哈工大模式识别第四章第五章
- 格式:ppt
- 大小:10.11 MB
- 文档页数:138
第一章 绪论1.1模式和模式识别模式识别是一门很受人们重视的学科。
早在30年代就有人试图以当时的技术解决一些识别问题,在近代,随着计算机科学技术的发展和应用,模式识别才真正发展起来。
从60年代至今,在模式识别领域中已取得了不少成果。
它的迅速发展和广泛应用前景引起各方面的关注。
模式识别属于人工智能范畴,人工智能就是用机器去完成过去只有人类才能做的智能活动。
在这里,“智能”指的是人类在认识和改造自然的过程中表现出来的智力活动的能力。
例如:通过视觉、听觉、触觉等感官接受图象、文字、声音等各种自然信息去认识外界环境的能力;将感性知识加工成理性知识的能力,即经过分析、推理、判断等思维过程而形成概念、建立方法和作出决策的能力;经过教育、训练、学习不断提高认识与改造客观环境的能力‘对外界环境的变化和干扰作出适应性反应的能力等。
模式识别就是要用机器去完成人类智能中通过视觉、听觉、触觉等感官去识别外界环境的自然信息的那些工作。
虽然模式识别与人工智能关系很密切,但是发展到现在,它已经形成了独立的学科,有其自身的理论和方法。
在许多领域中,模式识别已有不少比较成功的实际应用。
模式的概念:模式这个概念的内涵是很丰富的。
“我们把凡是人类能用其感官直接或间接接受的外界信息都称为模式”。
比如:文字、图片、景物;声音、语言;心电图、脑电图、地震波等;社会经济现象、某个系统的状态等,都是模式。
模式识别:模式识别是一门研究对象描述和分类方法的科学。
如,我们要听某一门课,必须做以下识别:1)看课表—文字识别;2)找教室和座位—景物识别;3)听课—声音识别。
再比如,医生给病人看病:1)首先要了解病情;问2)再做一些必要的检验;查3)根据找到的能够诊断病情的主要特征,如体温、血压、血相等,做出分类决策,即诊断。
对于比较简单的问题,可以认为识别就是分类。
如,对于识别从“0”到“9”这十个阿拉伯数字的问题。
对于比较复杂的识别问题,就往往不能用简单的分类来解决,还需要对待识别模式的描述。
第五章非线性分类器Ø支持向量机5.5 支持向量机ØVapnik等人在多年研究统计学习理论基础上对线性分类器提出了另一种设计最佳准则。
其原理也从线性可分说起,然后扩展到线性不可分的情况。
甚至扩展到使用非线性函数中去,这种分类器被称为支持向量机(Support Vector Machine,简称SVM)。
Ø支持向量机在设计时,需要用到条件极值问题的求解,因此需用拉格朗日乘子理论,但对多数人来说,以前学到的或常用的是约束条件为等式表示的方式,但在此要用到以不等式作为必须满足的条件,此时只要了解拉格朗日理论的有关结论就行。
5.5 支持向量机线性可分条件下的支持向量机最优分界面ØSVM的思想:由于两类别训练样本线性可分,因此在两个类别的样本集之间存在一个间隔。
对一个二维空间的问题用下图表示。
线性可分条件下的支持向量机最优分界面Ø其中H是将两类分开的分界面,而H1与H2与H平行,H是其平分面,H1上的样本是第一类样本到H最近距离的点,H2的点则是第二类样本距H的最近点。
5.5 支持向量机HH1H2线性可分条件下的支持向量机最优分界面Ø由于这两种样本点很特殊,处在间隔的边缘上,因此再附加一个圈表示。
这些点称为支持向量,它们决定了这个间隔。
HH 1H 25.5 支持向量机线性可分条件下的支持向量机最优分界面Ø从图上可以看出能把两类分开的分界面并不止H这一个,如果略改变H的方向,则根据H1、H2与H平行这一条件,H1、H2的方向也随之改变,这样一来,H1与H2之间的间隔(两条平行线的垂直距离)会发生改变。
Ø显然使H1与H2之间间隔最大的分界面H是最合理的选择,因此最大间隔准则就是支持向量机的最佳准则。
5.5 支持向量机5.5 支持向量机最佳线性分割线?高维空间?5.5 支持向量机寻找各自点所在的凸集中的最近点dc5.5 支持向量机最佳分割面dc5.5 支持向量机最优线性分离:最大化间隔最优分类超平面:它能够将训练样本没有错误的分开,并且两类训练样本中离超平面最近的样本与超平面之间的距离最大间隔(M a r g i n):两类样本中离分类面最近的样本到分类面的距离间隔为了将这个准则具体化,需要用数学式子表达。
第一章 绪论1.什么是模式?具体事物所具有的信息。
模式所指的不是事物本身,而是我们从事物中获得的___信息__。
2.模式识别的定义?让计算机来判断事物。
3.模式识别系统主要由哪些部分组成?数据获取—预处理—特征提取与选择—分类器设计/ 分类决策。
第二章 贝叶斯决策理论1.最小错误率贝叶斯决策过程? 答:已知先验概率,类条件概率。
利用贝叶斯公式得到后验概率。
根据后验概率大小进行决策分析。
2.最小错误率贝叶斯分类器设计过程?答:根据训练数据求出先验概率类条件概率分布 利用贝叶斯公式得到后验概率如果输入待测样本X ,计算X 的后验概率根据后验概率大小进行分类决策分析。
3.最小错误率贝叶斯决策规则有哪几种常用的表示形式? 答:4.贝叶斯决策为什么称为最小错误率贝叶斯决策?答:最小错误率Bayes 决策使得每个观测值下的条件错误率最小因而保证了(平均)错误率 最小。
Bayes 决策是最优决策:即,能使决策错误率最小。
5.贝叶斯决策是由先验概率和(类条件概率)概率,推导(后验概率)概率,然后利用这个概率进行决策。
6.利用乘法法则和全概率公式证明贝叶斯公式答:∑====mj Aj p Aj B p B p A p A B p B p B A p AB p 1)()|()()()|()()|()(所以推出贝叶斯公式7.朴素贝叶斯方法的条件独立假设是(P(x| ωi) =P(x1, x2, …, xn | ωi)⎩⎨⎧∈>=<211221_,)(/)(_)|()|()(w w x w p w p w x p w x p x l 则如果∑==21)()|()()|()|(j j j i i i w P w x P w P w x P x w P 2,1),(=i w P i 2,1),|(=i w x p i ∑==21)()|()()|()|(j j j i i i w P w x P w P w x P x w P ∑===Mj j j i i i i i A P A B P A P A B P B P A P A B P B A P 1)()|()()|()()()|()|(= P(x1| ωi) P(x2| ωi)… P(xn| ωi))8.怎样利用朴素贝叶斯方法获得各个属性的类条件概率分布?答:假设各属性独立,P(x| ωi) =P(x1, x2, …, xn | ωi) = P(x1| ωi) P(x2| ωi)… P(xn| ωi) 后验概率:P(ωi|x) = P(ωi) P(x1| ωi) P(x2| ωi)… P(xn| ωi)类别清晰的直接分类算,如果是数据连续的,假设属性服从正态分布,算出每个类的均值方差,最后得到类条件概率分布。