【专业文档】相关与回归分析案例分析.doc
- 格式:doc
- 大小:43.00 KB
- 文档页数:4
回归分析是统计学中一种重要的分析方法,它用于探讨自变量和因变量之间的关系。
在实际应用中,回归分析可以帮助我们理解变量之间的相互影响,预测未来的趋势,以及解释一些现象背后的原因。
本文将通过几个实际案例,来解读回归分析在现实生活中的应用。
首先,我们来看一个销售数据的案例。
某公司想要了解广告投入对产品销量的影响,于是收集了一段时间内的广告投入和产品销量数据。
通过回归分析,他们得出了一个线性方程,表明广告投入对产品销量有显著的正向影响。
这个结论使得公司更加确定了增加广告投入的决策,并且在后续的实施中也取得了预期的销售增长。
接下来,我们来看一个医疗数据的案例。
一家医院想要探讨患者的年龄、性别、体重指数等因素对疾病治疗效果的影响。
通过回归分析,他们发现年龄和体重指数与治疗效果呈显著的负相关,而性别对治疗效果影响不显著。
这个研究结果为医院提供了重要的临床指导,使得医生们在治疗过程中更加关注患者的年龄和体重指数,以提高治疗效果。
除此之外,回归分析还可以应用在金融领域。
一家投资机构想要了解各种因素对股票价格的影响,于是收集了大量的股票市场数据。
通过回归分析,他们发现了一些关键的影响因素,比如市场指数、行业风险等,这些因素对股票价格都有一定的影响。
这些结论为投资机构提供了重要的决策参考,使得他们在投资过程中能够更加准确地评估风险和收益。
此外,回归分析还可以用于市场调研。
一家公司想要了解产品价格对销量的影响,于是进行了一次调研。
通过回归分析,他们发现产品价格与销量呈负相关关系,即产品价格越高,销量越低。
这个结论使得公司意识到自己的产品定价策略可能存在问题,于是他们调整了产品价格,并且在后续销售中取得了更好的效果。
总的来说,回归分析在实际生活中有着广泛的应用。
通过对一些案例的解读,我们可以看到回归分析在不同领域中的作用,比如市场营销、医疗、金融等。
通过回归分析,我们可以更加深入地了解变量之间的关系,从而为决策提供科学的依据。
回归分析实例范文回归分析是一种统计方法,用于研究两个或多个变量之间的关系。
它可以帮助我们了解变量之间的相关性,以及一个变量对另一个变量的影响程度。
以下是一个回归分析的实例,以说明如何运用回归分析来探索变量之间的关系。
假设我们有两个变量:广告费用(x)和销售额(y)。
我们对其中一产品进行了市场调研,收集了一些数据,如下所示:广告费用(万元),销售额(万元)-----------,-----------4,1002,508,2006,15010,250我们的目标是确定广告费用与销售额之间的关系,以及预测未来的销售额。
首先,我们可以通过绘制散点图来观察两个变量之间的关系。
从散点图中可以看出,广告费用与销售额之间存在着正相关关系,即广告费用越高,销售额也越高。
接下来,我们可以使用回归分析来量化这种关系。
在回归分析中,我们假设存在一个线性关系,即销售额(y)与广告费用(x)之间的关系可以用一条直线来表示。
我们希望找到一条最佳拟合线,使得该直线尽可能地通过数据点。
通过回归分析,我们可以得到以下回归方程,用于预测销售额:y=β0+β1*x其中,β0表示截距,β1表示斜率。
回归分析还可以计算出拟合优度(R²),来评估模型的拟合程度。
R²的取值范围为0到1,越接近1表示模型的拟合程度越好。
现在,我们来计算回归方程和拟合优度。
首先,我们需要计算β1和β0。
β1可以通过以下公式来计算:β1 = ∑((xi - x平均)*(yi - y平均)) / ∑((xi - x平均)²)β0可以通过以下公式计算:β0=y平均-β1*x平均其中,x平均和y平均分别表示广告费用和销售额的平均值。
计算得到β1≈20计算得到β0≈5因此,回归方程为:y=5+20*x接下来,我们计算拟合优度(R²)。
拟合优度可以通过以下公式计算:R²=SSR/SSTO其中,SSR(回归平方和)表示拟合线解释的总方差SSR = ∑((yi - y预测)²)SSTO(总平方和)表示实际观测值和实际平均值之间的总方差,可以通过以下公式计算:SSTO = ∑((yi - y平均)²)计算得到SSR≈850计算得到SSTO≈1166.67因此,拟合优度(R²)为:R²=850/1166.67≈0.73拟合优度为0.73,说明回归模型可以解释销售额的73%的变异性。
《统计学》案例——相关回归分析案例一质量控制中的简单线性回归分析1、问题的提出某石油炼厂的催化装置通过高温及催化剂对原料的作用进行反应,生成各种产品,其中液化气用途广泛、易于储存运输,所以,提高液化气收率,降低不凝气体产量,成为提高经济效益的关键问题。
通过因果分析图和排列图的观察,发现回流温度是影响液化气收率的主要原因,因此,只有确定二者之间的相关关系,寻找适当的回流温度,才能达到提高液化气收率的目的。
经认真分析仔细研究,确定了在保持原有轻油收率的前提下,液化气收率比去年同期增长1个百分点的目标,即达到12.24%的液化气收率。
2、数据的收集目标值确定之后,我们收集了某年某季度的回流温度与液化气收率的30组数据(如上表),进行简单直线回归分析。
3.方法的确立设线性回归模型为εββ++=x y 10,估计回归方程为x b b y10ˆ+= 将数据输入计算机,输出散点图可见,液化气收率y 具有随着回流温度x 的提高而降低的趋势。
因此,建立描述y 与x 之间关系的模型时,首选直线型是合理的。
从线性回归的计算结果,可以知道回归系数的最小二乘估计值b 0=21.263和b 1=-0.229,于是最小二乘直线为x y229.0263.21ˆ-= 这就表明,回流温度每增加1℃,估计液化气收率将减少0.229%。
(3)残差分析为了判别简单线性模型的假定是否有效,作出残差图,进行残差分析。
从图中可以看到,残差基本在-0.5—+0.5左右,说明建立回归模型所依赖的假定是恰当的。
误差项的估计值s=0.388。
(4)回归模型检验 a.显著性检验在90%的显著水平下,进行t 检验,拒绝域为︱t ︱=︱b 1/ s b1︱>t α/2=1.7011。
由输出数据可以找到b 1和s b1,t=b 1/ s b1=-0.229/0.022=-10.313,于是拒绝原假设,说明液化气收率与回流温度之间存在线性关系。
b.拟合度检验判定系数r 2=0.792。
回归分析是统计学中一种重要的分析方法,用于探究自变量和因变量之间的关系。
在实际应用中,回归分析常常用于预测、解释和控制变量。
本文将通过几个实际案例,对回归分析进行深入解读和分析。
案例一:销售数据分析某电商平台想要分析不同广告投放对销售额的影响,他们收集了一段时间内的广告投放数据和销售额数据。
为了进行分析,他们利用回归分析建立了一个模型,以广告费用作为自变量,销售额作为因变量。
通过回归分析,他们发现广告费用与销售额之间存在着显著的正相关关系,即广告费用的增加会带动销售额的增加。
通过该分析,电商平台可以更好地制定广告投放策略,优化营销预算,提高销售效益。
案例二:医疗数据分析一家医疗机构收集了一组患者的基本信息、生活习惯以及健康指标等数据,希望通过回归分析来探究生活习惯对健康指标的影响。
他们建立了一个回归模型,以吸烟、饮酒、饮食习惯等自变量,健康指标作为因变量。
通过回归分析,他们发现吸烟和饮酒对健康指标有负向影响,而良好的饮食习惯与健康指标呈正相关关系。
这些发现可以帮助医疗机构更好地进行健康干预和宣教,促进患者的健康改善。
案例三:金融数据分析一家金融机构收集了一段时间内的股票价格、市场指数等数据,希望通过回归分析来探究市场指数对股票价格的影响。
他们建立了一个回归模型,以市场指数作为自变量,股票价格作为因变量。
通过回归分析,他们发现市场指数与股票价格存在着较强的正相关关系,即市场指数的波动会对股票价格产生显著影响。
这些结果可以帮助金融机构更好地进行投资策略的制定和风险控制。
通过以上案例分析,我们可以看到回归分析在不同领域的应用。
回归分析不仅可以帮助人们理解变量之间的关系,还可以用于预测和控制变量。
在实际应用中,我们需要注意回归分析的假设条件、模型选择和结果解释等问题,以确保分析的准确性和可靠性。
在回归分析中,我们需要注意变量选择、模型拟合度和结果解释等问题。
另外,回归分析也有一些局限性,比如无法确定因果关系、对异常值敏感等问题。
回归分析数据案例回归分析是一种常用的统计方法,用于探究变量之间的关系。
在实际应用中,回归分析可以帮助我们理解和预测变量之间的相互影响,为决策提供依据。
下面,我们通过一个实际的数据案例来介绍回归分析的应用。
案例背景:某公司想要了解员工的工作满意度与工作绩效之间的关系,以便更好地管理和激励员工。
为了达到这个目的,他们进行了一项调查,收集了员工的工作满意度得分和工作绩效得分。
数据收集:在这个案例中,我们收集了100名员工的工作满意度得分和工作绩效得分。
工作满意度得分是基于员工对工作的满意程度进行评分,分数范围为1-10分;工作绩效得分是基于员工在工作中的表现进行评分,分数范围为1-100分。
数据分析:为了探究工作满意度与工作绩效之间的关系,我们进行了回归分析。
首先,我们绘制了工作满意度得分和工作绩效得分的散点图,发现两者呈现一定的线性关系。
接下来,我们利用回归分析模型进行了拟合,得到了回归方程,Y = 0.8X + 20。
这个回归方程告诉我们,工作满意度每提高1分,工作绩效就会提高0.8分。
结论:通过回归分析,我们发现员工的工作满意度与工作绩效之间存在一定的正向关系,即工作满意度提高,工作绩效也会相应提高。
这为公司提供了重要的管理启示,他们可以通过提升员工的工作满意度来促进工作绩效的提升,从而实现组织的发展目标。
总结:回归分析是一种强大的工具,可以帮助我们理解变量之间的关系,为决策提供支持。
在实际应用中,我们需要收集准确的数据,进行严谨的分析,才能得出可靠的结论。
希望本文的案例分析能够帮助大家更好地理解回归分析的应用,为实际问题的解决提供参考。
通过以上案例分析,我们可以看到回归分析在实际工作中的应用价值。
希望这个案例能够帮助大家更好地理解回归分析的概念和方法,为实际问题的解决提供参考。
同时也提醒大家在进行回归分析时,要注意数据的准确性和分析方法的严谨性,才能得出可靠的结论。
感谢大家的阅读!。
回归分析案例回归分析是一种常用的统计方法,用于研究变量之间的关系。
在实际应用中,回归分析可以帮助我们探索变量之间的相关关系,预测未来的趋势以及做出决策。
下面我们将通过一个实际案例来介绍回归分析的应用。
假设我们是某电商公司的数据分析师,现在我们想了解用户的购买行为与广告宣传的关系,希望通过回归分析来预测广告宣传对用户购买金额的影响。
首先,我们收集了过去一年的数据,包括每个用户的购买金额以及公司在相应时间段内的广告宣传投入。
我们将购买金额作为因变量(Y),广告宣传投入作为自变量(X),并进行数据整理和处理。
接下来,我们将进行回归分析。
根据收集到的数据,我们可以使用最小二乘法进行回归分析。
我们假设购买金额与广告宣传投入之间存在线性关系,即Y = β0 + β1X + ε,其中Y表示购买金额,X表示广告宣传投入,β0和β1表示回归系数,ε表示误差项。
通过回归分析,我们可以得到回归模型的估计结果。
估计结果中,回归系数β1表示单位广告宣传投入对购买金额的影响情况,β0则表示在广告宣传投入为0的情况下的购买金额。
假设回归分析的结果为:β0 = 1000,β1 = 2。
根据这个结果,我们可以得出以下结论:在其他条件不变的情况下,每单位广告宣传投入会使购买金额增加2单位。
同时,当广告宣传投入为0的时候,购买金额约为1000单位。
接下来,我们可以根据回归模型的估计结果进行预测。
例如,如果我们将广告宣传投入增加100单位,根据回归模型的估计结果,预测购买金额将增加200单位。
这样的预测结果可以帮助公司进行广告投放决策,并制定更具针对性的广告宣传策略。
除此之外,回归分析还可以帮助我们进行模型的诊断和评估。
例如,我们可以通过残差分析来检验回归模型的拟合优度和模型的适用性。
我们还可以进行假设检验,验证回归系数的显著性程度。
总之,回归分析是一种重要的统计分析方法,广泛应用于各个领域。
通过回归分析,我们可以探究变量之间的关系,预测未来的趋势以及做出决策。
● 美国各航空公司业绩的统计数据公布在《华尔街日报1999年年鉴》(The Wall StreetJournal Almanac 1999)上。
航班正点到达的比率和每10万名乘客投诉的次数的数据如下:(1)画出这些数据的散点图;(2)根据散点图。
表明二变量之间存在什么关系?(3)求出描述投诉率是如何依赖航班按时到达正点率的估计的回归方程; (4)对估计的回归方程的斜率作出解释;(5)如果航班按时到达的正点率为80%,估计每10万名乘客投诉的次数是多少? 解:(1)利用EXCEL 制作数据散点图:将已知表格的后两列复制到Excel 中,选择该表格后,点击:图表向导→XY 散点图→确定,即得散点图如下:(2)根据散点图可以看出,随着航班正点率的提高,投诉率呈现出下降的趋势,说明航班整点率与投诉率两者之间,存在着一定的负相关关系。
[利用Excel 的统计函数“CORREL ”计算得到相关系数r = -0.88261,属于高度负相关](3)求投诉率依赖航班正点率的估计的回归方程设投诉率为Y ,航班正点率为X 建立回归方程 i i X Y 21ββ+= 解法一:应用Excel 函数计算:应用统计函数“SLOPE ”计算直线斜率为:2β=-0.07041应用统计函数“INTERCEPT ”计算直线与y 轴的截距为:1β= 6.017832解法二:应用Excel 列表计算:作出Excel 运算表格如下:得回归系数为: 222)n xy x y n x x -=-(∑∑∑∑∑β9523.215667.27.18949590.46⨯-⨯=⨯-2(667.2) = 81.5611158.3-= —0.0704144初始值 y x =-12ββ= y x nn-∑∑2β= 7.18667.20.070414499+⨯=6.01783 于是得回归方程为^6.01780.07i i Y X =-(4)参数的经济意义是:航班正点率每提高一个百分点,相应的投诉率(次/10万名乘客)下降0.07。
相关分析与回归分析实例(总15页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--相关与回归分析法探究实例——上海市城市居民家庭人均可支配收入与储蓄存款关系的统计分析系别经济系专业金融学学号姓名指导教师2011年1月1日上海市城市居民家庭人均可支配收入与储蓄存款关系的统计分析摘要:随着中国经济的迅速发展,我国居民的消费水平不断提高,居民储蓄存款作为消费支出的重要组成部分,直接关系到国家对资金的合理使用。
本文采用相关分析与回归分析方法,对上海市居民家庭人均可支配收入与储蓄存款进行了定量地分析,探求了二者之间的关系。
所得结论对研究中国居民储蓄行为的规律具有一定的参考价值。
关键词:居民家庭人均可支配收入,储蓄存款,相关分析,回归分析自经济体制改革以后,我国国民收入分配的格局发生巨大变化。
变化之一是居民收入在国民收入中的比重迅速提高。
这使居民的消费和储蓄行为对于经济发展有越来越重要的意义。
居民储蓄存款是社会总储蓄的重要组成部分,也是推动经济增长的重要资源。
居民储蓄的快速增长,是我国经济发展的重要资金来源,是改革开放顺利进行的重要保证。
过度储蓄构成经济的一种潜在威胁甚至现实扭曲,它的负面影响也不容忽视。
为了了解我国居民储蓄的现状,认真分析影响居民储蓄变动的主要因素——居民家庭人均可支配收入,本文采用了多元统计中的相关分析及回归方法,借助于SPSS,对1997—2009年上海市城市居民家庭人均可支配收入与储蓄存款进行了分析和评价。
1.选择指标,收集数据资料西方经济学通行的储蓄概念是,储蓄是货币收入中没有用于消费的部分。
这种储蓄不仅包括个人储蓄,还包公公司储蓄、政府储蓄。
储蓄的内容有在银行的存款、购买的有价证券及手持现金等。
在其他条件不变的情况下,个人可支配收入与居民储蓄是正比例函数关系,是居民储蓄存款增长的基本因素。
本文遵循了可比性、可操作性等原则,指标记为年份分别为a1,a2,a3,……,a11,a12,a13;人均可支配收入分别为b1,b2,b3,……,b11,b12,b13;居民储蓄存款分别为c1,c2,c3,……,c11,c12,c13。
回归分析数据案例回归分析是统计学中一种常用的数据分析方法,它用来探索变量之间的关系并预测一个变量对另一个或多个变量的影响。
在这篇文档中,我们将通过一个实际的数据案例来介绍回归分析的应用和方法。
案例背景。
假设我们是一家电子商务公司的数据分析师,我们收集了一些关于用户购买行为的数据,包括用户的年龄、性别、购买金额、购买频率等信息。
我们希望通过这些数据来分析用户的购买行为受到哪些因素的影响,以及如何预测用户的购买金额。
数据分析。
首先,我们需要对收集到的数据进行整理和清洗,确保数据的准确性和完整性。
然后,我们可以利用回归分析来探索不同因素与购买金额之间的关系。
我们可以建立一个多元线性回归模型,将购买金额作为因变量,年龄、性别、购买频率等作为自变量。
通过对数据进行回归分析,我们可以得到各个自变量对购买金额的影响程度,以及它们之间的相互关系。
结果解释。
通过回归分析,我们可以得到一些结论和预测结果。
比如,我们发现用户的年龄对购买金额有显著影响,年龄越大的用户往往购买金额更高;购买频率也对购买金额有一定的影响,购买频率越高的用户购买金额也越高。
此外,我们还可以利用回归分析的结果来预测用户的购买金额。
通过输入用户的年龄、性别、购买频率等信息,我们可以得到一个预测的购买金额范围,从而更好地进行市场营销和产品推广。
结论。
通过这个数据案例,我们可以看到回归分析在探索变量之间关系和预测结果方面的重要作用。
在实际工作中,我们可以利用回归分析来解决各种问题,比如销售预测、市场分析、用户行为分析等。
总之,回归分析是一个强大的工具,可以帮助我们更好地理解数据背后的规律,并做出有效的决策。
希望这个案例可以帮助大家更好地理解回归分析的应用和方法。
第五章相关分析和回归分析5.1有人研究了黏虫孵化历期平均温度(x,℃)与历期天数(y,d)之间关系,试验资料如下表,试求黏虫孵化历期平均温度(x,℃)与历期天数(y,d)的简单相关系数。
并建立孵化历期平均温度(x,℃)与历期天数(y,d)之间的一元线性回归方程(要求给出检验结果并描述)。
表5.1 黏虫孵化历期平均温度与历期天数资料5.2 下表为某县1960-1971年的1月份雨量(x1,mm)、3月上旬平均温度(x2,℃)、3月中旬平均温度(x3,℃)、2月份雨量(x4,mm)和第一代三化螟蛾高峰期(y,以4月30日为0)的测定结果。
试计算1月份雨量(x1,mm)、3月上旬平均温度(x2,℃)分别与第一代三化螟蛾高峰期(y)的偏相关系数。
5.3 下表为观测的七个不同高度的风速资料,试建立风速随高度变化的曲线方程。
并确定最合理的是什么样的曲线类型(要求写出曲线方程)。
表5.3 观测的不同高度的风速资料5.4根据多年的大豆分期播种资料,建立大豆产量(y)与生育期降水量(x i)之间的多元线性回归方程。
表5.4 大豆不同生育期降水量与产量数据产量(kg/ha)y生育期降水量(mm)播种-出苗x1出苗-第三叶x2第三叶-开花x3开花-结荚x4结荚-成熟x53982 52 132 180 219 206 3397 25 132 198 201 206 2915 29 170 149 190 202 2142 25 207 111 192 204 1874 43 167 188 111 205 1934 40 85 216 64 189 1692 4 107 192 64 194 1532 18 46 138 165 301 1203 15 49 149 153 299 1200 32 30 137 233 248 1168 7 112 168 158 225 1160 0 111 181 145 225 887 14 104 199 138 208 1124 22 34 26 50 156 927 22 35 25 50 156 870 9 33 25 50 154 979 16 28 22 50 156 924 32 12 37 30 154 1071 33 13 52 20 149 1056 29 15 50 20 149 1124 1 14 50 20 149 924 3 12 50 20 149 1374 11 34 30 8 1635.5根据表5.2的数据试应用逐步回归方法求预报第一代三化螟蛾高峰期的最优线性回归方程(要求给出方程和系数的检验结果)。
第四次案例分析----相关回归分析案例1 对某地的12个乡镇的饮水氟含量及中老年人群的骨关节炎患病情况作了调查,数据如下表10-12,初步发现不同乡镇的骨关节炎的患病率高低与本地区饮水的氟含量有关。
于是把氟含量视为变量X,把骨关节炎患病率视为Y,计算出Pearson积矩相关系数,得r=0.827,经检验P<0.01,据此认为骨关节炎的患病率与饮水的氟含量之间有正相关关系。
表10-12 某地12个乡镇饮水氟含量与骨关节炎患病率序号氟含量患病率(mg/L))(%)1 1.20 7.52 0.35 8.93 2.50 9.04 3.18 12.65 0.75 8.26 5.92 15.47 7.97 20.38 2.06 10.19 7.05 30.310 5.30 24.211 3.52 7.512 1.50 10.3讨论:(1)作者以上结论是否正确?原因是什么?(2)线性相关分析的适用条件是什么?如何验证其适用条件?(3)应如何进行分析?本分析方法的适用条件是什么?案例2回顾第八章例8-3,用三种不同药物治疗慢性支气管炎,治疗结果见表10-13所示。
表10-13 三种不同药物治疗慢性支气管炎的疗效第八章曾做过2χ检验,得232.736,0.005pχ=<,按0.05水准,可以认为三种药物治疗效果有效的总体概率有差别。
研究者认为,既然不同药物组有不同的治疗效果,则治疗效果与不同的药物治疗方法必定有关联;其关联的程度可用列联系数来描述:r===0.493讨论:(1)该推理和计算是否正确?(2)应当如何研究治疗效果和药物种类的关联性?案例3现有一份170例某病患者的治疗效果资料,按年龄和疗效两种属性交叉分类,结果见表10-14.ν=,拒绝两种属性分类相互作者进行了独立性2χ检验,得到2χ=23.582,4r==,结论独立的零假设;进一步计算Pearson列联系数r为0.35是疗效和年龄间存在关联性。
第七章相关与线性分析教学目的提供从数量上研究现象之间相互联系的分析方法,将定性现象向定量上转化。
教学要求 1.相关的意义,现象相关的主要形式以及相关分析的基本内容;2.相关系数的涉及原理,怎样利用相关系数来判断相关的密切程度;3.回归和相关的区别与联系,建立回归方程的依据,回归方程的参数;4.估计标准误的分析。
教学重点相关系数,回归方程教学难点相关系数的涉及原理,回归方程的原理,估计标准误差。
教学方法直接讲陈,讲练结合法,在课堂多示例,来分析概念,加深印象授课课时课时 4授课时间2014-11-04教学过程 1.复习上节课内容;2.导入新课;3.讲授新课;4.总结;5.布置练习。
课后总结备注教学目的了解相关分析的基本概念;掌握相关分析的主要方法。
节、学时 1 学时教学重点相关分析的意义教学难点相关分析的种类教学方式案例教学,大量的社会实际经济案例说明教学过程设计1.导入语客观现象总是普遍联系和相互依存的。
相关分析与回归分析是处理变量之间相关关系的一种统计方法。
通过相关分析,可以判断两个或两个以上的变量之间是否存在相关关系,相关关系的方向、形态及相关关系密切程度。
回归分析是对具有相关关系现象间数量变化的规律性进行测定,确立一个回归方程式,即经验公式,并对所建立的回归方程式的有效性进行分析、判断,以便进一步进行估计和预测。
2.教学内容第一节相关分析一、相关分析概述(一)概念(二)意义(三)作用二、相关分析的种类(一)按相关程度划分:完全相关,不完全相关,零相关。
(二)按相关的方向划分:正相关,负相关,无(零)相关。
(三)按相关形式划分:线性相关,非线性相关。
(四)按变量多少划分:单相关,复(多)相关,偏相关。
(五)按相关性质划分:真实相关,虚假相关。
三、相关分析的方法(一)相关表(二)相关图3.教学案例或实例小结关于相关的种类,在等级考试中经常出现,大家一方面要掌握不同种类的名称,另外,还要判断相关的类型。
案例:利兴铸造厂产品成本分析
最近几年利兴铸造厂狠抓成本管理,提高经济效益,在降低原材料和能源消耗,提高劳动生产率,以及增收节支等方面,取得了显著成绩,单位成本有明显下降,基本扭转了亏损局面。
但是各月单位成本起伏很大,有的月份赢利,有的月份赢利少甚至亏损。
为了控制成本波动,并指导今后的生产经营,利兴铸造厂统计部门进行了产品成本分析。
资料搜集整理分析
首先,研究单位成本与产量的关系(如下表):
表1 铸铁件产量及单位成本
从表1可以看出,铸铁件单位成本波动很大,在15个月中,最高的上年4月单位成本达800元,最低的今年3月单位成本为570元,全距是230元。
上年2、4、5、9月4个月成本高于出厂价,出现亏损,而今年3月毛利率达到20.8%[(720-570)/720*100%]。
成本波动大的原因是什么呢?从表1可以发现,单位成本的波动与产量有关。
上年4月成本最高,而产量最低,今年3月成本最低,而产量最高,去年亏损的4个月中,产量普遍偏低,这显然是个规模效益问题。
在成本构成中,可以分为变动成本和固定成本两部分。
根据利兴铸造厂的实际情况,变动成本主要包括原材料及能源消耗、工人工资、销售费用、税金等,固定成本主要包括折旧费用、管理费用和财务费用。
在财务费用中,绝大部分是贷款利息,由于贷款余额大,在短期内无力偿还,所以每个月的贷款利息支出基本上是一项固定支出,不可能随产量的变动而变动,故将贷款利息列入固定成本之中。
从目前情况看,在成本构成中,固定成本所占比重较大,每月产量大,分摊在单位产品中的固定成本就小;如果产量小,分摊在单位产品中的固定成本就大,所以每月产量的多少直接影响单位成本的波动。
为了论证单位成本与产量之间是否存在相关关系,并找出其内在规律以指导今后的工作,现计算相关系数,并建立回归方程。
r= - 0.98
计算结果表明,单位成本与产量之间,存在着高度负相关,相关系数为-0.98。
设各月产量为自变量x ,单位成本为因变量y ,则有直线方程式
x y βαˆˆˆ+=
可得结果为
x y
49.01049ˆ-= 计算结果表明,铸铁件产量每增加1吨,单位成本可以下降0.49
元,设某月产量x 为1100吨,则单位产品成本
)(5101100*49.01049ˆ元=-=y
当x=600吨时,则
)(755600*49.01049ˆ元=-=y
分析报告:增加产量是降低单位成本的重要途径
最近几年我厂狠抓成本管理,提高经济效益,基本上扭转了亏损局面,但各月单位成本波动很大,有的月份仍出现亏损。
自去年1月至今年3月的15个月,有4个月的单位成本超过出厂价,有些月份的单位成本则比较低,可获得10%—20%的利润。
各月单位成本产生波动的原因是什么呢?从近15个月的资料看,单位成本的高低与产量有关,两者成反方向变化:即产量高,成本低;产量低,成本高。
经过相关分析,单位成本与产量之间存在高度负相关,相关系数为-0.98。
我厂当前单位成本与产量的关系如此密切,主要有两个原因。
一个原因是一般的规模效益。
在单位成本中包含变动成本和固定成本两个部分,分摊到每个单位产品上的固定成本是随产量的变化而变化的,产量多,分摊到每个单位产品上的固定成本就少;产量少,分摊到每个单位产品上的固定成本就多。
另一个原因是贷款利息支出大,增大了固定成本。
在正常情况下,贷款的多少是随产量变化而变化的,贷款利息应该计算在变动成本中,可是现在贷款余额大,短期内又无偿还能力,银行利息成为每个月固定开支的费用,因此,它成为固定成本的重要组成部分。
为了有效地控制成本,不断提高经济效益,除继续采取措施增收节支外,还必须努力增加产量和销售量,增加产量是降低单位成本的重要途径。
为了掌握在不同产量条件下的单位成本,我们根据实际情况建立了单位成本对产量的回归方程
x y
49.01049ˆ-= 回归方程表明,铸铁件产量每增加1吨,单位成本可以下降0.49元。
设月产量x 为700吨,则单位成本为
)(706700*49.01049ˆ元=-=y
即月产量达到700吨以上的规模,按目前的出厂价格,可以保持较好的经济效益。