1,光纤通信简介与光纤的导光原理介绍。

  • 格式:doc
  • 大小:499.00 KB
  • 文档页数:19

下载文档原格式

  / 28
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

什么是光纤通信

所谓光纤通信,就是利用光纤来传输携带信息的光波以达到通信之目的。

要使光波成为携带信息的载体,必须对之进行调制,在接收端再把信息从光波中检测出来。然而,由于目前技术水平所限,对光波进行频率调制与相位调制等仍局限在实验室内,尚未达到实用化水平,因此目前大都采用强度调制与直接检波方式(IM-DD)。又因为目前的光源器件与光接收器件的非线性比较严重,所以对光器件的线性度要求比较低的数字光纤通信在光纤通信中占据主要位置。

典型的数字光纤通信系统方框图如图下所示。

从图中可以看出,数字光纤通信系统基本上由光发送机、光纤与光接收机组成。发送端的电端机把信息(如话音)进行模/数转换,用转换后的数字信号去调制发送机中的光源器件LD,则LD 就会发出携带信息的光波。即当数字信号为“1”时,光源器件发送一个“传号”光脉冲;当数字信号为“0”时,光源器件发送一个“空号”(不发光)。光波经低衰耗光纤传输后到达接收端。在接收端,光接收机把数字信号从光波中检测出来送给电端机,而电端机再进行数/模转换,恢复成原来的信息。就这样完成了一次通信的全过程。

光纤的导光原理

光是一种频率极高的电磁波,而光纤本身是一种介质波导,因此光在光纤中的传

输理论是十分复杂的。要想全面地了解它,需要应用电磁场理论、波动光学理论、甚至量子场论方面的知识。但作为一个光纤通信系统工作者,无需对光纤的传输

理论进行深入探讨与学习。

为了便于理解,我们从几何光学的角度来讨论光纤的导光原理,这样会更加直观、形象、易懂。更何况对于多模光纤而言,由于其几何尺寸远远大于光波波长,所以可把光波看作成为一条光线来处理,这正是几何光学的处理问题的基本出发

点。

全反射原理

我们知道,当光线在均匀介质中传播时是以直线方向进行的,但在到达两种不同介质的分界面时,会发生反射与折射现象,如图下所示。

不难理解,当光在光纤中发生全反射现象时,由于光线基本上全部在纤芯区进行传播,没有光跑到包层中去,所以可以大大降低光纤的衰耗。早期的阶跃光纤就

是按这种思路进行设计的。

光纤的特性与参数

光纤的特性参数可以分为三大类即几何特性参数、光学特性参数与传输特性参数。受篇幅所限我们仅简单介绍几个富有代表性的典型参数。

多模光纤的特性参数

① 衰耗系数a

衰耗系数是多模光纤最重要的特性参数之一(另一个是带宽系数)。因为在很大程度上决定了多模光纤通信的中继距离。

其中最主要的是杂质吸收所引起的衰耗。在光纤材料中的杂质如氢氧根离子、过渡金属离子(铜、铁、铬等)对光的吸收能力极强,它们是产生光纤衰耗的主要因素。因此要想获得低衰耗光纤,必须对制造光纤用的原材料二氧化硅等进行十分严格的化学提纯,使其杂质的含量降到几个PPb 以下。

② 光纤的色散与带宽

色散当一个光脉冲从光纤输入,经过一段长度的光纤传输之后,其输出端的光脉冲会变宽,甚至有了明显的失真。这说明光纤对光脉冲有展宽作用,即光纤存在着色散(色散是沿用了光学中的名词)。光纤的色散是引起光纤带宽变窄的主要原因,而光纤带宽变窄则会限制光纤的传输容量。

光纤的色散可以分为三部分即模式色散、材料色散与波导色散。

模式色散Δτm因为光在多模光纤中传输时会存在着许多种传播模式,而每种传播模式具有不同的传播速度与相位,因此虽然在输入端同时输入光脉冲信号,但到达到接收端的时间却不同,于是产生了脉冲展宽现象。

对多模光纤而言,由于其模式色散比较严重,而且其数值也较大,所以其材料色散不占主导地位。但对单模光纤而言,由于其模式色散为零,所以其材料色散占

主要地位。

波导色散Δτw所谓波导色散是指由光纤的波导结构所引起的色散。对多模光纤

而言,其波导色散的影响甚小。

光纤的结构

光纤是传光的纤维波导或光导纤维的简称。其典型结构是多层同轴圆柱体,如图

2-1

所示,自内向外为纤芯、包层和涂覆层。

---- 核心部分是纤芯和包层,其中纤芯由高度透明的材料制成,是光波的主要

传输通道;

包层的折射率略小于纤芯,使光的传输性能相对稳定。纤芯粗细、纤芯材料和包

层材料的

折射率,对光纤的特性起决定性影响。涂覆层包括一次涂覆、缓冲层和二次涂覆,

起保护

光纤不受水汽的侵蚀相机械的擦伤,同时又增加光纤的柔韧性,起着延长光纤

寿命的作

用.

光纤适配器的插入损耗

在光纤通信系统中,除了光纤本身的插入损耗,还有其他的环节,例如:光纤熔接、不同的光纤适配器造成的损耗是不同的。在这里爱达讯工程师陪您一起探讨

适配器造成的插入损耗。

在光纤通信系统中,为了实现不同的设备和系统之间灵活连接的需要,必须有一种能在光纤与光纤之间进行活动连接的器件,使光信号能按所需的通道进行传输,能实现这种功能的器件就叫适配器。光纤适配器就是把光纤的两个端面精密对接起来,使发射光纤输出的光能量能最大限度地耦合到接收光纤中去,并使由于其介入光链路而对系统造成的影响减到最小,这是光纤适配器的基本要求。

在一定程度上,光纤适配器也影响了光传输系统的可靠性和各项性能。

光纤适配器是光纤系统中使用量最大的光无源器件。对适配器的要求主要是插入损耗小、反射损耗高、重复插拔性好、环境稳定和机械性能好等。由于光纤适配器也是一种损耗性产品,所以还要求其价格低廉。其典型应用包括通信、局域网(LAN)、光纤到户(FTTH)、高质量视频传输、光纤传感、测试仪器仪表、

CATV等。

光纤适配器按传输媒介的不同可分为常见的单模、多模适配器;按连接头结构型式可分为:FC、SC、ST、LC、MTRJ、DIN、MU、MT等等各种型式;按光纤端面形状分有FC、PC(包括SPC或UPC)和APC型;按光纤芯数分还有单工(单芯)、

双工(双芯)型光纤适配器之分。

保证对接的两根光纤纤芯接触时成一直线是确保适配器优良的连接质量的关键,它主要取决于光纤本身的物理性能和适配器插针的制造精度,以及适配器的装配加工精度。同时,光纤的光学性能指标和插针端面的抛光质量对于适配器的光学性能和使用可靠性也有着直接的影响。

插入损耗是指接续的适配器给系统造成的光功率衰减(即光适配器输出功率相对于输入功率的相对减少量)。插入损耗主要由相接续的两根光纤之间的偏离所造成的。如果两根光纤排成一直线,偏离为零,则造成的插入损耗最小。但在适配器的实际对接过程中,这是不大可能实现的,因为纤芯与光纤包层的不同芯、光纤包层与插针内孔的不同心以及插针内孔与外径的同心度误差等,都会引起光