模式识别:贝叶斯决策理论
- 格式:ppt
- 大小:558.00 KB
- 文档页数:35
科技情报开发与经济SCI-TECHINFORMATIONDEVELOPMENT&ECONOMY2007年第17卷第7期模式识别(PatternRecognition)最初诞生于20世纪20年代,随着40年代计算机的出现、50年代人工智能的兴起,模式识别在60年代初迅速发展成一门学科。
模式识别所研究的理论和方法在很多科学和技术领域中得到了广泛的重视,并且推动了人工智能系统的发展,扩大了计算机应用的可能性。
1模式和模式识别的基本概念通常,我们把通过对具体的个别事物进行观测所得到的具有时间和空间分布的信息称为模式,而把模式所属的类别或同一类中模式的总体称为模式类或简称类。
也有人习惯把模式类称为模式,而把个别具体的模式定为样本,正如面向对象技术中的类与实例的关系一样。
而模式识别是人类的一项基本智能,同时它也是一门主要利用统计学、概率论、计算几何、机器学习、信号处理以及算法的设计等工具从可感知的数据中进行推理的学科。
它与统计学、心理学、语言学、计算机科学、生物学、控制论等都有关系,它与人工智能、图像处理的研究有交叉关系。
例如自适应或自组织的模式识别系统包含了人工智能的学习机制;人工智能研究的景物理解、自然语言理解也包含模式识别问题。
又如模式识别中的预处理和特征抽取环节应用图像处理的技术,图像处理中的图像分析也应用模式识别的技术。
2模式识别方法模式识别研究主要集中在两方面:一是研究生物体(包括人)是如何感知对象的,属于认识科学的范畴;二是在给定的任务下,如何用计算机实现模式识别的理论和方法。
前者是生理学家、心理学家、生物学家和神经生理学家的研究内容,后者通过数学家、信息学专家和计算机科学工作者近几十年来的努力,已经取得了系统的研究成果。
模式识别主要有两种基本的方法,即统计模式识别方法和结构(句法)模式识别方法,与此对应的模式识别系统都由两个过程所组成,即设计和实现。
此外,还有其他诸如模板匹配的方法和神经网络方法等。