《旋转曲面的面积》PPT课件
- 格式:ppt
- 大小:1.34 MB
- 文档页数:19
§4 旋转曲面的面积一 微元法用定积分计算几何中的面积,体积,弧长,物理中的功,引力等等的量,关键在于把所求量通过定积分表达出来. 元素法就是寻找积分表达式的一种有效且常用的方法. 它的大致步骤是这样的:设所求量 是一个与某变量(设为x )的变化区间 有关的量,且关于区间 具有可加性. 我们就设想把 分成n 个小区间,并把其中一个代表性的小区间记坐 , 然后就寻求相应于这个小区间的部分量 的近似值(做这一步的时候,经常画出示意图帮助思考),如果能够找到的形如 近似表达式(其中 为 上的一个连续函数在点x 处的值, 为小区间的长度),那么就把称为量 的元素并记做,即 dx x f dU )(= 以量 的元素作为被积表达式在 上进行积分,就得到所求量 的积分表达式:⎰badx x f )(例如求由两条曲线)(,)(21x f y x f y == (其中],[,21b a C f f ∈)及直线 b x a x ==, 所为成图形的面积A.容易看出面积元素dx x f x f DA |)()(|21-=于是得平面图形b x a x f y x f ≤≤≤≤,)()(21 的面积为⎰-=badx x f x f A |)()(|21采用微元法应注意一下两点:1)所求量 关于分布区间 具有代数可加性.2))()(x o x x f U ∆=∆-∆对于前面所讲过的平面图形的面积、立体体积、曲线弧长相应的微元分别为:x y s xx S V xy S ∆'+≈∆∆≈∆∆≈∆21)(||二 旋转体的侧面积设y =y(x)于[a,b]上非负,且连续可微,该曲线绕x 轴旋转后所得的旋转面的侧面积:2b aS π=⎰ 例1、 计算圆222R y x =+在],[],[21R R x x -⊂上的弧段绕x 轴旋转后所得的旋转面的侧面积. 例2、 计算由内摆线t a y t a x 33sin ,cos ==绕x 轴旋转后所得的旋转面的侧面积. 作业:P255 1(2)(3), 3(2)。
第十章定积分的应用4 旋转曲面的面积一、微元法定义:已知:若φ(x)=⎰xf(t)dt,则当f为连续函数时,φ’(x) =f(x),或adφ=f(x)dx,且φ(a)=0,φ(b)=⎰bf(t)dt.a现将问题倒过来,若所求量φ是分布在某区间[a,x]上的,或它是该区间端点x的函数,即φ=φ(x), x∈[a,b],且当x=b时,φ(b)适为最终所求的值.在任意小区间[x,x+△x]⊂[a,b]上,若能把φ的微小增量△φ近似表示为△x的线性形式:△φ≈f(x)△x,其中f为某一连续函数,而且当△x→0时,△φ- f(x)△x=o(△x),亦即dφ=f(x)dx,那么只要把定积分⎰bf(x)dx计算出来,就是该问题所求的结果,这种a方法通常称为微元法.注:1、所求量φ关于分布区间必须是代数可加的;2、微元法的关键是正确给出△φ的近似表达式△φ≈f(x)△x.应用:求平面图形面积的微元表达式:△A≈|y|△x,且dA=|y|dx. 求立体体积的微元表达式:△V≈A(x)△x,且dV=A(x)dx.求曲线弧长的微元表达式:△s≈2y1'+dx.+△x,且ds=2y1'二、旋转曲面的面积设光滑曲线C 的方程为y=f(x), x ∈[a,b],不妨设f(x)≥0.曲线C 绕x 轴旋转一周得旋转曲面如图,可用微元法导出其面积公式. 通过x 轴上点x 与x+△x 分别作垂直于x 轴的平面,在旋转曲面上截得一狭带,当△x 很小时,近似于一圆台侧面,即△s ≈π[f(x)+f(x+△x)]22y x ∆+∆=π[2f(x)+△y]2x y 1⎪⎭⎫ ⎝⎛∆∆+△x ,其中△y=f(x+△x)-f(x),又y lim 0x ∆→∆=0,2x x y 1lim ⎪⎭⎫⎝⎛∆∆+→∆=)x (f 12'+. 由f ’(x)的连续性可保证:π[2f(x)+△y]2x y 1⎪⎭⎫ ⎝⎛∆∆+△x-2πf(x))x (f 12'+△x=o (△x).∴dS=2πf(x))x (f 12'+, S=2π⎰'+ba2)x (f 1f(x )dx.若光滑曲线C 由参数方程:x=x(t), y=y(t), t ∈[α,β]给出,且y(t)≥0,则 由弧微分知识推知曲线C 绕x 轴旋转所得旋转曲面的面积为: S=2π⎰'+'βα22)t (y )t (x y(t)dt.例1:计算圆x 2+y 2=R 2在[x 1,x 2]⊂[-R,R]上的弧段绕x 轴旋转所得球带的面积.解:圆在x 轴上方的曲线为y=22x R -,则y ’=22xR x --,所得球带的曲面面积为:S=2π⎰-+⋅-21x x 22222xR x 1x R dx=2πR(x 2-x 1).注:当x 1=-R, x 2=R 时,则得球的表面积S 球=4πR 2.例2:计算由内摆线x=acos 3t,y=asin 3t 绕x 轴旋转所得旋转曲面面积。