基于贝叶斯决策理论的分类器
- 格式:ppt
- 大小:10.16 MB
- 文档页数:59
基于概率统计的贝叶斯分类器设计摘要:贝叶斯决策理论是统计模式识别中的一个基本方法。
依据贝叶斯决策理论设计的分类器具有最优的性能,即所实现的分类错误率或风险在所有可能的分类器中是最小的,因此经常被用来衡量其他分类器设计方法的优劣。
关键词:贝叶斯分类器 后验概率 贝叶斯公式随着计算机与信息技术的发展,及时处理数据效率更高,分类技术能对大量的数据进行分析,并建立相应问题领域中的分类模型。
在各种分类方法中基于概率的贝叶斯分类方法比较简单,得到了广泛的应用。
一 原理概述:贝叶斯分类器是基于贝叶斯网络所构建的分类器,贝叶斯网络是描述数据变量之间关系的图形模型,是一个带有概率注释的有向无环图。
贝叶斯分类器的分类原理是通过某对象的先验概率,利用贝叶斯公式计算出其后验概率,即该对象属于某一类的概率,选择具有最大后验概率的类作为该对象所属的类。
(1) 贝叶斯分类并不把一个对象绝对地指派给某一类,而是通过计算得出属于某一类的概率,具有最大概率的类便是该对象所属的类;(2) 一般情况下在贝叶斯分类中所有的属性都潜在地起作用,即并不是一个或几个属性决定分类,而是所有的属性都参与分类;(3) 贝叶斯分类对象的属性可以是离散的、连续的,也可以是混合的..二 计算方法:1、贝叶斯分类的先决条件:(1) 决策分类的类别数是一定的,设有c 个模式类ωi (i=1,2,…,c ) ()()()()p B A P A P A B p B =(2) 各类别总体的概率分布已知,待识别模式的特征向量x 的状态后验概率P(ωi|x)是已知的;或各类出现的先验概率P(ωi)和类条件概率密度函数p(x|ωi)已知2、两类分类的最小错误率Bayes 分类决策规则的后验概率形式:设N 个样本分为两类ω1,ω2。
每个样本抽出n 个特征,x =(x1, x2, x3,…, xn )T其中,P (ωi |x)为状态后验概率。
由Bayes 公式:两类分类的贝叶斯决策函数:三 实例说明: 一数据集有两类,每个样本有两个特征,类别1(class1.txt 文件)含有150个样本,类别2(class2.txt 文件)含有250个样本(.txt 文件可以直接在Matlab 中读入),分别取类别1的前100个和类别2的前200个样本作为训练样本,剩下的作为测试样本。
贝叶斯分类器的实现与应用近年来,机器学习技术在各个领域都有着广泛的应用。
其中,贝叶斯分类器是一种常用且有效的分类方法。
本文将介绍贝叶斯分类器的原理、实现方法以及应用。
一、贝叶斯分类器原理贝叶斯分类器是一种概率分类器,它基于贝叶斯定理和条件概率理论,通过统计样本之间的相似度,确定样本所属分类的概率大小,从而进行分类的过程。
贝叶斯定理的公式为:P(A|B) = P(B|A) × P(A) / P(B)其中,P(A|B) 表示在已知 B 的条件下,事件 A 发生的概率;P(B|A) 表示在已知 A 的条件下,事件 B 发生的概率;P(A) 和 P(B) 分别表示事件 A 和事件 B 的概率。
在分类问题中,假设有 m 个不同的分类,每个分类对应一个先验概率 P(Yi),表示在未知样本类别的情况下,已知样本属于第 i 个分类的概率。
对于一个新的样本 x,通过求解以下公式,可以得出它属于每个分类的后验概率 P(Yi|X):P(Yi|X) = P(X|Yi) × P(Yi) / P(X)其中,P(X|Yi) 表示样本 X 在已知分类 Yi 的条件下出现的概率。
在贝叶斯分类器中,我们假设所有特征之间是独立的,即条件概率 P(X|Yi) 可以表示为各个特征条件概率的乘积,即:P(X|Yi) = P(X1|Yi) × P(X2|Yi) × ... × P(Xn|Yi)其中,X1、X2、...、Xn 分别表示样本 X 的 n 个特征。
最终,将所有分类对应的后验概率进行比较,找出概率最大的那个分类作为样本的分类结果。
二、贝叶斯分类器实现贝叶斯分类器的实现包括两个部分:模型参数计算和分类器实现。
1. 模型参数计算模型参数计算是贝叶斯分类器的关键步骤,它决定了分类器的分类性能。
在参数计算阶段,需要对每个分类的先验概率以及每个特征在每个分类下的条件概率进行估计。
先验概率可以通过样本集中每个分类的样本数量计算得到。
贝叶斯分类器 本⽂主要介绍⼀个常见的分类框架--贝叶斯分类器。
这篇⽂章分为三个部分:1. 贝叶斯决策论;2. 朴素贝叶斯分类器; 3. 半朴素贝叶斯分类器 贝叶斯决策论 在介绍贝叶斯决策论之前,先介绍两个概念:先验概率(prior probability)和后验概率(posterior probability)。
直观上来讲,先验概率是指在事件未发⽣时,估计该事件发⽣的概率。
⽐如投掷⼀枚匀质硬币,“字”朝上的概率。
后验概率是指基于某个发⽣的条件事件,估计某个事件的概率,它是⼀个条件概率。
⽐如⼀个盒⼦⾥⾯有5个球,两个红球,三个⽩球,求在取出⼀个红球后,再取出⽩球的概率。
在wiki上,先验概率的定义为:A prior probability is a marginal probability, interpreted as a description of what is known about a variable in the absence of some evidence。
后验概率的定义为:The posterior probability is the conditional probability of the variable taking the evidence into account. The probability is computed from the prior and the likelihood function via Baye's theorem. 现在以分类任务为例。
⾸先假设有N种可能的类别标签,即y={c1, c2, ..., cN}, λij 表⽰将⼀个真实标记为cj的样本误分类为ci时产⽣的损失。
后验概率p(ci|x)表⽰将样本x分类给ci是的概率。
那么将样本x分类成ci产⽣的条件风险(conditional risk)为: 其中,P(cj|x) 表⽰样本x分类成cj类的概率,λij 表⽰将真实cj类误分类为ci类的损失。
常用的分类模型一、引言分类模型是机器学习中常用的一种模型,它用于将数据集中的样本分成不同的类别。
分类模型在各个领域有着广泛的应用,如垃圾邮件过滤、情感分析、疾病诊断等。
在本文中,我们将介绍一些常用的分类模型,包括朴素贝叶斯分类器、决策树、支持向量机和神经网络。
二、朴素贝叶斯分类器朴素贝叶斯分类器是一种基于贝叶斯定理的分类模型。
它假设所有的特征都是相互独立的,这在实际应用中并不一定成立,但朴素贝叶斯分类器仍然是一种简单而有效的分类算法。
2.1 贝叶斯定理贝叶斯定理是概率论中的一条基本公式,它描述了在已知一些先验概率的情况下,如何根据新的证据来更新概率的计算方法。
贝叶斯定理的公式如下:P(A|B) = P(B|A) * P(A) / P(B)其中,P(A|B)表示在事件B已经发生的条件下事件A发生的概率,P(B|A)表示在事件A已经发生的条件下事件B发生的概率,P(A)和P(B)分别表示事件A和事件B独立发生的概率。
2.2 朴素贝叶斯分类器的工作原理朴素贝叶斯分类器假设所有特征之间相互独立,基于贝叶斯定理计算出后验概率最大的类别作为预测结果。
具体地,朴素贝叶斯分类器的工作原理如下:1.计算每个类别的先验概率,即在样本集中每个类别的概率。
2.对于给定的输入样本,计算每个类别的后验概率,即在样本集中每个类别下该样本出现的概率。
3.选择后验概率最大的类别作为预测结果。
2.3 朴素贝叶斯分类器的优缺点朴素贝叶斯分类器有以下优点:•算法简单,易于实现。
•在处理大规模数据集时速度较快。
•对缺失数据不敏感。
但朴素贝叶斯分类器也有一些缺点:•假设特征之间相互独立,这在实际应用中并不一定成立。
•对输入数据的分布假设较强。
三、决策树决策树是一种基于树结构的分类模型,它根据特征的取值以及样本的类别信息构建一个树状模型,并利用该模型进行分类预测。
3.1 决策树的构建决策树的构建过程可以分为三个步骤:1.特征选择:选择一个最佳的特征作为当前节点的划分特征。
第三讲贝叶斯分类器线性分类器可以实现线性可分的类别之间的分类决策,其形式简单,分类决策快速。
但在许多模式识别的实际问题中,两个类的样本之间并没有明确的分类决策边界,线性分类器(包括广义线性分类器)无法完成分类任务,此时需要采用其它有效的分类方法。
贝叶斯分类器就是另一种非常常见和实用的统计模式识别方法。
一、 贝叶斯分类1、逆概率推理Inverse Probabilistic Reasoning推理是从已知的条件(Conditions),得出某个结论(Conclusions)的过程。
推理可分为确定性(Certainty)推理和概率推理。
所谓确定性推理是指类似如下的推理过程:如条件B存在,就一定会有结果A。
现在已知条件B存在,可以得出结论是结果A一定也存在。
“如果考试作弊,该科成绩就一定是0分。
”这就是一条确定性推理。
而概率推理(Probabilistic Reasoning)是不确定性推理,它的推理形式可以表示为:如条件B存在,则结果A发生的概率为P(A|B)。
P(A|B)也称为结果A 发生的条件概率(Conditional Probability)。
“如果考前未复习,该科成绩有50%的可能性不及格。
”这就是一条概率推理。
需要说明的是:真正的确定性推理在真实世界中并不存在。
即使条件概率P(A|B)为1,条件B存在,也不意味着结果A就确定一定会发生。
通常情况下,条件概率从大量实践中得来,它是一种经验数据的总结,但对于我们判别事物和预测未来没有太大的直接作用。
我们更关注的是如果我们发现了某个结果(或者某种现象),那么造成这种结果的原因有多大可能存在?这就是逆概率推理的含义。
即:如条件B存在,则结果A存在的概率为P(A|B)。
现在发现结果A出现了,求结果B存在的概率P(B|A)是多少?例如:如果已知地震前出现“地震云”的概率,现在发现了地震云,那么会发生地震的概率是多少?再如:如果已知脑瘤病人出现头痛的概率,有一位患者头痛,他得脑瘤的概率是多少?解决这种逆概率推理问题的理论就是以贝叶斯公式为基础的贝叶斯理论。
基于贝叶斯算法的分类器设计与实现一、引言随着大数据时代的来临,数据分类和预测成为了各行各业中的重要任务。
其中,贝叶斯算法作为一种常用的机器学习算法,具有较好的分类效果和运算速度。
本文将探讨基于贝叶斯算法的分类器的设计与实现方法,旨在为研究者提供一种有效的分类解决方案。
二、贝叶斯分类器原理贝叶斯分类器是基于贝叶斯定理的一种分类算法。
其核心思想是通过计算后验概率,选取具有最大后验概率的类别作为分类结果。
贝叶斯分类器通过学习训练集中的样本数据,利用先验概率和条件概率来进行分类。
三、分类器设计1. 数据预处理在设计分类器之前,首先需要进行数据预处理。
数据预处理包括数据清洗、特征选择和数据转换等步骤。
其中,数据清洗可以去除异常数据和噪声数据,特征选择可以筛选出与分类任务相关的特征,数据转换可以将数据转换为分类器所需的输入格式。
2. 特征提取特征提取是分类器设计的关键步骤之一。
通过对原始数据进行特征提取,可以将数据转化为分类器所能理解的形式。
常用的特征提取方法包括词袋模型、TF-IDF权重和词嵌入等。
3. 训练模型在特征提取完成后,需要利用训练集来训练分类器模型。
贝叶斯分类器利用训练集中的样本数据计算先验概率和条件概率,并建立分类模型。
训练模型的过程包括计算类别先验概率、计算条件概率和选择最优特征等。
4. 分类预测分类预测是利用训练好的分类器模型对新样本进行分类的过程。
对于新的输入样本,分类器根据先验概率和条件概率计算后验概率,并将概率最大的类别作为分类结果输出。
四、分类器实现1. 贝叶斯公式实现贝叶斯算法的核心是贝叶斯公式。
在编程实现过程中,可以借助概率统计的库函数,计算样本的先验概率和条件概率。
同时,根据样本的特征提取结果,利用贝叶斯公式计算后验概率,并选择概率最大的类别作为分类结果。
2. 预测算法实现预测算法是分类器实现过程中的关键步骤。
贝叶斯分类器中常用的预测算法有朴素贝叶斯算法和多项式贝叶斯算法。
实验报告课程名称:模式识别学院:电子通信与物理学院专业:电子信息工程班级:电子信息工程2013-3 姓名:学号:指导老师:实验一Bayes 分类器设计本实验旨在让同学对模式识别有一个初步的理解,能够根据自己的设计对贝叶斯决策理论算法有一个深刻地认识,理解二类分类器的设计原理。
1实验原理最小风险贝叶斯决策可按下列步骤进行:(1)在已知)(i P ω,)(i X P ω,i=1,…,c 及给出待识别的X 的情况下,根据贝叶斯公式计算出后验概率:∑==c j ii i i i P X P P X P X P 1)()()()()(ωωωωω j=1,…,x(2)利用计算出的后验概率及决策表,按下面的公式计算出采取i a ,i=1,…,a 的条件风险∑==c j j j ii X P a X a R 1)(),()(ωωλ,i=1,2,…,a(3)对(2)中得到的a 个条件风险值)(X a R i ,i=1,…,a 进行比较,找出使其条件风险最小的决策k a ,即则k a 就是最小风险贝叶斯决策。
2实验容假定某个局部区域细胞识别中正常(1ω)和非正常(2ω)两类先验概率分别为 正常状态:P (1ω)=0.9;异常状态:P (2ω)=0.1。
现有一系列待观察的细胞,其观察值为x :-3.9847 -3.5549 -1.2401 -0.9780 -0.7932 -2.8531-2.7605 -3.7287 -3.5414 -2.2692 -3.4549 -3.0752-3.9934 2.8792 -0.9780 0.7932 1.1882 3.0682-1.5799 -1.4885 -0.7431 -0.4221 -1.1186 4.2532已知类条件概率密度曲线如下图:)|(1ωx p )|(2ωx p 类条件概率分布正态分布分别为(-2,0.25)(2,4)试对观察的结果进行分类。
3 实验要求1) 用matlab 完成分类器的设计,要求程序相应语句有说明文字。