA+AF+CB=BF+CB=CF,所以选D. 4.下列命题错误的是() A.两个向量的和仍是一个向量B.当向量a与向量b不共线时,a+b的方向与a,b都不同向,且|a+b|<|a|+|b| C.当向量a与向量b同向时,a+b,a,b都同向,且|a+b|=|a|+|b|D.如果向量a=b,那么a,b有相同的起点和终点解析:选D根据向量的和的意义、三角形法则可判断A、B、C都正确;D错误,如平行四边形ABCD中,有AB=DC,起点和终点都不相同.5.已知△ABC的三个顶点A,B,C及平面内一点P满足PA+PB=PC,则下列结论中正确的是()A.P在△ABC的内部B.P在△ABC的边AB上C.P在AB边所在的直线上D.P在△ABC的外部解析:选D PA+PB=PC,根据平行四边形法则,如图,则点P在△ABC外部.6. 如图,在平行四边形ABCD中,(1)AB+AD=________;(2)AC+CD+DO=________;(3)AB+AD+CD=________;(4)AC+BA+DA=________.解析:(1)由平行四边形法则可知为AC.(2)AC+CD+DO=AD+DO=AO.(3)AB+AD+CD=AC+CD=AD.(4)AC+BA+DA=BA+AC+DA=BC+DA=0.答案:(1)AC(2)AO(3)AD(4)07.已知正方形ABCD的边长为1,AB=a,AC=c,BC=b,则|a+b+c|=________.解析:|a+b+c|=|AB+BC+AC|=|AC+AC|=2|AC|=2 2.答案:2 28. 如图,菱形ABCD的边长为1,它的一个内角∠ABC=60°,AB=a,AD=b,则|a+b|=________.解析:因为四边形ABCD为菱形,所以|AB|=|BC|=1.连接AC(图略),又∠ABC=60°,所以△ABC 为等边三角形.因为AB +AD =AC ,所以|AB +AD |=|AC |=1, 即|a +b |=1. 答案:19. 如图,E ,F ,G ,H 分别是梯形ABCD 的边AB ,BC ,CD ,DA 的中点,化简下列各式: ①DG +EA +CB ; ②EG +CG +DA +EB .解:①DG +EA +CB =GC +BE +CB =GC +CB +EB =GB +BE =GE . ②EG +CG +DA +EB =EG +GD +DA +AE =ED +DA +AE =EA +AE =0.10.在长江某渡口上,江水以2 km/h 的速度向东流,长江南岸的一艘渡船的速度为2 3km/h ,要使渡船渡江的时间最短,求渡船实际航行的速度的大小和方向.解:要使渡江的时间最短,渡船应向垂直于对岸的方向行驶,设渡船速度为v 1,水流速度为v 2,船实际航行的速度为v ,则v =v 1+v 2,依题意作出平行四边形,如图.在Rt △ABC 中,|BC |=|v 1|=2 3. |AB |=|v 2|=2, ∴|AC |=|v |=|AB |2+|BC |2=22+(23)2=4.tan θ=|BC ||AB |=232= 3.∴θ=60°.∴渡船实际航行的速度大小为4 km/h ,方向为东偏北60°.层级二 应试能力达标1. 如图,已知D ,E ,F 分别是△ABC 的边AB ,BC ,CA 的中点,则下列等式中不正确的是()A.FD+DA=FAB.FD+DE+EF=0C.DE,+DA=ECD.DA+DE=FD解析:选D由向量加法的平行四边形法则可知,DA+DE=DF≠FD.2. 如图所示的方格纸中有定点O,P,Q,E,F,G,H,则OP+OQ=()A.OH B.OGC.FO D.EO解析:选C设a=OP+OQ,利用平行四边形法则作出向量OP+OQ,再平移即发现a=FO.3.已知平行四边形ABCD,设AB+CD+BC+DA=a,且b是一非零向量,则下列结论:①a∥b;②a+b=a;③a+b=b;④|a+b|<|a|+|b|.其中正确的是() A.①③B.②③C.②④D.①②解析:选A∵在平行四边形ABCD中,AB+CD=0,BC+DA=0,∴a为零向量,∵零向量和任意向量都平行,零向量和任意向量的和等于这个向量本身,∴①③正确,②④错误.4.向量a,b均为非零向量,下列说法不正确的是() A.若向量a与b同向,则向量a+b与a的方向相同B.若向量a与b同向,则向量a+b与b的方向相同C.若向量a与b反向,且|a|>|b|,则向量a+b与a的方向相同D.若向量a与b反向,且|a|<|b|,则向量a+b与a的方向相同解析:选D对于D,向量a+b与b的方向相同.5.化简:(AD+MB)+(BC+CM)=________.解析:原式=AD+MB+BC+CM=AD+(MB+BC)+CM=AD+MC +CM=AD.答案:AD6. 如图,在正六边形ABCDEF中,O是其中心.则①AB+CD=________;②AB+AF+BC=________;③OC+OD+EF=________.解析:①AB+CD=AB+AF=AO.②AB+AF+BC=AO+BC=AO+OD=AD.③OD+OD+EF=OD+OD+OA=OC.答案:①AO②AD③OC7. 如图所示,P,Q是三角形ABC的边BC上两点,且BP=QC.求证:AB+AC=AP+AQ.证明:AB=AP+PB,AC=AQ+QC,∴AB+AC=AP+PB+AQ+QC.∵PB与QC大小相等,方向相反,∴PB+QC=0,故AB+AC=AP+AQ+0=AP+AQ.8. 如图,已知向量a,b,c,d.(1)求作a+b+c+d.(2)设|a|=2,e为单位向量,求|a+e|的最大值.解:(1)在平面内任取一点O,作OA=a,AB=b,BC=c,CD=d,则OD=a+b +c+d.高中数学打印版精心校对版本(2)在平面内任取一点O ,作OA =a ,AB =e , 则a +e =OA +AB =OB ,因为e 为单位向量,所以点B 在以A 为圆心的单位圆上(如图所示),由图可知当点B 在点B 1时,O ,A ,B 1三点共线, 所以|OB |即|a +e |最大,最大值是3.。
题目 6.2.1向量的加法运算课标要求在探究向量的运算性质时,与实数的运算性质进行了类比数的运算,学生能够理解向量的线性运算,运算的原理、方法、规律,理解平面向量的线性运算的概念。
提升数学运算、直观想象和逻辑推理素养。
核心素养目标1.掌握向量的加法运算,并理解其几何意义。
2.会用向量加法的三角形法则和平行四边形法则作两个向量的和向量。
通过课堂探究逐步培养学生的逻辑思维能力。
3. 通过经历提出问题—推导过程—得出结论—例题讲解—练习巩固的过程,让学生认识到数学知识的逻辑性和严密性。
教学重点两个向量的的概念及其几何意义,向量加法的运算律。
教学难点数形结合求向量的和。
教学策略 1.探究与发现2.自主练习与指导教具准备多媒体课件,班班通,教材教学方法启发和探究教学相结合,自主练习与指导相结合。
学习方法从特殊到一般,从感性到理性,从具体到抽象。
教学过程环节一:复习回顾,温故知新教师活动:提出问题,引导、检查学生学习情况1.向量、平行向量、相等向量的含义分别是什么?2.用有向线段表示向量,向量的大小和方向是如何反映的?什么叫零向量和单位向量?学生活动:回顾上节课学习过的内容,思考问题并举手回答活动意图说明:通过复习上节所学知识,引入本节新课。
建立知识间的联系,提高学生概括、类比推理的能力。
环节二:知识探究(一):向量的三角形法则教师活动:思考1:如图,某质点从点A经过点B到点C,则这个质点的位移怎么表示?1.已知向量a和b,如图在平面内任取一点O,作bABaOA==,,则向量OB叫做a和b的和,记作ba+.即OBABOAba=+=+。
求两个向量和的运算叫做向量的加法。
根据向量加法的定义得出的求向量和的方法,称为向量加法的三角形法则。
向量加法的三角形法则:第一个向量的终点和第二个向量的起点连在一起,由第一个向量的起点指向第二个向量的终点的向量叫做两个向量的和向量。
【口诀】首尾相连首尾连。
学生活动:回顾学习过的物理知识,独立思考,回答问题通过思考,浏览教材,总结向量加法的三角形法则的定义理解口诀的含义并熟背口诀活动意图说明:通过思考,由质点的位移引入向量加法的三角形法则,提高学生的解决问题、分析问题的能力。