钢板弹簧悬架系统设计规范--完整版
- 格式:docx
- 大小:69.69 KB
- 文档页数:23
目录第一章引言1.1 汽车工业的发展1.2 汽车的构造第二章悬架系统介绍2.1 汽车悬架系统的作用2.2 汽车悬架系统的组成2.3 汽车悬架系统的分类2.4 该项研究的目的与意义………………………………………………………2.5 国内外研究现状、发展动态…………………………………………………..2.6钢板弹簧2.6.1 钢板弹簧的基本结构和作用原理2.6.2 钢板弹簧的布置方案和材料选择第三章汽车后悬架系统钢板弹簧的设计计算3.1 设计给定参数3.2 钢板弹簧主要参数的确定3.2.1 前后悬架静挠度和动挠度的选择3.2.2 钢板弹簧满载弧高的选择3.2.3 钢板弹簧长度的确定3.2.4 悬架主、副钢板弹簧的刚度分配3.2.5 钢板弹簧所需的总惯性矩的计算3.2.6 根据强度要求计算钢板弹簧总截面系数3.2.7 钢板弹簧平均厚度的计算3.2.8 验算在最大动行程时的最大应力3.2.9 钢板弹簧叶片断面形状及尺寸的选择3.3 钢板弹簧的设计及校核3.3.1 钢板弹簧各片长度的确定3.3.2 钢板弹簧刚度的验算3.4 钢板弹簧总成在自由状态下的弧高和曲率半径计算3.4.1 钢板弹簧总成在自由状态下的弧高3.4.2 钢板弹簧总成在自由状态下的曲率半径3.4.3 钢板弹簧叶片在自由状态下曲率半径的计算3.4.4 钢板弹簧各叶片在自由状态下的曲率半径和弧高的计算3.4.5 钢板弹簧总成弧高的核算3.5 叶片端部形状的选择3.6 钢板弹簧两端与车架的连接3.7 钢板弹簧弹簧销和卷耳的设计3.7.1 弹簧销的设计3.7.2 卷耳尺寸的确定第四章结论参考文献致谢第一章引言1.1 汽车工业的发展几千年来人们一直生活在马车时代。
马拖着车厢在乡村田埂上颠簸行驶,在城市的大街小巷中踢踏的慢跑。
人们的生活节奏缓慢,既沉重又舒展。
18世纪,瓦特打破了这种平静,蒸汽机的发明掀起了工业革命的浪潮。
随后,法国人尼克.卡歌楼特将蒸汽机装在马车上,第一辆“动力车”诞生了。
1钢板弹簧悬架设计规范钢板弹簧悬架设计规范(提纲)一、钢板弹簧钢断面参数(R=h/2, R=h, R=3h/4) 1.单面双槽钢(1)断面积(2)中性层位置(3)惯性矩(4)断面系数(5)拉、压应力比2.矩形断面钢(1)断面积(2)惯性矩(3)断面系数*主要(常用)规格列表,给出数值,供查用。
二、钢板弹簧总成基本特征参数1.刚度(自由刚度,夹紧刚度)(1)多片簧(2)少片簧2.比应力(1)多片簧(根部应力)(2)少片簧(a.根部应力;b.最大应力点应力)3.弧高(1)夹紧弧高(2)自由弧高三、有关整车性能参数的校核1.悬架固有频率(1)静挠度(2)固有频率(推荐值)(3)两级刚度复式板簧的挠度和频率2.侧倾校核(1)侧倾角刚度(a.板簧,b.稳定杆)(2)侧倾力臂(3)侧倾角(推荐值)3.杆系的运动学校核(1)板簧运动当量杆的计算a.基线角b.圆心位置c.当量杆长度(半径)d.相关点的平移(2)纵拉杆与板簧运动干涉量计算(推荐限值)(3)传动轴伸缩量与万向节夹角校核4.制动时的纵扭干涉(1)板簧纵扭特性a.纵扭瞬心位置b.纵扭角(2)纯纵扭干涉引起的跑偏量(3)纵扭与“点头”同时干涉的跑偏量5.轴转向效应(1)当量杆斜度(2)轴转向效应系数四、强度校核1.设计载荷下的平均静应力(推荐值)(1)等比应力(2)不等比应力a.多片簧各片不等厚b.少片簧2.最大行程下的极限应力(推荐值)(1)等比应力(2)不等比应力3.纵扭时应力校核(推荐值)(1)制动a.前簧b.后簧(倒车)(2)驱动后簧4.卷耳应力校核(推荐值)(1)制动(2)驱动五、钢板弹簧各单片的设计1.多片簧各单片长度的确定2.各单片弧高的确定(1)总成弧高的选定a.装车后满载弧高b.装车后无载弧高c.自由弧高与曲率半径(2)各单片预应力的选定a.预应力选取原则b.自平衡条件(3)各单片自由弧高和曲率半径的计算(多片簧,少片簧)a.Rkb.Hk六、生产文件中有关参数的选定1.预压缩行程2.验证负荷3.无载与设计负荷下的总成弧高4.设计负荷下的刚度值及其测定点。
汽车设计课程设计————钢板弹簧的设计课程设计任务书一、课程设计的性质、目的、题目和任务本课程设计是学生在完成基础课、技术基础课和大部分专业课学习后的一个教学环节,是培养学生应用已学到的理论知识来解决实际工程问题的一次训练,并为毕业设计奠定基础。
1、课程设计的目的是:(1)进一步熟悉汽车设计理论教学内容;(2)培养学生理论联系实际的能力;(3)训练学生综合运用知识的能力以及分析问题、解决问题的能力。
2、设计题目 :设计载货汽车的纵置钢板弹簧(1)纵置钢板弹簧的已知参数序号弹簧满载载荷静挠度伸直长度U 型螺栓中心距有效长度119800N9.4cm118cm6cm112cm 材料选用60Si2MnA , 弹性模量取E=2.1× 105MPa3、课程设计的任务:(1)由已知参数确定汽车悬架的其他主要参数;(2)计算悬架总成中主要零件的参数;(3)绘制悬架总成装配图。
二、课程设计的内容及工作量根据所学的机械设计、汽车构造、汽车理论、汽车设计以及金属力学性能等课程,完成下述涉及内容:1.学习汽车悬架设计的基本内容2.选择、确定汽车悬架的主要参数3.确定汽车悬架的结构4.计算悬架总成中主要零件的参数5.撰写设计说明书6.绘制悬架总成装配图、零部件图共计 1 张 A0。
设计要求:1.设计说明书设计说明书是存档文件,是设计的理论计算依据。
说明书的格式如下:(1)统一稿纸,正规书写;(2) 竖订横写,每页右侧画一竖线,留出 25mm空白,在此空白内标出该页中所计算的主要数据;(3)附图要清晰注上必要的符号和文字说明,不得潦草;2.说明书的内容及计算说明项目(1)封面;(2)目录;( 3)原始数据及资料;( 4)对设计课题的分析;( 5)汽车纵置钢板弹簧简图;( 6)设计计算;( 7)设计小结(设计特点及补充说明,鉴别比较分析,个人体会等);(8)参考文献。
3.设计图纸1)装配总图、零件图一张(0#);要求如下:a.图面清晰,比例正确;b.尺寸及其标注方法正确;c.视图、剖视图完整正确;d.注出必要的技术条件。
非独立悬架及钢板弹簧匹配设计一、悬架概述1.1、悬架概念1.2、悬架系统的主要功能1.3、悬架系统主要零部件及其功能:1.4、悬架类型1.5、悬架系统研究和设计的领域1.6、悬架设计要求二、非独立悬架概述:2.1、非独立悬架的优点2.2.非独立悬架的缺点三、悬架基础理论3.1、汽车悬架系统载荷3.2、汽车振动类型3.3、悬架系统顺从性3.4、悬架的主要特性3.5、悬架理想弹性特性3.6、汽车等速圆周行驶稳态响应3.7、悬架性能评价四、悬架与汽车性能的关系4.1、悬架与汽车平顺性4.2、悬架与汽车操纵稳定性4.3、悬架和汽车纵向稳定性的关系4.4、悬架和汽车直线行驶跑偏的关系4.5、悬架和汽车制动跑偏的关系五、悬架主要参数5.1、悬架静挠度5.2、悬架动挠度5.3、悬架弹性特性5.4、悬架侧倾角刚度及其在前、后轴上的分配六、钢板弹簧非独立悬架结构形式与选择6.1、普通多片钢板弹簧6.2、少片变截面钢板弹簧6.3、两级刚度复合钢板弹簧6.4、渐变刚度钢板弹簧七、钢板弹簧计算理论基础7.1、普通多片簧刚度、应力计算方法:7.2、少片变截面钢板弹簧刚度、应力计算:7.3、主、副两级刚度复合钢板弹簧总成计算:7.4、渐变刚度钢板弹簧总成计算:八、钢板弹簧选型设计8.1、确定设计的原始依据8.2、钢板弹簧垂直振动工况的核算8.3、钢板弹簧弹性特性的选择8.4、钢板弹簧强度校核8.5、稳态侧倾校核8.6、钢板弹簧导向特性校核8.7、钢板弹簧系列化设计九、钢板弹簧结构设计9.1、各片长度的确定9.2、各片断面形状9.3、各片端部形状9.4、各片工作应力分布的计算9.5、各片弧高的确定9.6、各片在生产过程中的弧高值9.7、卷耳9.8、包耳9.9、中心螺栓和螺栓孔径9.10、弹簧销和衬套9.11、夹箍9.12、尺寸和公差控制十、钢板弹簧材料、制造10.1、钢板弹簧材料10.2、钢板弹簧制造工艺10.3、提高钢板弹簧使用寿命的措施十一、钢板弹簧试验验证十二、钢板弹簧失效分析非独立悬架及钢板弹簧设计二、悬架概述1.1、悬架概念悬架是汽车上的主要总成之一,是保证车轮或车桥与汽车承载系统(车架或承载式车身)之间具有弹性联接并能传递载荷、衰减振动以及调节汽车行驶中的车身姿态等有关装置的总称。
汽车钢板弹簧悬架设计汽车钢板弹簧悬架设计引言钢板弹簧悬架是汽车悬架系统中通用的一种。
它具有结构简单、可靠耐用、维护方便等优点,已经成为了汽车悬架系统中不可少的一个组成部分。
本文将探讨汽车钢板弹簧悬架设计的相关知识,包括设计原理、结构材料、设计参数等内容。
一、设计原理汽车钢板弹簧悬架的设计原理是基于弹性和变形实现对汽车震动的吸收和减少。
其基本原理就是利用钢板的弹性变形来吸收汽车在行驶过程中的震动。
弹簧最基本的原理就是哈客定理,即移动的钢板弯曲,因而有了张力和弯曲的复合作用。
钢板弹簧的弹力与材料尺寸、形状和弯曲角度等有关,形状越大、角度越大、宽度越宽,就越能产生弹射力,抗弯曲能力就越好。
二、结构材料汽车钢板弹簧悬架的结构材料是弹簧钢板,它是一种高强度的钢板。
弹簧钢板的化学成分比较复杂,其中含有较多的铬、钼、锰等合金元素,从而保证了钢板的强度和韧性。
弹簧钢板的强度分为两种,一种是静载强度,即弹簧钢板未经过加载状态,所能承受的最大应力;另一种是动载强度,即弹簧钢板在载荷加速状态下,所能承受的应力。
在制造钢板弹簧悬架时,应根据车重、行驶条件、路面状况等因素进行设计选择材料。
三、设计参数汽车钢板弹簧悬架的设计参数有弹簧高度、弹簧宽度、弹簧板厚等。
弹簧高度是弹簧的有效长度,弹簧宽度是弹簧的有效宽度,应根据汽车底盘结构与弹簧安装方式选定。
弹簧板厚直接影响钢板弹簧的强度和韧性,通常采用1.5mm到4mm的钢板材料加工制造。
如果太薄,就不能在车载荷下承受高的撞击力;如果太厚,则不能很好地吸收地面颠簸,影响行驶舒适性。
此外,还需要考虑弹簧孔距、总圈数、自由高度等因素,以达到最优的悬架系统设计效果。
四、结论本文综述了汽车钢板弹簧悬架的设计原理、结构材料和设计参数等知识点,这里强调一下设计数据的选择是钢板弹簧悬架设计中非常关键的一环。
必须根据所要使用的车辆的行驶条件、驾驶员驾驶习惯和所装载的重量等,对钢板弹簧的各项基本参数进行科学合理的结构设计,使得汽车钢板弹簧悬架的设计能满足汽车行驶舒适和悬架稳定等各种要求。
汽车钢板弹簧悬架设计1.弹簧选用汽车钢板弹簧主要由弹簧片组成,弹簧片之间通过铆钉连接。
在选用弹簧片时,需要根据车辆的重量和使用环境来确定合适的弹簧片数量和材料。
弹簧片的数量越多,弹簧刚度就越高,对于重负荷的车辆,需要选择刚度较高的弹簧片。
弹簧片的材料可以选择高强度钢板,以提高弹簧的寿命和可靠性。
2.弹簧布局汽车钢板弹簧的布局主要包括前后轴的弹簧组织和布置。
为了保证车辆的稳定性和悬挂的平衡性,前后轴的弹簧刚度需要相对均衡,可以根据车辆设计的重心位置和工况来确定各个轴的刚度比例。
同时,在弹簧的布置上,需要考虑到弹簧的有效作用长度,以及与减震器和车架的配合情况,确保弹簧在工作时能够正常运动。
3.减震器选用汽车钢板弹簧悬架中的减震器起到控制弹簧振动和提高行驶平稳性的作用。
减震器的选用需要根据车辆的重量和行驶条件来确定。
一般而言,重负荷的车辆需要选择刚度较高的减震器,而轻负荷的车辆可以选择较为柔软的减震器。
常见的减震器有液压减震器、气压减震器和双作用减震器等。
在实际应用中,需要根据车辆的需求和预算来选择合适的减震器。
4.悬挂系统调校在汽车钢板弹簧悬架的设计中,调校是一个关键的环节。
通过调整弹簧刚度、减震器阻尼、弹簧预紧力等参数,可以实现悬挂系统的理想性能。
悬挂系统的调校需要根据车辆的用途和乘客的需求来进行,例如,运载车辆和越野车辆需要更硬的悬挂系统来增加稳定性和通过性,而乘用车和豪华车则需要更柔软的悬挂系统来提高乘坐舒适性。
在进行悬挂系统的调校时,需要进行一系列的试验和数据分析,以确定最佳的参数组合。
物理试验和计算机仿真是常用的手段。
通过调整参数和验证,最终确定悬挂系统的设计。
总之,汽车钢板弹簧悬架设计需要考虑弹簧选用、弹簧布局、减震器选用和悬挂系统调校等方面。
通过合理的设计和调校,可以实现符合车辆需求和乘客舒适性要求的悬挂系统。
1 范围本规范适用于传统结构的非独立悬架系统,主要针对钢板弹簧和液力筒式减振器等主要部件设计参数的选取、计算、验证等作出较详细的工作模板。
2 规范性引用文件下列文件中的条款通过本规范的引用而成为本规范的条款。
凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本规范,然而,鼓励根据本规范达成协议的各方研究是否可使用这些文件的最新版本。
凡是不注日期的引用文件,其最新版本适用于本规范。
QC/T 491-1999 汽车筒式减振器尺寸系列及技术条件QCn 29035-1991 汽车钢板弹簧技术条件QC/T 517-1999 汽车钢板弹簧用U形螺栓及螺母技术条件GB/T 4783-1984 汽车悬挂系统的固有频率和阻尼比测定方法3 符号、代号、术语及其定义GB 3730.1-2001 汽车和挂车类型的术语和定义GB/T 3730.2-1996 道路车辆质量词汇和代码GB/T 3730.3-1992 汽车和挂车的术语及其定义车辆尺寸QC/T 491-1999 汽车筒式减振器尺寸系列及技术条件GB/T 12549-2013 汽车操纵稳定性术语及其定义GB 7258-2017 机动车运行安全技术条件GB 13094-2017 客车结构安全要求QC/T 480-1999 汽车操纵稳定性指标限值与评价方法QC/T 474-2011 客车平顺性评价指标及限值GB/T 12428-2005 客车装载质量计算方法GB 1589-2016 道路车辆外廓尺寸、轴荷及质量限值GB/T 918.1-1989 道路车辆分类与代码机动车JTT 325-2013 营运客车类型划分及等级评定凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本规范,凡是不注日期的引用文件,其最新版本适用于本规范。
4 悬架系统设计对整车性能的影响悬架是构成汽车的总成之一,一般由弹性元件(弹簧)、导向机构(杆系或钢板弹簧)、减振装置(减振器)等组成,把车架(或车身)与车桥(或车轮)弹性地连接起来。
DFA1064DH02-501悬架系统设2、后主板簧计算3、后副板簧计算前板簧参数计算1、各片长度计算代号公式全长(cm)各片长度之差(cm)△L(L-S)/n17.2第一片L1130第二片L2130第三片L3L-△L112.80第四片L4L-2△L95.60第五片L5L-3△L78.40第六片L6L-4△L61.2第七片L7L-5△L44第八片L8L-6△L26.82、总成自由弧高确定夹紧满载弧高(mm)H夹c016σ夹c H夹c-511△f10用U形螺栓夹紧在车桥H夹u H夹c+θ/c+△f107.873637上的无载荷弧高总成自由弧高确定(mm)σ夹U H夹u-5102.873637总成自由弧高(mm)H0H夹u+△H123.873637△H 16σ0H 0-5118.873637自由曲率半径(cm)R 0R 0*θ=L/21755R 0(1-COS θ)=H 0217.952423L 1300H0129θ19.99995前轴的动负荷(N)(0.8×u×G 整车质量+L 轴距×G 前轴静负荷/h 重心高度)/(L 轴距/h 重心高度-0.2u)28654.98084前板簧单边动负荷(轴荷-非簧载)/213077.49042动绕度(cm)f13.4257267最大应力(N/cm2)(f 动绕度+f 满载绕度)×σ比74119.65246图纸标注弧高和刚度值装车夹紧状态无载荷总成弧高σ夹U102.873637装车夹紧状态载荷为满载总成弧高σ夹满载σ夹U -Q 满载/C 刚度-△f11装车夹紧状态载荷为满载总成刚度C 7.97974.06p1Q×0.75582.5p2Q×1.310367.5验证负荷的确定(n)P 验σmax×C/σ比17487.80005后板簧各参数计算1、各片长度计算刚性曲线上两点负荷确定(N)代号公式全长(cm)各片长度之差(cm)△L(L-S)/n13.33333333第一片L1135第二片L2135第三片L3L-△L121.67第四片L4L-2△L108.33第五片L5L-3△L95.00第六片L6L-4△L81.66666667第七片L7L-5△L68.33333333第八片L8L-6△L55第九片L9L-7△L41.66666667 2、总成自由弧高确定载荷分配:副簧接触前7037.5主簧载荷(n)载荷分配:副簧接触后3462.5主副簧共同产生载荷(n)载荷分配:满载时副簧载荷(n)夹紧满载弧高(mm)H夹c035σ夹c H夹c-530△f12用U形螺栓夹紧在车桥H夹u H夹c+θ/c+△f106.9725978上的无载荷弧高总成自由弧高确定(mm)σ夹U H夹u-5101.9725978总成自由弧高(mm)H0H夹u+△H122.9725978△H 16σ0H 0-5117.9725978自由曲率半径(cm)R 0R 0*θ=L/22194R 0(1-COS θ)=H 0217.952423L 1300H0129θ19.99995后轴的动负荷(N)G 后轴静负荷×L 轴距/(L 轴距+/c12*h 重心高度)19528.98551后主副板簧单边动负荷(N)(轴荷-非簧载)/28014.492754动绕度(cm)f3.166821953最大应力(f 动绕度+f 满载绕度)×σ比73606.8837图纸标注弧高和刚度值装车夹紧状态无载荷总成弧高σ夹U101.9725978装车夹紧状态载荷为满载总成弧高σ夹8.7σ夹U -Q 满载/C 刚度-△f30装车夹紧状态载荷为满载总成刚度C 8.71452.09p1Q×0.76095.987388p2Q×1.311321.11944验证负荷的确定(n)P 验σmax×C/σ比24354.89912故考虑将支架上移6mm 车架的孔位坐标由151改为145车架的孔位坐标由109改为103刚性曲线上两点负荷确定(N)由作图法知道满载情况副簧的弧高为29.5后副簧各参数计算1、各片长度计算231.25代号公式全长(cm)各片长度之差(cm)△L(L-S)/n19.75第一片L194第二片L294第三片L3L-△L74.25第四片L4L-2△L54.50第五片L5L-3△L34.75 2、总成自由弧高确定夹紧满载弧高(mm)H夹c031σ夹c H夹c-031△f8用U形螺栓夹紧在车桥H夹u H夹c+θ/c+△f40.15上的无载荷弧高总成自由弧高确定(mm)σ夹U H夹u-535.1507929总成自由弧高(mm)H0H夹u+△H54.15△H14σ0H054.15自由曲率半径(cm)R0R0*θ=L/22294R0(1-COSθ)=H0217.952423展开长度(mm)L 940H0129θ19.99995后轴的动负荷(N)G 后轴静负荷×L 轴距/(L 轴距+/c12*h 重心高度)#VALUE!后主副板簧单边动负荷(轴荷-非簧载)/2#VALUE!动绕度(cm)f动绕度#VALUE!最大应力(f 动绕度+f 满载绕度)×σ比87118.04043图纸标注弧高和刚度值装车夹紧状态无载荷总成弧高σ夹U 35.1507929装车夹紧状态载荷为满载总成弧高σ夹1.8σ夹U -Q 满载/C 刚度-△f31装车夹紧状态载荷为满载总成刚度C 1.551556.71p1Q×0.71254.012612p2Q×1.32328.880564验证负荷的确定(n)P 验σmax×C/σ比14422.01372整车姿态车架平面角度为:前轮中心到车架平面距离(mm):304前后轮中心到车架平面距离(mm):3347车架上平面角度为0.746981186后桥输入轴上翘角度3.08刚性曲线上两点负荷确定(N)前动绕度69后动绕度80架系统设计0.001791.446588半长(cm)装配预应力(MPa)各单片自由总成时半径(mm)各单片的自由曲率半径Rk(mm)8.6σ0k R0K=R0+a 1/R k=σ0k/(E×a k)+1/R0K65-100-16017552230.532654 65-601763.002022.945555 56.401771.001771 47.81517791723.142307 39.23516017871660.814794 30.66017951587.328392 223518031674.626229 13.41518111753.147413355.00531.00减振动器变化长度339.004902921BC-010328.005382865.50设计模型有6.90许用90000--1000004.44半长(cm)装配预应力(MPa)各单片自由总成时半径(mm)各单片的自由曲率半径Rk(mm)6.666666667σ0k R0K=R0+a 1/R k=σ0k/(E×a k)+1/R0K67.5-120-180********.48293767.5-602203.002569.778189 60.83333333022122212 54.166666671022212168.98282247.52518022302103.379335 40.833333334522392019.309347 34.166666676022481962.21681827.54022572056.521872 20.833333331022662211.879295设计模型有8.00许用90000--100000半长(cm)装配预应力(MPa)各单片自由总成时半径(mm)各单片的自由曲率半径Rk(mm)9.875σ0k R0K=R0+a 1/R k=σ0k/(E×a k)+1/R0K47-80-12022943049.337448 47-402302.002628.70801537.1256023101945.95988527.254023182060.17255317.3752012023262188.578715作图法得知设计模型有5.19许用90000--100000各单片的中间修正h自由曲率半径Rk(mm)θ=R0(1-COSθ)=H0COSθ0.2914102152234.53265494.208636920.95783966990.208640.321313642026.945555103.73629270.948821372109.73630.31846414589.05043660.9497174270.27740018865.87458910.9617706620.23602872646.04726080.9722742950.19277674529.403612240.9814760370.131********.4302140.9913830240.07643396 5.118582660.997080347各单片的中间自由曲率半径修正弧高Rk(mm)θ=R0(1-COSθ)=H0COSθ0.220193693069.98293774.124240390.97585516291.624240.262574.27818988.296463190.965700497115.09650.2883.124514650.9624211050.2567.285241670.9689784350.2353.406382440.9746092480.2041.144939710.9796242510.1729.670897450.9848788890.1318.3592450.9910726720.099.8040386350.995567553修正修正θ=第一第二θ=R0(1-COSθ)=H K COSθ第一第二cosθ=h0.1541318430.1803670536.149332450.9881451850.98377849.466620.1787950570.20352203341.905025950.9840586990.97936154.254480.19077988335.306234050.9818566490.132********.995592320.9912650070.079389422 6.8933343880.996850315。
目录第1章绪论 (2)第2章悬架系统的结构与分析 (4)2.1悬架的功能和组成 (4)2.2汽车悬架的分类 (4)2.3悬架的设计要求 (4)2.4悬架主要参数 (5)2.4.1悬架的静挠度cf及刚度c (5)2.4.2悬架的动挠度df (6)2.4.3悬架侧倾角刚度及其在前、后轴的分配 (6)2.4.4钢板弹簧结构............................................................................. . (7)第3章前后悬架系统的设计 (8)3.1前悬架系统设计 (8)3.1.1钢板弹簧的设计 (8)3.1.2.钢板弹簧的验算 (10)3.2后悬架系统设计 (13)3.2.1钢板弹簧的设计 (13)3.2.2钢板弹簧的验算 (15)第4章减振器设计 (19)4.1减振器分类 (19)4.2前后悬架减振器计算 (19)4.2.1相对阻尼系数和阻尼系数 (19)4.2.2最大卸荷力 (20)4.2.3工作缸直径 (21)第5章结论 (23)5.1钢板弹簧参数 (23)5.1.1前悬架参数 (23)5.1.2后悬架参数 (23)5.2双筒式减振器参数 (24)5.2.1前减震器参数 (24)5.2.2后减震器参数 (24)参考文献 (25)第1章绪论悬架是汽车的车架与车桥之间的一切传力连接装置的总称。
它的作用是弹性地连接车桥和车架,缓和行驶中车辆受到的冲击力。
保证货物完好和人员舒适,使汽车在行驶中保持稳定的姿势,改善操纵稳定性;同时悬架系统承担着传递垂直反力,纵向反力和侧向反力以及这些力所造成的力矩,以保证汽车行驶平顺;并且当车轮相对车架跳动时,特别在转向时,车轮运动轨迹要符合一定的要求,因此悬架还起使车轮按一定轨迹相对车身跳动的导向作用。
悬架是汽车中的一个重要组成部分,它把车架与车轮弹性地连接起来,关系到汽车的多种使用性能。
悬架是一个较难达到完美要求的汽车总成,这是因为悬架既要满足汽车的舒适性要求,又要满足其操纵稳定性的要求,而这两方面又是互相对立的。
钢板弹簧悬架系统设计规范1范围本规范适用于传统结构的非独立悬架系统,主要针对钢板弹簧和液力筒式减振器等主要部件设计参数的选取、计算、验证等作出较详细的工作模板。
2规范性引用文件下列文件中的条款通过本规范的引用而成为本规范的条款。
凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本规范,然而,鼓励根据本规范达成协议的各方研究是否可使用这些文件的最新版本。
凡是不注日期的引用文件,其最新版本适用于本规范。
QC/T 491-1999汽车筒式减振器尺寸系列及技术条件QCn 29035-1991汽车钢板弹簧技术条件QC/T 517-1999汽车钢板弹簧用U形螺栓及螺母技术条件GB/T 4783-1984汽车悬挂系统的固有频率和阻尼比测定方法3符号、代号、术语及其定义GB 3730.1-2001 汽车和挂车类型的术语和定义GB/T 3730.2-1996 道路车辆质量词汇和代码GB/T 3730.3-1992 汽车和挂车的术语及其定义车辆尺寸QC/T 491-1999汽车筒式减振器尺寸系列及技术条件GB/T 12549-2013汽车操纵稳定性术语及其定义GB 7258-2017机动车运行安全技术条件GB 13094-2017 客车结构安全要求QC/T 480-1999汽车操纵稳定性指标限值与评价方法QC/T 474-2011客车平顺性评价指标及限值GB/T 12428-2005客车装载质量计算方法GB 1589-2016道路车辆外廓尺寸、轴荷及质量限值GB/T 918.1-1989 道路车辆分类与代码机动车JTT 325-2013营运客车类型划分及等级评定凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本规范,凡是不注日期的引用文件,其最新版本适用于本规范。
4悬架系统设计对整车性能的影响悬架是构成汽车的总成之一,一般由弹性元件(弹簧)、导向机构(杆系或钢板弹簧)、减振装置(减振器)等组成,把车架(或车身)与车桥(或车轮)弹性地连接起来。
主要任务是传递作用在车轮与车架之间的一切力与力矩,缓和由不平路面传给车架的冲击载荷,衰减由冲击载荷引起的承载系统的振动,保证汽车的正常行驶。
悬架结构、性能不仅影响汽车的行驶平顺性,还对操纵稳定性、燃油经济性、通过性等多种整车性能有影响。
悬架是整车的承载系统之一,其钢板弹簧设计能力的大小证一定的使用寿命,重量轻,安全可靠。
汽车平顺性(乘坐舒适性)是汽车设计开发中的重要性能指标。
悬架是影响整车行驶平顺性的主要系统。
悬架弹性特性、系统阻尼和非簧载质量是影响汽车平顺性的主要因素。
在悬架设计中,力求保持整车承载载荷范围内,固有频率变化尽可能小,具有适当的阻尼衰减振动,减小非簧载质量避免高频共振。
悬架结构形式对汽车行驶稳定性有一定影响。
悬架的布置要使整车具有不足转向特性,导向机构与转向拉杆运动协调,前悬架的布置与刚度设计要考虑主销后倾角,避免前钢板弹簧在制动力作用下产生S 变形。
同时尽量提高前后悬架的侧倾角刚度,降低侧倾中心高度,以利于提高汽车行驶稳定性。
5悬架设计流程概述设计输入T整车设计目标T物理边界确定T主要部件性能指标确定T结构设计6悬架的评价指标客车行驶平顺性的评价指标:用测点位置垂直振动的等效均值L eq来评价。
2 公式中:L eq为等效均值(dB);为一定测量时间内的加权加速度均方根(m/s )。
L eq 20log10-6评价指标限值如表1所示:表,直接关系到整车的承载能力。
设计中保7设计输入主要获取信息:a)产品市场定位及用户目标,使用区域,平原/山区b)产品承载能力范围,整备质量、满载质量、超载质量c)耐久性要求(可靠性里程)d)平顺性及操稳性要求e)标杆车型及悬架8悬架系统设计目标a)承载性目标b)平顺性目标c)安全性目标d)成本目标e)总成重量目标f)整车姿态目标g)整车动行程目标9悬架系统结构参数的确定a)前、后悬架系统结构形式(主要部件构成明细)b)安装尺寸的确定c)前后钢板弹簧最大工作空间确定(静挠度+动行程)d)减振器工作行程范围确定e)车架结构与悬架元件的物理接口f)前后桥与悬架元件的物理接口g)整车动行程确定(发动机油底壳与工字梁,前软垫与车架、后软垫与车架)h)其他附件:典型前悬架结构一一附图1典型后悬架结构一一附图210钢板弹簧设计10.1前板簧:从上面的设计目标与安装尺寸中已得知质量参数、安装尺寸、板簧刚度,下面需进行板簧具体结构设计。
首先根据使用状况确定采用哪种板簧(少片簧、渐变刚度簧、多片簧),确定后用现有板簧设计软件进行初步设计计算,结果如下表:从上面的设计目标与安装尺寸中已得知质量参数、安装尺寸、板簧刚度,需进行板簧具体结构设计。
对于主副簧结构,首先确定副簧起作用点,一般按平均载荷法和比例中项法。
对于平顺性要求较高的车型用比例中项法,对于经常超载的车型用平均载荷法。
具体数值的确定应核算主簧和副簧的应力,使他们有尽量相当的寿命。
钢板弹簧销的强度在弹簧设计时同步得到校核,同时确定钢板弹簧卷耳直径。
现在钢板弹簧销材料一般选用45#、40Cr。
10.4钢板弹簧衬套钢板弹簧卷耳内的衬套有:金属、橡胶、聚氨酯、塑料等几种。
双金属衬套一般适合中重型车,配合油脂润滑系统;橡胶衬套广泛用于小型车辆,承受力不大但能很好地吸收振动;聚氨酯衬套随着改良性能的提高,其承载能力和弹性性能都能很好的满足使用要求,进几年在轻卡上广泛应用;塑料衬套由于成本较低,在低速汽车上大量应用。
11悬架系统验证与试验项目11.1动力学模型分析与验证凸块路面冲击响应分析车辆平顺性分析随机路面激励响应分析输入:输入:输出:11.2整车性能试验项目与可靠性试验项目试验任务书内容:11.3钢板弹簧台架试验项目试验任务书内容:11.4减振器台架试验项目试验任务书内容:11.5悬架软垫台架试验项目试验任务书内容:输出参数表在整车各子系统中,悬架系统的型式、布置、性能参数的不同,对整车的各种性能尤其是行驶平顺性有着直接地影响。
汽车虽然是一个多质量的复杂振动系统,在理论计算时,我们可利用限制振动质量的部分位移方法,将其简化成一个自由度的振动系统,此时求得的频率为复杂振动之偏频,公式为:3 仁C1L / M1 ( L2+ £L1)3 2= C2L / M2 ( L1+ £L2)式中C1、C2――前、后悬架刚度;M1、M2前、后悬架簧载质量;L――汽车轴距;L1、L2――质量重心至前后轴距离;&――质量分配系数;£ =1时,前后轴上车身点的振动不存在联系,此时的偏频为3 1= .C1 / M1 、3 2=.C2 / M2 。
1 r ______车身振动固有频率n以每周多少赫兹表示,则n= C / M 公式(2-1)2 n v从上述公式中可以看出,车身振动固有频率n,主要由簧载质量M悬架刚度C决定。
在悬架设计中,通常把力和变形的关系曲线,称为悬架的弹性特性曲线。
图1中a)所示的曲线特性为线性弹性特性,即悬架变形与所受载荷成正比,因此其悬架刚度C是常数。
由公式(2-1)可知,车身振动的频率随载荷而变化,一般的前悬架采用普通钢板弹簧时,弹性特性即如此。
图1弹性特性曲线图1中b)所示的弹性特性曲线,为变刚度悬架的非线性弹性特性,由于刚度C随载荷而改变,可以使得在载荷变化时,保持车身的固有频率不变,从而获得良好的汽车行驶平顺性。
这时,在曲线上任意点M满足:P/C M=fc式中P――特性曲线上任意点M的载荷;C M――任意点M的悬架刚度;fc ――在静载荷Pc时,为良好平顺性所要求的悬架静挠度。
需要说明的是,理想的弹性特性曲线上任意点M的静挠度fc是相等的,车身的固有频率不变;这种等频特性,在主动控制悬架系统中(如空气悬架、油气悬架)由电脑系统智能控制是可以实现的。
独立悬架系统中可以通过合理选择导向杆系的运动关系,使线性的弹性元件在车轮接地点上转化为非线性的悬架特性。
在非独立悬架结构中,可以采用组合方式构成复式弹簧,或加装橡胶弹簧及限位块等措施,使弹性元件本身具有一定的非线性特性。
前悬架钢板弹簧计算:*****原始数据*****满载前轮轴荷满载簧上载荷路面附着系数材料弹性模量非工作长度系数钢板弹簧截面修正系数Yjc ( kg ) : 1480.0Fw ( N ) : 6345.5© : .8E ( MPa) : .21E+06k : .50.921 1200.0 8.0 2800.0 64.32 1200.0 8.0 2549.4 70.63 1020.0 8.0 2391.2 54.4 4 830.0 8.0 2298.9 37.5 5 640.0 8.0 2259.3 22.7 6460.0 8.0 2267.1 11.7 7270.08.02323.43.9悬架性能检验刚度 Cj (N/mm) : 94.37装配刚度 Cz (N/mm) : 102.73 悬架静挠度 fc ( mm ) : 61.77偏频f ( Hz ) :2.04钢板弹簧应力挠度系数 1.26静应力(MPa ) : 366.7 比应力(MPa/mm): 5.9极限挠度下的最大应力(MPa ) : 733.3满载弧高 fa ( mm ): 5.0 钢板弹簧总片数 N:7与主片等长的片数 (包括主片) 2板簧宽度 b (mm): 70.0 卷耳内径 d (mm):32.0弹簧销直径 di ( mm ): :16.0U 型螺栓中心距 S ( mm ) :80.0弹簧固定点至路面距离he ( mm ) : 377.0*****计算结果*****板簧各片长度、厚度、自由状态曲率半径和弧高片号 长 度厚 度 自由状态曲率半径 (mm)自由状态弧高极限工况下的最大应力 钢板弹簧卷耳根部应力 弹簧销挤压应力(MPa ) : 2.8钢板弹簧单片应力片号预应力(MPa)固定端应力(MPa)接触点处力(N)接触点处应力(MPa)1 -50.0 449.6 3172.8 .02 -20.5 297.3 2573.3 310.2 3 1.3 289.2 2593.7 330.04 15.4 286.4 2674.9 340.35 21.8 294.7 2818.7 339.7 620.5 285.9 2995.8 381.2 711.5476.53744.8476.5(MPa ) : 938.2 (MPa ) : 248.6*****纟结 ^果 *****板簧各片长度,厚度,自由状态曲率半径和弧高 (mm )1 1200.0 8.0 2821.9 63.82 1200.0 8.0 2254.6 79.83 1020.0 8.0 1963.0 66.34 830.0 8.0 1811.3 47.5 5 640.0 8.0 1749.9 29.36 460.0 8.0 1761.9 15.07 270.08.01850.34.9*****原始数据*****满载后轮轴何 Yjq ( kg ): :2955.0 满载黄上载何 Fw ( N ) :9000.0 满载悬架载何 F ( N ): 12999.7 空载悬架载何F0 (N ): 2484.3路面附着系数0 :材料弹性模量 E ( MPa) :.21E+06 非工作长度系数 k: .50钢板弹簧截面修正系数 S:满载弧高 fa ( mm ): .0 钢板弹簧总片数 N7与主片等长的片数 (包括主片) 2板簧宽度 b (mm): 70.0 卷耳内径 d (mm):32.0弹簧销直径 d1 ( mm ): :16.0 型螺栓中心距S ( mm ):130.0.8.92弹簧固定点至路面距离 he ( mm ) : 460.0片号 长 度厚 度自由状态曲率半径自由状态弧高悬架性能主簧检验刚度Cj (N/mm) : 94.37主簧装配刚度 悬架装配刚度 主簧静挠度 (mm ) : 83.03悬架静挠度 fc ( mm ) : 52.88 偏频f ( Hz ) :2.20钢板弹簧应力挠度系数 1.26静应力 (MPa ) : 514.8比应力(MPa/mm): 6.2极限挠度下的最大应力 (MPa ): 1029.5 极限工况下的最大应力 (MPa ): 1150.8 钢板弹簧卷耳根部应力 (MPa ): 263.5 弹簧销挤压应力 (MPa ) :4.0钢板弹簧单片应力片号预应力(MPa)固定端应力(MPa)接触点处力(N)接触点处应力(MPa)1 -127.0 627.3 4500.0 .02 -52.1 412.7 3624.5 436.93 3.3 400.0 3665.1 466.34 39.1 393.1 3806.6 484.35 55.4 398.2 4073.7 491.06 52.1 353.6 4493.9 571.87 29.3639.56821.0639.5No. 2后悬架钢板弹黄副黄计算*****原 始数据 *****满载后轮轴何 Yjq ( kg ) : 2955.0 满载黄上载何 Fw ( N ) : 3999.7 满载悬架载何 F ( N ) : 12999.7 空载悬架载何F0 ( N ) : 2484.3路面附着系数 © : .8Cz (N/mm) : 108.40 (N/mm) : 245.83材料弹性模量E ( MPa) : .21E+06非工作长度系数k:.50钢板弹簧截面修正系数S :.92满载弧高fa ( mm ): .0钢板弹簧总片数N: 5与主片等长的片数(包括主片) 2板簧宽度b (mm): 70.0卷耳内径d (mm): 32.0弹簧销直径di ( mm ):.0U型螺栓中心距S ( mm ):130.0*****纟结 ^果*****1 850.0 6.5 1745.8 51.72 850.0 6.5 2443.8 37.03 660.0 6.5 3215.2 16.9 4500.0 6.5 3593.2 8.7 5340.06.53215.24.5悬架性能 副簧检验刚度 Cj (N/mm) : 110.72 畐潢装配刚度 Cz (N/mm) : 137.43 悬架装配刚度 (N/mm) : 245.83 副簧静挠度 (mm ) : 29.10 悬架静挠度 fc ( mm ) : 52.88偏频f ( Hz ) :2.20钢板弹簧应力挠度系数 1.20静应力 (MPa ) : 321.8 比应力(MPa/mm): 11.1板簧各片长度,厚度,自由状态曲率半径和弧高片号 长 度厚 度自由状态曲率半径 (mm)自由状态弧高极限挠度下的最大应力 (MPa ) : 643.6 极限工况下的最大应力 (MPa ) : 768.2 钢板弹簧卷耳根部应力 (MPa ) : 263.5 (MPa ) :4.0钢板弹簧单片应力片号 预应力(MPa) 固定端应力(MPa)1 134.0 365.2 1999.9 .0 2 22.3 219.0 1499.9 289.1 3 -44.7 238.1 1630.2 264.64 -67.0 250.2 1700.8 276.0 5-44.7388.21822.3388.2弹簧销挤压应力接触点处力(N)接触点处应力(MPa)。