数学实验作业
- 格式:doc
- 大小:480.00 KB
- 文档页数:47
数学实验-作业1—及部分答案(要求:1. 每次上机课下课之前提交,文件名如:数学091朝鲁第一次作业.doc。
2. 交至邮箱:matlabzuoyetijiao@3.作业实行5分制,依次为A++,A+,A ,A-,A- -)4.作业中,需要编程实现的均要求列出你的代码,以及求解的结果)1.请上网或查阅各种资料并回答:MATLAB是什么?MATLAB能做什么?答:略2.请上网或查阅各种资料并回答:MATLAB语言突出的特点是什么?答:略3.在MATLAB软件中有几种获得帮助的途径?答:help函数,菜单栏help菜单。
4.请上网或查询MATLAB软件中inv函数的功能与特点。
答:用来求可逆矩阵的逆矩阵。
inv(A),即求已知矩阵A的逆矩阵。
5.请上网或查阅各种资料并回答:如何在MATLAB中建立向量和矩阵。
答:如在matlab中创建向量a=(2,-5,6,1);a=[2,-5,6,1];b= [2;-5;6;1];如在matlab中创建矩阵A=;A=[1,2,3;4,5,6;7,8,9];A =1 2 34 5 67 8 96.请上网或查阅各种资料并回答:在MATLAB中,向量和矩阵如何进行基本加减乘除四则运算,以及矩阵的乘法。
答:a=[2,-5,6,1];b= [1,2,3,4];求向量的和与差,直接输入a+b,a-b,即可,当然必须要求两个向量大小一致。
如:>> a=[2,-5,6,1];b= [1,2,3,4];>> a+bans =3 -3 9 5>> a-b1 -7 3 -3>> a.*bans =2 -10 18 4>> a./bans =2.0000 -2.5000 2.0000 0.2500>> a/b向量之间进行除法运算,使用不加点的矩阵除法“A/B”时,问题可以描述为:给定两个向量A、B,求一个常量x,使得A=x * B。
数学实验之学生实验题目 MATLAB 简介实验一:数组操作及运算练习1.设有分块矩阵⎥⎦⎤⎢⎣⎡=⨯⨯⨯⨯22322333S O R E A ,其中E,R,O,S 分别为单位阵、随机阵、零阵和对角阵,试通过数值计算验证⎥⎦⎤⎢⎣⎡+=22S 0RS R EA 。
2.求如下非齐次线性方程组的通解,⎪⎩⎪⎨⎧=--+=+-+=+-+.12,2224,12w z y x w z y x w z y x3.某零售店有9种商品的单件进价(元)、售价(元)及一周的销量下表,问哪种商品的利润最大,哪种商品的利润最小;按收入由小到大,列出所有商品及其收入;求这一周该10种商品的总收入和总利润。
实验二:作图练习1. 用两种方法在同一个坐标下作出y 1= x 2,y 2= x 3,y 3= x 4 y 4= x 5这四条曲线的图形,并要求用两种方法在图上加各种标注。
2.用subplot 分别在不同的坐标系下作出下列四条曲线,为每幅图形加上标题, 1)概率曲线 2exy -=;2)四叶玫瑰线 r =sin2q ;3)叶形线 ⎪⎪⎩⎪⎪⎨⎧+=+=;13,13323t ty t t x 4)曳物线 22111lnyyy x --±= 。
3.作出下列曲面的3维图形,1))sin(22y x z +=π;2)环面:⎪⎩⎪⎨⎧=+=+=,sin ,sin )cos 1(,cos )cos 1(u z v u y v u x )2,0()2,0(ππ∈∈v u 。
实验三:编写M-文件1.建立一个命令M-文件:求所有的“水仙花数”,所谓“水仙花数”是指一个三位数,其各位数字的立方和等于该数本身。
例如,153是一个水仙花数,因为153=13+53+33。
2.编写函数M-文件SQRT.m :用迭代法求a x =的值。
求平方根的迭代公式为迭代的终止条件为前后两次求出的x 的差的绝对值小于10-5。
〈返回〉方程求解实验一:油价与船速的优化问题油价的上涨,将影响大型海船确定合理的航行速度,以优化航行收入。
八年级上册数学实践作业
一、活动目标:
1. 通过实践活动,使学生更加深入地理解和掌握基础的数学知识,提高数学的应用能力。
2. 通过小组合作,培养学生的团队协作精神和沟通能力。
3. 培养学生的创新思维和实践能力,提高他们解决问题的能力。
二、活动内容:
1. 分组调查:学生自由分组,每组4-6人。
选择一个与数学相关的话题进行调查研究,如“生活中的数学”、“数学在科学中的应用”等。
2. 数据收集:根据选定的话题,收集相关数据和信息。
可以通过网络、图书馆、实地调查等方式获取数据。
3. 数据整理:对收集到的数据进行整理,分类,以便于分析和解读。
4. 数据分析:运用所学的数学知识对数据进行处理和分析,发现其中的规律和趋势。
5. 报告撰写:将调查结果和数据分析写成报告,要求语言简洁明了,逻辑清晰。
6. 汇报展示:每组选派一名代表,向全班汇报展示本组的调查结果和分析。
三、活动要求:
1. 小组分工明确,每个成员都要积极参与调查和讨论。
2. 调查和分析过程中要尊重事实,严谨认真。
3. 报告要条理清晰,数据准确,分析深入。
4. 汇报时要自信流畅,能够清晰地表达本组的观点和结论。
四、活动时间安排:
1. 分组和选定话题(1周)
2. 数据收集(2周)
3. 数据整理和分析(1周)
4. 报告撰写(1周)
5. 汇报展示(1周)
五、评价标准:
1. 数据的准确性和完整性。
2. 分析的深入性和逻辑性。
3. 报告的条理性和可读性。
4. 小组的协作和沟通能力。
八年级数学生活实践作业
在数学的学习过程中,我们不仅要掌握基本概念、定理和方法,还要学会将数学知识应用到生活中。
为此,我们要开展数学生活实践作业。
一、数学游戏
通过数学游戏,可以在轻松愉快的氛围中巩固数学知识。
比如,猜数字、消除方块、九宫格等游戏,都可以锻炼我们的数学思维能力。
二、数学调查
通过数学调查,可以让我们了解周围的数学现象。
比如,调查同学们喜欢的运动项目及其比例,可以学习比例的概念和应用。
三、数学实验
通过数学实验,可以让我们亲身体验数学知识。
比如,用球体积和直径的关系验证球体积公式,可以帮助我们理解和记忆公式。
四、数学应用
通过数学应用,可以让我们将数学知识应用到实际生活中。
比如,设计平面图、制作尺子、计算面积和周长等活动,都可以培养我们的数学应用能力。
五、数学探究
通过数学探究,可以让我们自主发现数学规律和性质。
比如,探究数列的规律、研究数学模型等活动,都可以培养我们的数学思维和创新能力。
六、数学竞赛
通过数学竞赛,可以让我们在比赛中巩固和提高数学知识。
比如,参加奥数、数学建模等比赛,可以锻炼我们的数学能力和竞赛意识。
总之,数学生活实践作业是数学学习的重要组成部分。
希望同学们能够积极参与,将数学知识与生活实践结合起来,提高自己的数学素养。
小学生数学实验100例第1篇:我的数学小实验的日记今天中午,为了能把筷子体积测得更准确,我叫爸爸从化学室拿了一个细长的量筒,刻度单位更小,每个单位只有1立方厘米。
此时,我似乎感觉到了胜利在向我招手,真可谓万事具备,只差动手实验了。
首先,我用铅笔在一次筷子上划了一道分界线,将筷子平均分成两段,并用水浸泡,以免筷子在测定过程中洗水。
随后,将筷子入量筒中,并用滴管将水滴入量筒中,让量筒内的水涨到筷子的分界线上,记下量筒内的水位刻度(38毫升)后,将筷子从量筒内取出,再记下量筒内的水位刻度(34.5毫升),前后两次水位刻度之差就是这一部分筷子的体积,即3.5立方厘米。
用同样的方法,我又测量了筷子另一部分的体积是5立方厘米,两次测定结果相加得到这双筷子的体积为8.5立方厘米。
当我得到这个结果时,我兴奋地叫了,此时的我是多么自豪、多么骄傲啊!接着,我又按每人一天使用3双计算出了我们学校(1500人)及全国(12亿)一年消耗的一次*筷子量,分别是13.96立方米和11169000立方米。
结果使我大吃一惊,每年竟有这么多的木料做成一次筷子被浪费了,真是太可惜!在此,我呼吁在校的同学,不!是全国,也不!应该是全世界的每个人都不要再使用一次筷子了,只有这样,才能保护好我们的森林资源,使我们共有的地球环境更加美好,让地球上的每一个人呼吸到干净、清新的空气。
第2篇:我的小实验数学日记下午放学时,班主任老师给我们布置了一道家庭作业,要求大家想办法测算一次筷子的体积,并用数学日记的形式将测算过程记录下来。
这道家庭作业,表面上是一次数学实践活动,实际可能寓意更深,因为一次筷子的使用与环保有关,一回到家,我就静静地坐在书桌前思考这个问题。
一次*筷子的形状是一个不规则的立体图形,怎样才能测算出它的体积呢?我思来想去,一会儿抓耳挠腮,一会儿摇,终于,有了一点眉目。
我可以将一次筷子放入装满水的容器中,这样容器中的水就会溢出来,溢出水的多少不就是筷子的体积吗?可是筷子比水轻,会浮在水面上,又该怎么办呢?可不可以用石头或胶布之类的东西将筷子固定住呢?我想应该是可以的,但这些办法测定起来又都太麻烦了,要是有更简便的方法该多好啊!经过冥思苦想,我终于自豪的笑了。
第1篇一、作业背景随着我国基础教育改革的不断深入,数学教学教研工作越来越受到重视。
为了提高数学教学质量,促进教师专业成长,我们学校开展了数学教学教研实践活动。
本次实践作业旨在通过教师间的合作、研讨和反思,提升数学教学水平,培养学生的数学素养。
二、作业目标1. 提高教师对数学教学的理解和认识,掌握数学教学的基本规律和教学方法。
2. 培养教师之间的合作意识,促进教师间的交流与学习。
3. 提升教师的教学设计能力,优化教学过程,提高教学质量。
4. 培养学生的数学思维能力、逻辑思维能力和创新能力。
三、作业内容1. 教学观摩与反思(1)观摩:选择一节数学课,进行全程观摩,记录下课堂中的亮点和不足。
(2)反思:结合观摩内容,从教学目标、教学内容、教学方法、教学评价等方面进行反思,总结经验教训。
2. 教学研讨与交流(1)主题研讨:围绕一个具体的教学问题,如“如何培养学生的数学思维能力”,组织教师进行研讨。
(2)经验分享:教师们分享自己在教学过程中的成功经验和做法,互相借鉴,共同提高。
3. 教学设计与实践(1)设计:根据教学目标和教学内容,设计一节数学课的教学方案。
(2)实践:在课堂上实施教学方案,观察学生的学习效果,并根据实际情况进行调整。
4. 教学评价与反馈(1)评价:对教学设计、教学过程和学生学习效果进行评价。
(2)反馈:根据评价结果,对教学方案进行改进,提高教学质量。
四、作业实施步骤1. 制定计划:根据学校教学教研计划,确定实践作业的具体内容和时间安排。
2. 组织实施:按照计划,组织教师开展各项实践活动。
3. 汇报交流:教师完成实践作业后,进行汇报交流,分享经验,互相学习。
4. 总结反思:对实践作业进行总结,分析存在的问题和不足,提出改进措施。
五、作业成果展示1. 教学案例集:收集教师在实践过程中积累的优秀教学案例,汇编成册。
2. 教学论文集:教师撰写教学论文,总结实践经验,提高教育教学理论水平。
3. 教学公开课:组织教师开展公开课活动,展示实践成果,促进教师间的交流与合作。
二年级数学创意实践作业
1. 数学游戏设计,让学生设计一个简单的数学游戏,例如数学拼图、数学迷宫等。
他们可以使用基本的加减法来设计游戏规则,并与同学们分享他们的游戏。
2. 数学手工制作,让学生使用纸板、彩纸等材料制作一些数学教具,例如数字卡片、几何图形模型等。
通过动手制作,学生可以更好地理解数学概念。
3. 数学故事创作,鼓励学生编写一个关于数学的小故事,可以是关于数字的奇妙故事,也可以是关于解决数学问题的故事。
这样的创作可以培养学生的想象力和逻辑思维能力。
4. 数学实地探索,组织学生到校园或社区进行数学实地探索,例如数数树上的鸟巢、测量操场的长度和宽度等。
通过实地探索,学生能够将抽象的数学概念与日常生活联系起来。
5. 数学竞赛活动,组织一个小型的数学竞赛,让学生在游戏中巩固所学的数学知识,激发他们的学习兴趣和竞争意识。
这些创意实践作业可以帮助学生在实践中感受到数学的乐趣,提高他们的动手能力和逻辑思维能力,同时巩固所学的数学知识。
希望这些建议能对你有所帮助。
一、作业目的通过本次暑假数学实践作业,帮助学生巩固和运用二年级上学期的数学知识,提高学生的数学思维能力、实践能力和创新能力。
同时,培养学生良好的学习习惯,激发学生对数学学习的兴趣。
二、作业内容1. 实践活动一:生活中的数学(1)观察和记录:请家长带领学生观察和记录生活中常见的数学现象,如:商品的标价、购物时的计算、家庭用电量等。
(2)分析:引导学生分析这些现象背后的数学原理,如:整数、小数的加减乘除运算。
(3)作业:请学生选择其中一个现象,用文字、图画或表格等形式记录下来,并简要说明其数学原理。
2. 实践活动二:数学游戏(1)制作数学游戏:学生可以和家长一起制作一些简单的数学游戏,如:数独、找规律等。
(2)游戏规则:制定游戏规则,确保游戏的公平性和趣味性。
(3)作业:请学生介绍自己制作的数学游戏,包括游戏名称、规则和玩法。
3. 实践活动三:数学日记(1)记录生活:学生每天记录生活中遇到的数学问题,如:购物、旅游、做家务等。
(2)思考与解答:针对记录的问题,引导学生运用所学数学知识进行思考和解答。
(3)作业:请学生选择一个具有代表性的数学问题,用文字、图画或表格等形式记录下来,并说明解题思路。
4. 实践活动四:数学实验(1)实验材料:准备一些简单的实验材料,如:水、杯子、橡皮筋等。
(2)实验过程:根据实验材料,设计一个有趣的数学实验,如:探究水杯容积、观察橡皮筋的弹性等。
(3)作业:请学生详细记录实验过程,包括实验步骤、实验现象和实验结论。
5. 实践活动五:数学故事(1)收集素材:引导学生收集关于数学家的故事,如:陈景润、华罗庚等。
(2)编写故事:根据收集到的素材,编写一个数学故事。
(3)作业:请学生讲述自己编写的数学故事,并简要介绍故事中的数学知识。
6. 实践活动六:数学绘画(1)主题选择:学生可以选择自己感兴趣的数学主题,如:几何图形、数学符号等。
(2)绘画创作:根据主题,进行绘画创作。
(3)作业:请学生展示自己的绘画作品,并简要介绍作品中的数学元素。
1. 作出函数[]53()3123,2,2f x x x x x =+-+∈-的图像.第1题图2. 求下列各极限.(1)1lim 1nn n →∞⎛⎫- ⎪⎝⎭; (2)sin lim x x x →∞;(3)0sin lim x x x →; (4)10lim x x e +→.解(1)11lim 1enn n →∞⎛⎫-= ⎪⎝⎭; (2)sin lim 0x x x →∞=;(3)0sin lim 1x xx →=; (4)12lim e x x e →3. 求方程20.2 1.70x x --=的近似解(精确到0.0001). 解 1 1.2077x ≈-,2 1.4077x ≈. 4. 探究高级计算器的其他功能.(略)1. 求函数3(21)y x x =-的导数; 操作:在命令窗口中输入:>> syms xy=x^3*(2*x -1); dy=diff(y) 按Enter 键,显示:dy = 3*x^2*(2*x -1)+2*x^3 继续输入:>> simplify(dy) % 将导数化简 按Enter 键,显示: ans =8*x^3-3*x^2即 3283y x x '=-. 2. 求函数()ln 1y x x =-+的二阶导数; 操作:在命令窗口中输入: >> syms xy=1-log(1+x); dy=diff(y,x,2) 按Enter 键,显示: dy = 1/(1+x)^2即 21(1)y x ''=+. 3.函数4322341y x x x x =-+-+在区间[-3,2]上的最小值. 操作:在命令窗口中输入:>>x=fminbnd('x^4-2*x^3+3*x^2-4*x+1',-3,2) y=x^4-2*x^3+3*x^2-4*x+1 按Enter 键,显示: x =1 y =-11.求下列不定积分(1)在命令窗口中输入: >> syms xint(x/(sqrt(x^2+1)),x)按键Enter 键,显示结果: ans = (x^2+1)^(1/2)即c +.(2)在命令窗口中输入: >> syms xint(x^3*cos(x))按键Enter 键,显示结果:ans =x^3*sin(x)+3*x^2*cos(x)-6*cos(x)-6*x*sin(x) 即332cos =sin 3cos 6cos 6sin x xdx x x x x x x x c +--+⎰. 2.求下列定积分(1)在命令窗口中输入: >> int((-3*x+2)^10,x,0,1) 点击Enter 键,显示结果: ans = 683/11 即1100683(-3+2)d =11x x ⎰. (2)在命令窗口中输入: >> int(x*sin(x),x,0,pi/2)点击Enter 键,显示结果: ans = 1 即 π20sin d =1x x x ⎰.3.求广义积分0e d x x x -∞⎰.操作:在命令窗口中输入: >>int(x*exp(x),x,-inf,0)按Enter 键,显示结果: ans =-1 即e d =1xx x -∞-⎰.1. 230y y y '''++=.操作:在命令窗口中输入: >> syms x y;y=dsolve('D2y -4*Dy -5*y=0','x') 显示:y =C1*exp(5*x)+C2*exp(-x)即满足所给初始条件的特解为:512xx y c e c e -=-.2. 232sin xy y e x '''-=.操作:在命令窗口中输入: >> syms x y;y=dsolve('D2y -3*Dy=2*exp(3*x)*sin(x)','x') 显示:y = -3/5*exp(3*x)*cos(x)-1/5*exp(3*x)*sin(x)+1/3*exp(x)^3*C1+C2即满足所给初始条件的特解为:33312311cos sin 553xxxy e x e x c e c =--++. 整理得:33213cos +sin 5xxy e x x ce c =-++()(令113c c =)3. +cos x y y y e x '''+=+,00x y ==,032x y ='=.操作:在命令窗口中输入: >> syms x y;y=dsolve('D2y+Dy+y=exp(x)+cos(x)','y(0)=0', 'Dy(0)=3/2', 'x') 显示:y = -1/3*exp(-1/2*x)*cos(1/2*3^(1/2)*x)+1/3*exp(x)+sin(x)即满足所给初始条件的特解为:211cos()sin 323x xy e e x -=-++.1. 绘制平面曲线ln y x =. 操作:在命令窗口中输入: >> x=1:0.02: exp(2); y=log(x); plot(x,y);按Enter 键,显示下图:2. 绘制空间曲面2232z x y =-. 操作:在命令窗口输入 >>[x,y]=meshgrid(-4:0.5:4); z=-3*x.^2-2*y.^2; surf(x,y,z)按Enter 键,显示下图:3. 绘制空间曲线23,23.t t t x e y e z e ---⎧=⎪⎪=⎨⎪=⎪⎩操作:在命令窗口输入>>t=0:0.01:1;x=exp(-t);y=exp(-2*t)/4;z=3*exp(-3*t)/9;plot3(x,y,z)按Enter键,显示下图:实验6作业题1. 求函数cos z xy =的偏导数. 操作:在命令窗口中输入:>> dz_dx=diff('cos(x*y)', 'x ') 显示dz_dx = -sin(x*y)*y 继续输入:>> dz_dy=diff('cos(x*y)', 'y ') 显示:dz_dy =-sin(x*y)*x即sin zx xy x∂=-∂, sin z x xy y ∂=-∂2. 计算函数23y x y =-的极值.操作:在matlab 中依次选择“File\New\M -File ”,在弹出的M 文件编辑窗口中在命令窗口中输入:clear all;clc syms x y;z=x^3-6*x-y^3+3*y;dz_dx=diff(z,x); %计算z 对x 的偏导数 dz_dy=diff(z,y); %计算z 对y 的偏导数 [x0,y0]=solve(dz_dx,dz_dy); %求驻点x0,y0A_=diff(z,x,2); %计算z 对x 的二阶偏导数B_=diff(diff(z,x),y); %计算z 对x,y 的二阶混合偏导数 C_=diff(z,y,2); %计算z 对y 的二阶偏导数 x0=double(x0); %数据转换 y0=double(y0);n=length(x0); %计算x0中元素的个数 for i=1:nA_x=subs(A_, x,x0(i)); %把x=x0(i)(即x0的第i 个元素值)代入z 对x 的二阶偏导数A=subs(A_x, y,y0(i)); %继续把y=y0(i)(即y0的第i 个元素值)代入z 对x 的二阶偏导数,得到AB_x=subs(B_, x,x0(i)); %把x=x0(i)代入z 对x 、y 的二阶混合偏导数 B=subs(B_x, y,y0(i)); %继续把y=y0(i)代入二阶混合偏导数,得到B C_x=subs(C_, x,x0(i)); %把x=x0(i)代入z 对y 的二阶偏导数C=subs(C_x, y,y0(i)); %继续把y=y0(i)代入z 对y 的二阶偏导数,得到C D=A*C-B^2;text=['原函数在(',num2str(x0(i)), ', ',num2str(y0(i)), ')处' ]; if D>0fm=subs(x^3-6*x-y^3+3*y,{x,y},{x0(i),y0(i)}); %求函数值 if A>0disp([text, '有极小值',num2str(fm)]) %在命令窗口中输出 elsedisp([text, '有极大值',num2str(fm)])end end if D==0disp([text, '的极值情况还不确定,还需另作讨论' ]) end end保存后,选择M 文件编辑窗口中的“Debug\run ”,显示如下结果: 原函数在(1.4142,-1)处有极小值-7.6569 原函数在(-1.4142,1)处有极大值7.65693. 计算(2)d d Dx y x y -⎰⎰,D :顶点分别为(0,0),(1,1)和(0,1)的三角形闭区域;操作:在命令窗口中输入: >>syms x y;S=int(int(2*x-y,y,0,1-x),x,0,1) 显示: S=1/6即:二重积分1(2)d d =6Dx y x y -⎰⎰.实验7作业题1. 将函数xx f -=11)(展开为幂级数,写出展开至6次幂项. 操作:在命令窗口中输入: >> clear;clc syms x; f=1/(1-2*x); taylor(f,7,x) 显示:ans = 1+2*x+4*x^2+8*x^3+16*x^4+32*x^5+64*x^6即65432643216842111x x x x x x x ++++++=-. 2. 求函数2()tf t e =的拉氏变换.操作:在命令窗口中输入: >> clear;clc syms x;laplace(exp(2*t)) 显示: ans = 1/(s -2)即 21)(2-=s e L t. 3.求函数22()56s F s s s +=-+的拉氏逆变换.操作:在命令窗口中输入: >>syms silaplace((s+2)/(s^2-5*s+6)) 显示:ans =-4*exp(2*t)+5*exp(3*t)即 12256s L s s -+⎡⎤⎢⎥-+⎣⎦234e 5e t t =-+.。
(1)产生一个5阶魔方矩阵M:M=magic(5)(2)将矩阵M的第3行4列元素赋值给变量t:t=M(3,4)(3)将由矩阵M第2,3,4行第2,5列构成的子矩阵赋给变N:N=M(2:4,2:3:5)(4)将由矩阵M的前3行赋给变量N:N=M(1:3,:)(5)将由矩阵M的后3列赋给变量N:N=M(:,end:-1:end-2)(6)提取M的主对角线元素,并以这些对角线元素构成对角矩阵N:N=diag(diag(M))或N=tril(triu(M)) (7)随机产生1000个100以内的整数赋值给变量t:t=round(rand(1,1000)*100)(8)随机产生100*5个100以内的实数赋值给变量M:M=rand(100,5)*100(1)删除矩阵M的第7个元素M(7)=[](2)将含有12个元素的向量t转换成3*4的矩阵:reshape(t,3,4)(3)产生和M同样大小的单位矩阵:eye(size(M))(4)寻找向量t中非零元素的下标:find(t)(5)逆序显示向量t中的元素:t(end:-1:1)(6)显示向量t偶数位置上的元素:t(2:2:end)(7)利用find函数,将向量t中小于10的整数置为0:t(find(t<10&rem(t,1)==0))=0(8)不用find函数,将向量t中小于10的整数置为0:t(t<10&rem(t,1)==0)=0(9)将向量t中的0元素用机器0(realmin)来代替:t(find(t=0))=realmin(10)将矩阵M中小于10的整数置为0:M(find(M<10)&rem(M,1)==0)=02、写出完成下列操作的命令及结果。
(1)将1~50这50个整数按行优先存放到5*10的矩阵中,求该矩阵四周元素的和;>> t=[1:10];>> M=[t;t+10;t+20;t+30;t+40]M =1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 2 021 22 23 24 25 26 27 28 29 3 031 32 33 34 35 36 37 38 39 4 041 42 43 44 45 46 47 48 49 5 0>> N=M(2:4,2:9)N =12 13 14 15 16 17 18 1922 23 24 25 26 27 28 2932 33 34 35 36 37 38 39>> sum(sum(M))-sum(sum(n))ans =6632)n取100、1000、10000,求序列1、1/2、1/3……1/n的和。
四年级数学滴水实验练习题滴水实验是一种常见的数学实验,通过该实验可以帮助学生直观地理解数的增加和减少。
下面是一些关于滴水实验的练习题,帮助四年级学生巩固对数的概念和运算的理解。
1. 小明在滴水实验中,先往容器中滴入5滴水,接着又滴入3滴水。
请问容器里共有几滴水?2. 小红在滴水实验中,先往容器中滴入7滴水,接着又滴入2滴水,然后又滴入5滴水。
请问容器里共有几滴水?3. 小华在滴水实验中,先往容器中滴入4滴水,接着又滴入6滴水,然后再滴入3滴水。
请问容器里共有几滴水?4. 小明在滴水实验中,先往容器中滴入10滴水,接着每次都滴入2滴水,滴了5次。
请问容器里共有几滴水?5. 小红在滴水实验中,先往容器中滴入8滴水,接着每次都滴入3滴水,滴了4次。
请问容器里共有几滴水?解答:1. 小明一共滴入5滴水,再滴入3滴水,所以容器中共有5 + 3 = 8滴水。
2. 小红一共滴入7滴水,再滴入2滴水,最后滴入5滴水,所以容器中共有7 + 2 + 5 = 14滴水。
3. 小华一共滴入4滴水,再滴入6滴水,最后滴入3滴水,所以容器中共有4 + 6 + 3 = 13滴水。
4. 小明先滴入10滴水,然后每次都滴入2滴水,滴了5次,所以容器中共有10 + 2×5 = 10 + 10 = 20滴水。
5. 小红先滴入8滴水,然后每次都滴入3滴水,滴了4次,所以容器中共有8 + 3×4 = 8 + 12 = 20滴水。
通过这些练习题,我们可以观察到在滴水实验中,数的增加可以通过加法来表示,而数的减少可以通过减法来表示。
希望同学们通过这个实验,能够更好地理解和掌握数的增加和减少的概念,从而在数学学习中更加自信和熟练。
数学实验作业七题目:P200. 2);6) 日期:2003-4-9【实验目的】:1、掌握MATLAB 优化工具箱的基本用法,对不同算法进行初步分析、比较。
2、练习实际问题的非线性最小二乘拟合。
【实验内容】:二:求解()12212122min 42421x e x x x x x ++++,初值(-1,1),对不同算法的结果进行分析、比较。
【模型分析】:首先画出函数f=12212122(42421)x e x x x x x ++++的图像和等高线:可以看到:在[0.5,-1]附近为一个“凹地”,最小值应在该凹地中取得。
另外,从(-1,1)到此凹地为一与Rosenbrock 函数类似的狭长通道,不利于沿负梯度方向下降。
可以想象,该函数具有与Rosenbrock 函数类似的性质。
【MATLAB 源程序】比较程序如下:%数学实验作业二.1-dfunction f=ch72fun(x);%第7章第2题的函数f=exp(x(1)).*(4*x(1).^2+2*x(2).^2+4*x(1).*x(2)+2.*x(2)+1);%ch72.m%第7章第2题X0=[-1,1];%赋初值%BFGS,混合二三次插值opt1=optimset('TolX',1e-6,'TolFun',1e-6,'MaxIter',1000);[X1,FV AL,EXITFLAG,OUTPUT]=FMINUNC(@ch72fun,X0,opt1)%BFGS,三次插值opt2=optimset(opt1,'LineSearchType','cubicpoly');[X1,FV AL,EXITFLAG,OUTPUT]=FMINUNC(@ch72fun,X0,opt2)%DFP,混合二三次插值opt3=optimset(opt1,'HessUpdate','dfp');[X1,FV AL,EXITFLAG,OUTPUT]=FMINUNC(@ch72fun,X0,opt3)%DFP,三次插值opt4=optimset(opt3,'LineSearchType','cubicpoly');[X1,FV AL,EXITFLAG,OUTPUT]=FMINUNC(@ch72fun,X0,opt4)%最速下降,混合二三次插值opt5=optimset(opt1,'HessUpdate','steepdesc');[X1,FV AL,EXITFLAG,OUTPUT]=FMINUNC(@ch72fun,X0,opt5)【MATLAB 运行结果】:结果为:所以可以得到本题的解析解:x=(0.5,-1),f=0。
50个简单的数学小实验1. 滚动骰子,记录每个点数的数量,进行统计分析。
2. 观察不同颜色的薯片在水中的沉浮情况,研究密度与沉浮关系。
3. 使用不同比例的液体混合,观察颜色的变化。
4. 抛掷硬币,记录正反面的次数,进行概率分析。
5. 用尺子测量不同物品的长度、宽度和高度,并计算体积。
6. 研究太阳光的折射现象,观察镜面反射和散射。
7. 测量水的密度,并探究不同温度下密度的变化。
8. 按照不同比例混合物质制作彩色火焰,观察颜色的变化。
9. 观察火柴棒在水中的漂浮情况,探究密度与沉浮关系。
10. 测量不同颜色纸张的吸光度,并研究颜色与吸光度的关系。
11. 投掷骰子,计算点数之和的概率分布。
12. 测量不同材质的物体上的摩擦系数,并计算摩擦力。
13. 研究声音的传播和反射,观察声波在不同介质中的特性。
14. 制作简易水银温度计,测量温度的变化。
15. 用万能表测量不同电器的电阻、电流和电压。
16. 研究气体的扩散速率,观察气体分子在不同温度下的运动状态。
17. 测量不同颜色光线的波长和频率,并探究颜色与波长频率的关系。
18. 使用不同硬度的铅笔在不同纸张上写字,观察痕迹的深浅和清晰度。
19. 用扫描电镜观察不同物质的微观结构,并比较不同物质之间的差异。
20. 研究磁场的强度和方向,探究电流与磁场的相互作用关系。
21. 设计和制作简易的电磁铁,测量其磁场强度和电阻。
22. 投掷飞镖,研究飞行轨迹和命中准确度。
23. 测量不同物体的密度,计算质量和体积的比值。
24. 制作水晶,观察不同溶液的晶体形态和颜色。
25. 研究不同材质之间的传热过程,探究热传导和热辐射的特性。
26. 测量不同物体的电荷量,研究电荷与电力的相互作用关系。
27. 观察不同金属的折射率和反射率,研究光的特性在金属中的表现。
28. 测量不同水平面上的液体压力和重力,探究液体压力和重力的关系。
29. 研究不同状态的气体压强,探究气体压强与体积的关系。
六年级数学实践作业
六年级数学实践作业示例:
题目:测量并计算家中常见物品的面积或体积
目标:通过实际操作,加深对面积和体积计算的理解,提高数学应用能力。
步骤:
1. 选择家中常见的物品,例如:餐桌、电视机、书柜、水桶等。
2. 使用测量工具(如卷尺)测量所选物品的长、宽、高。
3. 根据测量数据,使用面积和体积的计算公式(面积=长×宽,体积=长×宽×高),计算所选物品的面积和体积。
4. 将测量数据、计算过程和结果记录在实践作业表格中。
5. 分析测量和计算过程中的误差来源,讨论如何减小误差。
6. 将实践作业表格贴在数学实践作业本上,供老师检查。
注意事项:
1. 测量时要小心谨慎,避免损坏物品。
2. 记录数据时要准确无误,保证计算结果的准确性。
3. 在计算过程中,要注意单位的统一(如:长度单位为米或厘米,面积单位为平方米或平方厘米,体积单位为立方米或立方厘米)。
4. 分析误差时,可以从测量工具、测量方法、计算过程等方面进行考虑。
通过这样的实践作业,学生可以在实际操作中加深对面积和体积计算的理解,提高数学应用能力,同时也可以培养细心、耐心和观察力等素质。
例题(2):假设某地区人口数量N(t)随时间t 连续增长,即dN(t)/dt=λN(t),其中λ是人口增长率.易得其解 N(t)=N o e λt ,N O 是该地区的初始人口。
如果考虑到移民以速度V 进入该地区,则dN(t )/dt=λN(t)+v微分方程的解为N(t)=N o e λt +v (e λt -1)/λ问题提出:假设该地区的初始人口有100万。
第一年内有43.5万移民迁入,第一年末总计人口156.4万,则43.5156.4100(1)λλλ=+-e e求该地区的人口增长率λ(一元方程求根)。
编程练习题1:对带有迁移的人口模型,试用几种非线性方程求根方法,确定模型公式中的人口增长率λ。
其满足:43.5156.4100(1)λλλ=+-e e设人口数量随着时间以固定的相对增长率变化。
领N(t)为t 食客的人口数量。
λ 为人口出生率。
1)人口数量的微分方程模型:dN(t)/dt=λN(t)2)指数模型: N(t)=N oe λt N O :初始时刻人口数量。
如果允许移民移入且移入速率v 为固定常数dN(t )/dt=λN(t)+v3)有移民移入的指数模型:N(t)=N o e λt +v (e λt -1)/λ假设:N o =1000000 (人) ,v=435000(人/年) ,N(t)=1564000(人) 通过求解方程:43.5156.4100(1)λλλ=+-e e 的该地区人口的出生率λ=0.1。
设方程f(λ)=0在区间[0,1]内有根,二分法就是逐步收缩有根区间,最后得出所求的根。
具体过程如下区有根区间[0,1]得重点,将它分为两半,分点λo =0+1/2=0.5 这样就可以缩少有根区间。
有三种情可以出现:1)若f(λ)f(0)﹤0,则f(λ)在区间[0,0.5)内有零点;2)若f(λ)f(1)﹤0,则f(λ)在区间(0.5,1]内有零点;3)若f(λo)=0,则λo 再区间[0,1]内的零点。
小学生数学实验100例实验一:糖果计数Obj:培养小学生的计数能力Materials:糖果Procedure:1. 给每个小学生发放相同数量的糖果。
2. 让小学生一边将手中的糖果一个一个取出,一边用口数数。
3. 让他们将自己数的结果告诉老师,老师确认无误后,鼓励他们继续进行下一轮的计数。
4. 重复以上步骤,直到小学生们计数无误。
实验二:数字拼图Obj:提高小学生的数字认知和逻辑思维能力Materials:数字卡片、拼图板Procedure:1. 将数字卡片打乱顺序放在桌上。
2. 让小学生们按照数字的顺序将卡片拼在拼图板上。
3. 鼓励小学生们在完成之后互相检查答案,找出错误并及时修改。
实验三:趣味运算Obj:强化小学生的运算能力Materials:纸、铅笔Procedure:1. 给每个小学生发放纸和铅笔。
2. 出题者可以随机给出一道加法、减法或乘法的算式。
3. 小学生们写下自己的答案,并在完成后把纸张交给出题者。
4. 出题者检查答案,将答对的小学生召集起来并鼓励他们。
实验四:图形分类Obj:提高小学生的图形识别和分类能力Materials:各种图形卡片(正方形、长方形、圆形、三角形等)Procedure:1. 将各种图形卡片打乱顺序放在桌上。
2. 让小学生们按照图形的特征将卡片分类。
3. 鼓励小学生们在完成之后互相检查分类结果,并讨论不同分类方式的合理性和差异。
实验五:分数比较Obj:加深小学生对分数大小关系的理解Materials:纸、铅笔Procedure:1. 准备一些简单的分数题目,例如1/2、1/4、1/8等。
2. 让小学生们通过比较分子和分母的大小,判断分数的大小关系。
3. 引导小学生们用纸和铅笔练习绘制简单的分数图形,加深对分数大小关系的理解。
实验六:时钟读表Obj:提高小学生的时间概念和读表能力Materials:模拟时钟、题目卡片Procedure:1. 准备一些时钟读表题目卡片,包括小时和分钟的各种组合。
实验七T7:取不同的初值计算下列平方和形式的非线性规划,尽可能求出所有局部极小点,进而找出全局极小点,并对不同算法(搜索方向、搜索步长、数值梯度与分析梯度等)的结果进行分析、比较。
2)min 22222121212(1211)(4949812324681)x x x x x x +-++++-4)min 100θ2221/222312123{[χ-10(χ,χ)]+[(χ+χ)-1]}+χ 其中1(), >0 2(,)11(), <0 22arctg arctg πθπ21112211⎧χχχ⎪⎪χχ=⎨⎪χχ+χ⎪⎩ 解:2)在matlab 中输入程序(exam0705grad.m ,exam0705grad_run.m ): function [f,g]=exam0705grad(x)f=(x(1)^2+12*x(2)-11)^2+(49*x(1)^2+49*x(2)^2+81*x(1)+2324*x(2)-681)^2;% compute the function value at xif nargout > 1 % fun called with 2 output argumentsg(1)=2*(98*x(1) + 81)*(49*x(1)^2 + 81*x(1) + 49*x(2)^2 + 2324*x(2) - 681) + 4*x(1)*(x(1)^2 + 12*x(2) - 11); % compute the gradient evaluated at xg(2)=288*x(2) + 2*(98*x(2) + 2324)*(49*x(1)^2 + 81*x(1) + 49*x(2)^2 + 2324*x(2) - 681) + 24*x(1)^2 - 264;endclear all ;clc;% comparing different algorithms: using gradient vectorformat short ex0=[-1.9,2];'---case1: bfgs, hybrid 2,3 poly-------'opt1=optimset('LargeScale','off', 'MaxFunEvals',1000,'GradObj','on');[x1,v1,exit1,out1]=fminunc(@exam0705grad,x0,opt1)pause'---case2: dfp, hybrid 2,3 poly-------'fopt=optimset(opt1,'HessUpdate','dfp');[x2,v2,exit2,out2]=fminunc(@exam0705grad,x0,fopt) pause'---case3: bfgs, hybrid 2,3 poly-------'fopt=optimset(opt1,'HessUpdate','bfgs');[x3,v3,exit3,out3]=fminunc(@exam0705grad,x0,fopt) pause'---case4: steep, hybrid 2,3 poly-------'fopt=optimset(opt1,'HessUpdate','steepdesc');[x4,v4,exit4,out4]=fminunc(@exam0705grad,x0,fopt) pause'---case5: bfgs, 3rd poly-------'opt2=optimset(opt1,'LineSearchType','cubicpoly'); [x5,v5,exit5,out5]=fminunc(@exam0705grad,x0,opt2) pause'---case6: dfp, 3rd poly-------'fopt=optimset(opt2,'HessUpdate','dfp');[x6,v6,exit6,out6]=fminunc(@exam0705grad,x0,fopt) pause'---case7:bfgs , 3rd poly-------'fopt=optimset(opt2,'HessUpdate','bfgs');[x7,v7,exit7,out7]=fminunc(@exam0705grad,x0,fopt) pause'---case8: steep, 3rd poly-------'fopt=optimset(opt2,'HessUpdate','steepdesc');[x8,v8,exit8,out8]=fminunc(@exam0705grad,x0,fopt)pause'++++ results of solutions ++++++'solutions=[x1;x2;x3;x4;x5;x6;x7;x8];funvalues=[v1;v2;v3;v4;v5;v6;v7;v8];iterations=[out1.funcCount;out2.funcCount;out3.funcCount;out4.funcCou nt;out5.funcCount;out6.funcCount;out7.funcCount;out8.funcCount]; [solutions,funvalues,iterations]则输出:x1 =-2.8997e+000 2.1583e-001v1 =3.2329e-006exit1 =1out1 =iterations: 32funcCount: 41stepsize: 1firstorderopt: 2.3873e+000algorithm: 'medium-scale: Quasi-Newton line search' message: [1x438 char]x2 =-2.3709e+000 2.5629e-001v2 =6.8300e+000exit2 =out2 =iterations: 401funcCount: 422stepsize: 1firstorderopt: 5.7455e+003algorithm: 'medium-scale: Quasi-Newton line search' message: [1x128 char]x3 =-2.8997e+000 2.1583e-001v3 =3.2329e-006exit3 =1out3 =iterations: 32funcCount: 41stepsize: 1firstorderopt: 2.3873e+000algorithm: 'medium-scale: Quasi-Newton line search' message: [1x438 char]x4 =-2.0594e+000 2.7379e-001v4 =1.2063e+001exit4 =out4 =iterations: 118funcCount: 1000stepsize: 4.7397e-006firstorderopt: 1.7291e+002algorithm: 'medium-scale: Quasi-Newton line search' message: [1x144 char]x5 =-2.8997e+000 2.1583e-001v5 =3.2329e-006exit5 =1out5 =iterations: 32funcCount: 41stepsize: 1firstorderopt: 2.3873e+000algorithm: 'medium-scale: Quasi-Newton line search' message: [1x438 char]x6 =-2.3709e+000 2.5629e-001v6 =6.8300e+000exit6 =out6 =iterations: 401funcCount: 422stepsize: 1firstorderopt: 5.7455e+003algorithm: 'medium-scale: Quasi-Newton line search'message: [1x128 char]x7 =-2.8997e+000 2.1583e-001v7 =3.2329e-006exit7 =1out7 =iterations: 32funcCount: 41stepsize: 1firstorderopt: 2.3873e+000algorithm: 'medium-scale: Quasi-Newton line search' message: [1x438 char]x8 =-2.0594e+000 2.7379e-001v8 =1.2063e+001exit8 =out8 =iterations: 118funcCount: 1000stepsize: 4.7397e-006firstorderopt: 1.7291e+002algorithm: 'medium-scale: Quasi-Newton line search' message: [1x144 char]ans =++++ results of solutions ++++++ans =-2.8997e+000 2.1583e-001 3.2329e-006 4.1000e+001-2.3709e+000 2.5629e-001 6.8300e+000 4.2200e+002-2.8997e+000 2.1583e-001 3.2329e-006 4.1000e+001-2.0594e+000 2.7379e-001 1.2063e+001 1.0000e+003-2.8997e+000 2.1583e-001 3.2329e-006 4.1000e+001-2.3709e+000 2.5629e-001 6.8300e+000 4.2200e+002-2.8997e+000 2.1583e-001 3.2329e-006 4.1000e+001-2.0594e+000 2.7379e-001 1.2063e+001 1.0000e+003改变x0,程序见附序(di1tix0.m),因太过繁琐,只输出最后x的值,输出:ans =-2.8956e+000 2.1618e-001 4.6001e-004 4.9000e+001-2.9377e+000 2.1295e-001 1.0877e+000 4.6600e+002-2.8956e+000 2.1618e-001 4.6001e-004 4.9000e+001-1.4106e+000 2.9837e-001 2.9482e+001 1.0000e+003-2.8956e+000 2.1618e-001 4.6001e-004 4.9000e+001-2.9377e+000 2.1295e-001 1.0877e+000 4.6600e+002-2.8956e+000 2.1618e-001 4.6001e-004 4.9000e+001-1.4106e+000 2.9837e-001 2.9482e+001 1.0000e+0034)程序见(exam07052grad.m, Untitled.m),输出结果:-1.9000e+000 1.0000e+000 2.0000e+000 5.0213e+002 1.6000e+001-1.9000e+000 1.0000e+000 2.0000e+000 5.0213e+002 1.6000e+001-1.9000e+000 1.0000e+000 2.0000e+000 5.0213e+002 1.6000e+001-1.9000e+000 1.0000e+000 2.0000e+000 5.0213e+002 1.6000e+001-1.9000e+000 1.0000e+000 2.0000e+000 5.0213e+002 1.6000e+001-1.9000e+000 1.0000e+000 2.0000e+000 5.0213e+002 1.6000e+001-1.9000e+000 1.0000e+000 2.0000e+000 5.0213e+002 1.6000e+001-1.9000e+000 1.0000e+000 2.0000e+000 5.0213e+002 1.6000e+001改变初值x0后程序见Untitled1.m,输出结果:-1.9000e+000 2.0000e+000 2.0000e+000 2.9923e+002 1.7000e+001-1.9000e+000 2.0000e+000 2.0000e+000 2.9923e+002 1.7000e+001-1.9000e+000 2.0000e+000 2.0000e+000 2.9923e+002 1.7000e+001-1.9000e+000 2.0000e+000 2.0000e+000 2.9923e+002 1.7000e+001-1.9000e+000 2.0000e+000 2.0000e+000 2.9923e+002 1.7000e+001 -1.9000e+000 2.0000e+000 2.0000e+000 2.9923e+002 1.7000e+001 -1.9000e+000 2.0000e+000 2.0000e+000 2.9923e+002 1.7000e+001 -1.9000e+000 2.0000e+000 2.0000e+000 2.9923e+002 1.7000e+001 结论:从2)4)输出观察和比较数据可以看出改变x0,最优解随之改变,而bfgs 公式,混合2,3次插值,求得的局部最优解最接近全局最优解。
练习2﹒1画出下列常见曲线的图形(其中a=1,b=2,c=3)。
1.立方抛物线y =解: x=-4:0.1:4; y=x.^(1/3);plot(x,y)-4-3-2-1012340.20.40.60.811.21.41.62.高斯曲线2xy e -=解:fplot('exp(-x^2)',[-4,4])-4-3-2-1123400.10.20.30.40.50.60.70.80.913、笛卡儿曲线2332233,(3)11at at x y x y axy tt==+=++解:ezplot('x^3+y^3-3*x*y',[-4,4])-4-3-2-101234-4-3-2-101234xyx 3+y 3-3 x y = 0或:t=-4:0.1:4; x=3*t./(1+t.^2); y=3*t.^2./(1+t.^2); plot(x,y)-1.5-1-0.500.51 1.500.511.522.534、蔓叶线233222,()11atatxx y y tta x===++-解:t=-4:0.1:4; x=t.^2./(1+t.^2); y=t.^3,/(1+t.^2); y=t.^3./(1+t.^2); plot(x,y)00.10.20.30.40.50.60.70.80.91-4-3-2-101234或:ezplot('y .^2-x.^3/(1-x)',[-4,4])-4-3-2-101234-4-3-2-101234xyy.2-x.3/(1-x) = 05、摆线(sin ),(1cos )x a t t y b t =-=-解:t=-4:0.1:4; x=t-sin(t); y=2-2*cos(t); plot(x,y)-5-4-3-2-101234500.511.522.533.546、星形线22233333(cos ),(sin )()x a t y a t x y a ==+=解:t=0:0.1:2*pi; x=cos(t).^3; y=sin(t).^3; plot(x,y)-1-0.8-0.6-0.4-0.20.20.40.60.81-1-0.8-0.6-0.4-0.200.20.40.60.81或: ezplot('x.^(2/3)+y .^(2/3)-1',[-4,4])-4-3-2-101234-4-3-2-101234xyx.2/3+y.2/3-1 = 07、螺旋线cos ,sin ,x a t y b t z ct ===解:t=0:0.1:2*pi; x=cos(t); y=2*sin(t); z=3*t; plot3(x,y ,z)-118、阿基米德螺线r a θ=解:θ=0:0.1:2*pi; r=;θ polar(θ,r)902709、对数螺线ar eθ=θ=0:0.1:2*pi;r=exp(θ);polar(θ,r)90270180010、双纽线22222222cos 2(()())r a x y a x y θ=+=-解:θ=0:0.1:2*pi;r=sqrt(cos(2*θ));90270或:ezplot('(x.^2+y.^2).^2-(x.^2-y.^2)',[-4,4])hold on;gridon-4-3-2-101234-4-3-2-101234xy(x.2+y.2).2-(x.2-y.2) = 011、双纽线222222sin 2(()2)r a x y a xy θ=+=解:t=0:0.1:2*pi; r=sqrt(sin(2*t)); polar(t,r)902701800或:ezplot('(x.^2+y^2).^2-2*x*y',[-4,4])-4-3-2-101234-4-3-2-101234xy(x.2+y 2).2-2 x y = 012、心形线(1cos )r a θ=+解:t=0:0.1:2*pi; >> r=1+cos(t); >> polar(t,r)90270180练习2.21、求出下列极限值。
(1)limn →∞解:syms nlimit((n^3+3^n)^(1/n),n,inf) ans =3(2)lim n →∞解:syms x>> limit(sqrt(x+2)-2*(sqrt(x+1))+sqrt(x),x,inf)ans =0(3)0lim cot 2n x x → 解:syms xlimit(x*cot(2*x),x,0) ans =1/2(4)lim (cos)xn m x→∞解:syms x mlimit((cos(m/x))^x,x,inf) ans =1(5)111lim ()1xn xe →--解:syms xlimit((1/x)-1/(exp(x)-1),x,1) ans =(exp(1)-2)/(exp(1)-1)(6)lim)n x →∞解:syms xlimit(sqrt(x^2+x)-x,x,inf) ans =1/22、有个客户看中某套面积为1802m ,每平方米7500元。
他计划首付30%,其余70%用20年按揭贷款(贷款年利率5.04%),按揭贷款中还有10万元为公积金贷款(贷款年利率4.05%),请问他的房屋总价、首付款额和月付还款额分别为多少?解:(1)房屋总价:18075001350000S=⨯= (元)(2)首付款额:13500000.3405000N =⨯= (元)(3)房屋未付钱:945000M S N =-=(元)设揭贷款的年利率为x ,则20(1)240a x y ⨯+=其中a 为本金,y 为每月所付的钱。
解:当a =945000-100000=845000, 5.04%x =时, syms x yy=845000*(1+x)^20/240; x=0.0504; eval(y)ans = 9.4133e+003当a =100000, 4.05%x =时; syms x yy=100000*(1+x)^20/240; x=0.0405; eval(y) ans =921.7867 即每月付还款额为9413.3921.786710335.0867Z=+= (元)3、作出下列函数及其导函数的图形,观察极值点、最值点的位置点的位置并求出,求出所有驻点以及对应的二阶导函数,求出函数的单调区间。
(1)22()sin(2),[2,2];f x x x x =---解:函数图象:fplot('x.^2*sin(x.^2-x-2)',[-2,2])-2-1.5-1-0.500.51 1.52-4-3-2-1123原函数在-1附近的极小值:[x,f]=fminsearch('x.^2*sin(x.^2-x-2)',-1) x = -0.7315 f =-0.3582原函数在1.5附近的极小值: [x,f]=fminsearch('x.^2*sin(x.^2-x-2)',1.5) x =1.5951 f =-2.2080原函数在-1.5附近的极大值:[x,f]=fminsearch('-x.^2*sin(x.^2-x-2)',-1.5)x =-1.5326f =2.2364原函数在0附近的极大值:[x,f]=fminsearch('-x.^2*sin(x.^2-x-2)',0) x =0f =0原函数在[-2,2]上的最小值:x=-2:0.1:2;y=x.^2.*sin(x.^2-x-2);[m,k]=min(y)m =-3.0272k =1原函数在[-2,2]上的最大值:x=-2:0.1:2;y=x.^2.*sin(x.^2-x-2);[m,k]=max(y)m =2.2140k =6原函数的导函数图像:syms xy=x^2*sin(x^2-x-2);diff(y,x)ans =2*x*sin(x^2-x-2)+x^2*cos(x^2-x-2)*(2*x-1)导函数在-1.5附近的极小值:[x,f]=fminsearch('2*x*sin(x^2-x-2)+x^2*cos(x^2-x-2)*(2*x-1)',-1.5) x =-1.2650f =-5.5890导函数在1.5附近的极小值:[x,f]=fminsearch('2*x*sin(x^2-x-2)+x^2*cos(x^2-x-2)*(2*x-1)',1.5)x =1.2404f =-2.7572导函数在-2附近的极大值:[x,f]=fminsearch('-(2*x*sin(x^2-x-2)+x^2*cos(x^2-x-2)*(2*x-1))',-2) x =-1.9240f =17.6746导函数在-0.5附近的极大值:[x,f]=fminsearch('-(2*x*sin(x^2-x-2)+x^2*cos(x^2-x-2)*(2*x-1))',-0.5) x =-0.4742f =0.7973导函数在[-2,2]上的最大值:x=-2:0.1:2;y=2*x.*sin(x.^2-x-2)+x.^2.*cos(x.^2-x-2).*(2*x-1);[m,k]=max(y)m =17.5338k =2导函数在[-2,2]上的最小值:x=-2:0.1:2;y=2*x.*sin(x.^2-x-2)+x.^2.*cos(x.^2-x-2).*(2*x-1);[m,k]=min(y)m =-5.5119k =8求二阶导数的程序:syms x;diff('x^2*sin(x^2-x-2)',x,2)ans=2*sin(x^2-x-2)+4*x*cos(x^2-x-2)*(2*x-1)-x^2*sin(x^2-x-2)*(2*x-1)^2 +2*x^2*cos(x^2-x-2)二阶导数的程序及图像:fplot('2*sin(x^2-x-2)+4*x*cos(x^2-x-2)*(2*x-1)-x^2*sin(x^2-x-2)*(2*x-1)^2+2*x^2*cos(x^2-x-2)',[-2,2])二阶导函数在-1.5附近的极小值:[x,f]=fminsearch('2*sin(x^2-x-2)+4*x*cos(x^2-x-2)*(2*x-1)-x^2*sin(x^ 2-x-2)*(2*x-1)^2+2*x^2*cos(x^2-x-2)',-1.5)x = -1.6847f =-58.8770二阶导函数在1附近的极小值:[x,f]=fminsearch('2*sin(x^2-x-2)+4*x*cos(x^2-x-2)*(2*x-1)-x^2*sin(x^ 2-x-2)*(2*x-1)^2+2*x^2*cos(x^2-x-2)',1)x = 0.9282f =-3.5360二阶导函数在-0.5附近的极小值:[x,f]=fminsearch('2*sin(x^2-x-2)+4*x*cos(x^2-x-2)*(2*x-1)-x^2*sin(x^ 2-x-2)*(2*x-1)^2+2*x^2*cos(x^2-x-2)',-0.5)x =-0.1798f =-2.1192二阶导函数在0附近的极大值:[x,f]=fminsearch('-(2*sin(x^2-x-2)+4*x*cos(x^2-x-2)*(2*x-1)-x^2*sin(x ^2-x-2)*(2*x-1)^2+2*x^2*cos(x^2-x-2))',0)x =0.2594f =1.4013二阶导函数在-1附近的极大值:[x,f]=fminsearch('-(2*sin(x^2-x-2)+4*x*cos(x^2-x-2)*(2*x-1)-x^2*sin(x ^2-x-2)*(2*x-1)^2+2*x^2*cos(x^2-x-2))',-1)x = -1.0098f =14.0148二阶导函数在2附近的极大值:[x,f]=fminsearch('-(2*sin(x^2-x-2)+4*x*cos(x^2-x-2)*(2*x-1)-x^2*sin(x ^2-x-2)*(2*x-1)^2+2*x^2*cos(x^2-x-2))',2)x =1.9084f =34.8519二阶导函数的增区间:【-1.6847,-1.0098】,【-0.1798,0.2594】【0.9282,1.9084】二阶导函数的减区间:【-2,-1.6847】,【-1.0098,-0.1798】,【0.2594,0.9282】,【1.9084,2】(2)53=-+-()32010,[3,3];f x x x解:函数图像程序及图像:fplot('3*x^5-20*x^3+10',[-3,3])-3-2-10123原函数在2附近的极小值:[x,f]=fminsearch('3*x^5-20*x^3+10',2)x =2f =-54原函数在-2附近的极大值:[x,f]=fminsearch('-(3*x^5-20*x^3+10)',-2) x =-2f =74原函数在[-3,3]上的最小值:x=-3:0.1:3;y=3*x.^5-20*x.^3+10;[m,k]=min(y)m =-179k =1原函数在[-3,3]上的最大值:x=-3:0.1:3;y=3*x.^5-20*x.^3+10;[m,k]=max(y)m =199k =61求导函数程序:syms x;y=3*x.^5-20*x.^3+10;diff(y,x)ans =15*x^4-60*x^2导函数的程序及图像:fplot('15*x^4-60*x^2',[-3,3])-3-2-10123导函数在-1附近的极小值:[x,f]=fminsearch('15*x^4-60*x^2',-1)x =-1.4143f =-60.0000导函数在1附近的极小值:[x,f]=fminsearch('15*x^4-60*x^2',1) x =1.4143f =-60.0000导函数在0附近的极大值:[x,f]=fminsearch('-(15*x^4-60*x^2)',0) x =0f =0导函数在[-3,3]上的最大值:x=-3:0.1:3;y=15*x.^4-60*x.^2;[m,k]=max(y)m =675k =1导函数在[-3,3]上的最小值:x=-3:0.1:3;y=15*x.^4-60*x.^2;[m,k]=min(y)m =-59.9760k =17求二阶导数的程序:syms x;y=3*x^5-20*x^3+10;diff(y,x,2)ans =60*x^3-120*x二阶导数的程序及图像:fplot('60*x^3-120*x',[-3,3])-3-2-10123二阶导函数在1附近的极小值:[x,f]=fminsearch('60*x^3-120*x',1)x =0.8165f =-65.3197二阶导函数在-1附近的极大值:[x,f]=fminsearch('-(60*x^3-120*x)',-1)x =-0.8165f =65.3197二阶导函数的增区间:【-3,-0.8165】,【0.8165,3】二阶导函数的减区间:【-0.8165,0.8165】(3)32=----f x x x x()|2|,[3,3];解:函数图像程序及图像:fplot('abs(x^3-x^2-x-2)',[-3,3])原函数在0附近的极小值:[m,k]=fminsearch('abs(x^3-x^2-x-2)',0) m =-0.3333k =1.8148原函数在1附近的极大值:[m,k]=fminsearch('-abs(x^3-x^2-x-2)',1) m =1k =3原函数在[-3,3]上的最大值:x=-3:0.1:3;y=abs(x.^3-x.^2-x-2);[m,k]=max(y)m =35k =1原函数在[-3,3]上的最小值:x=-3:0.1:3;y=abs(x.^3-x.^2-x-2);[m,k]=min(y)m =0k =51原函数可化简为:32322[2,3](1)2[3,2](2)x x x x x x ⎧---⎪⎨⎪-+++-⎩对(1)求导函数程序:syms x;y=x^3-x^2-x-2;diff(y,x)ans =3*x^2-2*x-1导函数(1)的程序及图像:fplot('3*x^2-2*x-1',[2,3])2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.93在区间【2,3】上导函数最小值:x=2:0.1:3;y=3*x.^2-2*x-1;[m,k]=min(y)m =7k =1在区间【2,3】上导函数最大值:x=2:0.1:3;y=3*x.^2-2*x-1;[m,k]=max(y)m =20k =11对(2)求导函数程序:syms x;y=-x^3+x^2+x+2;diff(y,x)ans =-3*x^2+2*x+1导函数(2)的程序及图像:fplot('-3*x^2+2*x+1',[-3,2])-3-2.5-2-1.5-1-0.500.51 1.52导函数(2)的极大值:[m,k]=fminsearch('-(-3*x^2+2*x+1)',0)m =0.3333k =1.3333在区间【-3,2】上导函数最大值:x=-3:0.1:2;y=-3*x.^2+2*x+1;[m,k]=max(y)m =1.3300k =34在区间【-3,2】上导函数最小值:x=-3:0.1:2;y=-3*x.^2+2*x+1;[m,k]=min(y)m =-32k =1对(1)求二阶导函数:syms x;y=x^3-x^2-x-2;diff(y,x,2)ans =6*x-2对(1)求二阶导函数的图像及程序:ezplot('6*x-2',[2,3])6 x-2x对(1),二阶导函数的增区间为:[2,3]对(2)求二阶导函数:syms x;y=-x^3+x^2+x+2;diff(y,x,2)ans =-6*x+2对(2)求二阶导函数的图像及程序:ezplot('-6*x+2',[-3,2])-6 x+2x对(2),二阶导函数的减区间为:[-3,2]练习2.31、求下列方程在限制条件下的根:(1)42x x =, 22x -<<解:解:fplot('x^4-2^x',[-2,2])grid on[x,f,h]=fsolve('x^4-2^x',-1)x =-0.8613f =3.6580e-012h =1[x,f,h]=fsolve('x^4-2^x',1.1)x =1.2396f =2.3298e-010h =1(2))0.5,1x x x x =>解:solve('x*log(sqrt(x^2-1)+x)-sqrt(x^2-1)-0.5*x','x',[1,inf])ans =2.11552288439786708008040478395542、农夫老李有一个半径为10m 的圆形牛栏,里面长满了草,老李要将家里的一头牛拴在牛栏边界的一根栏桩上,要求只让牛吃到圆形牛栏中一半的草,请问栓牛鼻的绳子应为多长?解:3、求解下列非线性方程组在原点附近的根:222223229364362200162160x y z x y z x x y z ⎧++=⎪--=⎨⎪---=⎩ 解:fun=@(t)[9*t(1)^2+36*t(2)^2+4*t(3)^2-36,t(1)^2-2*t(2)^2-20*t(3),16*t(1)-t(1)^3-2*t(2)^2-16*t(3)^2];t0=[0,0,0];[t,f,h]=fsolve(fun,t0)t =0.1342 0.9972 -0.0985f =1.0e-008 *0.7690 -0.0418 -0.1054h =14、画出下面两个椭圆的图形,并求出它们所有的交点坐标: 2222(2)(23)5,18(3)36x y x x y -++-=-+= 解:ezplot('(x-2)^2+(y+2*x-3)^2-5',[-10,10])hold onezplot('18*(x-3)^2+y^2-36',[-10,10])-10-8-6-4-20246810-10-8-6-4-2246810x y 18 (x-3)2+y 2-36 = 0fun=@(t)[(t(1)-2)^2+(t(2)+2*t(1)-3)^2-5,18*(t(1)-3)^2+t(2)^2-36]; t0=[2,-2];[t,f,h]=fsolve(fun,t0)t =1.7362 -2.6929f =1.0e-008 *0.6598 0.6430h =1fun=@(t)[(t(1)-2)^2+(t(2)+2*t(1)-3)^2-5,18*(t(1)-3)^2+t(2)^2-36];[t,f,h]=fsolve(fun,t3)t =1.6581 1.8936f =1.0e-010 *0.0778 0.1889h =1fun=@(t)[(t(1)-2)^2+(t(2)+2*t(1)-3)^2-5,18*(t(1)-3)^2+t(2)^2-36]; t4=[4,-4];[t,f,h]=fsolve(fun,t4)t =4.0287 -4.1171f =1.0e-012 *0.1252 0.8882h = 1fun=@(t)[(t(1)-2)^2+(t(2)+2*t(1)-3)^2-5,18*(t(1)-3)^2+t(2)^2-36]; t5=[4,-6];[t,f,h]=fsolve(fun,t5)t =3.4829 -5.6394f =1.0e-014 *-0.3553 -0.7105h =1练习2.41、求下列不定积分,并用diff 验证:23,,sin ,sec 1cos 1x dx dx x x dx xdx xe ++⎰⎰⎰⎰ 解:1cos dxx+⎰ int('1/(1+cos(x))','x')ans =tan(1/2*x)验证:diff('tan(1/2*x)','x') ans =1/2+1/2*tan(1/2*x)^21x dxe +⎰ int('1/(1+exp(x))','x')ans =log(exp(x))-log(1+exp(x))验证:diff('log(exp(x))-log(1+exp(x))','x')ans =1-exp(x)/(1+exp(x))simple(ans)ans =1/(1+exp(x))2sin x x dx ⎰int('x*sin(x)^2','x')ans =x*(-1/2*cos(x)*sin(x)+1/2*x)-1/4*cos(x)^2-1/4*x^2diff('x*(-1/2*cos(x)*sin(x)+1/2*x)-1/4*cos(x)^2-1/4*x^2','x')ans =x*(1/2*sin(x)^2-1/2*cos(x)^2+1/2)simple(ans)ans =x*sin(x)^23sec xdx⎰int('sec(x)^3','x')ans =1/2/cos(x)^2*sin(x)+1/2*log(sec(x)+tan(x))diff('1/2/cos(x)^2*sin(x)+1/2*log(sec(x)+tan(x))','x')ans =1/cos(x)^3*sin(x)^2+1/2/cos(x)+1/2*(sec(x)*tan(x)+1+tan(x)^2)/(sec(x)+ tan(x))simple(ans)ans =1/cos(x)^32、求下列积分的数值解。